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Abstract

Properties such as logging, persistence, debugging, tracing, distribution, performance monitoring
and exception handling occur in most programming paradigms and are normally very difficult or
even impossible to modularize with traditional modularization mechanisms because they are cross-
cutting. Recently, aspect-oriented programming has enjoyed recognition as a practical solution for
separating these concerns. In this paper we describe an extension to the Stratego term rewriting
language for capturing such properties. We show our aspect language offers a concise, practical
and adaptable solution for dealing with unanticipated algorithm extension for forward data-flow
propagation and dynamic type checking of terms. We briefly discuss some of the challenges faced
when designing and implementing an aspect extension for and in a rule-based term rewriting system.

Keywords: aspect-oriented programming; language extension; rule-based programming;
unanticipated extension; strategic programming

1 Introduction

Good modularization is a key issue in design, development and maintenance
of software. We want to structure our software close to how we want to think
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about it [21], by cleanly decomposing the properties of the problem domain
into basic function units, or components. These can be mapped directly to
language constructs such as data types and functions. Not all properties of
a problem decompose easily into components, but rather turn out to be non-
functional and frequently cross-cut our module structure. Such properties are
called aspects. The goal of aspect-oriented software development [13] is the
modularization of such cross-cutting concerns. By making aspects part of the
programming language, we are left with greater flexibility in modularizing our
software, as the cross-cutting properties need no longer be scattered across the
components. Using aspects, these properties may now be declared entirely in
separate units, one for each property. Examples of general aspects include
security, logging, persistence, debugging, tracing, distribution, performance
monitoring, exception handling, origin tracking and traceability. All these oc-
cur in the context of rule-based programming, in addition to some which are
domain-specific, such as rewriting with layout. Existing literature predomi-
nantly discusses aspect-based solutions to these problems for object-oriented
languages, and the documentation of paradigm-specific issues and deployed
solutions for the rule-based languages is scarce.

In this paper we describe the design and use of aspects in the context
of rule-based programming. We introduce the AspectStratego language for
declaration of separate, cross-cutting concerns and discuss the joinpoint model
on which it is built. We demonstrate its practical use and highlight some of
its implementation details through three small case studies motivated by the
problem of constant propagation. The contributions of this paper include:

(i) The description of an aspect language extension implemented for and in
a rule-based programming language.

(ii) An example of its suitability for adding flexible dynamic type checking
of terms in a precise and concise way.

(iii) A demonstration of its application to unanticipated algorithm extension
by showing how it can help in generalizing a constant propagation strat-
egy to a generic, adaptable forward propagation scheme, using invasive
software composition [2].

We proceed as follows. In the next section, we describe the Stratego lan-
guage for term rewriting, with examples. In Section 3, we introduce an exten-
sion to Stratego which allows separate declaration of cross-cutting concerns
and show how this extension facilitates declarative code composition. In Sec-
tion 4, we discuss three cases where the aspect extension is found to be highly
useful: logging, type checking of terms and algorithm adaption. In Section 6,
we discuss previous, related and future work.
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2 The Fundamentals of Stratego

In order to discuss aspects for rule-based programming, we shall briefly in-
troduce the Stratego language for term rewriting. Readers familiar with the
language may want to skip ahead to Section 2.2.

2.1 The Stratego Language

Stratego is based on the concept of rewriting strategies; algorithms for trans-
forming a term with respect to a set of rewrite rules. In most rewrite engines
these strategies are fixed, and often require the set of rules to be confluent
and terminating. In Stratego, the strategies are user-defined, thus providing
the user with fine-grained control over the selection of rules and the order of
their application. While a term may represent anything, the Stratego library
and tool chain, together named Stratego/XT, is geared towards computer
languages and program transformation.

2.1.1 Signatures and Terms

A signature describes the structure of a first-order term. It consists of a set
of constructors, each taking zero or more arguments. A term over a signature
S is a syntactic expression generated from its signature by application of the
constructors. For example, Assign(Var("x"),Plus(Int("1"), Var("x")))

is the term representation of x := 1 + x.

2.1.2 Match and Build

Stratego is built around the two primitive operators match and build. Build,
written !, is used to construct a term from constructors and primitive sorts.
Match, written ?, is used to match a pattern against a term. A pattern is a
term that might contain variables. If a variable in a term pattern is already
bound to a term, then the variable in the pattern will be replaced with this
value. If variables in the pattern are not yet bound, then these variables
will be bound to the actual values in the current term to which the pattern
is applied. Building and matching is always done against an implicit current

term. Assuming the signature in Fig. 1 and that x is bound to "0", y unbound,
the following code fragment will first replace the current term with the Plus

term, then match against the new current term and bind y to "2":

!Plus(Int(x ), Int("2")) ; ?Plus( , Int(y )))

The underline ( ) here is a wildcard. It matches any term and ignores it.
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2.1.3 Rewrite Rules

A rewrite rule describes the transformation from one term to another, and
might be guarded by a condition. It has the form R : l -> r, where R is
the rule name, l the left-hand side pattern and r the right-hand side pattern.
The condition may be added in a where-clause, which contains a strategy
expression, described next. The left-hand side pattern is matched against a
term and if the match succeeds, the right-hand side pattern is instantiated to
construct the new term. Multiple rules may have the same name, and rules are
always invoked by name. When multiple rules with the same name exist, all
are tried until one matches, and its result is returned. If multiple rules could
match, only one will succeed. The language semantics does not specify which.
In Fig. 1, EvalBinOp is an example of a rewrite rule with a condition. A rewrite
rule with a dynamic (as opposed to lexical) scope is called a dynamic rewrite

rule. The scoping is controlled entirely by the programmer by inserting special
scope constructs into strategy expressions[20]. In Fig. 1, rules( PropConst

: ... ) is an example of the declaration of the dynamic rule PropConst,
and rules( PropConst :- ... ) shows its deletion.

2.1.4 Rewriting Strategies

A rewriting strategy is an algorithm for transforming a term. If it succeeds, the
result is the transformed term. If it fails, there is no result. Strategies control
the order of application of rules or other strategies. They can be combined
into strategy expressions using a set of built-in strategy combinators, such as
sequential composition (;) and deterministic choice (<+). The language has
two primitive strategies: id will always succeed and return the identity term
and fail will always fail. prop-const-assign in Fig. 1 is an example of a
strategy definition.

2.1.5 Rules and Strategy Parameters

Strategy and rule definitions may contain two kinds of parameters, higher-

order strategy parameters and term parameters. Higher-order strategy argu-
ments work mostly like higher-order functions in functional languages. Term
parameters are used to pass context information into rules or strategies with-
out involving the current term. The call to log in Fig. 3 is an example of
strategy invocation with only term arguments. The strategy arguments are
separated from the term arguments by a |. Arguments before the | are taken
to be strategy arguments, arguments after are taken to be term arguments.
In the case of no term arguments, | is omitted.
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module prop-const

signature

constructors

Var : Id -> Var

: Var -> Exp

Int : String -> Exp

Plus : Exp * Exp -> Exp

If : Exp * Exp * Exp -> Exp

While : Exp * Exp -> Exp

Assign : Var * Exp -> Exp

rules

EvalBinOp : Plus(Int(i ), Int(j )) -> Int(k )

where <addS>(i ,j ) => k

EvalIf : If(Int("0"), e1 , e2 ) -> e2

strategies

prop-const =

PropConst <+ prop-const-assign <+ prop-const-if

<+ prop-const-while <+ (all(prop-const) ; try(EvalBinOp))

prop-const-assign =

Assign(?Var(x ), prop-const => e )

; if <is-value> e then rules( PropConst : Var(x ) -> e )

else rules( PropConst :- Var(x ) ) end

prop-const-if =

If(prop-const, id, id)

; (EvalIf ; prop-const <+

(If(id,prop-const,id) /PropConst\ If(id,id,prop-const)))

prop-const-while =

?While(e1 , e2 )

; (While(prop-const,id)

; EvalWhile

<+ (/PropConst\* While(prop-const, prop-const)))

Fig. 1. An excerpt of a Stratego program defining an intraprocedural conditional constant propa-
gation transformation strategy for a small, imperative language.

2.1.6 Term Traversal

Term traversal strategies apply rewriting strategies throughout the structure
of a term. The library provides a host of primitive strategies for this. To apply
a strategy s to all immediate subterms of a term, one may write all(s). Other
examples of provided traversals are bottomup and topdown. An alternative
mechanism for term traversal is by using congruence operators. For each n-
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x := 1 + 1 ;
if x then y := 1

else y := 0 fi
⇒ x := 2 ; y := 1

Fig. 2. Example showing the constant propagation strategy.

ary constructor C there is a corresponding congruence operator defining a
strategy with the same name and arity, C(s1,...,sn). When applied to the
term C(t1,...,tn) strategy applies s1 to t1, s2 to t2, and so on, yielding the
term C(t′

1
,...,t′

n
), provided all si strategies succeed. If any si fails, so does

the strategy C. If(prop-const, id, id) in the strategy prop-const-if in
Fig. 1 is an example of a congruence for If.

2.1.7 Modularization

Modules are the coarsest elements of the Stratego program structure. A mod-
ule is a file starting with the declaration module name . Following this dec-
laration are sections, each with a section header, of which signature, rules
and strategies are relevant to us. Constructor declarations must occur in-
side a signature section. Rules and strategies may be freely mixed within
the rules and strategies sections, but good form is to place the definition
according to its type.

2.2 Constant propagation

The code in Fig. 1 shows a constant propagating strategy for an imperative
language with assignment, While and If constructs. The principle of the
constant propagation algorithm is straightforward: Whenever there is an as-
signment of a constant to a variable, we record this using a dynamic rewrite
rule. If the variable is subsequently assigned a non-constant value, the rule
is deleted. This is done in prop-const-assign. We use the dynamic rewrite
rule to replace every constant variable with its value, if known. This opens up
for elementary evaluation rules EvalBinOp and EvalIf to simplify expressions
over Plus and If. An example of its application is given in Fig. 2.

The prop-const strategy is the top level driving strategy which takes care
of recursively applying the constant propagation to a term. It works by calling
the rule PropConst, which will replace any variable term for which we know
the value with its constant. In fact, PropConst is a set of dynamic rules with
the same name. Since PropConst is dynamic, rules may be added to and
removed from the set as the traversal progresses. This is done in the strategy
prop-const-assign. As we can see in prop-const, prop-const-assign is
invoked on any term where PropConst fails, i.e. whenever we cannot replace
a variable with its constant. If, when the prop-const-assign is invoked, we
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are on an Assign term and it is assigned a constant value, we generate a
new rule with the name PropConst, thus adding it to the PropConst rule set.
The freshly generated rule is a lookup from a variable (a Var) to a constant
value. When applied, the new PropConst rule will rewrite an occurrence of
that variable to its associated value.

Refer back to the prop-const strategy. If the current term is not a Var we
know the constant value for, nor an Assign we can pick out a constant value
form, prop-const will try the other strategies, for If (prop-const-if) and
While (prop-const-while). If all fail, prop-const will fall back to applying
itself recursively to all subterms of the current term, then try the EvalBinOp

rule on the result.

The prop-const-if strategy will match an If construct using a congru-
ence operator, while at the same time applying prop-const to the condi-
tion expression. If the congruence succeeds, the prop-const-if strategy
proceeds by either (1) simplifying the If using the EvalIf rule and then
recursively continuing the prop-const algorithm on the result, or (2) apply-
ing prop-const recursively to the then-branch and else-branch in turn, and
keeping only PropConst rules which are valid after both branches, i.e. those
that are defined and equal in both branches.

The dynamic rule intersection operator s1 /PropConst\ s2 applies both
strategies s1 then s2 to the current term in sequence, while distributing (clones
of) the same rule set for the dynamic rule PropConst to both strategies.
Afterwards, only those rules which are consistent in both branches are kept. A
similar explanation holds for prop-const-while, where the fixpoint operator
/PropConst\* s is used instead. This operator will apply s repeatedly until
a stable rule set is obtained. Each iteration will apply s to the original term,
and the result of the final iteration is kept as the new term.

2.2.1 Generalization and Adaptation

As written, the algorithm already has some variation points where the user can
extend it using the language features we have presented, without modifying
the algorithm itself. For example adding another evaluation rule for EvalIf

that deals with non-zero constants. But there are also other extensions and
adaptations we may want to apply to this algorithm. Section 4.1 shows how
we can extend it with logging capabilities to record all rule invocations, and
in Section 4.2, we show to extend it with dynamic type checking of terms
to ensure the result is a correct term. Finally, in Section 4.3, we show how
the algorithm can be refactored into a more generalized schema for forward
propagating data-flow transformations. All extensions and adaptations are
performed with the help of our aspect extension to the Stratego language,
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module prop-const-logger

imports logging prop-const

aspects

pointcut call = strategies(prop-const)

aspect prop-const-logger =

before : call = log(|Debug, "Invoking constant propagator")

Fig. 3. Aspect extending the constant propagation module with logging. The log is from logging
module, part of the Stratego library.

described next.

3 AspectStratego

AspectStratego is an extension to the Stratego language which addresses the
problem of declaring cross-cutting concerns in a modular way. The language
extension bears some resemblance to the AspectJ language [12]. We have tried
to keep much of the terminology, as well as some properties of its joinpoint
model, though the latter has been adapted to fit better within the paradigm
of rule-based rewriting systems. Similar to AspectJ, we provide the program-
mer with expressions called pointcuts (ours are boolean involving predicates
instead of set theoretic) on the program structure used to pick out well-defined
points in the program execution, called joinpoints. Pointcuts are used in ad-
vice to pinpoint places to insert code before, after or around. The inserted
code is declared as part of the advice. Advice are in turn gathered in named
entities called aspects. The act of composing a program with its aspects is
called weaving.

Fig. 3 shows how we may use an aspect to extend the constant propagator
with trivial logging. In the following section we will give a more advanced
example of logging. Here, we will cover the new language features introduced
in this example.

3.1 Joinpoints

A joinpoint is a well-defined point in the program execution through which the
control flow passes twice: once on the way into the sub-computation identified
by the joinpoint, and once on the way out. The purpose of the aspect language
is allowing the programmer to precisely and succinctly identify and manipulate
joinpoints.
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Joinpoint Matches

calls(name-expr => n) strategy or rule invocations

strategies(name-expr => n) strategy executions

rules(name-expr => n) rule executions

matches(pattern => t) pattern matches

builds(pattern => t) term constructions

fails explicit invocations of fail

Joinpoint context Matches

withincode(name-expr => n) joinpoints within a strategy or rule

matchflow(flow-regex => t) joinpoints with given execution history

args(n0,n1,...,nn) joinpoints with given arity

lhs(pattern => t) rule left-hand sides

rhs(pattern => t) rule right-hand sides

Advice Action on pointcut

before run before

after run after

after fail run after, iff code in pointcut failed

after succeed run after, iff code in pointcut succeeded

around wrapped around

Fig. 4. Synopsis of the AspectStratego joinpoint, joinpoint context predicates and advice variants.
The name-expr can either be a complete identifier name, such as EvalBinOp or a prefix, such as
prop-*. The result of a name-expr is a string, and may optionally be assigned to a variable using
the => x syntax. The pattern is an ordinary Stratego pattern, which may contain both variables
and wildcards. The flow-regex is a regular expression on the execution stack and may be considered
as an extended, dynamic version of withincode. It will not be discussed further in this article.

3.2 Pointcuts

A pointcut is a boolean expression over a fixed set of predicates and the op-
erators ; (and), + (or) and not, and is used to specify a set of joinpoints.
There are two kinds of predicates in a pointcut, joinpoint predicates and join-
point context predicates 3 : A joinpoint predicate is a pattern on the Stratego
program structure used to pick out a set of joinpoints. A joinpoint context

predicate is a predicate on the runtime environment which can be used in a
pointcut to restrict the set of joinpoints matched by a joinpoint predicate.

3 This terminology and implementation differs from the AspectJ language which provides
primitive pointcut designators instead, see [12].
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Fig. 4 lists the supported joinpoint and joinpoint context predicates. A point-

cut declaration is a named and optionally parameterized pointcut, intended
to allow easy sharing of identical pointcuts between advice. The parameters
are used to expose details about the pointcut to the advice. The declaration
pointcut call = strategies(prop-const) from Fig. 3 shows a parameter-
less pointcut named call with the joinpoint predicate strategies and no
joinpoint context predicates. It picks out all definitions of strategies named
prop-const.

3.3 Advice

An advice is a body of code associated with a pointcut. There are three main
kinds of advice, before, after and around, which specify where the body of code
should be placed relative to the joinpoint matched by its pointcut. Fig. 4 lists
the available advice types for AspectStratego. The code before : call =

log(|Debug, "Invoking const....") in Fig. 3 is an example of a before
advice. The strategy log is provided by the library, and will be discussed
later. This code will be weaved into the prop-const strategy in Fig. 1 as
follows:

prop-const = log(|Debug, "Invoking const....")

; (PropConst <+ prop-const-assign <+ prop-const-if

<+ prop-const-while <+ (all(prop-const) ; try(EvalBinOp)))

Composing code by inserting advice like this opens up the possibility for
manipulating the current term. Exactly how the strategy or rule invocations
inside the advice body changes the current term can be controlled in two
ways: the advice body is a strategy expression and may be wrapped (entirely
or partially) in a where to control how and if the current term is modified. In
the above case, log only takes term arguments and is designed to leave the
current term untouched, making where superfluous.

This manipulation of the current term turns out to be extremely useful
in around advice, where the implementer of the advice has full control over
how the pointcut should be executed. The placeholder strategy proceed is
available for this purpose. By placing the proceed within a try or as part
of a choice (+), it is trivially possible to add failure handling policies. The
flexibility of around allows the aspect programmer to completely override and
replace the implementation of existing strategies and rules, by not invoking
proceed at all. This can even be applied to strategies found in the Stratego
standard library.

The usefulness of current term manipulation stems from the fact that terms
are normally passed as the current term from one strategy to another, not as
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term arguments. E.g. in the following example, strat2 will be applied to the
current term left behind by strat1:

strat1 ; strat2

An alternative, more imperative formulation of the same would be:

strat1 => r ; strat2(|r)

but this is not within the style of Stratego, as it becomes cumbersome to use
when we replace ; with the other strategy combinators, such as <+. Current
term manipulation is thus mostly analogous to manipulating input parameters
and return values in AspectJ.

Wrapping a rule (or strategy) with an advice subsumes overloading a rule
(or strategy) in the following ways:

• controlling order ; when using overloading to extend a set of rules with the
same name with new cases, we cannot control the order of application of
our extension. If this is required, the rules must be renamed and hidden
behind a strategy with the old name, which expresses their priority.

• controlling context ; by extending a rule using overloading, the extension
will always be available, program-wide. Using aspects, we may control the
context where its extension should be available, say by use of calls and
withincode.

3.4 Weaving

The pointcuts are designed to be evaluated entirely at compile-time, matchflow
notwithstanding. Given an advice declaration, the compiler will interpret its
pointcut declaration on the Stratego abstract syntax tree (AST) to find the
location where to weave the advice body. The code in the advice body is then
inserted into the AST before, after or around the joinpoint.

The body of the advice has a rudimentary reflective capability, which is also
resolved at compile-time. From Fig. 4, we see that the advice body has access
to rule and strategy names. The Stratego runtime has no reflective nor code-
generating capabilities, so these names are mostly useful for logging purposes.
Advice body code also has access to patterns from match expressions, and
may evaluate these patterns at runtime. We will show how this is useful in
Section 4.2.

3.5 Modularization

As with all Stratego code, aspects must reside in modules. We think this
sensible, as aspects are about modularizing cross-cutting concerns. An aspect
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or pointcut can only be declared within an aspects section. While aspects

sections may be interleaved with the other Stratego sections (strategies,
rules, signature), we encourage each aspect to be declared in its separate
module. Firstly, this helps keep aspects — separate, cross-cutting concerns –
truly separate, both in design and implementation. Secondly, this also allows
them to be selectively enabled or disabled using compiler flags without any
code modification at all.

AspectStratego keeps the pointcuts declarations outside the aspects dec-
larations. This allows pointcuts to be shared between aspects. In object-
oriented renditions of aspects, such as AspectJ, sharing of pointcuts between
aspects are captured using inheritance: a subaspect inherits all pointcuts from
its superaspect.

We show how shared pointcuts are useful in Section 4.3. The mechanisms
and language features required for controlling the application of aspects on
the module level are still subject to research.

4 Case Studies

We describe the use of AspectStratego for three case studies relevant to rule-
based programming. The first is a simple logging aspect, which is included to
show similarities and differences with the AspectJ language. The second is a
dynamic type checker of terms realized entirely as an aspect, and shows how
aspects may sometimes be used as an alternative to compiler extensions. The
final case is a discussion of how aspects can be useful in expressing variation
points when implementing generalized, adaptable algorithms.

4.1 Logging

Logging of program actions is often useful when developing software, and is
therefore a problem we want to encode in a concise fashion. The program
points we want to trace frequently follow the program structure, for instance
the entry and exit of functions. In these cases the established solution is to
wrap the function definitions in syntactical or lexical macros which do sim-
ple code composition. The numerous shortcomings of this technique, such
as decreased code readability, lack of flexibility, interference with meta-tools
(especially for documentation and refactoring) and typographic tedium are
all addressed by aspects and their weaving. The aspect language also allows
pervasive insertion of logging code in locations unanticipated by the origi-
nal implementor, such as inside rule conditions and failures deep inside the
Stratego library.

The code in Fig. 5 shows an aspect called simple-logger that may be
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module simple-logger

strategies

invoked(|s) = ![ "Rule ’", s, "’ invoked" ]

aspects

pointcut log-rules(n ) = rules(* => n )

aspect simple-logger =

before : log-rules(r ) = log(|Debug, <invoked(|r )>)

after fail : log-rules(r ) = log(|Debug, <failed(|r )>)

after succeed: log-rules(r ) = log(|Debug, <succeeded(|r )>)

after : log-rules(r ) = log(|Debug, <finished(|r )>)

Fig. 5. A complete logging aspect in AspectStratego. The definitions of failed, succeeded and
finished are similar to invoked. The direction of information flow through the pointcut declaration
arguments is somewhat uncommon: they specify information going out of the declaration.

used to insert logging code around all rules in a program by adding it to the
imports list. If we were to import simple-logger into the module in Fig. 2,
all executions of EvalBinOp and EvalIf would be logged. The weaver will
shadow both declarations by prefixing them to obtain a new, unique identifier.
It will then generate a wrapper strategy from the template in Fig. 7 4 The final
result of this weaving for EvalBinOp is shown in Fig. 6. The wrapper will first
perform the code from the before advice followed by the shadowed code. If
the shadowed code fails, the after fail advice is run, followed by the after

advice. The enclosing try and if-then-else are there to allow after fail

and after succeed advice to change a failure into success or success into
failure, respectively. after advice may not change failure/success but may
replace the current term.

While the built-in log strategy provides the ability to set the logging level
at runtime (e.g. only errors, and no warning and debug messages), a program
with explicit log calls inserted into its strategy and rule definitions will always
take a slight performance hit. Stratego, where the coding style encourages
many and small rules and strategies, is sensitive to any such overhead even
with aggressive inlining. Consequently, it is desirable to have the ability to
easily remove most or all log calls before final deployment.

The application of an aspect may open up for further adaptation, again
using aspect weaving. For example, the strategy invoked in Fig. 5 may be the
target for further aspects. Note that these second level — or “meta” — aspects
pose a few potential problems with respect to weaving order that have not been

4 The actual implementation uses the Stratego guarded choice operator, which is a lot less
readable, not if-then-else. if-then-else insulates its condition in a where, leaving the
current term unchanged. In our case, the condition is the pointcut code and must be allowed
to modify the current term.
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EvalBinOp =

log(|Debug, invoked("EvalBinOp")) ;

if shadowed-EvalBinOp then

if log(|Debug, succeeded("EvalBinOp")) then

try(log(|Debug, finished("EvalBinOp")) )

else

log(|Debug, finished("EvalBinOp")) ; fail

end

else

// identical to the then-clause,

// with succeeded replaced by failed

end

Fig. 6. The declaration of EvalBinOp from Fig. 1 after weaving in the simple-logger aspect.

before ;

if pointcut-code then

if after-succeed then try(after ) else after ; fail end

else

if after-fail then try(after ) else after ; fail end

end

Fig. 7. Template for advice weaving. Cursive identifiers are insertion sites for advice code. If a
particular advice is not present in a joinpoint, it is replaced by an id (after-fail is replaced by
fail).

solved in our implementation yet. In our current implementation, aspects
are weaved in the order of declaration. Consider the following definition of
ext-invoked:

aspects

pointcut invoked = calls(invoked)

aspect ext-invoked =

before : invoked = ...

If this aspect were to be weaved before simple-logger, it would have no
effect, as invoked is not called anywhere at the time ext-invoked is weaved.
As long as the user is aware of this, and manually linearizes the dependency
chain between aspects by declaring ext-invoked after simple-logger, the
result will match the intention of the user.
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4.2 Type checking

Terms in Stratego are built with constructors from a signature, but the lan-
guage does not enforce a typing discipline on the terms. With the signature
in Fig. 1, the program may construct an invalid term, e.g. !Plus(Int("0"),
"0"). As the normal mode of operation for Stratego is local and piecewise
rewriting of terms, possibly from one signature to another, invalid intermedi-
ates cannot be forbidden. To debug such a problem, it is common to manually
insert debug printing, or weave in a logger to generate a program trace for
manual inspection, but manual verification is highly error-prone.

The Stratego/XT environment comes with format checking tools for this
purpose. The tools can be applied to the resulting term of a Stratego program,
checking the resulting term against a given signature. While all signature
violations will be caught by these tools, they cannot help in telling where in
your program the actual problem is present, as the check happens entirely
after program execution. Using aspects, we can weave the format checker into
the rules of our program at precisely the spots we would like the structural
invariants dictated by the signature to hold. The typechecker aspect in Fig 8
makes use of the format checker functionality in Stratego/XT to pervasively
weave format checking into all rules in a Stratego program. By modifying the
typecheck-rules pointcut, the user can control the exact application of the
type checker. Its usage is similar to the simple-logger: it must be imported,
and a typecheck strategy for the relevant signature must be declared in a
strategies section:

typecheck(|t ) = format-check-Imp(|t )

The signature in Fig.1 is an excerpt of the signature for a small imperative
language called Imp. Given a language grammar, the Stratego/XT format
checker tools will generate a Stratego module containing a complete format
checker for that grammar. The top level strategy for this format checker is
named format-check-<language-name> . It may be applied to a term, to
see if it is a valid (sub)term of that language.

As with logging, introducing this aspect provides the user with a quick
and concise mechanism to decide which parts (if any) of a program should be
type checked, and its usage can be toggled both at compile- and runtime (the
latter will always incur a small performance hit, as previously discussed).

The argument t to typecheck is the pattern matched by the typecheck-

rules pointcut, and is therefore the right-hand side pattern of a rule. In the
case that t is a term (no variables), it can in theory be entirely checked at
compile time as both the signature and the term are completely known to the
compiler. In the case that t contains variables, the static parts may be checked
at compile time, but the variable part must be evaluated at runtime. If we
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module typecheck-example

aspects

pointcut typecheck-rules(n , t ) = rules(n ) ; rhs(t )

aspect typechecker =

around(n , t ) : typecheck-rules(n , t ) =

proceed ; (typecheck(|t )

<+ ( log(|incorrect-term(n ) ; fail ))

Fig. 8. An aspect for weaving simple dynamic type of terms into rules.

make the assumption that only rules can construct terms, and only in their
right-hand side pattern, we can further optimize the matching by only checking
that the top term of a variable is a valid subterm of its enclosing ”static” term.
Currently, the aspect compiler does not perform such optimizations, but relies
on the match optimizer in the back end of the Stratego compiler.

The type checking aspect is only a partial replacement for a built-in type
system, particularly because it does no type inferencing, and can therefore not
eliminate redundant checks. The topic of typed, strategic term rewriting is
discussed in [16].

4.3 Extending algorithms

The algorithm in Fig. 1 is an instance of the more general data-flow problem
of forward propagation, examples of which are common subexpression elim-
ination, copy propagation, unreachable code elimination and bound variable
renaming. The algorithm can be factored into a language-specific skeleton and
problem-specific extensions. The skeleton needs to be implemented once for
each language, as it is dependent only on the language constructs and scoping
rules. A variation point is a concrete point in a program where variants of
an entity may be inserted. By providing clearly defined variation points, the
skeleton is made adaptable to the specific propagation problem at hand.

4.3.1 Expressing Adaptable Algorithms

There are many well-known techniques for expressing adaptable algorithms.
When providing an algorithm which is supposed to be reused and adapted by
other programmers (users), we are after techniques which offer:

• adaptability ; we would like maximal freedom in which variation points we
may expose to our users.

• reuse; the users of our algorithms should need to reimplement as little code
as possible. This is especially important in the face of maintenance.
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• traceability ; when errors (either design or implementation) are discovered in
our algorithm, we want to offer users an easy upgrade path. Ideally, they
should only need to replace the library file wherein our algorithm resides.
This may not always be feasible, but at the very least, we want our users
to know which parts of his system may be affected by the error.

• evolution; we must be able to change the internals of our algorithm without
disturbing our users.

Boilerplates

One of the most popular, but least desirable techniques for adaptation is
boilerplate adaptation. In this approach, a code template is manually copied
then modified to fit the situation at hand. The approach suffers from high
maintenance costs due to inherent code duplication. It is especially problem-
atic if the original template is later found to contain grave (security) errors,
as there is no traceability of where it has been used. On the other hand, it
offers very high flexibility as all variation points may be reached. At its most
extreme, boilerplate adaptation allows the applicant to gradually replace the
entire algorithm.

Design Patterns

Another, popular technique for reuse are design patterns [6]. A design
pattern is a piece of reusable engineering knowledge. For every case where
a design pattern is applicable, it must be implemented from scratch by the
programmer. In the recent years, much research has been into improving
reuse of design patterns, either by providing direct language support [4,9] or
by placing them in reusable libraries [1,8].

Hooks and Callbacks

Hooks and callbacks are well-known techniques for exposing variation points
through overridable stubs the user of a library or algorithm can extend. By
calling registration functions, the user may add callbacks and hooks which are
called at pre-determined locations in the algorithm, or upon particular events
in the program. As long as the contract between the algorithm and its call-
backs is maintained, the algorithm internals may evolve separately from the
adapted hooks, and therefore offers good maintenance properties. Its draw-
backs include the fact that not all variation points may be expressed as hooks
and that it is difficult to adapt an algorithm with different sets of hooks in
multiple contexts within the same program. In Stratego, this can to some
degree be solved using scoped dynamic rules. For other paradigms, function
pointers, closures and/or objects allow multiple contexts to exist.
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Higher-order Parameters

In functional languages, it is common to expose variation points through
higher-order parameters. The paper [20] describes an adaptable skeleton for
forward propagation using this approach. The technique provides a precise
way for exposing variation points which is both easy to use and allows the
user to adapt the algorithm on a per-context basis within the same program.
One drawback is the issue of “parameter plethora”: the number of parameters
we want our users to deal with. In cases where the problem space is large,
the algorithm will often have many variation points, yielding a long parameter
list. A common solution to this problem is providing multiple entry points
into the algorithm, each with an increasing number of parameters, or having
parameters with default values, where the language supports this.

4.3.2 Limitations

Boilerplates and design patterns are not really desirable, given its poor support
for code reuse and traceability. While the last two solutions offer both good
reuse and traceability, they suffer from a few additional drawbacks. Over time,
experience with the use of an algorithm may expose a need to extend it with
further variation points, unanticipated by the original implementer. Exposing
a new variation point frequently results in a change in the algorithm interface,
either by adding new higher-order parameters, hooks or even new parameter
to the existing hooks. Backwards compatibility can normally be handled by
writing wrappers mimicking the old interface which forwards to the new, at
the cost of maintaining multiple versions of the same interface.

Another consideration when extending an algorithm is how to propagate
the new variation point through its internals. Suppose in prop-const in
Fig. 1, we wanted to add the ability to transform the current term before
recursively descending into the children. With a solution based on higher-order
parameters, this transform parameter would have to be “threaded” through all
prop-* strategies as a higher-order parameter, and thus result in an intrusive
rewrite.

Yet another consideration is who should be able to perform adaptation and
extension of existing algorithms. It is normally not possible for the user of the
algorithm to extend it outside the exposed variation points, even if they can
be clearly identified, unless the user has access to the source code, in which
case the boilerplate technique may be resorted to.

4.3.3 Dealing with Evolution

We demonstrate a solution to the extensibility problem for handling unan-

ticipated variation points that is complementary to hooks and higher-order
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module forward-prop

strategies

forward-prop =

fail <+ prop-assign <+ prop-if <+ prop-while

<+ all(forward-prop)

prop-assign =

Assign(?Var(x ), forward-prop => e ) ; id

prop-if =

If(forward-prop, id, id)

; (If(id,forward-prop,id) /\ If(id,id,forward-prop))

prop-while =

?While(e1 , e2 )

; (/\* While(forward-prop, forward-prop)))

aspects

pointcut prop-rule(r ) =

(calls(dr-fork-and-intersect) ; args(_, _, r ))

+ (calls(dr-fix-and-intersect) ; args(_, r ))

pointcut prop-rule = fails ; withincode(forward-prop)

pointcut forward-prop = calls(all) ; withincode(forward-prop)

pointcut prop-assign = calls(id) ; withincode(prop-assign)

pointcut prop-if =

calls(dr-fork-and-intersect) ; withincode(prop-if)

pointcut prop-while =

calls(dr-fix-and-intersect) ; withincode(prop-while)

Fig. 9. Skeleton for forward propagation with variation points exposed as pointcuts. For a
real language, the skeleton is often quite large and often difficult to construct. s1 /Rule\ s2
is syntactic sugar for dr-fork-and-intersect(s1, s2 | [ "Rule" ]), and /Rule\* is sugar for
dr-fix-and-intersect. In the above code, the Rule will be filled in later by aspects, thus the
empty fork (/\) and fix (/\*) in prop-if and prop-while, respectively.

parameters. It uses the declarative features of aspects to clearly identify and
name the variation points in the algorithm. The code in Fig. 9 shows how
some of the variation points already discussed have been exposed through
pointcuts. Since we are the algorithm providers, we decided to add some
trivial points, fail in forward-prop and id in prop-assign, to allow the
pointcuts and advice to be expressed more clearly, but they are not strictly
necessary: the same joinpoints can be identified and used with only slightly
more complicated pointcuts and advice, even entirely by a user of the skeleton
without involving its provider nor changing code.

The forward-prop pointcut may be used to insert the transformation code
before and after the propagator visits subterms of a given term. The prop-*
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pointcuts may be used similarly for inserting code before and after recursive
descent into subterms of their respective language constructs. The prop-rule
pointcuts are used for declaring which dynamic rule(s) to use for intersections
and during traversal. Note that the pointcuts have the same names as the
strategies they match inside. This makes it very clear to the user where his
advice is applied. Admittedly, this is also a potential source of confusion, as
the same identifier may refer to either an aspect or a strategy/rule, depend-
ing on context. We decided to keep the pointcut namespace separate from
the other namespaces in Stratego (one for rules and strategies, another for
constructor names) because the namespaces in Stratego are global.

By using these variation points, the code in Fig. 10 shows how the skele-
ton may be instantiated with advice to obtain a constant propagator. After
weaving, the result will be the exact algorithm presented in Fig. 1. around

advice is used instead of after advice to properly parenthesize the expres-
sions and control operator precedence. Take the weaving of the around ad-
vice for prop-while pointcut. The pointcut matches the joinpoint code /\*
While(forward-prop,forward-prop). By using the around advice, we en-
tirely replace this expression with (While(forward-prop,id); EvalWhile

<+ proceed) and then substitute proceed with the original joinpoint code,
ending up with the same code as found in prop-const-while in Fig. 1, mod-
ulo the fact that the driving strategy is now named forward-prop.

4.3.4 Evaluation

We now evaluate our solution based on the criteria set out above:

Adaptability

Exposing variation points through pointcuts is more adaptable than higher-
order parameters and hooks because it can be done without changing the
algorithm itself. As long as the variation point can be picked out using a
pointcut, we may use an advice to insert a callback into the algorithm at that
point. This is easier with AspectStratego than many other aspect extensions,
as the data normally is passed through the algorithm as the current term.
By using a pointcut, we may modify the current term before or after any
strategy or rule invocation in the algorithm implementation. We can view the
aspects as a complementary extension mechanism to callbacks/hooks since it
may be used to add these. Similarly, the aspect technique is complementary
to higher-order parameters. We may wrap the entry point to the algorithm in
a reparametrized strategy.

We may expose different levels of adaptability using aspects, separate from
the algorithm skeleton. By choosing between the available adaptation aspects,
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the user may choose which sets of variation points he intends to deal with.
Assuming white-box reuse, the user himself may add new variation points to
the algorithm in this fashion.

Reuse

Compared to design patterns and boilerplates, we get much better reuse.
With a properly designed skeleton, the amount of code needed to adapt the
algorthm is proportional to the extra functionality added.

Traceability

It is directly evident from the code both which version of the skeleton that
has been used, and how it has been adapted (using which aspects). Trace-
ability is therefore better than for boilerplates and patterns, and at the same
level as parameters and callbacks.

Evolution

As time goes by, new callbacks and higher-order parameters may easily be
added to the skeleton using aspects. Further, aspects may be used internally
to propagate the parameters to all subparts of the algorithm implementa-
tion. Arguably, extra care must be taken to ensure that the semantics of
the pointcuts are kept after an algorithm revision, since they now are declared
separately. This problem is no different from variation points exposed through
higher-order parameters or hooks as long as the pointcuts are known to the
revising party.

In the case where users have identified and extended variation points
through their own pointcuts, the situation is more precarious. This is a known
drawback of white box reuse.

5 Implementation of the Weaver

The aspect weaver for AspectStratego is realized entirely inside the Stratego
compiler as one additional step in the front end. It operates on the normalized
AST where the module structure has been collapsed, so all definitions from all
included modules are easily available for weaving. The weaver is implemented
as traversals on the AST:

Pointcut collection and evaluation is a top down traversal that will pick out
all pointcut declarations. All pointcuts encountered will be decomposed into
conjunctive normal forms called fragments. A fragment contains one jointpoint
and an arbitrary set of joinpoint context predicates all separated by logical
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module forward-prop-usage

imports forward-prop

aspects

aspect prop-const =

around : prop-rule(r ) = proceed([ "PropConst" ])

around : prop-rule = PropConst

around : forward-prop = (proceed ; try(EvalBinOp))

before : prop-assign-ext =

?Assign(Var(x ), e )

; if <is-value> e

then rules(PropConst: Var(x ) -> e )

else rules(PropConst:- Var(x )) end

around : prop-if = EvalIf ; forward-prop <+ proceed

around : prop-while =

(While(forward-prop,id) ; EvalWhile <+ proceed)

Fig. 10. Instantiation of the forward-prop to make the constant propagator in Fig. 1, using aspects.
Admittedly, the example is somewhat contrived, as these are variation points we normally would
anticipate and explicitly parameterize easily.

and. For example, the pointcut (rules(n) + strategies(n)) ; args(y)

is split into the two fragments rules(n) ; args(y) and strategies(n) ;

args(y). For each named pointcut, we generate a dynamic rule used as lookup
from pointcut name to the fragment set for that pointcut.

Advice collection and evaluation is a top down traversal that will pick out
all advice declarations. When an advice is encountered, its associated pointcut
is looked up and we generate one dynamic rule for each fragment of that point-
cut. In a generated rule, the left-hand side matches the term in the Stratego
AST corresponding to the fragment’s joinpoint predicate. For example, rules
will match against the AST term for rule declaration, RDefT. The generated
rule will evaluate all joinpoint context predicates in its condition. These rules
will be applied later by the weaver. When a rule succeeds, it provides the
weaver with the context information picked out by its pointcut fragment, and
the associated advice body.

Weaving; The actual weaving is a bottom up traversal of the AST which
exhaustively attempts to apply all generated rules from the previous step. On
any term where one or more rules match, their associated advice bodies are
collected and applied in place.

When evaluating the pointcuts in the aspect compiler, there is a need to
do interpretation of the pointcut expressions. In the current implementation,
this is realized as interpretive dynamic rules. Unfortunately, this leads to a
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rather rigid and tangled implementation where extending the language with
new joinpoint (context) predicates becomes needlessly complex.

It is conceptually much more appealing to view each advice as a small meta
program to be executed on the AST. This meta program must be constructed
at compilation time, and can therefore not be a fixed part of the compiler.
Our current implementation can be seen as a manual specialization of such a
meta program, where the dynamic parts are captured by dynamic rules.

Instead of inventing and maintaining our own intepreter for such a meta
program, it is desirable to generate a small Stratego program for every meta
program. This would be possible in a rewriting language with an open compiler
or a in a flexible, multi-staged language. The weaver would generate compiler
extensions (meta programs), then execute these as part of the compilation
process.

6 Discussion

There are several documented examples of cross-cutting concerns found in
the domain of rule-based programming. The problem of origin tracking is
documented in [24] and the problem of rewriting with layout in [23]. Both
papers present interpreter extensions as the solution to their respective prob-
lems. In [14], it is argued that both the above cases are instances of the more
general problem of propagating term annotations, a separate concern which
should be adaptable by the programmer. The solution proposed is provid-
ing the programmer with declarative progression methods expressed as logic
meta-programs. It is realized as a research prototype in Prolog.

Our aspect extension also provides a mechanism for adaptably specifying
cross-cutting concerns in a declarative way, but our style is very similar to
the popular AspectJ language, though recast for Stratego. The implementa-
tion is fully integrated with the Stratego/XT environment and is available for
experimentation.

Many other aspect extensions have been documented. The AspectS system
for Squeak dialect of Smalltalk [11] describes a weaver which works entirely at
runtime, using the reflective features of the Smalltalk runtime environment.
The Casear aspect extension for Java [18] brings runtime weaving to Java. In
[17], the authors describe a small object-oriented language Jcore and its exten-
sion Cool for expressing coordination of threads. The two are composed using
an aspect weaver. AspectC++ [22] is an aspect extension to the C++ lan-
guage. An aspect extension for the functional language Caml is described in
[10]. In [19], the authors document an aspect extension to the GAMMA trans-
formation language for multiset rewriting and demonstrates its use to express
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timing constraints and distribution of data and processes. AspectStratego at-
tempts to solve many of the same problems as the languages above, because
the problems are cross-language, but we also motivate how problems specific
to rule-based programming may have solutions based on aspects.

The implementation of aspect-weavers using rewriting has been docu-
mented in [3], for the context of graph rewriting and in [7] using term rewriting.
In both cases, the subject languages were object-oriented. In [15], the authors
detail an aspect language for declarative logic programs with formally de-
scribed semantics, and a weaver based on functional meta-programs. We view
reflective languages with meta programming facilities such as Maude [5] as
alternative implementation vehicles for aspects. The appeal of aspects is their
concise, declarative nature with their clearly defined goal: pick out joinpoints
for inserting code. This contrasts with flexibility and complexity offered by
general meta programming. The general-purposeness of meta programming
may in fact often be a hindrance to users. We believe that distilling the power
of general meta programming into a concise, declarative aspect language is
useful.

While our paper also describes the implementation of an aspect weaver
using a term-rewriting system, our subject language is not declarative logic
nor object-oriented, giving rise to a different set of joinpoints than considered
by these papers.

The algorithm extension technique described in 4.3 is an example of compile-
time code composition and is thus somewhat related to techniques such as
templates in C++. But unlike C++ templates, our composition language
is purely declarative and we can retroactively expose new variation points
without reparameterizing.

7 Conclusion

We have presented an aspect extension for the Stratego term-rewriting lan-
guage, combining the paradigms of aspect-oriented programming and strategic
programming. We discussed its implementation and demonstrated a flexible
dynamic type checker of terms as a practical example of aspects as an alter-
native to the interpreter extensions in [24], [23]. We also showed how aspects
may be helpful in handling unanticipated algorithm extension through invasive
software composition.
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