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Abstract.

The stability of parallel and horizontal shear flow of an

ideal, compressible and adiabatic fluid in a constant gravity

field is investigated in 2 and 3 dimensions. The method applied

is based on a study of systems of transport equations srmilar

to those appearing in geometrical acoustics. The results obtained

are in agreement with known results for compressible fluids, and

furthermore some results known only for incompressible fluids are

seen to be valid also for compressible fluids.
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Introduction.

The literature in hydrodynamics is dominated by studies on

incompressible fluids; only a rainor part is concerned with

compressible fluids. Mathematically speaking, the incompressible

fluid is an extremely singular lirnit of a compressible fluid, in

fact the equations describing the two different objects are

mathematically so different that it probably is more correct to

consider them as two completely independent mathematical models.

Experience as well as physical intuition, however, indicates that

in many cases the two models most likely will give essentially

the same description of the phenomena studied, but to actually

prove this mathematically in advance is probably very difficult.

The simplest way of showing it is most likely to consider the

same problems for the two models and then compare the obtained

results. It seems almost certain that the problems of stability

belong to this category, since we are there concerned with what

happens as the time t -> + 00 ; even small differences in the

models may therefore add up to essential differences in these

problems.

The reason for the lack of literature on compressible fluids ,

which is especially noticable for the stability problems (see [1],

[7]), is probably that the incompressible case has been thought to

be mathematically more tractable than the compressible one. In

the last decades, however, the available theory for hyperbolic

equations has grown substantially, it seems therefore now possible

to study ideal compressible fluids much more satisfactorily than

before. This author has in [3] developed a theory of stability for

hyperbolic equations which in this work is shown to be directly





2

applicable to problems in ideal compressible hydrodynamics.

Primarily, this work is meant as an illustration of the appli

cability of the methods in [3], but in addition to giving results

which are in agreement with known results, it also gives some

minor results which are new as far as this author knows. In later

works the methods in [3] will be seen to give further new results

In- section 1 the linearized equations of perturbations to be

studied are found, and in section 2 some general properties of

these equations are established. In section 3 the acoustic waves

are studied in general. It is shown that the equations describing

the change in the amplitudes of these waves due to inhomogenities

etc., can be transformed to an extremely simple form. In section

4 this is used to show that the acoustic waves do not give rise

to any instabilities in shear flow. In section 4 and 5 the

gravity waves are considered in different types of shear flows.

The results obtained are in agreement with known results for

compressible as well as incompressible ideal fluids.
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Formulation of the problem.1.

We shall study the stability properties of an ideal,

compressible and adiabatic fluid. The governing equations are

(1.1)

Here v is the velocity, p the density, p the pressure, cf>

a given potential for the external forces acting on the fluid,

and y is a constant. We shall consider both 2- and 3-dimensio

nal flows, i.e. the velocity v and the deloperator V in (1.1)

may be 2- or 3-dimensional. The fluid may also be bounded or

unbounded, the boundary conditions will be specified later.

Let U, Q, P denote the velocity, the density and the

pressure respectively, of a known solution of (1.1). For the

present U, Q, P may be arbitrary functions of the spacevariables

and the time t, satisfying (1.1); we shall later restrict our

selves to special types of Solutions. In order to study the stabi

lity properties of the solution U, Q, P we introduce pertur

bations of it by substituting the following expressions into (1.1)

(1.2)

The equations for the perturbations are

v_, + v• Vv = - ~-Vp + Vd)
—t — ~ p

p_£ + v• Vp + pV • v = 0

Y ) + v-V(pp~ Y ) = 0

+ 5 P-Q + q 5 p - P + a
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(i - _J_} V p - -i—va
QV Q+qu + U*Vu + u*VU + u*Vu

(1.3)

Since the solution U, Q, P of (1.1) corresponds to the trivial

solution u=q=a=0 of (1.3), we want to study the stability

properties of this trivial solution. We shall confine our study

to the linearized version of the equations (1.3), which can be

written in the following way

(1.4)

This is a hyperbolic system which can be transformed into symme

tric form by the following transformation of the dependent vari

ables

(1.5)

Here F and E are scalar weightfunctions which are completely

at our disposal, we only assume that F i 0, E i 0 everywhere.

The quantity c is the local soundspeed, it is given by

(1.6)c

+ U• Vq + u• VQ + u*Vq + QV*u + cj_V*U + qV*u - 0

a + U*Va + u•VP + u*Va + yPV-u + yaV*U + yaV*u = 0

u + U-Vu + -Va - + u-VU = 0
P Q

q_j_ + U*Vq + QV*u + qV*U + u*VQ = 0

a t + M* va + ypv*u + Y aV *u + u*vp = o

r QE. 1 , F
W = tu , s 1 = f-icq - -a) , s 2 =

X?
Q
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When we introduce the transformation (1.5) into (1.4), we get

(1.7)

(1.8)

(1.9)

As we shall see in the next section, this is a symmetric hyper

bolic system with characteristics of constant multiplicity. We

shall in this paper study the stability properties of the trivial

solution w = = - 0 of this system by the method developed

in Eckhoff [3].

1
«t + + CVS 2 " cVP S 1  

+ { fe ( 7 - 1)vp + fqVQ - Fvf}s 2

+ w-VU - -(F + U *VF)w = 0

s lt + y.vSl + 55-{cvq - ivp}*w

+ + U-VF) - i(E. + U-VE) + -(3 + y)V-U}s, = 0I t — Et— l — l

S 2t + -* Vs 2 +cV +

+ {-(y - 1)7.U - -(Ft + U-VF)}s 2 = 0
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2. The characteristic equations.

We shall in this section calculate the characteristic roots

and eigenvectors associated with the hyperbolic system (1.7,

8 & 9) in cartesian spacecoordinates. We consider first the

3-dimensional case, i.e. the case with three independent space
12 3

vanables x , x , x , and w = w 2 , 3-dimensional.

If we introduce the 5-dimensional vector

(2.1)

the system (1.7, 8 & 9) can be written

(2.2)

Here we have treated u as a columnvector, and from (1.7, 8 & 9)
12 3

the 5x5 matrices A , A , A , B are seen to be

U 1 0 0 0 c u 2 0 0 0 0

o U 1 0 0 0 0 U 2 0 0 c
A 1 A 29

0 0 0 U 1 0 0 0 0 U 2 0

(2.3)

u = {w1? w 2 , w 3 , s 1? s 2 }

1~ 2~ 3~ _
u + Au,+ Au,+ Au 3 + Bu = 0t x1 yr x

0 0 U 1 0 0 0 0 U 2 0 0

c 0 0 0 U 1 0 c 0 0 U 2

r~

U 3 0 0 0 0

0 U 3 0 0 0

A 3 =/ 0 0 U 3 0 C \

0 0 0 U 3 0

0 0 c 0 U 3
J



 >
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B ~ b i b 2 b 3 b 4 b 5 (2.4)

where t> 1 , b 2 , , b^, are the following 5-dimensional

column vectors

r

U lx 3

U 2x 3

b 3 = b 3x 3 " F (Ft +

f?(cQx 3  iPx 3)

2: P -£p
Qc x 3 F x 3 '

r 2 i
- 1— ip

q 3 e cxl

F 2 1
" V EPX 2

Q E

b= | - -P 3 /

4 q 3 £ c x |

i(F + U-VF) - -(E + U-VE) + -(3 + y)V-U

v- . 0 J
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From (2.3) we see that (2.2) is a symmetric hyperbolic system.

The characteristic equation associated with (2.2) is

(2.5)

where

(2.6)

The characteristic roots are seen from (2.5) to be

(2.7)

From (2.7) we see that (2.2) has characteristics of constant

—- 1)P i +—0 i - —F i
Qc4 x 1 2CPX 1 F-x 1

" 1)Px 2 + 7Q Q x 2 " F F x 2

b 5 = ' 1)Px 3 + IqV - fF x> >

0

-(Y - DV-U - -(Ft + U-VF)

det {- AI + 1 + £ 2 A 2 + ? 3 A 3 }

(C-u - X) 3 {(5-U - X) 2 -C 2 IC1 2 } = 0

5 = U 1 , 5 2 , 5 3 )

u 1 ) 2 + ( 5 2 ) 2 + ( 5 3 ) 2Kl

ft 1 = £*U (q 1 = 3)

fi 2 = £*U + cI Cl (q 2 = 1)

ft 3 = £-y - cKI (q 3 = 1)
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2 3 are seen to be nonlinearmultiplicity. The roots Q and

to it corresponds to the gravity waves (mass waves, entropy

waves).

The eigenvectors associated with the characteristic roots

(2.7) can be chosen to be

(2.8)

Let us now consider the 2-dimensional case, i.e. the case
1 2

with two space variables x , x , and w = 2-dimen

sional. If we introduce the 4-dimensional vector

(2.9)

the system (1.7, 8 & 9) can be written

(2.10)

with respect to they correspond to the acoustic waves in

the fluid. The triple root is seen to be linear with respect

11 c 11 1 fr 2 r 1 o r 3 n)
r = l = j-j-j-l 5 ,-£.,0,5,0)

12 0 12 1 , n c 3 r 2 r l nTr-%-0,C> " 5 5 £ 5 0>

13 513 1 , ,3  r l 2 ,
r - l - jFjt- 5,0,t,, C > 0>

„21 021 1 rr l r 2 r 3 n IM1
V - % - |l£ ) ? 5O5 1^1}

31 031 _ 1 /r l r 2 r 3 n ,r ,P - & - K 5 C 5 0 , - Ul)

U* = {wi , w 2 , s l5 s 2 l

u* + A* 1 u* 1 + A* 2 u * 2 + B*u* = 0u x x
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is

The 4x4 matrices A* J and A* 2 are obtained from (2.3) by
1 2

deleting the third row and the third column in A and A

respectively. The 4x4 matrix B* is obtained from (2.4) by

deleting the third row and the third column. The characteristic

equation associated with the symmetric hyperbolic system (2.10)

(2.11)

where £ and l£l are the 2-dimensional analogues of (2.6).

The characteristic roots are

(2.12)

The eigenvectors associated with these roots can be chosen to be

(2.13)

det {-AI + 1 A* 1 + ? 2 A* 2 }

(5-u - x) 2 {(c -u - x) 2 - c 2 1e l 2 } = o

ft 1 = £*U (q 1 = 2)

fi 2 = + cici (q 2 =1)

= £-U - cKl (q 3 =1)

R 11 = {0, 0, 1, 0}

R 12 = Jifj-tS 2 , - 5 1 , 0, 0}

r21 = TrfeT^ 1 ’ ?2 ’ ° 5 l5|}

r 31 - WTa^ 1, ’°’  l5l}
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From the expressions we have found in this section, it is

a straightforward matter to calculate the transport equations

as well as the stability equations (see [3]). For the acoustic

waves we shall do this in the next section. For the gravity

waves the expressions become rather complicated in general, we

shall therefore calculate the transport equations only in special

cases for these waves in section 4 and 5.
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3. The acoustic waves.

2 3
The characteristic roots ti and ti which correspond to

the acoustic waves in the fluid, are nonlinear with respect to

£. From [3] we know that instead of the transport equations , we

should consider the stability equations in a stability research.

The compression terms are seen to be

(3.1)

2
The stability equations for the characteristic root fi are in

the 3-dimensional case

(3.2)

di/
dt c xi ui

„2 2 _ 1 r 9 2 ft 2 2 _ 1,_ TT 1 r „ t 2
~o 1 i; Ir i £p_ *Vc } O

1 2 y 3x y 12 ICI 1

„3_3 _1 v 9 2^ 3 _3 _ l r „ TT 1>,
a l 2 u u a l 2^ V *— ~Kl —° Vc^a i

- u + _ c — r^
dt u i ur

i = 1,2,3

2
da i r 21 d 21 J „2-i 2-3-— = 1- r Br + K }a ndt 1

{ -C-VU-g + -(F. + U-VF)
215 I ~ “ 1 t “

1 r' p 0 c
—± r.r-P—vP + —'VO - ~VF)
2|C i“ '2P 2Q F ;

-(y-x)v-u + -(V.u + j-ji-vc)}o^
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(3.3)

We have that

(3.4)

The expression (3.U) is seen to vanish if we choose

(3.5)

For this choice of F, we get from (1.1) and (1.6) that

(3.6)

Thus for F given by (3.5) the equation (3.3) reduces to

(3.7)

Here |£1 is determined by the bicharacteristic equations (3.2)

(which are the equations for the sound "rays") , and the subindex

0 refers to the values at t = 0 on the ray considered.

If instead of (3.5) we let F be given by

(3.8)

it follows in the same way as above that

d o -i j -i i
- dt 1 = { + F (F t + F ' VF) +

+ —F_r . (ly F + —Vc - —VP - —
ICI- F c UP UQ

ivF + ivc - “pVP - =

F = =c c

i(F + U-VF) = - -(3-Y)V-Urt— 4 —

F =





- m -

2 _ 2 ./ elgl
1 1(T c Q I5 q I

(3.9)

This seemingly more complicated expression will be seen below to
2 2.

be more natural than (3.7), since in “this case corresponds

in some sense to the local energy in the acoustic wave

The simple relations (3.7) and (3.9) ? which hold for any

given solution U, Q, P of (1.1), indicates that the compression

terms and therefore the stability equations have a profound physi

cal significance. For any other choice of the compression terms,

it will not in general be possible to choose the weightfunction

F such that (3.7) or (3.9) are satisfied. From the derivation in

[3], we know that the Solutions of the stability equations in some

sense represents a mean value of the amplitude of the acoustic

waves.

2
When U, Q, P are independent of t, 9 is an integral of

the bicharacteristic equations (3.2), i.e.

(3.10)

The expression (3,9) can therefore in this case be written in the

following way

(3.11)

In section 4 and 5 we shall see that in rnany cases we are able to

For the special cases where VU = 0, i.e. the cases without

shear, the right hand side of (3.3) is seen to vanish if F is

-U-u + cieu = o

o 7, = o 7 {l + —~-r-(L*U n - €-U)P
1 10 C QII ~0 —0 — —

conclude from (3.11) that = 0 is stable
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J

2
given by (3.8). For this choice therefore, is a constant

along the bicharacteristics. The physical interpretation of this

and the expression (3.11) is simple: When F is given by (3.8)
2 2

(a£) corresponds in some sense to a mean value of the local

energy density in the acoustic

energy carried by the acoustic

will in general be an exchange

wave and the basic flow U, Q,

wave. Thus when VU s 0 the

wave is conserved, while there

of energy between the acoustic

P when VU £ 0.

The discussion of the other family of acoustic waves,
3

corresponding to the charcteristic root Q , is completely

analogous. The stability equations are

(3.12)

(3.13)

+ -(3 - Y)V-U}a 3

If F is given by (3.5), we get

(3.14)

dx 1 _ c r i
dt " u i icr

i = 1,2,3

d^ 1
dt i-Uxi+ c xi 151

ri 3
1 r 31 31 , 3_= { - r Br + K }a ndt 1

{ ~~,T i-dT i + F (Ft + U' VF)

RT i‘4VF + c Vc - vp - hfQ)

i —,
1-1/1 d ,r. 2 i 3 3 3 / Ul

dt j£.j 2 dt }a i Q 1 a !0'/ U Q 1
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1)

If F is given by (3.8), we get

(3.15)

3
V/hen U, Q, P are independent of t, ti is an integral of the

bicharacteristic equations (3.12). In this oase, therefore,

(3.15) can be written

(3.16)

For the caseswithout shear, the right hand side in (3.13) is
3

seen to vanish if we let F be given by (3.8). Thus is a

constant along the bicharacteristic in this case.

The physical interpretation of these results is identical as in
2

the corresponding cases discussed above for the root ti ,it is

therefore omitted here.
2 3

In the cases without shear we found that both øy and øy

are constants along the bicharacteristics , when F is given by
2 3. ...

(3.8). Thus øy = Oq = 0 is obviously stable in this case if we

do not consider boundary conditions which may act as a source of

energy. It is natural to ask whether the stability properties of

the acoustic waves actually depend on the choice of F, or

whether the choice of F is just a matter of convenience in

handling the equations. To settle this, we consider an unbounded

"atraosphere" in static equilibrium in a constant gravity field.
- 3

Thus, let p = ~ gx and consider the following solution of (1.

(3.17)

3 - 3 / cl gl

1 ' 10 V c 0 U Q l

°i = °io {1 + c^TTJJT ( -’- - W }i

u = 0 , Q = D exp{- , P = D— exp{- yx^}
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where g, D, y are positive constants. From the equations (3.2)

and (3.12) it follows that £ is constant along the bicharacte

ristics, and that the bicharacteristics are straight lines. The

equations (3.3) and (3.13) become

(3.18)

2 3
From these equations we see that = 0 and = 0 cannot be

stable simultaneously unless either F depends on t explicitly,

or the right hand sides of (3.18) essentially vanish. Since we

consider the stability of a static solution (3.17) of (1.1), it

is unnatural to let F depend on t. Thus in order to assure

stability of the acoustic waves, F is essentially deterrnined

within a constant factor by (3.8). The physical interpretation

of this is straight forward in view of our considerations about

the energy of the acoustic waves.

In the above calculations we have seen that weightfunctions

may be very essential in a study of stability problems. We have

only introduced two scalar weightfunctions F and E in the

hyperbolic system (1.7, 8 & 9), while the most general weight

functionmatrix will consist of 25 functions in the 3-dimensional

case and 16 functions in the 2-dimensional case. It is therefore

natural to ask whether there is anything to gain by introducing

more weightfunctions in the equations. If we compare (3.7) and

(3.14) with the general expressions obtained in section 10 in [3]

for the effect of the weightfunctions, it seems that the expressi

ons we have obtained are the simplest possible in the general case

m 1 = { f (F t + ITT- ’ VF 5 + flfT }o i

a? = { r (F t - m^ F) - w }a i
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5

Thus as far as the acoustic waves are concerned, it suffices to

consider only one weightfunction F, since the choice of E is

seen to have no influence at all. As a matter of fact, we shall

see that E does not have any influence on the stability proper

ties of the gravity waves either. The choice of a weightfunction

is therefore not necessarily essential in a stability research.

From the theory of stability developed in [3], we know that

in general the stability equations will only give necessary

conditions for stability. In order to obtain sufficient conditions

the effect of the distortion coefficients in the W.K.B-expansion

have to be examined. So far the available theory for handling this

problem is rather limited, but it seems possible to treat some

special cases. Such cases are for instance those where plane waves

remain plane waves. The acoustic waves are seen to have this

property if

(3.19)

Even though these conditions are satisfied only in very special

cases, it seems worth while studying more closely cases where

(3.19) are satisfied, in order to gain intuition about the distor

tion coefficients. So far we have not considered this in detail,

but we do not expect the distortion coefficients to give rise to

any instabilities for the acoustic waves.

In order to examine the effect on the stability properties

of the distortion coefficients, the compression effect has to be

taken into account. This can most easily be done when the com

pression effect can be compensated for in the weightfunctions.

2 2
ru_ac_ n . , .. _ , 0 0

i -i " i T “ - li2 5 3
dx 9x 9x^



**
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It is easily found that a sufficient condition for this is that

V-U s 0 (3.20)

2 3
In fact 5 if (3.20) is satisfied and we put K = K =0 into

(3.3) and (3.13), then these equations can be transformed into

(3.9) and (3.15) respectively if instead of (3.8) we let F be

given by

F Qc (3.21)

In the above discussion we have seen that in order to

assure the stability of the acoustic waves , we are in a construc

tive way led to specific choices of the weightfunction F. These

choices (3.5, 8 & 21) are analogous to transformations considered

earlier by various authors Yih [7], Eckart [2],



*
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4. Two-dimensional parallel flow.

In this section we consider the two-dimensional version

of (1.1) with

(4.1)

where g > 0 is the acceleration of gravity which is assumed

to be a constant. We want to study the stability properties of

parallel flows, i.e. Solutions of (1.1) of the form

(4.2)

It is readily seen that (4.2) is a 'solution of (1.1) for arbi-

trary funetions and Q if and only if the funetion P

satisfies

(4.3)

For given Q 5 (4.3) determines P within an additive constant.

lor physical reasons we only consider non-negativef unetions P, Q.

The fluid considered is obviously assumed to be unbounded
1 • 9

along the x -axis. Along the x -axis the fluid may be bounded

or unbounded. If the fluid is unbounded upwards in the positive
2

x -direction, the funetion Q must decrease sufficiently fast

when x -> +°° 5 i n order that P shall be non-negative everywhere

Ki fluid is bounded in the positive x^-direction, we shall

assume that it is bounded either by a rigid wall or that the

boundary is free. For the value of at the boundary, the

boundary conditlons are respectively

. 2

<t> = ~ g*

= U 1 (x 2 ), U 2 =0, Q = Q(x 2 ), P = P(x 2 )

P X 2 =- gQ
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(4.4)

(4.5)

2
If the fluid is bounded in the negative x -direction, we

assume the rigid wall boundary condition (4.4) there.

Let us first consider the acoustic waves. From (3.2 & 11),

(3.12 & 16) and (4.2) it follows that the amplitudes of the
2

acoustic waves at the time t and at the point x are given by

(4.6)

(4.7)

where the subindex 0 refers to the values at t = 0 on the rays

considered. The expressions (4.6) and (4.7) are valid as long as

the rays do not hit the boundaries. When a ray of one of the

acoustic families (superindex 2 or 3 for a) hits the boundary,

it is easy to show that it is reflected, i.e. the "information"

carried by the ray up to the boundary is carried into the fluid

again on another ray. If the rigid wall boundary condition (4.4)

is assumed, the reflected ray belongs to the same family (i.e. the
12 12

same superindex for a), and the initialvalues of x , x , £ , £
2 3

and or for the reflected ray are the values of these

quantities on the ray hitting the boundary at the point of reflec
2

tion, with the exception that £ changes sign. If the free

boundary condition (4.5) is assumed, the reflected ray belongs

to the other family, i.e. a ray with superindex 2 is reflected

w 2 = 0

s 2 = 0

rl
2 2 r n rT T  2 v yr / 2>.'i -i

°1 = o II + T --—-{» 1 (x 0 ) -U (x )}]
c(x o )l5 o'

r 1
3 3 rn , rtt / 2, TT , 2,ni

°1 = °10 !l + , 2\ if , {U 1 (X > U 1 X 0
c( x 0 ) IC 0 l
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into a ray with superindex 3 and vice versa. In this case the
12 12 2 3

initialvalues of x , x , £ , £ and cm or for the

reflected ray are the values of these quantities on the ray

hitting the boundary at the point of reflection, with the excep

tion that the superindex for a changes.

With this background we can conclude from (4.6 &7) that

the change in the amplitude along
2

on the change in x , regardless

or not when the fluid is bounded.

such that

IU I < M

a ray essentially only depends

of whether the ray is reflected

Furthermore we see from (4.6

if there exist a constant M

(4.8)

everywhere in the fluid. Obviously, (4.8) is always satisfied if
2 .the fluid is bounded in both x -directions. When the fluid is

2
unbounded in one or both x -directions, (4.8) represents a

restriction. However, a flow which does not satisfy (4.8), is

certainly not realistic physically. Thus we conclude that as far

as our study goes , the acoustic waves do not give rise to any

instabilities for physically realistic flows (4.2).

We shall now consider the gravity waves. In our calculations

we shall keep the weightfunctions F and E unspecified, but we
2

shall assume them to depend on x only, in order to be consistent
2

with (4.2). If we consider a fluid which is unbounded in the x -

direction, the weightfunction F cannot be chosen arbitrarily as

we saw in section 3, since we insist that the acoustic waves shall

be stable. However, we shall see that the stability properties of

the gravity waves are independent of both F and E, the restric-

& 7) that = 0 is stable
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tions on F will therefore not cause any difficulty.

In the oase we are considering, the matrix B* in (2.10)

become s

(4.9)

The compression terms for the gravity waves are in general seen

to contain a factor V*U. For the solution (4.2) therefore, the

compression terms vanish identically. Thus the stability equati

ons and the transport equations are identical for the gravity

waves in the case we are considering, they are seen to be

dx 2
dt 0

(4.10)

(4.11)

r
0 U, 2 00Ix

0 0 H

B* - \ /

0 ~(cQ 2 + 0 0
p2 x c

0 -£- §F 2 0 0LcF x J

where H = (l-l)f +

= udt 1

ssi = odt

d£ ? - _ E l„dt ' ? U lx 2

, 1
da l d 11 d * d 12 1
dt" = " R B R °2

. 1
ao o 1? 111 1? 19 1-r-2- = - R B*R ai - R B*R aiat 12
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All the other terms in the general form of the transport equations

obtained in [3] are seen to vanish. From (2.13) and (4.9) we get

(4.12)

The bicharacteristic equations (4.10) can be directly

integrated, the Solutions are

(4.13)

where the subindex 0 refers to the initialvalues at t = 0.

From (4.13) it is clear that the bicharcteristics associated

with the gravity waves never reach the boundaries of the fluid,

if they start from within the fluid. Thus it is clear that

within the fluid the boundary conditions will have no effect on

the amplitude of the gravity waves. It is also clear that the

boundary conditions can only play a secondary role in the distor

tion coefficients for the gravity waves, and therefore in the

stability problem altogether in view of the results we have

earlier obtained for the acoustic waves.

According to the theory of stability developed in [3], we

now have to substitute the expressions (4.13) into the amplitude

ii_ eq (c q , + S2)
ICi F 2 c '

11 12
R B*R

R12 B*Rn = - tj
IU Q Ec

1 21? 12 E ER B*R = - — 2
w

1 1 . TT / 2 U 2 2
x r x o u i (x o 11 9 X = X 0

5 1 =sj , 5 2 =«o - u ix 2(x o )t
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equations (4.11) and then study the stability properties of the

trivial solution = 0 for all values of xj,
2 1 .

£ n . If 5=0, the quantities (4.12) are seen to vanish andu u
11 11

consequently in this oase and a= o^q• Thus no

instabilities can be detected unless 4 0, we therefore

assume this in the following. With this assumption the quantities

(4.13) are independent of t if and only if

(4.14)

2
For those points x Q where (4.14) is satisfied, if any, (4.11)

is an autonomous linear system. The stability properties of the

solution - 0 are therefore determined by the eigen

values of the coefficientmatrix in (4.11), which are found to be

(4.15)

Here i = v-1, and N is the local Våisala-Brunt frequency

which is given by (see [2], [7])

(4.16)

From this we can conclude that a necessary condition for the

trivial solution of (4.11) to be stable for all values of xj,
2 ,1 . , „ .

special attention since X + = A__ = 0 is a multiple eigenvalue.

However 5 it is easily seen directly from (4.11) that in this case

U lx 2(x O } = 0

5 0
A ± = 1

» J = rf • (f) !

x 0 5 ?q5 is that N is a real quantity at those points
2_, . .

Xq where (4.14) is satisfied. The case N = 0 has to be given





2 5

(4.17)

In order to draw conclusions about the stability properties

of the flow (4.2) from the above results, care has to be taken to

avoid the critical cases discussed at the end of §6 in [3]. In

fact, such critical cases may exist if for instance N is a real
2

quantity everywhere and N= 0 for a set of values of x of

measure zero. However, we are able to draw the following conclu

sion: A necessary condition for stability of the flow (4.2) is

that the inequality

(4.18)

holds almost everywhere in the set of points where (4.14) is

satisfied.

The physical interpretation of the inequality (4.18) is

simple and well known (see [2], [7]): Since for each fluid ele

ment pp is conserved by (1.1), it is easy to show that the

total force acting on the fluid element is pointing in the

direction that opposes the fluid element from moving out of its

position of static equilibrium if and only if (4.18) is satisfied

Even though the condition (4.18) and its interpretation is well

known, this author has not found any results in the literature

which actually prove that the unstable motions are always dynami

cally possible when (4.18) is violated in some region. Thus in

addition to serving as an illustration of the applicability of

the theory of stability developed in [3], the result established

r 1 2
1 1 1 - rr 1 j. rr 1 Q F g o-

Q 1 = a l,0 5 a 2 " a 20 10!C q I Q 2 £ 1

1 o
= 0 is therefore unstable when N = 0.

Q 2

Q 2x c
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above may also fill a minor gap in bhe liberature.

We now consider the points with shear, i.e. the points

where (4.11) is not satisfied. For these points (4.11) becomes

a nonautonomous linear system where all the coefficients (4.12)

tend to zero when t -> + In the appendix it is shown that

under certain conditions, which clearly are satisfied here , the

stability problem can be solved by introducing t = ln t as a new

independent variable. If we do this, (4.11) can be written

(4.19)

(4.20)

The coefficient matrix in this system corresponds to the matrix

A in the appendix, its eigenvalues are found to be

i l/ i - RX (4.21)+

da* ?o p(cV +

~ ' {( ?o u ix^ )2 - 2 ?o5o uix^' X + l5 0 |2e '2T^

1 1 fe g x
. S ° q 2 Ec 1

dT f (r 1 ,, _ 12 “ T .2 -2t,J
U lx 2 2^O^O U lx 20 + 0

- {(£ 0 U lx 2)2 - U lx 2e ' T}g 2

(Cj u ix a )2 - 2 5 2 C 20 U lx2 e- T + I S 0 I 2 e" 2T

Asymptotically as t -> + «>, this system becomes

cTT' r (cQx 2 +
15 0 U lx 2 ' F 2

da 2 _ F 2 g 1 1
dx 1 9 a ] o

I5 0 dx 21 Ec
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Here R is the local Richardson number (see [1], [4], [5], [7]

for the incompressible analogue of R) , which here is given by

(4.22)

In view of the results shown in the appendix, it now follows

from (4.21) that the trivial solution of (4.11) is asymptotically

stable if R > 0, which is equivalent to (4.18), it is stable

if R = 0, and it is unstable if R < 0. From this and the

theory in [3] it is now a straight forward matter to draw conclu

sions about the stability of the flow (4.2). We can summarize

the results found in the following

Theorem. A necessary condition for stability of the flow

(4.2) is that in every point

(4.23)

In the points without shear it is necessary that the strict

inequality is satisfied almost everywhere.

In the marginal case where the equality sign in (4.23) holds ,

the discussion above seems to indicate that a shear in the flow

have a stabilizing effect. However, if we allow 3-dimensional

perturbations, this seemingly stabilizing effect of the shear

disappears as we shall see in the next section.

At the points without shear, i.e. the points where (4.14)

is satisfied, we see from (4.15) that the amplitude of the gravity
.2

waves oscillates with the Vaisala-Brunt frequency N if Cq - 0?

  fe) 2

Q 2
_2S_ * _ S_

Q - 2x c



«
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2
while it oscillates with a frequency less than N if 4 0.

Thus N is in this case seen to be the characteristic frequency

of the gravity waves as we would expect in view of other theories

[2], [?].

At the points in the fluid where (4.14) is not satisfied,

we see from (4.21) that when R i - the amplitudes of the gravity

waves are asymptotically as t -» + 00 given by

(4.24)

where c n , c 0 are constants along the bicharacteristics. ThusIv 5 2v

we see that in this case the gravity waves have an oscillatory

character only when R > — , while there is pure damping when

0 < R< ~. When R = — we find that asymptot ically as t-» +00

(4.25)

The expressions (4.24 & 25) are completely analogous to the

results obtained for the continuous spectrum in incompressible

fluids by Engevik [4], [5].

In the results obtained above , we have not detected any

instabilities similar to those found in the incompressible case

when 0 < R < — (see [1], [5], [7]). However, from the theory

of stability developed in [3], we know that in general the results

obtained above will only give necessary conditions for stability.

In order to obtain sufficient conditions , the effect of the distor

tion coefficients in the W. K. B-expansion has to be exarnined. Since

is linear with respect to £, it seems possible to handle

this problem, but so far we have not studied it any further.

a 1 = c-, t R + c t * R ; v r 1,2v lv 2 v

1 -1 - 1
a = c, t 2 + c 0 t 2 In t ; v = 1,2v Iv 2v 5 5
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We expect that the distortion coefficients may give rise to

instabilities in some cases when 0 < R < —, since the ampli

tudes (4.26) are non-oscillating and only weakly damped for R

in this region.
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5. Three-dimensional horizontal flow.

In this section we consider the three-dimensional version

of (1.1) with

(5.1)

where g > 0 is still the constant acceleration of gravity. We

want to study the stability properties for Solutions of (1.1) of

the form

(5.2)

It is readily seen that (5.2) is a solution of (1.1) for ar bi.

trary functions U ± , and Q if and only if the function
P satisfies

(5.3)

ior given Q, this equation determines P.

We see that the solution (5.2) represents a three-dimensional

horizontal flow where the direction as well as the magnitude of

the velocity depend on the height x 3 . Obviously the fluid is

assumed to be unbounded in the horizontal directions , i.e. the
.1 , 2

anc x directions, while the fluid may be bounded or unboun

ded in the vertical direction, i.e. the x 3 -direction. If the fluid
• • 3

is bounded in the x -direction, the effect of the boundaries is

, 3<t> = - gx

U x = U 1 (x 3 ) , U 2 = U 2 (x 3 ) , U 3 = 0

Q = Q(x 3 ) ,P = P(x 3 )

P x 3 =- gQ
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completely analogous in this case as in the case discussed in

the previous section. Also the discussion of the amplitudes of

the acoustic waves becomes completely analogous; these matters

are therefore left to the reader. Thus we shall lirnit our dis

cussion to the amplitudes of the gravity waves.

In order to be consistent with (5.2), the weightfunctions
q

F and E are assumed to depend on x only. The matrix B

given by (2.4) is then seen to take the form

B (5.4)

Since = 0 for the solution (5.2), the stability equations

are identical with the transport equations for the gravity waves

in the case we are considering. The transport equations are found

to be

dx 1
dt U 1

dx 2
dt U 2

n 3dx
dt 0 (5.5)

where . H = (1 - I)| + - fF>; 3

0 0 co
xi—1

D 0 0

0 0
U 2x*

0 0

0 0 0
r 2

9 H

Q Ec

0 0
EQ

F 2
(CV + f)

0 0

0 0 - E - £p
c F X

3 0 0
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1t l
Éi_ - odt

(5.5)

.1
dQ l
dt

(5.6)

(5.7)

nr 2
= 0dt L

dg 3 . . F l„ _ ,2
dt 5 U lx 3 5 U 2x 3

11 D 12 1 11 n 13 1
r -Bt o 2 - r •B• r

an 1 ii ar 12 „i , an 1 11 a r 13 i
—3 r — r~ a ? + —a r —r°5

ax J 35 J 2 a x 35 3 3

{ (C 2 ) 2 - U 1 _ 2g 1 g 2
Ig I 2 1x3 |5| 2 2x3

• s?<=« x .. gs» iI B, | F x c 2

+ {.(C 1 ) 2 - (g 2 ) 2 0 . 2g 1 g 2
1 5 I 2 2x I{I 2 1x3

- ff (cQ x 3 +

= - r 12 - r 12 •B • r 12 a^

12 13 1 x 3S2 1 12 Sr 11 1r •B • r o + -—-r

(f 1 -* 2 r 1 e 2 r 2 r 3 r-2
{“-y- u ix 3 + ~T u 2x 3 +

151 ix 15 1 2 2x 151 2 Q 2 Ec 1

+ (™U 3 + + E|£q +
Ul Ul 2 Q 2 Ec F 2 x F 2 c 2

Kr 3 / r 2 s 2 P 2
+ (“ -—~U 0 3 + ~

Kl Kl Q 2 Ec

iti|! ur x c 3
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, 1
da 3

dt

(5.8)

The bicharacteristic equations (5.5) can be directly inte

grated, the Solutions are

(5.9)

where the subindex 0 refers to the initialvalues at t = 0.

When we substitute (5.9) into (5.6, 7&8) we obtain a

closed linear system for the amplitudes , a 2 , a 2 . We want to

study the stability properties for the trivial solution
111

~ a 3 = 0 of this system for all possible values of
12 3 12 3

x q5 Xqj Xq , E, q . It is easily seen that the system (5.6,

7 & 8) is autonomous if and only if

13 n 11 1 13 _ 121r•Bt • B • r

13 D 13 1 J Sft 1 13 Sr 11 1r •B • r o. + —3-r 5—a
3x

r l r 2 . c 2v2 r 1 r 3 p 2 ,
—£_u + (Jk — l —u 3 _ L — L —S_} g 11 9 U 1 Y 3 9 u 9y 3 9 9  * u l

ur lx ui ur qUc 1

r 2 - 3 .4s2 P 2
. r i_l_n - } F s*• ? Ix 3 9 2

Kr lx ur q z ec

liV EQ + gQ } 1
Ul 2 F 2 Qx C 2

 - + X 3  
Ul ui QEc F Z x F c

11 9 9 9 9
x = x Q + U 1 (x Q )t , x = x Q + U 2 (Xq)1

3 - 3 r 1 _ r 1 _ r 2
x x 0 5 5

U lx 3^X 0 ) + U 2x 3 (x 0
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(5.10)

For all possible values of which satisfy (5.10),

the stability properties for the solution = cm = ot - 0-L O

are therefore determined by the eigenvalues of the coefficient

matrix in (5.6, 7 & 8). These eigenvalues are found to be

A 2 (5.11)

The local Vaisåla-Brunt frequency N (which is given by (4.15)
2 3

with x replaced by x) is seen to appear here in essentially

the same way as in the 2-dimensional case (4.15). The case

j ™ 2 ~~ "2 p
V + o N= 0 has to be given special attention since

10
A = 0 is then a multiple eigenvalue. If = 0, the right

hand sides in (5.6, 7 & 8) all vanish and consequently JL JL U
i_i i _ i

°2 ~ a 20’ " a 30‘ TFus no instabilities can be detected unless
12 2 2

(?q) + (£q) 0 5 we therefore assume this in the following.

With this assumption, the coefficient matrix in (5.6, 7 & 8) can

never vanish when e = N = 0. Hence the eigenvalue A = 0 has

an index ;> 2 (see [6]), we therefore conclude that the trivial

solution of (5.5, 7 & 8) is unstable in this case.

Since for all possible values of we can obviously find
1 2

values of £ q and E, such that (5.10) is satisfied and
12 2 2

+ (£ q) i 0, we can summarize the results found so far in

the following

def r l TT , 3 v . ~ 2 T7 , 3 v
e 3 x O U 2x 3(x 0 ) ” 0

*1 =0’ A 2 '   P IC 0 , ° " • 3
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Thøorem. A necessary condition for stability of the flow

(5.2) is that

id < _Q c 2 (5.12)

holds almost everywhere in the fluid.

We observe here that the seemingly stabilizing effect of the

shear found in the preceding section for the marginal cases

where equality holds in (5.12), has now disappeared completely.

Thus the results we have obtained here by studying the special

cases where (5.10) is satisfied, are stronger than those we

obtained in the previous section altogether. The above analysis

which holds regardless of whether there is shear or not, is based

on the fact that we here allow 3-dimensional perturbations. In

fact, (5.10) means that the perturbation essentially acts ortho

gonal to the basic flow.

We now consider values of £j!j, such that (5.10) is

not satisfied. The system (5.7, 8 & 9) then becomes a nonautono

mous linear system where all coefficients tend to zero as t -> + oo

As in the preceding section we therefore introduce x = In t as

a new independent variable in (5.7, 8 & 9). Asymptotically as

t -> + oo this system then becomes

(5.13)

l!l . e o a X + 1
dT " e a 2 + “ a 3

, 1
da 2

dx - jo U 2x* 1 + 5o U 2x3 1e°1 e a 2 + “"i ° 3
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where

(5.14)

The eigenvalues of the coefficient matrix in (5,13) are found

to be

where

(5.16)

The trivial solution a b = o b = a b = ° of (5.13) is therefore

seen from (5.15) to be stable in this case. Thus it follows from

the results shown in the appendix that the trivial solution of

(5.6, 7 & 8) must be stable when (5.12) is satisfied, consequently

we conclude that we are not led to any additional conditions for
3 12

stability when we consider values of x Q ,£ , £ such that
e i 0.

The quantity R in (5.16) is completely analogous to the

Richardson number (4.22), and we see that R* = R for those

da 3 b 1 0°lx 3 1 0 U lx 3 1-r-— - a + —o. - ~-a
dx el e 2 e 3

3 = fl (CV +
r 2

b = 2
Q Ec

A ! =0.x2 = “ 7 + >A3= " | i - R*1 (5.IS)

R* = IUq) 2 +(C 2 ) 2 ] —e  

When (5.12) is satisfied, we find that for any

N 2
R* > R . J* > 0

(U lx 3) + (U 2x a)

12.
which satisfy
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(5.17)

for some a + 0. Thus the discussion of the behaviour of the

amplitudes of the gravity waves will be completely analogous to

the discussion in the preceding section, it is therefore omitted

4 = aU lx 3(x O } ’ ? 0 = “ U 2X 3(X0>
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Åppendix.

Wø want to study "the stability propørtiøs for thø trivial

solution w = 0 of thø following linøar systøm of ordinary

difførøntial øquations

dw
-rf r D( t) • wdt — (1)

, and D(t) is an nxn-matrix which is

(2)

Wø shall assumø that wø can find a constant matrix A and a

scalar constant a > 1 such that thø matrix

(3)

nuity of D(t) it is øasily søøn that sufficiønt conditions for
2

thø øxistencø of A and a is that 4— D(-) , ——r-D( —) øxist andQ. S S i Z. Sds

arø continuous for s £ [0 5 e] for somø e > 0. In this casø wø

(4)

In fact, A must in any casø bø givøn by (4), thus a nøcøssary

condition for thø øxistøncø of A and a is that thø limit (4)

øxist s.

where w = {w^,

continuous for t > 0 and such that

lim D(t) = 0
"t -* +CO

B(t) d :i f t a D(t) -t a X A

is bounded for t € [l,+co). From Taylors theorem and the conti-

may choose a = 2 and

A = lim (tD(t)}
1 -*+OD
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With the assumptions made above we see that (1) can be

written

(5)

where a > 1 is a constant, A a constant nxn-matrix, and

B(t) an nxn-matrix which is such that

(6)

where c is a constant. In order to study the stabilityproperties

of the trivial solution of (5), we introduce x = In t as a new

independent variable. The system (5) then becomes

(7 )

Since t + °° is equivalent to x -» + °° 5 the trivial Solutions

of (5) and . (7) respectively 5 have identical stabilityproperties.

From (6) it follows since a > 1 that

(8)

Thus we see that the conditions in theorem 3.1 and 3.3 in

Roseau [6] are satisfied for the system (7), we have therefore

established

Theorem. With the assumptions made, the trivial solution of

(1) is stable if the trivial solution of

dw i i
-r- - (“A + —— B(t) }• w , t £ [l 5 +°°)dt t ~

II B(t) I! <_ c 5 t € [ 1 s +oo)

d — _ r a , ( 1-Ot )T , T .
+ e B(e ) } • w

r +oo | (1-oOt d , Tx „ , c
J I! e B(e )li di < —--

0 “ “- 1

dv
-f= = A-vdx —
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is stable, where A is given by (4).

Furthermore, the trivial solution of (1) is

a) asymptotically stable if all the eigenvalues of A

have negative real parts.

b) unstable if A has an eigenvalue with positive real

part.
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