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The ‘stability of parallel amd borizontal shear flow of an
idesll ; compreseible and adiabatie fluid in a constant gravity
Ficld dis investigated in 7 and 3 dimensiong,. The method applied
#5 belied en & study of systems of #ransport equations simllar
b0 ‘those 'appedring in geometrigal acousties. The results obtained
are in agreement with known results for compressible fluids, and
furthermore some results known only for incompressible fluids are

seen to be |valid also for compressible fluids.






Initroduetion

The literature in hydrodynamics is dominated by studies on
incomppessible fluidst only a minopr padt e’ comcerned with
compressible fluids. Mathematically speaking, the incompressible
fluid is an extremely singular 1limit of a compressible fluid, in
fact the egquations describing the two different objcets ave
methematically solditferent that it probably fds.more corvect To
consider them as two completely independent mathematical models.
Experience as well as physical intuition, however, indicates that
in many cases the two models most liKely will give essentially
the same description of the phenomena studied, but to actually
prove this mathematically in advance is probably very daffieult.
Phie cimplest way of showing it is mest likely to consider the
same problems for the two models and then compare the obtained
results. It seems almost certain that the problems of stability
belong to this category, since we are there concerned with what
hieppens a5 the time & =4 =5 eoven smell differences in the
nodels may therefore add up to essentidl differencés i these
DIRQIDILENE -

The reason fet the laek of :literature on compressible fluide,
which is espeeially notieable for the stability problems (see [1],
[71), is probably that the incompressible case has been thought to
be mathematically more tractable than the compressible one. In
the last decades, however, the available theory for hyperbolic
equations has grown substantially, it seems therefore now possible
to study ideal chpPeSSible fluids much more satisfactorily than
before. This author has in [3] developed a theory of stability for

hyperbolic equations which in this work is shown to be directly
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applicable to problems in ideal compressible hydrodynamics.
Primarily, this work is meant as an illustration of the appli-
cabillity of tThe methods dn [2]; but in =ddition to giving Fesulls
which are in agreement with known results, it also gives some
minor results which are new as far as this author knows. In later
works the methode in 18] will Be secen to give further new results.

In section 1 the linearized equations of perturbations to be
studied are found, and in section 2 some general properties of
these equations are established. In section 3 the acoustic waves
are studied in general. It is shown that the equations describing
the change in the amplitudes of these waves due to inhomogenities
etc., can be transformed to an extremely simple form. In section
4 this is used to show that the acoustic waves do not give rise
fo'any dnstabilities 1g shear Tlow. In section 4 amd b the
gravity waves are considered in different types of shear flows.
The results obtained are in agreement with known results for

compressible as well as incompressible ideal fluids.
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A Formulation of the problem.

We shall study the stability properties of an ideal,
compressible and adiabatic fluid. The governing equations are
1

Se Ty =i

p_t o X'Vp T pvoz = 0 (1.1)

5 s -
37 (PP Lo v-V(pp Yy =0

fleec iy L ds the \velsedtyy | p | Ehe density, p the pressure,. §

a given potential for the external forces acting on the fluid,
damd ¥ is & comstant. e shall consider both 2- and 3-dimensioc-
net flows, d.e. the veloeity ¥ - and the delopevator ¥V -im (1.1)
may be 2- or 3-dimensional. The fluid may also be bounded or
unbounded, the boundary conditions will be specified later.

Let E, @4 B | denote: the welocity, the densgity end. the
pressure respectively, of a known solution of (1.1). For the
present . U, G, P omey be arbiteary functions of e spacevariables
and the time €, Jsatisfying (L.1)y we shall later vestrict our-
selves to special types of solutions. In order to study the stabi-

1ity broperties of the selution U Q. Bims sntooduce pertup-

bations of it by substitiiting the following expressions inteo (1.1)
ahe LR AT S i B SR (1,23

The equations for the perturbations are
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AR oW e wo VUL dR oW = {% ik Qiq}vp " Qiqu

Wk U Vo, sl e O el dieu =0 C1 .50

g Uik o VR B kol B s T il R T 0
Simde e’ soluiien U5 0,8 ek Ul il )vesresponde ‘o the Einyial
Solutiow W s @ .= G.0 0oed LIS Y, e mant fo studythe stability
properties of this #rivial solutiomn. We shall confine our study
to the \lipearized version of the eguations. (1.3), which can be

written in the following way

s
c
g
1"
(&)

lVo = l—qVP
Q o

+ U. +
54 ey

L o)

I
(@)

qyq S’ + 0V s g VRl R

O e We NG o R Ve U TS St s 00
This is a hyperbolic system which can be transformed into symme-
tric form by the following transformation of the dependent vari-

ables

IE
= %—{cq - %0} s B2 GEO £1.5)

1=
"
L)
=
(9]

Here F and E are scalar weightfunctions which are completely
at our digposal; we only assume that F £ 0, E 4 0 everywhere,

The quantity . ¢ is 'the local soundspeed, 4t is given by

e /féf (1.8)



f+ f}l%?@ﬁ M‘* ’{&ﬂ"ﬁ of '.Tmﬁh* oW PG "ie’; 0 = P

ym;; ﬁnw ﬁn@l&@a fimﬁ@~aw aﬂ@A*UJQm xaivle axﬁﬁ Yo ﬁ@-
aﬂmiwwwd

g,

g T8
0 ¢ AWog & UeliBr & ueWy + oWl s

~ofimd GRiE B ey enbwj od. sy dokdy o83 avs - £@aWrwxd & ai aiﬂT

- EoiEA jﬂ@hﬂﬁQﬂb ol 20 nul?&mﬁoi¢wamr gnr-“' IR snj-wd myot okbaz

daalds-ﬁ

i. mw'



When we introduce the transformation (1.5) into (1.4), we get

S T
Wy + U-Vw + chQ 3 CVP Sq .
QhE
L e e
& {55(2 1)VP + 2QVQ PVF}s2 (1.7)
+ w-VU - %(F + U.VEF)w = 0
= 1t =
EQ
Byg * U-VS, 4 ;2"{ vQ VP}.w (1.8)
- {—1~(F 4. @ VE) = —l—(E + U.VE) + —1—(3 PisEReTl e, =0
et = B - 7 7 — 71
s + U.Vs, + cV.w + {-l——vP DASERY (Ol o)
2t - 2 s Qc F = :

1
(e=2)

AT v
st = 0 T PR VRO

Agewe *shallrsees inAtheAliexik seption, this 48 @&, symmetric hyper-
boliec system with charaeteristies of constant multiplicity. We
shall Hilythis pdperlstudy!the stability|properties off the trivial
solution w = s; = s, = 0 of this system by the method developed

1 2
i Beklveft 131.
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Z The characteristic equations.

We shall in this section calculate the characteristic roots
and eigenvectors associated with the hyperbolic system (1.7,
8 & 9) in cartesian spacecoordinates. We consider first the

3-dimensional case, i.e. the case with three independent space

variables xl, xz, x3, and w = {wl, W, w3} 3-dimensional.

If we introduce the 5-dimensional vector

e = {wl, Wos Way Sq, 82} (7 )
the system (1.7, 8 & 9) ¢an be written

~ = 2 &y oy L

up + AU, Y AT+ A HosyEl =0 G205

Here we have treated u as a columnvector, and from (a7, B8]

the 5x5 matrices Al, A2, A3, B are seen to be

r B @ 7
s S SO @ SO R
BP0 S - G e 70 RO -
i 2%
Brted 60 0 | U M o R SO TR 0 )
LGN BN € i uda s g
g s ey UlJ gidia o e
- L B
. ;! (2. 23
) ST B e il
G i da 3 DR
AP g A e
3
Ui R P
RO R U3J
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Bz {bl b, by b, b5} (2% )
where bl’ bz, b3, bu, b5 are the following 5-dimensional

column vectors

e % B
1 )
—-— — .V
lel F(F't Gy y_ F) lez
1
Usx? Y2l T YR
bl = U3x1 . b2 = U3x2
EQ -1 EQ - L
FQ(CQxl cpxl) FZ(CQXZ Cpxz)
1 © I c
'——'P = ""F i _P ) It —F 2
Egc % He 5y LQC X I J
& =y
le3
D
by 2 h
b3 = U3x3 F(Ft ol VAR
E0Q sl
;7(CQX3 cpx3)
1 c
- =
F2 1L
e
Qek  Frd
Fa 1
gy ly Lo
Qe
2
b, = i £§_ %Px3
Qe
i 1 1
B, + BB) = BB + WVE) & S (0 FyiU
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b (B SOl ey - =—F
Qc(z i i A QQQXI L
LEaR RYet, 0 — af Pevn Sy
Qe % 3% 20 e gt
L LT e S
ol < o' - HE e e e
0
1 1L
S0 DTG U

From (2.3) we seea that (2.2)'is a symmetric hyperbolic system.

The characteristic equation associated with (2.2) is

DTS R R e LY

(2:5)
TR E T e e R S
where g = {Els 52: 53}
(2.6
1
el = o (D2 + 522 & (£3)2
e eherzctemlsitie Moo cre Been trom (2.5) o b
Ql =t g—og (ql = 3)
ol Gad = Gkl
e = £.U - clEl Ga =)

o (2.7) we see thar (Z.2) hasg chapaeterlsitlies of consitamnit
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multipligity. The reoes o2 and 93 are seen to be nonlinear

with resp=et to £,  they coerespend To The acoustic waves in
the fluid. The triple Yook Ql ié seen to be linear with respect

to g, it corresponds to the gravity waves (mass waves, entropy

waves).

The eigenvectors associated with the characteristic roots

{2.7)ean be chosen to be

I’ll s Qll S T%T{Eza 5 El, 0, 53: 0}

P12 . 212 i 'rjé‘l—{os €3’ 5 2;2, El, 0}

s S o e ) (2.8)
A .:yw%g—l{e:l, s

Sed bR in s Torel e e A

Let ws now econsider the 2-dimensional. case, 1.e. the case

with two space variables xl, x2, and w = {wl, w2} 2-dimen~

sional. If we introduce the 4-dimensional vector
LI .
u ﬁwl, Wos Sy 82} (2.9)
the system (1.7, 8 & 9) can be written

u*t + A*IU*XJ % A*zu*xz + B*u* = Q (218}



W ! T A

DAY qﬁm N TN iﬁﬂuit anib~{ add asbilsnoy woun v Fed

R ] / k “, “ i o ¥ :
««quQMM&:,{¢Wug£w} 5 g bﬂﬁ< wxx ,Ix ealds s ywy soege owl driw

gt K&uo&éﬂ'ﬂﬁb”ﬂ QM? souborial aw 31 dIsaeks




_10_

The UxY4 matrices A*' and A*? are obtained from (2.3) by
deleting the third row and the third column in Al and %
respeatively, The Wl 'mateiz. B¥ 1= obtasned Ffrom (2.4) by
deleting the.third row and the third column..The chavacteristic

equation associated with the symmetric hyperbolic system (2.10) is

St e ety e dp

(@70 )
B A I D T

where £  and 18]  afe fthe 2-dimengional analogues of C2.%)
The characteristic roots are

el = g.u o= i)

ik 20
Q5 = B0 % @ls | (q” = 1) 62 2
R PR

The eigenvectors associated with these roots can be chosen to be

11

1L7) 1

(213

2L
R = V‘ﬁ“%g—l{gl) g b} 09 lgl}

| | el 5
R I v‘z’llgl{g > g 3 03 Igl}
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From the expressions we have found in this section, it is
a straightforward matter to calculate the transport equations
dis. Wek b aerihe. stability.equationg. fosenk8dd: Forthe acoustic
waves we shall do this.in the,next seectiom. For .the gravity
waves the expressions become rather complicated in general, we
shall therefore calculate the transport equations only in special

CEEEE fter iThese wawes in seciiom L zme & -
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& The acoustic wavesh

The characteristic roots QZ and 93 which correspond to
the aesoustic waves in the fluid, are mnonlinear with respect to
€« From [3] we know that instead of the transpbrt equations, we
should consider the stability'equations in a stability research.

The compression terms are seen to be

B
Kzoi = % —Eig—ﬁoi = %{V-g + T%Té'VC}Gi
U ErTeE
, (g1
et e 1 3
Sttt i b
et GE

The stability equations for the characteristic root 92 are in

the 3-dimensional case

Gl L @ =dl
£ Tl A
) - e G BN (3.2}
i
des = N
Gk, e CiL Cxilgl
2
do
)RR i = W 29 .7
= {- »""Br + K }ol
= {- —1£.vu.-E + F(F_ + U-VF)
2 L&
1 @ @ e e
m_g_-(ﬁw 1 -Q-Q-VQ - -F——Vl)
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s AR e T Lo
L {:zlg|2§- el T s
(3.3)
@ iE 1 il 1 %
t gE R (FVF ¥ 2V - WP H—Q—VQ?}Gl
We have that
N
1 1 il 1l 1200, Re
=VF + =Vc - —=VP - =—=VQ = ———v(r——> Gy
IE @ up 4Q He Jga
The expression (3.4) is seen to vanish if we choose
: :
= gEVpQ = Jg‘ ; (3.5)
For this choice of F, we get from (1.1) and (1.6) that
O g s S (3.6)
Fpert = Iy o -
Thys for - F given by (3.5) the equation (3.3) reduces to
CRRT e He
el e o LA Sl ey S
1E | 0
Here |Z] is determined by the bicharacteristic equations (3.2)

(which are the equations for the sound "rays'"), and the subindex
0 refers to the values at t = 0 on the ray considered.

If instead of (3.5) we let F  be given by

r = g (3.8)

it follows in the same way as above that
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02 = 62 % —ElgL— CH59)

This seemingly more complicated expression will be seen below to

2

be more natural than (3.7), since (02) in this case corresponds

1
in some sense to the local energy in the acoustic wave.

The™ s Imple wellavieme SO0 B anid (U S ¢ 800 M wtie ol " halld P o " iy
glven solUtion " W, 0, P el L) Sndiedires gt vhe’ compression
terms and therefore the stability equations have a profound physi-
cal significance. For any other choice of the compression terms,
it will not in general be possible to choose the weightfunction
T Enen thHee (3.7 or (8.9) ave satisliedy Frow the derivation iz
[3], we know that the solutions of the stability equations in some
sense represents a mean value of the amplitude of the acoustic
waves.

e Do S0awr " e "independent of 1, 92 is an integral of

ithe bichavaeteristic equations (3.2), 1.e.
Ei'—‘{?;~U Flhalell = o (e 1B
A J

The expression (3.9) can therefore in this case be written in the

following way

(8 L)

Q
1
(@)
e
=
4
T S
Y
1
I\ﬁ"{
i
o
R
=

In section 4 and 5 we shall see that in many cases we are able to

conclude from (3.11) that ci = 0 as gteable.

For the special cases where VU

]

0, i.e. the cases without

cshear, the vright hand side of (3.3) is seen to vanish if F. lis
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givedd byel(2i8ls Berthas chaieesthevefore, Oi is a comstant

along the bicharacteristics. The physical interpretation of this

and the expressiopn (8.11) is simple: When F 1s given byig3i8Y,

(Oi)2 corresponds in some sense to a mean value of the local
energyidensity in,the acoustie wave. Thus when  VU,=.,0; the

energy carried by the acoustic wave is conserved, while there
will in general be an exchange of energy between the acoustic
wave- and the basie flow Wy @, P  when YU &.0.

The discussion of the other family of acoustic waves,
corresponding to the charcteristic root 93, is completely

analogous. The stability equations are

i
doz TR R < E:L
dt il gl
AR S R @iy
G
_C—ljc—— EHX1+CX;|€|
3
do
P R e
SHth { r” " Br + K }Ol
8 d 1
= 1 2€H§+f(Ft+Q_-VF)
2l
§SEPIESH)
ol sl loe - Lyp - L
e £ (FVF + =V HPVP uQvQ)
1L 3
& 3t ¥ Yiv-Uhey
BE+oE npk8raiven BEatdab ) e e gelk
dOi L, I d 2o a8 3 3 | €|
R s s ol



3

‘(Mn w.gm»a au: (&B goou :a.;:rams:rmm:’ M:}' n:r 3111:

o i o8, aaousaps WMI‘““ T

5 i
; 4
LT R e T el O

FIRD TRl o R



If Fds given B (3,81 we gat
(3 sl 5)

Mimem Uy @, P arel indepemdent ol i, 93 is an integral of the
bicharacteristic equettiomssl 2., B2 %, 1T thig eabe tliereiore,

(3. 15) @am e weilititEm

(3.16)

TN
{a
i}

1
Jury
©)
jie
o

p—

(S

=

Bor . tilhie easeswithout  sheae o the - wisght dhand jside im (3.13) 18
Secwbo vandsh 16 we dlet o oF piébasgiven by (3 48) . Thus Oi is a
constant along the bicharacteristic in this case.
The physical interpretation of these results is identical as in
the corresponding cases discussed above for the root QQ, i e
therefore omitted here.

In the cases without shear we found that both 02 and Oi

I

are constants along the bicharacteristics, when F 1s given by
£8:8) . Dhus Gi = oi = wis obviousily stable dn Bhis.zase & ge
do not consider boundary conditions which may act as a source of
enerey. It ds natupal to ask whether the stability properties of
the aecoustic waves actually depend on the choice of F, or

whether the choice of F is just a matter of convenience in

handling the equations. To settle this, we consider an unbounded

"atmosphere" in static equilibrium in a constant gravity field.

Thus, let ¢ = - gx3 and sconsider . the following sodution wf (1.1)

U .= G40 5 Bhexpl = ux3} L iR w % exp{- uxg} E2 el 1






whetle 29g LAy &4 ' Gife MpeigPEive Yool stdn e HEon The equidiens (3 :9)
and Hgffe Y EolionsBrhar"tEA0s constaii Mo hoig S e VBl Shearactes
ristide, "and that'thé*bichdradteristicsarerstraight '1inés. The

gauations €3.3Y AndY(3137 become

dci 1 € cu€3 2
at T CE p Rl SRR 2|g|}01
. (3t18)
do 8
apdent  plioratabile {iy Bt o
From these equations we see that oi = 0 and Oi = (0 cenner be

stable“sriultaneotslyfinless -efther? ‘Flidependsion 't Texplieitlyy
or the right hand sides of (3.18) essentially vanish. Since we
egnstder“the s tapT I 78eF VS iacic oo tatitn “ 080 TH 6" (14495 ¥e
is%arnatoral -toVict PY depend ' GnVAit® This in'lorder " to assure
stability of the acoustic waves, F 1is essentially determined
within a constant factor by (3.8). The physical interpretation

of this is St¥aight FOrwIrd®im view el Our considerations about
the energy of the acoustic waves.

In the above calculations we have seen that weightfunctions
may be very essential in a study of stability problems. We have
only intreduced” two scalar' weightfunetions¥Foiandt“E  1in“the
hyperbolic system (1.7, 8 & 9), while the most general weight-
functionmatrix"will' consist of" 25" Functions- inh" the' 3=difiensi®nal
case’and 16*functions in®the"?2=dimensional case. It is thereiore
natural to ask whether there is anything to gain by introducing
more weightfunctions in the equations. If we compare (3.7) and
(3.14) with the general expressions obtained in section 10 in [3]
for the effect of the weightfunctions, it seems that the expressi-

ons we have obtained are the simplest possible in the general case.
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3

Thus as far as the acoustic waves are concerned, it suffices to
comeider only. aneiwelolfifunetion T, Selmecibhe cheolosl of 'E s
seen to have no influence at all. As a matter of fact, we shall
see that E does not have any influence on the stability proper-
ties of the gravity waves either. The choice of a weightfunction

is therefore not necessarily essential in a stability research.

From the theory of stability developed in [3], we know that
in general the stability equations will only give necessary
conditions for stability. In order to obtain sufficient conditions,
the effect of the distortion coefficients in the W.K.B-expansion
have to be examined. So far the available theory for handling this
problem is rather limited, but it seems possible to treat some
special cases. Such cases are for instance those where plane waves
remain plane waves. The acoustic waves are seen to have this

property (1f

82U 5 320

Bxlax] Bxlaxj

ST e o e (3.19)

Even though these conditions are satisfied only in very special
cases, it seems worth while studying more closely cases where
(3.19) are satisfied, in order to gain intuition about the distor-
tion coefficients. So far we have not considered this in detail,
but we do not expect the distortion coefficients to give rise to
any instabilities for the acoustic waves.

In order to examine the effect on the stability properties
of the distortion coefficients, the compression effect has to be
taken into account. This can most easily be done when the com-

pression effect can be compensated for in the weightfunctions.
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Pt is Bapalyidfouind dhatea Budf o ent condition for this is that

V.U = 0 (3.20)
: 3 . : . 8 :

In Taot, 1§ (0,20) 18 saticliied anmd we pul K= K = 0 dpto

(3.3) and (3.13), then these equations can be transformed into

(3.9) and (3.15) respectively if instead of (3.8) we let F  be

given by
B = Ve e 2d)

In the above discussion we have seen that in order to
assure the stability of the aceustic waves, We dare in a construc-
tive way led to specific choices of the weightfunction F. These
choices (3.5, 8 & 21) are analogous to transformations considered

earlier by various authers Yih [71, Eckart [2].
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4. Two-dimensional parallel flow.

In this section we consider the two-dimensional version

@E (I, L) watia
$o == gx2 (3 )

where g > 0 is the acceleration of gravity which is assumed
to be a constant. We want to study the stability properties of

paraldel Flows, i.e. Solutieons of (1.1} of the Torm
P 2 3 i 2 i 2
U i Ul(x )) U e 0, Q T Q(X )) P e P(X ) (4-2)

It igreadily seemdthati (.2} is a solution of (1.1) for arbi-
trary functions Ul sialel G S ead ok~ F fhe Funotion - P

SEHE L leE
oo e ey : € 8

For given Q, (4.3) determines P within an additive constant.
For physical reasons we only consider nop-negative Functions P, Q.
The fluid considered is obviously assumed to be unbounded
along the xl—axis. Along the x2—axis the fluid may be bounded
or unbounded. If the fluid is unbounded upwards in the positive

xz—direction, the function Q must decrease sufficiently fast

when x2 - ¥, “Un "ovder “that P - shall be non-negative everywhere.
If the fluid is bounded in the positive x2—direction, we shall
assume that it is bounded either by a rigid wall or that the

boundary is free. For the value of x2 at the boundary, the

boundary conditions are respectively
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v = O (e,
S =0 (e 50

If, the fluid,.is, bounded in.the . negative x2~direction, we
agsume. the rigid.wall boundary.condition (4.4} there.

Let.us: Fivet considen.the.ggoustic wayes«:Erem (342 &,11)4
(3. 10, % A6 .and, (4.2) it fpllews, that sthei.amplitudes of Lhe

geousiienmavessati the tine gtapandrat: the poing x2 are given by

il
& i
RS PRI T W S | (4.6)
Lo il oladiite e o b
0 0
gl
1
SRaT A Db (R S SR B L (4.7)
1 10 9 1 170
elxs e |
0 0
where the subindex 0 refers to the values at €t = 0 on the rays

considered. The expressions (4.6) and (4.7) are valid as long as
the rays do not hit the boundaries. When a ray of one of the
acoustic families (superindex 2 or 3 for ¢) hits the boundary,

it is easy to shéw that 0T 15 Perlecteone e the AT et LOR"
carried by the ray up to the boundary is carried into the fluid
again on another ray. If the rigid wall boundary condition (4.4)
is assumed, the reflected ray belongs to the same family (i.e. the

same superindex for o), and the initialvalues of xl, X23 619 €2

Z
and o] or oi for the reflected ray are the values of these
quantities on the ray hitting the boundary at the point of reflec-
tion, with the exception that gz ehanges sign. LI the ITres

boundary condition (4.5) is assumed, the reflected ray belongs

Lo the oiher Tamily, l.e€. & Pay With supspingex 7 18 Tellecled
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into. a.rayewithssuperindex 2. amnd . vice versa: . In this case the
initialvalues of xl, xz, El, £2 and Oi or Gi for the
reflected ray are the values of these quantities on the ray
hitting the boundary &t the point of reflection, wWith the excep-
tion that the superindex for @ changes.

With this background we can conclude from (4.6 & 7) that
the change in the amplitude along a ray essentially only depends
on the change in xz, regardless of whether the ray is reflected
or not when the fluid is bounded. Furthermore we see from (4.6

2 &)

& 7) that O Sy e 0 15 s2table 1f there exilst & consiteami M

such that
[l Gl &)

everywhere in the fluid. Obviously, (4.8) is always satisfied if
the fluid is bounded in both x2—directions. Whes the Elé#ildtis
unbounded in one or both x2-directions, (4.8) represents a
restriction. Howevers a flow which does not satisfy (4.8), is
gertalily  net realistbic ‘physically. Thus we conclude that as far
as our study goes, the acoustic waves do not give rise to any
instabilities for physically realistic flows (4.2).

We shall now consider the gravity waves. In our calculations
we shall keep the weightfunctions F and E unspecified, but we
shall assume them to depend on x2 only, in order to be consistent
with (4.2). If we consider a fluid which is unbounded in the x2—
direction;ythe weightfunction F cannot be chosen arbitrarily as
we saw in sSection 3, since we insist that the acoustic waves shall
be stable. However, we shall see that the stability properties of

the gravity waves are independent of both F and E, the restric-



: fwsr.#t wa ﬁrbmiwms a3 ni san&da:; uu
,bvfnsriaﬁ #& mw@ aﬂﬂ maﬁﬁuﬁw @ﬂ-ﬁ%él&w&ﬂs”‘ ,5u s sgnada-a&% e

" mﬁvmzm B m;.m: M%: t.r; oMoﬂ el B ia 2 fb_ ;md;r (!’

i i ”-l'
S Ve ek
Yl " )

ik f{;7fg§:‘?’;.xa?.j'.;&g'-ﬁ‘\{éwﬁf‘a% (8.8) ..*{E uo'vdo bxu[& adi ak Qﬂxsrfmc“tw
&L DEUIE e aedW ;armi‘,:.roafiiga*'gx r'f;otf ok b&buucwd ai b.wl'i a' :

B planeaiigady ($.~5 ,Mmar rzb*: dfed w0 sno ﬂL bsbuuodﬂu

ﬁ:« ¢ £8, ;‘) '"\{'f.z.::.i:;r;rz,a, Yo 350b ;E:’.a,miﬁ wa.[l B 'mvsawoﬂ .no.n.,s.tfr:ras't
sk BB THAY mﬁuimvaJ S oudT zt;anieqﬁq it isey :3? ufnxsiwao
»'n:; O waby av}:,.!?g :hm of r‘;\‘}ﬁw ak?auofﬂs ot (2903 Rbite wuo s -f"'"

J‘,&.M $w@ﬂ -'uxﬂmmm xmfsmwdq dol e«uundsjam : k

‘ Tnfi%lh’fninlj nazrunuardgzsw vﬁ;
m ﬁi»w mm o= ponts 6 m




trons "Bn” "FS wrliTthereforetnot  cance” any dirrienityy

In the case we are considering, the matrix B* in (2.10)

becomes
~
0 lez 0 OW
2
Ber = Q Ee (QIEsCy)

D aetaa R Sy 0
F2 5% c
B RS

LO c o i 0 OJ

@

£ _YyE e SRS
where B = (1 2>c + 2Qsz lez

The compression terms for the gravity waves are in general seen
Lo contain & factem ¥Will. For the scolution (4.2} thereforey . the
compression terms vanish identically. Thus the stability equati-
ons and the transport equations are identical for the gravity

waves in the case we are considering, they are seen to be

Cihal 0

f4% ¢ 1300
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All the other terms in the general form of the transport equations

ebtained.in, [3]l . are‘seen’to wanish. From.€2.13):and*(4.89) we get

1
LR gQ
BueRiRy i whagrensts Vg B2 )
| e
piépaptl o B F-g (412
[ra] Q2Ec
ey
e N €2U1x2
[ €|

The bicharacteristic equations (4.10) can be directly

integrated, the solutions are

LT 2 PR
Ean = 25 Ul(xo)t P S
(% ,13)
Lo o el 2
Sl e R 0
wieiee  the subilndes 0 peterws 1o the dnltizalvelues et & = 0

from (8.13) 2t is.uelear thai.the biehareterigtics assopliated
with the gravity waves never reach the boundaries of the fluid,
if ‘they start from within the fluid. Thus it is clear thet
within the fluid the boundary conditions will have no effect on
the amplitude of the gravity waves. It is also clear that the
boundary conditions can only play a secondary role in the distor-
tion coefficients for the gravity waves, and therefore in the
stability problem altogether in view of the results we have
earlier obgained for the acoustic waves.

According to the theory of stability developed in [3], we

now have to substitute the expressions (4.13) into the amplitude
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equations (4.11) and then study the stability properties of the

trivial solution oi = 0% = 0 fow <all values @i xé, xg, Eé,
i

ES. i EO = 0, the quantities (4.12) are seen to vanish and

: ; 2|l i
EemESEEUIEnlly  dn Ehhils CeEe i 910 siniel - © 950"
1

g icelonllai e @em Joe dEteeiree unilesE go + 0, we therefore

= NS 40/©)
2
0

assume this in the following. With this assumption the quantities

(U w23 ) cape independent sof sy I jand iontprif
I, S (4.18)
15 0 :

For those points x2 where (W.14) is gatisfied, 1f any, (BL11)

0
is an autonomous linear system. The stability properties of the
solution Gi = O% = 0 are therefore determined by the eigen-

Vealuce of the woelficilentmatenx in (W.11), which sre found to be

. &
X, B % J7s

°

=

N (i 150

|

(©)

Here 1 = ¥-1, and N is the local Vdisdl&-Brunt frequency

which is «gdven by (see [21, [71)
(@IEESREY)

From this we can conclude that a necessary condition for the

trivial solution of (4%.130) 1o be stable for all walues of x%,

2 1 2 ; . : :
Xgs &g EO’ is that' W '1is & peal guantity et those poinils

2 : : ) :
Xp Wwhere R4.14) is satisfied. The case N = 0 has to be given
speclal attention since & isrd Bl dg @ multiple sengenva lue

However, it is easily seen directly from (4.11) that in this case
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il i3 1 ik 1 MES BT

@, = Q@ Mg = + 0o —— ——t (el
1 1L, 7 240 lOlEOI QzEc

ci = oi = 0 1is therefore unstable when N = 0.

In order to draw conclusions about the stability properties
ofithe” Flow (,2) from the. above resulilesyl care has ito be taken to
avoid the critical cases discussed at the end of §6 in [3]. In
Fdor; guch ol tibalicase g e e xist] i wfop fimetanae « N « 18 2 Peal
quantity everywhere and N = 0 for a sét of walues .of x2 of
measure zero. However, we are able to draw the following conclu-

sion: A necessary condition for stability of the flow (4.2) is

that the inequality

- -5—2- (4.18)
(@

holds almost everywhere in the set of points where (4.14) is
satisfied.

The physical interpretation of the inequality (4.18) 1is
sinplevand, well kuewn ' (see {215 [71): Since for each fiuid ele-

ment pp“Y

is conserved by (L.1), it is.easy to show that the
total Force, aeting eusthe Tludd element is poimting din the
direction that opposes the fluid element from moving out of its

positien of gtatiec eguilibrium 4f and only if (4.18) is satisiied.

Even though the condition (4.18) and its interpretation is well
known, this author has not foumd any vesults in the literature
which actually prove that the unstable motions are always dynami-
cally possible when (4.18) is violated in some region. Thus in
addition to serving as an illustration of the applicability of

the theory of stability developed in [3], the result established
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above may: alepo fill.a minoprgap  inythe literature.

We now consider the points with shear, i.e. the points XS
where (4.14) is not satisfied. For these points (4.11) becomes
a nonautonomous linear system where all the coefficients (4.12)
tend to zevro when +t = + =« Inihe appendix 1t & Shown that
under certain.cenditiong, which eleaply avesrsatisfied here, the

stability problem can be solved by sntngdieins ) fezeuptEtosacalasy

independent variable. If we do this, (4.11) can be written

1 EQ gQy,1
do% 50 FZ(CQXZ P @ )02
@TAn T S W AT ) -1 g I
Sy o slie L
2
1
dol g% FQg )
e Q°E (4.19)
T A 7 =E e
{(EOU]_ 2) gogo lXZe i lgol e }
1L 2 1% =it L
: eyl 2 ot 9
1 2 1.2 =~y =T
(EOU]—XZ) it 2£OgOUlX2e + lgol e
Asymptotically as T - + =, this system becomes
1 1
do
Stekd Bl 194, @l
dt il 2 e @ 02
IEOlezl E
e.20)
1 1
P aaiad Eiuaiiibe
@l 115 2 1 2

lEgU 42! QEc

The coefficient matrix in this system correspdids to the matrix

A 1in the appendix, its eigenvalues are found to be

=y

>a
MHJ
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Here E  1is Tthe local Richardsen number (see 11, [8], [8]15 [7]

for the incompressible analogue of R), which here is given by

R = (UN 2)2 €l 77
157

In view of the results shown in the appendix, it now follows

from (B.21) thet the trivial seliution of (H.11) is assymptotically
gtable, 1€ R > 0., gwhdch 15 eguivatenwt teo (4.18). 1t i2 stable

Si AR E L band it ds amstaele i F R < 0. Erem thls and the
tlieopy in L3l it 1s mow & stwaighi forward matter to draw congla-
sions about the stability of the flow (4.2). We can summarize

the results found in the following

Theorem. A necessary condition for stability of the flow

(4.2) is that in every point

Q.2
- e - S (5728)
R

In the pointes without shear it is necessary that the striet

inequality is satisfied almost everywhere.

In the marginal case where the equality sign in (4.23) holds,
the discussion above seems to indicate that a shear in the flow
have' al stabildgzingreffectk.! Howevery df wednallow8=dimensional
perturbdtionsy this seémipgily stabildeingopffectnef theishear
disappears as we shall see in the next section.

At the points without shear, i.e. the points where (4.14)
i5 satisfiedy we'seeofpom’ (5215) .that thenamplitudévcfsthengravity

: ¥ e et ; 2
waves oscillates with the Vdisdld-Brunt frequency N if £, = 0,



A uw&££@1 uﬂﬂ«&# x&fﬁ  ‘T‘ We.
i meﬁow?ﬁiqmgﬁﬁ %ﬁ €i£¢#3 ﬂﬁ@?ﬂﬁb& Eﬁﬁvﬁms ed3 ?eﬁ? ilﬁ'ﬁiﬂ
nmm at m Abi #1 ot ﬁwmum ai Mvh{w Liete et n
mﬁﬁ b@m uxm& mw "

-wuﬁJﬂcm wﬁm& ot 1@%@&& 1!

: k : g T N N i ] e - B
J A g t i 0 o e g s "

44 3 :‘ Y ““I B o
wmf¢ uﬂt g { w: L¢\£ 3 qoi n;i}%buaa QW&@ﬁ&ﬁﬁﬂ A mmﬁoadt‘

tkog wﬂava ak. vadJ 8t (9.#3

.7 ' ‘| “ B .i.rg y
(:{"3*‘) iy ?a = h %‘ .
i » ) 1 ‘.“:3 ' il ;.7 vl

Faints sdjufadf_ymameaéﬁm 8l 11 weede Tumisiw arnicq\nﬁi aI

-«&WﬁﬁW%Wﬁva “aom£$ b#aiax::a At m:clsupsnl



while it oscillates with a frequency less than N if gé 200,

Thus N.:is.in this case seen.to be the characteristic freguency
of the gravity waves as we would expect in view of other theories

B2Yanknls

At the pointe. in the Ffluid whepe (W 140 08 wof satisfied,

we see from (4.21) that when R # % the amplitudes of the gravity

waves are asymptotically as t -» + o given by

=1 R =)
it o A=
i et T £72 VE B (4.24)

where are constants along the bicharacteristics. Thus

Sl Bay

we see that in this case the gravity waves have an oscillatory

clizneeie @ Emilly wWoenm  f = %, while there is pure damping when

0 < R < %. When R = % we Tind that asymptetically as L = + e
gl ol t7F 4 e =\ 2 (1259
1 C2v e e 3

The expressions (4.24 & 25) are completely analogous to the
vesults obtalned for tThe continucus spectrum in Iincompressible
Flide by Enmpevik (G851,

In the results obtained above, we have not detected any
instabilities similar to those found in the incompressible case
o= SR O - % (see [11, I51, [7]1}). However, from the theory
of stability developed in 13], we know that in gemneral the results
obtained above will only give necessary conditions for stability.
In order to, obtain sufficient conditions, the effect of the distor-
tion coefficients in the W.K.B-expansion has to be examined. Since

SIS : . ’ .
9] 18 linear with gwespeot ©o &, . 1t scems possible te Gandlc

this problem, but so far we have not studied it any further.
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We expect that the distortion coefficients may give rise to
instabllitiss in some cdses when D < R = %, since the ampli-
tudes (4.26) are non-oscillating and only weakly damped for R

in this region.






5. Tneee=ghmengilomnall hewilzemieall i 1on.

In this section we consider the three-dimensional version

ot % TS i
g e : §GL)

wheiel o S i T AL oSS e Yo onis tain® aciCelevetiion of gravity. We
want to Btudy the stabilility properties for seolutiens of (1.1) of

the form

Ese 2

It 1= readily scen that (547 )k %s a solution ef (1.1) for arbi-
trary functions Ul’ U2 and @S 2F and only 4if the function

Pl gatiEfies

P s = = g0 G
For given Q, +this equation determines P.

We see that the solution (5.2) represents a three-dimensional
horizontal flow where the direction as well as the magnitude of
the velocity depend on the height xS, Obviously the fluid is
assumed to be unbounded in the horizontal directions, i.e. the
xt and x2—directions, while the fluid may be bounded or unboun-

ded in the vertical diveotion, i.es the x3—direction. 1f the £luid

is bounded in the x3~direction, the effect of the boundaries is
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completely analogous in this case as in the case discussed in
the previous seetion. Also the discussion of the amplitudes of
the acoustic waves becomes completely analogous; these matters
are therefore left to the reader. Thus'we shall limit our dis-
cussion to the amplitudes of the gravity waves.

Inconder to be consistent with (5.2), the welshitfunctions
Fo and E° are assumed 'to depend’on x3 only. The matrix B

given by (2 .40 Chen 'seen 1o take the Tomm

-
fo 0 Up 3 0 0
B e 0 0
2
B = @i ) 0 ——25— H (543
O e
0 i E8—(ch - 0 0
¢
i3
BN G
SRR = 0 i
o e € - g
where H = (1 2)c 1 2QQX3 FFx3

since V:U'= 0 for the solution (5.2), the stability equations
are identical with the transport equations for the gravity waves

in the case we are considering. The transport equations are found

to be
deaine
GIEE ‘Ul
e
a ¥
3
d.
= (5.,5)
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grated, the solutions are

xl - xé + Ul(xg)t 5 x2 = xé & Uz(xg)t
Rl xg ol g% SR Ef (5.9)
53 = Eg % {Eélea(xg) + ESU2X3(x8)}t

where the subindex 0 refers to the initialvalues at t = O.

When we substitute (5.9) into (5.6, 7 & 8) we obtain a

closed lihear &ystemufonthe auplitudes oi, O%, Gé. We want to

study the stability properties for the trivial solution

L . !
Wy % = Oé =. 0. of this syctem fior =l possible values ol

1 2 3 i ’
T A E%, Eé, ES. It 15 sasily seen that the system (5.65

@)

7 & 8) is autonomous if and only if
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dlefmg ol 8 2 SIS
= Oles(XO) o5 gOU2X3(XO) = 0 E500)

For all possible values of xg, gé, gg whieh satisfy (5:10),
the stability Prépértiies for the solution oi = U% - Gé = 0

are therefore determined by the eigenvalues of the coefficient-

matrix 1in" (56" F &V8Y ./ "IHege *aigefivalies ‘are found to be

Jiehndinkngs )2
R
i 730

M=

A 5 ) pE i

The local Vdisdld-Brunt frequency N (which is given by (4.16)
with x2 replaced by X3) is seen to appear here in essentially

the same way as in the 2-dimensional case (4.15). The case

-
V/ (Eé)z # (55)2 N = 0 has to be given special attention since
3 1t 2

= 0 is then a multiple eigenvalue. If EO = EO 23,85 ¢ othe wight
hand sides in (5.6, 7 & 8) all vanish and consequently Oi = Oio,
0% = U%O’ cé = 0%0' Thus no instabilities can be detected unless

(Eé)2 + (53)2 ¥ 0, we therefore assume this in the following.
With this assumption, the coefficient matrix in (56 dué . 8 aan
never vanish when e = N = 0. Hence the eigenvalue A = 0 has
an index > 2 (see [6]), we therefore conclude that the trivial
solution of (5.6, 7 & 8) is unstable in this case.

Since for all possible values of xg we can obviously find
values of gé and Eé sueln thet (5.,00) ig satisfizd zng

1L 2 . ;
(EO) £ (65)2 ¥ 0, we can summarize the results found so far in

the following
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Theopem... & neeetsany conditionyifor stability of the Flow

(5.2) g ihai
(3
_%_ o 55 Gl
c

holds almost everywhere in the fluid.

We observe here that the seemingly stabilizing effect of the
shear found in the preceding section for the marginal cases

where equality holds in (541294 +has now disappeared completely.
Thus the results we have obtained here by studying the special
cases where (5.10) is satisfied, are stronger than those we
obtained in the previous section altogether. The above analysis
which holds regardless of whether there is shear or not, is based
on the fact that we here allow 3-dimensional perturbations. In
fact, (5.10) means that the perturbation essentially acts ortho-
gonal to the basiec floww.

We now consider values of xg, E%, gg =ibRedy Mlow (=l R 0 DR
nel: satisfied, The Eyerem (5.7, 8 .8"'9) then becomes o nemantono=
mous linear system where all coefficients tend to zero as t - + .
As in the preceding section we therefore introduce T = 1n t as

a@ new independent variable in (5.7, 8 & 9). Asymptotically as

T haes CThie sycten then beoones

doi géa £5a
T e N e
i 2 ? i)
d
= Bogoy RiEs st It EgU sy
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=
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w
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99 E;obgl y g0L1x301 E:‘0U1><301
Rl B e ) e 2 e 3
where = E%(CQ 3+ gg)
X c
17
FQg
b:T
O Ee

The eigenvalues

to be

where

ab

2
e N

REE NG

Whem €5,12) is saltistied, we find that fopr

2
Rt R = 2N 5 >0
(le3) + (sza)
oy . i) i
The trivial solution 01 = 02 = 03 = 0 e

Been from(5.15) To be stable op it is=e

the resulis shown in the appendix that the

(5.6,:7. 8 8) must be stable when (5.12) 1=

LB, 1)

% Y % - R* (5.15)
1 2
any EO, €0
(5,16 )

(5,13) 1@ theretors
Toane e fellleows trem
trlviell seluiticn ot

satisfied, consequently

we conclude that we are not led to any additional conditions for

3

stability when we consider values of Xg>

@ s 0
Thesdgientity R
Kichardsomnumber (4.22), and we see that

ié, ES which satisfy

1
2o

RF =

2

EO sueln  TinEat

in (5.16) is completely analogous to the

RENER orisEhcs e
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i 3 g 3
go = aUlX3(x0) , EO = asza(xO) T
o seme o 2 O, Thus the discussien ©@f the beheviows @i ithe

amplitudes of the gravity waves will be completely analogous to

the discussion in the preceding section, it is therefore omitted.
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Appendix.

We want to study the stability properties for the trivial
solutden 'w = 0 of-the following lipear system of ordinary

differential equations
dw
a-_E = D(t)'w (1)

where w = {wl, SR Pk wn} and D(t) is an nxn-matrix which is

conitlinueusE for T & = WU s e fe

lim DI = 0 C2)
t -4

We shall assume that we can find a COmSTemE maEolss A  anel a

gcalar constamt @ > 1 Wsuch. that the matrix

R = b SO B B (3)

is bounded for t € [1,+x). From Taylors theorem and the conti-

muity of DRI 3t fs easiuvlad iR e cend fabne Pop

2
the existence of A and o is that g——D(l), g-——D(-l-) exist and
disEiis 7278
ds
dre (centinueus for . = €8 s] Wiicaimn - 60 . Th Ghis esee e
Way elivose @.=12 . .and
Ao =0 Lim | A eBOE) (4)
t -+
In fact, AJ must in any case be given by (4), thus a necessary

gondition for the emistence of | A &and o i: thas the 1wt (4)

SRS
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With the assumptions made above we see that (1) can be

written

dw 1 1
a‘jt— = {-_E‘A t ;&B(t)}’_w 5 € € [l,+°°) @5
where & >4l 15 d constant, A & congtant nxn-patrix, and

B(t) an -nxxn-mateix which Is sudh that
Gyl o e oe ] dee) (6)
where, ‘o - ie a consvanb lgiernder O giudy the =tabilityproperiics

of the trivial sodution of (5), we introduce T = 1ln t as a new

independent variable. The system (5) then becomes

dw L
pEE e OL)TB(eT)}-w (7)
T —
Since t - + o 1is equivalent to T - + «, the trivial solutions

of (5) and (7) respectively, have identical stabilityproperties.

Frem (6) i ftelleows sSinee © = 1 Gheit

oo S LA Sprirt LG c
é Il e BLET IR e e (8)

Thus we see that the conditions in theorem 3.1 and 3.3 in
Roseau [6] are satisfied for the system (7), we have therefore

established

Theorem. With the assumptions made, the trivial solution of

Glogr v SiEeible G Ehe trdviell seluicion ©r

dv
a"{ -—A'_\i (9)
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is etable ) where A is given by (W),

Furthermore, the trivial solution of (1) is

a) asymptotically stable if all the eigenvalues of A
have negative real parts.

b) unstable if A has an eigenvalue with positive real

[DEHIE
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