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Summary  11 

1. Understanding species’ abilities to cope with changing climate is a key prerequisite for 12 

predicting the future fates of species and ecosystems. Despite considerable research on species 13 

responses to changing climate, we still lack understanding of the role of specific climatic factors, 14 

and their interactions, for species responses. We also lack understanding of the relative 15 

importance of plasticity vs. adaptation in determining the observed responses.  16 

2. As a model, we use a dominant clonal grass, Festuca rubra, originating from a natural 17 

climatic grid of 12 localities in western Norway that allows factorial combinations of temperature 18 

(mean growing season temperatures ranging from 6.5ºC to 10.5ºC) and precipitation (annual 19 

precipitation ranging from 600 mm to 2700 mm). We grew clones from all populations in four 20 

growth chambers representing the four climatic extremes in the climate grid (warm/cold × 21 

wet/dry).   22 

3. Genetic differentiation and direction and magnitude of plastic responses vary 23 

systematically among populations throughout the climatic grid. Growth-related plant traits are 24 

highly plastic and their degree of plasticity depends on their origin. In contrast, the traits 25 

reflecting species’ foraging strategy are not plastic but vary with the climate of origin. Levels of 26 

plasticity of growth-related traits and genetically differentiated foraging traits thus might 27 

constrain local populations’ ability to cope with novel climates.  28 

4. Synthesis: Shifts in temperature and precipitation, at the scale and direction expected for 29 

the region in the next century, are likely to dramatically affect plant performance. This study 30 

illustrates how the interplay between genetic differentiation and plasticity in response to both 31 



temperature and precipitation will affect the specific responses of species to climate change. Such 32 

complex responses will affect how climate-change impacts scale up to the community and 33 

ecosystem levels. Future studies thus need to specifically consider regionally relevant climate-34 

change projections, and also explore the role of genetic differentiation and plasticity and how this 35 

varies within local floras. Our study also demonstrates that even widespread species with 36 

seemingly broad climatic niches may strongly differ in their population performance and 37 

plasticity. Climate-change studies should therefore not be limited to rare and restricted species.  38 
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Introduction 48 

Understanding species’ abilities to respond to climate change is important not only for the 49 

prediction of future species and ecosystem distribution and loss, but also for effective investment in 50 

biodiversity and ecosystem protection (Walther et al. 2002; Moss et al. 2010; Rands et al. 2010; 51 

Blume-Werry et al. 2016). While migration to track suitable habitats is an obvious response to 52 

changing climate (e.g., Kokko & Lopez-Sepulcre 2006; Nicotra et al. 2010), the slow migration 53 

rates of most plant species imply that many species and populations will need to face climate 54 

change in situ (e.g., Davis & Shaw 2001; Malcolm et al. 2002; Thomas et al. 2004; Loarie et al. 55 

2009; Bullock et al. 2012; Ravenscroft, Fridley & Grime 2014).  56 

An important mechanism that allows plants to cope with climate change is phenotypic 57 

plasticity, i.e. the ability of a genotype to change phenotypic expression in response to different 58 

environmental conditions (e.g., Pigliucci 2001; Valladares, Sanchez-Gomez & Zavala 2006; 59 

Matesanz, Gianoli & Valladares 2010; Nicotra et al. 2010; Lazaro-Nogal et al. 2015). Phenotypic 60 

plasticity allows populations to buffer detrimental effects of rapid climate change – at least in the 61 

short term – thereby allowing time for evolutionary changes to occur (e.g., Ayrinhac et al. 2004, 62 

Jump & Peñuelas 2005, Kim & Donohue 2011; Anderson et al. 2012; Kim & Donohue 2013; 63 

Monty et al. 2013; Padilla et al. 2013). However, phenotypic plasticity is most likely to be 64 

effective in coping with weak, short-term, undirected, random, and unpredictable fluctuations in 65 

the environment (Gienapp et al. 2008, but see Matesanz, Gianoli & Valladares 2010). Surviving 66 

more extensive and directional changes are more likely to require natural selection, favouring 67 

genotypes able to grow and reproduce well under the new environmental conditions and resulting 68 

in genetic change in the population (Ohsawa & Ide 2008; Matesanz, Gianoli & Valladares 2010; 69 

Nicotra et al. 2010). In cases when the specific selection pressures lead to maximized fitness of 70 

different local genotypes under different local conditions, this will result in population 71 

differentiation and local adaptation (sensu Kawecki & Ebert 2004).  72 

The selection pressures leading to genetic differentiation of populations may not only select 73 

for differentiation in mean traits (i.e., genotype × environment interactions), but may also result 74 

in differentiation in the degree of phenotypic plasticity (Kawecki & Ebert 2004; Hamann et al. 75 

2016). While plastic variation between populations, reflected by the genotype × environment 76 

interaction, has been repeatedly demonstrated (reviewed e.g. in Marais, Hernandez & Juenger 77 

2013 and Franks, Weber & Aitken 2014), only a few studies have explicitly evaluated differences 78 



in the degree of plasticity in plants of different origin (Eranen & Kozlov 2009; Frei, Ghazoul & 79 

Pluess 2014). These studies suggest that plants from mesic lower-elevation climates tend to have 80 

higher plasticity than plants from more extreme climates at higher elevations. They did not, 81 

however, explore the effect of specific climatic drivers on the plasticity, and are thus not able to 82 

predict species responses to specific climate changes. Assessment of the degree of genetic 83 

differentiation vs. trait plasticity from populations across a range of well-defined environments is 84 

thus crucial for understanding species potential to respond to novel climatic conditions. As the 85 

degree of trait plasticity (and presumably population differentiation in plasticity) varies across 86 

traits (e.g., Sultan & Bazzaz 1993; Sultan 2000; Griffith & Sultan 2006), multiple traits with 87 

different functions need to be explored and compared to understand the relative importance of 88 

these processes in populations of different origin and across a species’ range.  89 

One key methodology that has proved useful in studies of genetic differentiation vs. 90 

phenotypic plasticity in relationship to changing climate and in assessing if genetic differentiation 91 

led to local adaptation in the species, is using reciprocal transplant experiments in the field 92 

(Hoffmann & Sgro 2011; Hargreaves, Samis & Eckert 2014; Franks, Weber & Aitken 2014). Most 93 

reciprocal transplant experiments have been done by transplanting individuals upwards or 94 

downwards along elevational or latitudinal gradients and then documenting their performance (e.g., 95 

Etterson 2004; Byars, Papst & Hoffmann 2007; De Frenne et al. 2011; Agren & Schemske 2012; 96 

Kim & Donohue 2013; Scheepens & Stocklin 2013; Schreiber et al. 2013; Zhou et al. 2013; 97 

Hamann et al. 2016). While all these studies allow us to understand the possible consequences of 98 

the specific suites of climatic factors correlated to the particular spatial gradient, they do not allow a 99 

more general understanding of how performance will be affected by interacting effects of 100 

simultaneous change in multiple specific climatic factors. Nor can they be used to assess responses 101 

to not yet realized novel climates.  Experiments that make use of the reciprocal setup, augmented by 102 

the strengths of controlled-condition experiments, e.g., by growing populations of known climatic 103 

origin in multiple growth chambers simulating both home climates and specific climatic-change 104 

scenarios, can provide mechanistic understanding of species performance in response to specific 105 

climatic changes and to novel climates. While a range of previous studies used various alternatives 106 

to reciprocal transplant experiments to assess the importance of genetic differentiation and plasticity 107 

in response to climate (Hoffmann & Sgro 2011; Franks, Weber & Aitken 2014), we are not aware 108 



of any study which would use such an approach to specifically study plant growth responses to 109 

different types of well defined climates.  110 

Climate change is not a unidirectional change in one climatic factor alone, but is predicted to 111 

bring about novel combinations of precipitation, temperature and their fluctuations (IPCC 2014). 112 

Understanding the interactive effects of specific climatic drivers on species performance, and the 113 

specific mechanisms and processes underlying these responses, is thus important for predicting 114 

species responses to future climatic changes (Elith & Leathwick 2009; Gotelli & Stanton-Geddes 115 

2015; Meineri et al. 2015; Parmesan & Hanley 2015; Moran, Hartig & Bell 2016). Several studies 116 

have assessed the interactive effect of CO2 and temperature or precipitation on species performance 117 

(e.g., Volk, Niklaus & Korner 2000; Shaw et al. 2002; Dieleman et al. 2012). To date only (Suseela 118 

et al. 2012) and Meineri, Spindelbock & Vandvik (2013) have explored the interactive effects of 119 

temperature and moisture - and demonstrated that such interactions can be important. Their studies, 120 

however, dealt with soil respiration and seedling recruitment respectively, and we are not aware of 121 

any such studies on plant-species performance.  122 

The aim of this study is to understand the importance of genetic differentiation along 123 

gradients of temperature and moisture and the degree of plastic response to shifts in the same 124 

variables, by determining the performance of a widespread clonal grass, Festuca rubra. The species 125 

grows across broad climatic gradients and is characterized by considerable genetic differentiation 126 

even at the fine scale. It is also plastic in its response to environmental factors (Skálová et al. 1997; 127 

Herben et al. 2001). We used plants originating from locations of different temperature and 128 

precipitation from a unique natural grassland ‘climate grid’ spanning ~4ºC in temperature and 129 

~2100 mm in precipitation established in western Norway (the SeedClim grid, see Meineri, 130 

Skarpaas & Vandvik 2012; Meineri, Spindelbock & Vandvik 2013; Meineri et al. 2014; Klanderud, 131 

Vandvik & Goldberg 2015). We set up a growth chamber experiment simulating different 132 

combinations of temperature and moisture derived from the data on the conditions in the original 133 

localities. In this way, we performed a controlled-climate equivalent of a reciprocal transplant 134 

experiment, i.e., a ‘reciprocal climate common garden experiment’. This approach has the 135 

advantage that it allows us to explore the effects of specific climate change drivers, alone as well as 136 

in combination at pre-determined levels, and it ensures that climate is really the only driver of 137 

species performance. The climatic prediction for Norway suggests increases in both precipitation 138 

(by about 18%) and temperature (by about 1.5°C to 2.2°C) over the next century (Hanssen-Bauer et 139 



al. 2005). Our experimental sites cover a climatic gradient larger than these expected changes and 140 

the results of our study will thus allow us to predict species responses to the expected changes and 141 

beyond.  142 

In this study, we aim to answer the following questions: (1) What is the relative importance of 143 

genetic differentiation and plasticity in determining plant performance in response to different 144 

temperature and precipitation? We hypothesize that both genetic differences and plasticity will 145 

contribute to variation in plant performance along the bioclimatic gradients and in response to 146 

climate change, with interactions indicating that climate change responses vary across the species’ 147 

climatic niche. 2) How does the degree of plasticity vary among populations across broad-scale 148 

temperature and precipitation gradients? We hypothesize that plants from warmer and wetter 149 

conditions will be more plastic due to higher competition under these conditions (Olsen et al. 2016). 150 

(3) What is the effect of the specific climate-change scenario for the region on species performance, 151 

and what is the relative importance of temperature and precipitation change in driving these 152 

responses? We hypothesize that all plants will strongly profit from transplantation to warmer and 153 

wetter conditions, i.e. from the projected climate change in the region as such conditions are likely 154 

more favourable for the species. Drought might, however, turn the positive effects of warmer 155 

conditions to negative as plants in warm conditions will have increased moisture requirements. (4) 156 

How do these patterns differ between different plant traits? We hypothesize that the degree of 157 

plasticity and genetic differentiation will strongly vary between traits due to different 158 

developmental constraints underlying different traits (Sharma et al. 2016). High between-trait 159 

variation in response to local climate has already been shown in the same system at the community 160 

level (Guittar et al. 2016).  161 

 162 

Methods 163 

Study species and localities 164 

Festuca rubra L. is a common perennial grass species of temperate grasslands in Europe. 165 

In the experiment, we used Festuca rubra ssp. rubra, a widespread hexaploid type from the F. 166 

rubra complex. It grows at different densities in grasslands, both as a dominant with only a few 167 

other species and also as a subordinate of species-rich stands. It reproduces by seeds as well as 168 

vegetatively, producing both intravaginal and extravaginal tillers on rhizomes. Festuca rubra 169 



possesses considerable genetic variability and plasticity in growth and foraging-related traits 170 

even within a single grassland locality (Skálová et al. 1997; Herben et al. 2001).  171 

The experimental plants were collected along a natural climatic grid established in western 172 

Norway (the SeedClim Grid, see Klanderud et al. 2015). It comprises 12 grassland localities 173 

representing three levels of summer temperature [the experiment was set up to achieve means of 174 

the four warmest months for individual locality types of ca. 6.5°C (alpine, ALP), 8.5°C (sub-175 

alpine, SUB) and 10.5°C (boreal, BOR) combined with each of four levels of mean annual 176 

precipitation [ca. 600 (1), 1300 (2), 2000 (3) and 2700 (4) mm, Fig. 1, Meineri et al. 2014; 177 

Klanderud et al. 2015]. The target communities are grazed intermediate-rich meadows 178 

(Potentillo-Festucetum ovinae; G8 sensu Fremstad 1997) occurring on south-west facing (with 179 

the exception of one site, (BOR 3), which was exposed to the east), shallow slopes (5–20°) with 180 

relatively base-rich bedrock. Sites were selected specifically to ensure that grazing regime and 181 

grazing history, bedrock, slope, aspect and vegetation types are as similar as possible. 182 

Geographical distance between sites is on average 15 km and ranges from 0.65 km (BOR2 and 183 

SUB2) to 175 km (BOR1 and BOR4) (Meineri et al. 2014). 184 

 185 

Figure 1. Position of the studied localities along the temperature and precipitation gradient. The dots 186 

represent all the localities in the SeedClim grid. The empty circle indicates the locality from which 187 

Festuca rubra was not available for this study.  188 

 189 

 190 



Plant material 191 

At each locality, we laid out transects along which we collected at least 40 clones of F. 192 

rubra, with at least 1 m between neighbour plants, in July 2014. The living plants were 193 

transported to the experimental garden of the Institute of Botany, Czech Academy of Sciences, 194 

Průhonice, Czech Republic (49°59'38.972"N, 14°33'57.637"E; means of the four warmest 195 

months 16.5°C; and regular watering during the vegetation season) and immediately after the 196 

transport they were planted into pots (16 × 16 × 16 cm, filled with a mixture of common garden 197 

soil and sand at a 2:1 ratio). The common garden soil comprised compost from the experimental 198 

garden containing approximately 0.135 % of nitrogen, 1.35% of carbon and 46.5 mg of 199 

phosphorus in 1000 g of soil.  The plants were allowed to recover from the transport. At the end 200 

of August 2014 they were extracted from the pots and reduced to a single ramet. This was done to 201 

ensure that there was only one clone per pot, preventing the possibility that we originally 202 

collected multiple intermingled clones. At this stage, we also confirmed the identity of plants 203 

using flow cytometry (see Castro et al. 2011 for methods) and selected only those with a genome 204 

size ranging between 9.29 and 10.41 pg. This corresponds to the most widespread hexaploid 205 

cytotype of F. rubra (Sampoux & Huyghe 2009). From each locality we selected 25 viable 206 

genotypes fulfilling this condition. We use the term genotype throughout the subsequent text as 207 

Šurinová et al. (unpubl.) confirmed that we worked with individuals that were genetically 208 

differentiated from each other and therefore true independent genotypes. All the samples from the 209 

ALP2 locality belonged to other Festuca species, so the study is based on 11 populations.  210 

We continued cultivating the genotypes in the garden until November 2014 to remove 211 

possible transgenerational effects. We then transferred the genotypes to the greenhouse. The 212 

temperature in the greenhouse was set to be between 5°C and 10°C. At the beginning of February 213 

2015, about 10 single ramets of similar size, each with three leaves and without visible signs of 214 

initiating flower buds, were cut from the tussocks and placed into small plastic cups filled with 215 

water, to set roots. At the end of February 2015, ramets with developed roots were individually 216 

planted into 5 × 5 × 8.5 cm pots filled with a mixture of 1 part common garden soil and 2 parts 217 

sand. While the pots may seem quite small, our model species is a tussock grass of small stature 218 

and slow growth and the pots were not filled by the plant at the time of harvest. We are thus 219 

confident that the results of the experiment are not affected by pot size. For each of the 25 220 

genotypes from all of the 11 populations, we planted 4 ramets resulting in a total of 1100 ramets. 221 



The pots were kept in the greenhouse and ramets that died within the next two weeks were 222 

replaced. The plants in single pots will be referred to as individuals in the subsequent text (there 223 

were 4 individuals per genotype, one in each growth chamber as described below).  224 

In mid-March 2015, we measured the height of the tallest ramet and noted the number of 225 

ramets of each individual providing us with a plant size value at the beginning of the experiment. 226 

This was later used as a covariate in the analyses. Individuals were assigned to 4 groups, such 227 

that one ramet of each genotype from each population was represented in each group, for 228 

cultivation in growth chambers. In each group we had 11 populations × 25 genotypes, i.e. 275 229 

individuals in each growth chamber, comprising 1100 individuals in total. Pots assigned to each 230 

growth chamber were fully randomized, placed into three metal trays and moved to the growth 231 

chambers. The position of the pots in each growth chamber was randomized monthly. The 232 

position of each genotype was always identical across the four growth chambers. For discussion 233 

of using only four growth chambers in our study, please see Methodological considerations at the 234 

end of the Methods section.  235 

The plants were cultivated in climatic chambers (Vötch 1014) under conditions simulating 236 

four different scenarios for the spring to summer climate in the field (second half of April–second 237 

half of June). The four scenarios were derived from climate data for the four extreme localities in 238 

the SeedClim grid (wettest/driest combined with warmest/coldest), within the technical limits of 239 

the climatic chambers and avoiding night frosts (minimum temperature during cultivation being 240 

3ºC). Note that this is in effect a controlled-climate equivalent to a reciprocal transplant 241 

experiment, and we hence refer to it as a “reciprocal climate common garden experiment”. The 242 

temperature in the growth chamber differed between the cold and warm treatments and changed 243 

over the growing season following the course of temperature at the natural localities (for details 244 

see Table 1). To set the correct moisture level in the growth chambers, we used TMS4 data-245 

loggers to continuously measure soil moisture in the pots (TOMST Co., Hemrová, Knappová & 246 

Münzbergová 2016) and identified the correct level of watering to achieve soil moisture 247 

comparable to that at the localities. As a result of this calibration, the dry regime plants were 248 

watered with about 20 ml of tap water per plant applied to the trays if the soil moisture was lower 249 

than 15%. In the wet regime, plants were cultivated under full soil saturation with about 1.5 cm 250 

of water in the bottom of the tray. Soil moisture was monitored continuously during the whole 251 

experiment and watering was modified to ensure constant moisture throughout the experiment. 252 



Three data-loggers were placed in each growth chamber. Each data-logger was placed in a pot 253 

with a growing Festuca plant, which was intermixed among the experimental plants and was of 254 

the same size as the experimental plants, but was not a part of the experiment. For all the regimes, 255 

the same day length and radiation were used, i.e. 16 hours of full light (6 am – 10 pm) and 4 256 

hours of full dark with a gradual change of light availability in the transition between the light 257 

and dark period over 2 hours. Over the full light period, the radiation was 360 µmol.m-2.s-1, red 258 

radiation (R, λ=660 nm) of 26 µmol.m-2.s-1, and far-red radiation (FR, λ=730 nm) of 15 µmol.m-
259 

2.s-1, R/FR = 1.73 (the radiation measured using a SPh 2020 photometer from Optické dílny 260 

Turnov, Czech Republic).  261 

 262 

Plant performance 263 

Plant performance was recorded three times during the experiment. Specifically, we 264 

counted the number of all ramets and of extravaginal ramets, and measured the length of the 265 

longest ramet (hereafter referred to as plant height) of each individual at the beginning of May, 266 

mid-June and end of August 2015. In mid-June and at the end of August 2015, we also cut all the 267 

aboveground biomass at 3 cm, dried it to constant weight at 60°C and weighed it. The harvest 268 

simulated biomass removal during regular management in the field sites. After the harvest at the 269 

end of August, the remaining parts of the plants were removed from the pots, the belowground 270 

parts were carefully washed and sorted into roots and rhizomes, dried to a constant mass at 60°C 271 

and weighed. In addition, total length of rhizomes was measured before drying. As the total 272 

rhizome length is strongly correlated with rhizome dry mass (r = 0.95), rhizome length is not 273 

considered in the subsequent analyses. The number of extravaginal ramets divided by the total 274 

number of ramets was calculated to give proportional data per plant. Production of extravaginal 275 

ramets by the species indicates the species’ ability to forage in space and thus to occupy areas 276 

further away from the maternal ramet (Ye, Yu & Dong 2006). This may be an important 277 

mechanism that allows species to cope with novel environments.  278 

 279 

Data analyses 280 

To study the effect of the conditions of the original sites as well as the target conditions 281 

under cultivation on performance of the plants in the experiment, we coded the climatic 282 

conditions each individual was subjected to relative to its climate of origin in the field. To do this, 283 



temperature regimes of origin were coded with respect to the mean temperature of the four 284 

warmest months for each locality type, i.e. as 6.5, 8.5 and 10.5°C. Similarly, moisture regimes of 285 

origin were coded by mean annual precipitation at the localities, i.e. 600, 1300, 2000 and 2700 286 

mm. We used the same codes to describe the conditions in the growth chambers, which simulated 287 

the 4 climatic extremes at the sites, i.e. 6.5 and 10.5ºC for low and high temperature and 600 and 288 

2700 mm for low and high moisture. We tested the effects of the temperature and precipitation of 289 

the origin and of the target and all their interactions on performance of the plants. We used results 290 

of these tests to express the variation explained by environment of origin, target environment and 291 

their interaction. A significant effect of target conditions will indicate plasticity of the plants, a 292 

significant effect of origin will indicate genetic differentiation, and the interaction between target 293 

and origin will indicate genetic differentiation in plasticity.  294 

While significant interaction between target and origin will indicate genetic differentiation 295 

in plasticity, it does not provide any information on whether these differences are due to a 296 

different direction of the response to the environment, or whether there are any clear differences 297 

in the magnitude of the response. To assess the degree of plasticity of the plants from the 298 

different environments, we thus calculated the phenotypic plasticity index as the difference 299 

between the maximum and minimum value of the trait for each clone (out of the four values 300 

across the growth chambers) divided by the maximum value (Valladares et al. 2000). We use this 301 

index as it is easy to use, robust, widely applied, and can be easily compared among traits 302 

(Valladares, Sanchez-Gomez & Zavala 2006).  303 

To assess whether characterization of populations by their original temperature and 304 

precipitation and their interaction is sufficient, or where there is additional between-population 305 

variation that cannot be explained by these characteristics, we performed tests in which the 306 

temperature and precipitation of the original localities were replaced by locality code. The 307 

original models and the models with the locality code were compared using Akaike information 308 

criteria (AIC, Crawley 2012): models with the locality code were slightly better. The difference 309 

in the AIC values, however, only range between 0.4 and 2.9% for the different dependent 310 

variables suggesting that the two types of models are largely similar. The less parsimonious 311 

locality code models are thus not presented further.  312 

To assess whether the possible genetic differentiation of the populations lead to local 313 

adaptation, we used the local vs. foreign criterion, as suggested by Kawecki & Ebert (2004). To 314 



do this, we included an additional code distinguishing plants grown in their home temperature or 315 

home moisture (i.e. plants grown in conditions simulating conditions of their site of origin) from 316 

plants grown in a foreign environment (i.e. plants grown in all other conditions than the 317 

conditions of their site of origin). We included the effect of home temperature and home moisture 318 

and their interaction with temperature and moisture of origin in the models. The effect of these 319 

factors was tested against original climate × target climate interaction as in previous studies (e.g., 320 

Raabová, Münzbergová & Fischer 2007). While there are many significant effects in these tests, 321 

most of the patterns detected are also clear from the tests presented below. These results are 322 

therefore only briefly mentioned in the results section and are mainly presented in the 323 

supplementary material Text S1 and Fig. S2.  324 

Finally, we also explored impacts of the directionality of the climate change by subtracting 325 

the above described values of temperature and moisture of the growth chambers from the values 326 

of temperature and moisture at the original localities. In this way we obtained codes ranging from 327 

-4°C to 4°C for temperature and -2100 mm to 2100 mm for moisture with negative values 328 

indicating transplantations to colder or drier conditions and positive values indicating 329 

transplantations to warmer or wetter conditions. Zero indicates plants growing under their home 330 

conditions. We then tested the effect of these differences and their interaction on plant 331 

performance using the models described below. Significant effects detected in this test will 332 

indicate that species performance will be affected by the specific type of climate change to occur.   333 

All of the above described tests were done for each measurement period and the following 334 

dependent variables were used – plant height, number of ramets, and proportion of extravaginal 335 

ramets. In addition, the following variables were tested based on the results at the time of final 336 

harvest of the experiment: total aboveground biomass, total belowground biomass, ratio between 337 

belowground and aboveground biomass, and rhizome biomass. Because the data from the first 338 

and second censuses did not bring any additional insights to data from the third final census, we 339 

only present the latter. 340 

For plant height and number of ramets, we used the same characteristics measured at the 341 

beginning of the experiment as a covariate. We used plant height × number of ramets as a proxy 342 

of plant biomass, and as a covariate when using aboveground, belowground and rhizome biomass 343 

as dependent variables. There was no need for a covariate for number of extravaginal ramets as 344 

there were no extravaginal ramets at the beginning of the experiment. Plant height, number of 345 



ramets and aboveground and belowground biomass were tested assuming a normal distribution of 346 

the data. Data on rhizome biomass and belowground to aboveground ratio were log transformed 347 

to fit assumptions of normality and homogeneity of variance. The proportion of extravaginal 348 

ramets was tested assuming a binomial distribution (number of extra- and intravaginal ramets 349 

were linked using cbind function and tested as binary data, (Crawley 2012). All tests were done 350 

using mixed effect models as implemented in the lme4 package in R (Bates et al. 2015) with 351 

genotype as a random factor.  352 

In this study, we performed each test independently for 7 different traits measured on the 353 

same experimental plants. Theoretically, we should apply the Bonferroni correction and reduce 354 

the conventional p-level from 0.05 to 0.0071 (Dunn 1961). We decided to use a modification of 355 

this approach, the sequential Bonferroni correction (Holm-Bonferroni correction, Rice 1989) as it 356 

is considered as less conservative. Still any such correction is considered as too conservative by 357 

some authors (e.g., Moran 2003; Garcia 2004; Gotelli & Ellison 2004) and many studies have not 358 

applied any correction, for this reason (e.g., Münzbergová 2007; Bowman et al. 2008; Scheepens 359 

& Stocklin 2013). Here, we report and illustrate results both with and without this correction (see 360 

also Husáková & Münzbergová 2016).  361 

 362 

Methodological considerations 363 

It may be argued that our experiment is pseudoreplicated as the growth chambers may 364 

theoretically differ in a range of other variables (e.g. light intensity) leading to possible spurious 365 

treatment effects (Hurlbert 1984). The conclusions of Hurlbert (1984) on pseudoreplication in 366 

growth chamber experiments have, however, been extensively criticized (e.g., Oksanen 2001; 367 

Johnson et al. 2016). Later, Hurlbert (2004) concluded that such experiments can be analysed 368 

with standard statistical approaches as long as the interaction term is used as an estimate of the 369 

error term to test the main effect. In our experiment, the effect manipulated at the growth 370 

chamber level, i.e. the target environment, is not the effect of primary interest. Rather, we were 371 

primarily interested in the effect of original environment, which is well replicated and the 372 

interaction between the original and target environment. In such a case, using the standard error 373 

terms is well justified. Thus in line with a range of other studies using similar settings for 374 

unreplicated gardens at different elevations (Scheepens & Stocklin 2013; Gugger et al. 2015) or 375 

growth chambers (Bezemer, Thompson & Jones 1998; Cavieres & Arroyo 2000; Souther, 376 



Lechowicz & McGraw 2012; Matias & Jump 2014; Zhang et al. 2014), we suggest that such 377 

studies are useful by allowing the separation of genetic differentiation of plants from their 378 

phenotypic plasticity and provide insights into the effect of specific climatic variables without the 379 

confounding effects of other naturally varying factors. For an extended discussion of this issue, 380 

see Text S3.  381 

 382 

Results 383 

 384 

Target climate 385 

All of the observed plant characteristics were significantly affected by target moisture and 386 

temperature, except for proportion of extravaginal ramets and rhizome biomass, suggesting that 387 

the plants respond plastically to the environment (Fig. 2, Table 2). Plants in warm growth 388 

chambers were significantly taller (Fig. S4A), produced more ramets (Fig. S4B), had more 389 

aboveground biomass (Fig. 3A), but had lower belowground biomass (Fig. S4C) and lower below 390 

to aboveground biomass ratio (Fig. S4D) than plants grown in cold conditions. The plants in the 391 

dry growth chambers were also taller, produced more ramets, had greater belowground biomass 392 

and rhizome biomass, and had higher below to aboveground biomass ratio (Fig. S4A-E) and 393 

proportion of extravaginal ramets (Fig 3B). The effect of temperature interacted with the effect of 394 

moisture in several cases (Table 2). Specifically, the negative effect of moisture on plant height 395 

was stronger in the cold growth chamber with plants in the cold-wet growth chamber being the 396 

shortest (Table 2, Fig. S4A). Low temperature in the dry growth chambers led to an increased 397 

proportion of extravaginal ramets, while low temperature in the wet growth chamber led to a 398 

decrease in the proportion of extravaginal ramets (Fig. 3B). Aboveground biomass increased with 399 

temperature in dry but not in wet growth chambers (Fig. 3A). Belowground biomass decreased 400 

with temperature in the wet growth chambers but not in the dry ones (Fig. S4C). All the effects of 401 

target temperature, target moisture as well as their interaction are significant after applying the 402 

Bonferroni correction (Table 2).  403 



 404 

Figure 2. Proportion of variation explained by the target environment, the environment of origin and their 405 

interaction. The remaining variation is unexplained. 406 

 407 

Original climate 408 

Plant height, aboveground biomass and belowground biomass are significantly affected by 409 

temperature of origin and aboveground and belowground biomass also by moisture of origin (Fig. 410 

2, Table 2), suggesting genetic differences between the plants originating from different 411 

environments. Plants originating from warmer sites were significantly taller and had more 412 

aboveground (Fig. 3A) and belowground biomass (Fig. S4C) than those from colder sites. Plants 413 

from wetter sites had more aboveground biomass (Fig. 3A) and belowground biomass (Fig. S4C). 414 

Temperature and moisture of origin also interacted in their effects (Table 2). Specifically, plants 415 

produced less aboveground biomass (Fig. 3A), were shorter and had more rhizomes when 416 

originating from wetter colder sites, while the values were opposite when they were from wetter 417 

warmer sites (Fig. S4). For proportion of extravaginal ramets, the effect of moisture is more 418 

pronounced in plants originating from warmer conditions and thus plants from warm and wet 419 

sites produced the lowest proportion of extravaginal ramets (Fig. 3B). The effects of original 420 

temperature, original moisture, as well as their interaction are still significant after applying the 421 

Bonferroni correction, with one exception: the interactive effect of original moisture and 422 

temperature on aboveground biomass (Table 2). 423 



 424 

Figure 3. The effect of original environment and target environment on plant performance measured as A) 425 

aboveground biomass and B) proportion of extravaginal ramets. ALP denotes the cold alpine sites, SUB 426 

denotes sub-alpine sites and BOR denotes warm boreal sites. 1 to 4 indicates moisture at the original 427 

localities with 1 indicating the driest and 4 the wettest sites; for the test of significance see Table 2. The 428 

graphs show mean ± SE. 429 

Original environment also affects trait plasticity. Specifically, the plasticity index for 430 

aboveground (Fig. 4) and belowground biomass (Fig. S5), number of ramets and plant height are 431 



significantly affected by moisture of origin (Table 3) with plants from drier sites being more 432 

plastic in all the traits. In addition, plasticity in belowground biomass and plant height is also 433 

affected by temperature of origin with plants from the colder sites being more plastic (Table 3, 434 

Fig. S5). Three out of six of these significant effects are non-significant after applying the 435 

Bonferroni correction (Table 3). Plants from the colder sites are still significantly more plastic in 436 

plant height, and plants from drier sites are significantly more plastic in aboveground and 437 

belowground biomass after the correction (Table 3).  438 

 439 

Figure 4. Plasticity index of aboveground biomass of plants of different origin. ALP denotes the cold 440 

alpine sites, SUB denotes sub-alpine sites and BOR denotes warm boreal sites. 1 to 4 indicates moisture at 441 

the original localities with 1 indicating the driest and 4 the wettest sites.  442 

 443 

Interaction between target and original climate  444 

There are also a few significant interactions between plant origin and responses in the target 445 

growth chambers (Fig. 2, Table 2, Table S6). Two out of the three significant double interactions 446 

are non-significant with the Bonferroni correction. As the important interactive patterns are seen 447 

from the exploration of the difference between target and original environment presented below, 448 

the results are not described in detail here, but only in Text S7.  449 



The tests of the effect of local vs. foreign conditions on species performance exploring 450 

local adaptation in the system are shown in detail in Text S1, Fig. S2 and Table S8. There is a 451 

number of significant differences indicating that plants grown in their local conditions perform 452 

better than plants grown in foreign conditions on average. However, as seen in Fig. 5 and Fig. S9, 453 

there is also quite high variation and the effect of local and foreign conditions interacts with plant 454 

origin (Table S8). Thus, clear evidence for local adaptation is available only for ramet number 455 

(Fig. S9A) and, in some populations, for proportion of extravaginal ramets (Fig. S9B).  456 

 457 

Figure 5. The effect of difference in temperature and moisture between target and original environment 458 

(target-origin) on A) plant height and B) belowground biomass. The colour scale indicates difference in 459 

temperature, the sets of columns indicate differences in moisture. Negative values indicate plants grown in 460 

colder and drier conditions, positive values indicate plants grown in warmer and wetter conditions and 0 461 

indicates plants grown in conditions corresponding to the conditions from which they originate. The 462 

graphs show mean ± SE. 463 



Directionality in environmental change responses 464 

Plants subjected to warming were taller (Fig. 5A), had more ramets, higher aboveground 465 

biomass and proportion of extravaginal ramets than plants subjected to cooling (Fig. S9, Table 4). 466 

Under warming, plants also had lower belowground biomass (Fig. 5B) and ratio of below to 467 

aboveground biomass (Fig. S9, Table 4). The effect for number of ramets and proportion of 468 

extravaginal ramets is non-significant when applying the Bonferroni correction, while the rest are 469 

still significant (Table 4).  470 

Plants subjected to a wetter environment were shorter (Fig. 5A), had fewer ramets (Fig. 471 

S9A), a lower proportion of extravaginal ramets (Fig. S9B), lower rhizome biomass (Fig. S9E), 472 

less belowground biomass (Fig. 5B) and a lower below to aboveground ratio (Fig. S9D) than 473 

plants grown in drier conditions (Table 4). All these patterns are significant even with the 474 

sequential Bonferroni correction (Table 4).  475 

For plant height (Fig. 5A), aboveground (Fig. S9C) and belowground biomass (Fig. 5B) 476 

and rhizome biomass there is also a significant interaction between difference in temperature and 477 

moisture (Table 4). Plant size increased much more with increasing temperature when the plants 478 

were grown in wetter conditions, while warming did not have any effect in drier conditions (Fig. 479 

5A). All these patterns are significant even with the sequential Bonferroni correction (Table 4).  480 

 481 

Discussion 482 

Performance of our model species, Festuca rubra, depends strongly on plant origin, suggesting 483 

genetic differences between populations, with some signs of local adaptation. At the same time, 484 

the plants also show a high degree of phenotypic plasticity and populations from different 485 

climates also differ markedly in their degree of plasticity. Such combined genetic and plastic 486 

responses to climate seem to be a common pattern. Indeed, the review by Franks, Weber & 487 

Aitken (2014) conclude that all studies that explicitly study both of these processes find both to 488 

be important. In line with our study, this review also demonstrates that the importance of 489 

plasticity vs. genetic differentiation strongly varies among traits. Our results, however, add 490 

unique insights into the specific mechanisms behind the differentiation by demonstrating that 491 

both temperature and moisture of cultivation and of origin affect plant performance, and that 492 

these effects strongly interact.  493 

 494 



Plasticity and genetic differentiation  495 

High plasticity in relation to temperature as well as moisture and high variation in 496 

plasticity between different traits is in line with a range of previous studies demonstrating that 497 

target conditions impact plant performance (e.g., Raabová, Münzbergová & Fischer 2011; Couso 498 

& Fernandez 2012; Černá & Münzbergová 2015; Lazaro-Nogal et al. 2015; Malyshev et al. 499 

2016). Specifically, target conditions explain most of the variation in the growth-related traits 500 

(plant height, number of ramets, aboveground and belowground biomass) in our study, although 501 

the plasticity of these traits strongly varies with origin. In contrast, the traits reflecting species 502 

ability to forage for resources (proportion of extravaginal ramets, rhizome biomass) are primarily 503 

explained by the environment of origin. Traits related to foraging are also found to drive 504 

community responses to climate change in a community-wide field study in the same study 505 

system (Guittar et al. 2016). Plasticity of the foraging-related traits is low and constant across 506 

origins. Our results thus suggest that size is highly plastic, and that the species has an ability to 507 

take advantage of suitable conditions through increased growth (number of ramets, plant height 508 

and biomass). In contrast, the foraging behaviour is a more fixed trait under changing climatic 509 

factors, which nevertheless varies between populations. The fact that the foraging traits do not 510 

vary may suggest presence of strong stabilizing selection working on these traits (Pelabon et al. 511 

2010). These traits therefore seem to be the primary drivers of a species’ ability to respond to 512 

climate (see also Guittar et al. 2016). However, Herben et al. (2001) and Skálová (2010) 513 

demonstrated that the proportion of extravaginal ramets is highly plastic in Festuca rubra in 514 

relation to neighbour density and light availability.  Plasticity in foraging traits could thus still 515 

occur in our system, and even vary with climate, as the changing climate is expected to be linked 516 

to increased competition and reduced light availability under natural conditions (Olsen et al. 517 

2016).  518 

The interaction between origin and target climate always explains the lowest proportion 519 

of the variation in our models, suggesting relatively low genetic differentiation in plasticity 520 

between environments (sensu Pigliucci 2001). This is in line with other studies testing 521 

interactions between genotype (represented by origin in our study) and environment (represented 522 

by target in our study, e.g., Gugger et al. 2015).  523 

In spite of the limited magnitude of the interaction between origin and target climate 524 

impacts, the degree of trait plasticity described by the plasticity index (expressing the 525 



proportional change of a trait across different environments) is affected by conditions of origin, 526 

suggesting that phenotypic plasticity itself is a trait under selection (Thompson 1991) and that 527 

selection can change the degree of plasticity depending on the conditions (e.g., Emery, 528 

Chinnappa & Chmielewski 1994; Springate et al. 2011; Gugger et al. 2015). Specifically, plants 529 

coming from drier and colder environments are most plastic in growth-related traits (mainly in 530 

production of aboveground and belowground biomass). The link between dry conditions and 531 

plasticity is in line with previous studies demonstrating that drought is a key factor exerting 532 

selection on trait plasticity (Couso & Fernandez 2012, Lazaro-Nogal et al. 2015). While those 533 

two studies come from much drier environments and suggest that the plasticity may be caused by 534 

high variation in water availability, our results suggest that greater plasticity can also be found in 535 

plants from mesic conditions compared to sites which are very wet.  536 

The higher plasticity in growth-related traits in plants from colder climates may reflect 537 

that plants from cold environments need to be able to make use of short ‘windows of opportunity’ 538 

when favourable conditions occur in the harsh alpine environment to rapidly increase their 539 

growth. This pattern contrasts with expectations of previous studies, predicting and, in some 540 

cases, confirming that plants from extreme environments at higher elevations tend to be less 541 

plastic (e.g., Emery, Chinnappa & Chmielewski 1994; Eranen & Kozlov 2009; Frei, Ghazoul & 542 

Pluess 2014). All these studies only worked along elevational gradients, and did not explicitly 543 

test the effect of different climatic variables. We are not aware of any previous study that 544 

explicitly isolated and compared plasticity of plants across different temperatures while 545 

controlling for precipitation differences and vice versa. While Lemke et al. (2015) attempted to 546 

separate effects of temperature and precipitation along a wide transect across Europe and 547 

suggested a contrary pattern, i.e. higher phenotypic plasticity under warm and wet conditions, 548 

their study did not separate phenotypic plasticity from genetic differentiation. Our study is thus 549 

the first study demonstrating higher growth plasticity of plants from colder conditions. More 550 

studies using other species and systems using controlled designs similar to ours are now needed 551 

to confirm the generality of our conclusions.  552 

In addition to high plasticity, this study demonstrates that both temperature and moisture of 553 

origin play an important role in plant performance, with plants from warmer and drier sites 554 

growing larger, indicating genetic differentiation between populations. Reduced plant size in 555 

plants from colder conditions is in line with studies showing similar patterns from localities at 556 



higher elevations or latitudes (e.g., Nunez-Farfan & Schlichting 2001; Kollmann & Banuelos 557 

2004; Byars, Papst & Hoffmann 2007; Gonzalo-Turpin & Hazard 2009; Monty & Mahy 2009; 558 

Fischer et al. 2011; Scheepens & Stocklin 2013; Dostálek et al. 2016). In addition, Guittar et al. 559 

(2016) indicate that plants from warmer sites tend to be larger in a community-wide study and 560 

Meineri et al. (2014) show an increased size at flowering for Veronica officinalis, both working 561 

in the same model system as us.  562 

Decreased plant stature is usually expected to be maladaptive (van Kleunen & Fischer 563 

2005). We, however, suggest that reduced stature of plants in extreme conditions at high 564 

elevation may in fact be seen as an adaption allowing plants to withstand the extreme weather 565 

conditions, such as low temperature, high snow cover and shorter growing season (Kollmann & 566 

Banuelos 2004). It may also be an adaptation to higher wind speed and higher light exposure as 567 

these might be more important stress factors at higher elevations than temperature (McIntire, 568 

Piper & Fajardo 2016). In addition, increased plant size might be viewed as a result of selection 569 

pressure for increased ability to compete for light in a warmer climate while there is no need to 570 

invest excessively in aboveground biomass in a colder climate with much lower competition 571 

(Olsen et al. 2016). While we attempted to select our sites to be as similar as possible, differences 572 

in these factors cannot be fully excluded and have to be considered as an alternative explanation 573 

for the effect of temperature of origin on plant size. In general, our results are in line with 574 

previous studies suggesting the importance of climate for performance of various rare as well as 575 

widespread species (e.g., Fournier-Level et al. 2011; Bennington et al. 2012; Kim & Donohue 576 

2013; Mendola et al. 2015; Malyshev et al. 2016) and reviews of older studies in Hereford (2009) 577 

and Alberto et al. (2013).  578 

The effect of climate of origin might suggest that the plants are locally adapted. Despite our 579 

data showing a significant effect of local vs. foreign environment for a range of traits, the 580 

indication of local adaptation in our data is only convincing for number of ramets. This is due to 581 

strong interactions between foreign vs. local contrast for moisture and temperature and also the 582 

interaction of the foreign vs. local contrast with population origin. This result contrasts with 583 

conclusions of previous studies suggesting that local adaptation to climate is one of the key 584 

factors limiting species ability to cope with climate variation and thus to adapt to changing 585 

climates even for widespread species with apparently wide climatic niches (e.g., De Frenne et al. 586 

2011; Aitken & Whitlock 2013; Mendola et al. 2015).  587 



The contrasting results might be caused by the numerous interactions described above and 588 

the fact that we study adaptation to two different factors. This makes our results very complex. 589 

The absence of a clear indication of local adaption in the majority of the traits we study may be 590 

attributed also to the lack of a clear link between the traits and life-time fitness. While it is clear 591 

that having data on life-time seed production would indeed be better (see e.g., Volis et al. 2015), 592 

our species is a long-lived clonal species and measuring life-time fitness is definitely not 593 

straightforward. It has been estimated that a single genet of Festuca rubra can live for several 594 

hundred years (Harberd 1961; de Witte & Stocklin 2010). In addition, our experimental plants 595 

flowered very rarely and early flowering in long-lived perennials may not be an indication of 596 

high fitness, but a response to stress (Ahmad & Prasad 2012). The trait showing local adaptation 597 

most clearly—the number of ramets—is a trait that might be most closely linked to fitness in the 598 

clonal species (note that number of ramets is a growth-related trait, while proportion of 599 

extravaginal ramets is a foraging-related trait, so these two traits have very different biological 600 

meaning).  601 

Previous studies specifically exploring local adaptation of species (sensu Kawecki & Ebert 602 

2004) in relation to climate mainly assessed adaptation to temperature (Williams & Black 1993; 603 

Mimura & Aitken 2010; De Frenne et al. 2011; Souther, Lechowicz & McGraw 2012) and 604 

demonstrate that temperature is an important factor driving local adaptation of species. For 605 

moisture, Gimenez-Benavides, Escudero & Iriondo (2007) demonstrate that soil moisture may 606 

also be an important factor affecting species adaptation and Garcia-Fernandez et al. (2013) 607 

confirm that the ability to cope with drought is a key factor driving performance of their model 608 

species. The only study comparing the effects of precipitation of origin to the effect of 609 

temperature of origin on plant performance concludes that elevation and temperature of origin, 610 

but not precipitation of origin, affect species performance (Scheepens & Stocklin 2013). 611 

Compared to our system, their precipitation gradient is much shorter and precipitation partly 612 

correlated with elevation and temperature (Scheepens & Stocklin 2013). In contrast, precipitation 613 

of origin, and, importantly, also its predictability, has been shown to be an important determinant 614 

of performance of species coming from semi-arid environments, with plants from wetter sites 615 

being larger (Couso & Fernandez 2012; Lazaro-Nogal et al. 2015). In our system, there is an 616 

opposite trend with plants from wetter climates tending to be smaller, likely due to the negative 617 

effect of high snow cover resulting in shorter growing seasons at the wetter sites.  618 



Interestingly, there is a strong interaction between precipitation and temperature in our 619 

system, such that plants originating from cold and wet sites were the smallest. This is likely due 620 

to persistent snow cover at these locations and linked to the strongly reduced growing-season 621 

length. While a range of previous studies have demonstrated the effect of length of the growing 622 

season on plant size (e.g., Natali, Schuur & Rubin 2012; Liu et al. 2016), most of the patterns 623 

previously reported are just a matter of plastic response and not linked to genetic differences 624 

between the genotypes. The different genotypes of F. rubra are thus clearly adapted to their local 625 

conditions and any shift in the environment may at least partly restrict their growth. Few previous 626 

studies have simultaneously explored adaptation to moisture and temperature. One of these 627 

studies, Allan & Pannell (2009), conclude that moisture but not temperature plays a role for plant 628 

performance. In contrast, Andalo, Beaulieu & Bousquet (2005) demonstrate that adaptation to 629 

temperature but not to moisture is important for performance of white spruce. Neither of these, 630 

however, explicitly study interactions between the two factors. Thus our study is unique in 631 

demonstrating that temperature and moisture may interact to determine plant adaptations and 632 

suggest that both of these factors need to be studied simultaneously when attempting to 633 

understand the consequences of climate change.  634 

 635 

Effects of changing climate  636 

The general climatic prediction for Norway suggests increases in both precipitation and 637 

temperature over the next century (Hanssen-Bauer et al. 2005). The expected change in mean 638 

annual temperature ranges from 1.5°C to 2.2°C, with the change being stronger in winter and 639 

spring than in summer. In addition, precipitation is expected to increase by about 18%, with the 640 

change being stronger in winter than in summer (Hanssen-Bauer et al. 2005). We find that plant 641 

performance is generally higher under warmer and wetter conditions, suggesting that our model 642 

species is likely able to take advantage of climate change. Increased performance of plants 643 

exposed to warmer and wetter climates suggests that even though the plants show certain levels 644 

of genetic differentiation and local adaption, they will still be able to profit from more favourable 645 

growth conditions under future climate change in the region. This is in line with our finding that 646 

plants from the environments most endangered by climate change, i.e. the coldest and driest sites, 647 

are the most plastic.  648 



As the species is dominant in the studied systems, it may be expected that it will increase its 649 

dominance in the sites in the future, leading to a potential loss in subordinate species and thus a 650 

reduction in the diversity of the plant communities (Olsen et al. 2016). Other scenarios, such as 651 

its suppression due to even higher profit of other native or invasive plant species or increased 652 

negative interactions with other trophic levels, are, however, also possible (e.g., Plowman & 653 

Richards 1997; Robinson, Ryan & Newman 2012). Importantly, the results demonstrate that the 654 

change in temperature interacts with the change in moisture, suggesting that these two factors 655 

should be studied in combination.  656 

Most previous studies looking at the interacting effect of changed moisture and temperature 657 

are field climate-change experiments that also modified the level of CO2. While several of these 658 

studies demonstrate the interactive effects of moisture and temperature on various aspects of soils 659 

(e.g., Wan et al. 2007; Larsen et al. 2011; Selsted et al. 2012), the only study that investigates 660 

plant biomass and plant community composition concludes that the effect of moisture and 661 

temperature are largely additive (Kardol et al. 2010). Our study is thus the first to demonstrate a 662 

strong interaction between changes in temperature and changes in precipitation on species 663 

performance in response to changing climate. It suggests that future studies aiming to understand 664 

species responses to changing climate need to consider carefully the specific changes expected 665 

and attempt to understand the effect of all the potentially changing factors, separately as well as 666 

in combination.  667 

 668 

Conclusions 669 

A key result of our study is that both temperature and moisture of cultivation and of origin 670 

affect plant performance, and that these effects strongly interact. This allows us to make 671 

predictions about the species’ response to future climate change. Specifically, our results imply 672 

that our target species, Festuca rubra, will profit from warming provided the climate gets wetter 673 

at the same time, while the species will not show any significant response to climate warming 674 

under simultaneous climatic drying. As the plants have the ability to compensate for increased 675 

drought by investing more in belowground structures independent of temperature, they are able to 676 

perform equally well under drought as under warm and wet conditions. Cold and wet conditions 677 

thus seem to be the most stressful for this species.  678 



Species response to climate change necessarily also depends on response of the remaining 679 

species in the community. F. rubra tends to be more abundant in lower elevations as long as the 680 

productivity of the stands is not too high. We thus expect that climate change in the nutrient poor 681 

alpine environment, as was studied here, will lead to increased dominance of the species. This 682 

general prediction is, however, constrained by the fact species’ response to climate change is 683 

strongly modified by the plasticity of plants from different origins, with plants from the extreme 684 

cold and dry conditions being the most plastic. This may allow the plants from cold and dry 685 

conditions, i.e. from the environments most endangered by climate change, to profit from the 686 

future climate change more than plants from the other environments. In contrast, the specific 687 

genotypes from cold and wet environments are likely to be lost in the course of climate change. 688 

The response of the species as a whole, commonly predicted by species distribution models, may 689 

thus be overly optimistic in some parts of the range and too pessimistic in others. Global response 690 

of the species will thus also crucially depend on the specific structure of the landscape and the 691 

specific genotypes available to occupy the novel environments in the landscape. Present day 692 

species distribution can thus not be easily used to predict how the specific populations and thus 693 

the species as a whole will behave under climate change.  694 
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Table 1. The specific regime settings in the growth chambers providing information on minimum 713 

(min), maximum (max) and average (av.) temperature in the growth chamber each day. The 714 

regimes mimic the course of temperatures at the localities during the day as well as over the 715 

course of the growing season.    716 

  Cold regime Warm regime  
Time 
(day) 

Min Max Av Min Max 
 

Av 

1-4 5°C 15°C 9.8°C 5°C 16°C  10.1°C 
5-25 3°C 12.5°C 7.5°C 3°C 16°C  9.2°C 
26-46 3°C 12.5°C 7.5°C 3°C 18.5°C  10.2°C 
47-67 3°C 12.5°C 7.5°C 3°C 24.3°C  12.5°C 
68-88 3°C 14.5°C 8.4°C 3.4°C 25°C  12.9°C 
89-176 3°C 14.7°C 8.5°C 5°C 23.8°C  14.8°C 

 717 

 718 

 719 



Table 2. The effect of original (O) and target (T) temperature (temp) and moisture (mois) and their two-way interactions on plant 720 

performance in the growth chambers. Higher-order interactions are shown in Table S6. Plant size at the beginning of the 721 

experiment was used as a covariate and genotype as a random factor. Df Error = 1078. Significant values (p ≤ 0.05) are in bold. 722 

Results marked with * are significant after correcting for multiple testing. Dev. indicates deviance explained by the given 723 

variable.  724 

 725 

  Plant height Ramet no. Prop. extravag. Aboveg. b. Belowg. b. Below : above Rhizome b. 

  dev. p dev. p dev. p dev. p dev. p dev. p dev. p 

Ttemp 541.24 <0.001* 21.70 <0.001* 2.99 0.083 63.03 <0.001* 41.87 <0.001* 172.29 <0.001* 0.24 0.62 
Tmois 187.10 <0.001* 37.62 <0.001* 132.52 <0.001* 17.47 <0.001* 344.30 <0.001* 196.28 <0.001* 298.91 <0.001* 

Otemp 9.03 0.003* 2.45 0.118 0.17 0.678 7.97 0.005* 12.09 <0.001* 0.03 0.86 0.01 0.923 
Omois 2.32 0.127 2.13 0.144 3.39 0.066 8.12 0.004* 11.08 <0.001* 1.85 0.17 1.10 0.295 
Otemp:Omois 8.20 0.004* 1.39 0.238 244.52 <0.001* 5.36 0.02 3.36 0.07 2.16 0.142 10.93 <0.001* 

Otemp:Ttemp 1.71 0.196 2.86 0.09 3.03 0.082 0.25 0.677 0.36 0.548 1.21 0.27 0.01 0.927 
Otemp:Tmois 4.61 0.032 0.89 0.346 5.78 0.016 1.68 0.196 0.20 0.655 0.05 0.824 1.68 0.195 
Omois:Ttemp 7.79 0.005* 0.11 0.739 2.23 0.136 1.75 0.185 1.63 0.202 1.14 0.285 0.02 0.891 
Omois:Tmois 3.00 0.08 0.73 0.392 27.30 <0.001* 0.07 0.79 0.14 0.711 0.28 0.596 1.65 0.201 

Ttemp:Tmois 206.62 <0.001* 0.21 0.65 119.59 <0.001* 44.33 <0.001* 116.81 <0.001* 2.35 0.125 0.70 0.404 

Prop. extravag. = Proportion of extravaginal ramets; Aboveg. b. = aboveground biomass; Belowg. b. = belowground biomass 726 

 727 



Table 3. The effect of temperature (Otemp) and moisture (Omois) of origin on plasticity index 728 

based on the single traits. Most of the tests were done using linear regressions and the reported 729 

values are F-values. The tests for proportion of extravaginal ramets were done using GLM 730 

assuming a binomial distribution of the dependent variable and the reported values represent 731 

explained deviance. Df Error = 269. Significant values (p ≤ 0.05) are in bold. Results marked 732 

with * are significant after correcting for multiple testing. 733 

 734 

Response:   
Plant 
height 

Ramet 
no. 

Prop. 
extravag. 

Aboveg. 
b. 

Belowg. 
b. 

Below : 
above 

Rhizome 
biomass 

Otemp F/Dev. 9.42 0.23 21.98 1.20 4.48 0.41 7.76 
p 0.002* 0.634 0.093 0.274 0.035 0.522 0.981 

Omois F/Dev. 5.70 5.38 22.15 8.26 7.26 1.58 7.74 
p 0.018 0.021 0.844 0.004* 0.008* 0.210 0.076 

Otemp. × 
Omois. 

F/Dev. 0.61 0.07 21.82 1.62 0.20 1.77 7.73 
p 0.437 0.799 0.110 0.204 0.656 0.185 0.279 

Prop. extravag. = Proportion of extravaginal ramets; Aboveg. b. = aboveground biomass; 735 

Belowg. b. = belowground biomass 736 

 737 

 738 

  739 



Table 4. The effect of difference in temperature and moisture between localities of origin and 740 

target conditions and their interaction on plant performance. Significant values (p ≤ 0.05) are in 741 

bold. Results marked with * are significant after correcting for multiple testing. Df Error = 1094.  742 

 743 

    
Plant 
height 

Ramet 
no. 

Prop. 
extravag. 

Aboveg. 
b. 

Belowg. 
b. 

Below : 
above 

Rhizome 
biomass 

Diff. temp 
dev. 209.04 4.86 5.62 12.79 48.07 87.97 0.01 
p <0.001* 0.028 0.018 <0.001* <0.001* <0.001* 0.944 

Diff. mois 
dev. 54.18 29.52 6.91 1.07 300.22 83.66 164.73 

p <0.001* <0.001* 0.009* 0.302 <0.001* <0.001* <0.001* 

Diff. temp × 
diff. mois 

dev. 66.54 0.71 0.26 13.88 21.44 1.31 7.02 

p <0.001* 0.398 0.61 <0.001* <0.001* 0.253 0.008* 

Prop. extravag. = Proportion of extravaginal ramets; Aboveg. b. = aboveground biomass; 744 

Belowg. b. = belowground biomass 745 

 746 
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