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Abstract 
The packaging of DNA into nucleosomes is a fundamentally conserved property of 

the eukaryotic nucleus which is evident in the conservation of histone sequences. 

Nevertheless, it is now clear that histone sequence variants have diversified in many 

species to assume crucial roles in the regulation of gene expression, DNA repair, 

chromosome segregation and other processes. While considerable data exist on 

coding sequences of histones and some selected histone variants in a wide variety of 

organisms, the information available on total histone gene complements is much 

more limited. Oikopleura dioica (Od) is a dioecious marine urochordate that occupies 

a key phylogenetic position near the invertebrate-vertebrate transition with the 

smallest genome ever found in a chordate (70 Mb). Its short life cycle is characterized 

by a developmental switch between mitotic and endocycling cells, making O. dioica 

an attractive model to study the spatial and temporal use of histone variants and 

posttranslational histone modifications (PTMs) throughout development and in 

different cell cycle types. We have characterized the complete histone gene 

complement and the developmental expression of histone genes present in the first 

assembly of the O. dioica draft genome and identified the major Od PTMs by mass-

spectrometric analysis. Furthermore, we analyzed the dynamics and distribution of 

phosphorylated H3 variants during mitosis and meiosis of O. dioica and the 

deposition of the centromeric variant OdCenH3 in mitotic and endocycling cells with 

respect to centromeric PTMs. The Od histone gene complement displays several 

features not known from other chordates, including male-specific variants in all of the 

core histone families, N-terminal H2A.Z splice variants, and a diverse array of H2A 

variants but absence of the near universal variant H2AX. The results here suggest 

significant plasticity in histone gene organization, the variation within histone 

families and the chromosomal distribution of mitotic PTMs within the chordate 

lineage. This further supports the view that histone gene complements may also 

evolve adaptively to the specific life history traits, cell cycle regulation and genome 

architecture of organisms. 
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1. Introduction 

The term “gene” has engaged scientists and philosophers of the past and current 

century. Genes seem to be the biological legacy we inherit from our parents, a 

blueprint that determines the identity of each organism. Ten years after the 

completion of the draft sequence of the human genome, it has become evident that 

the DNA sequence of chromosomes does not completely reflect the genetic 

complexity of an organism. Different cell types within one organism all contain the 

same DNA, but it is the different store of information for the initiation of gene 

activity that determines their respective differentiation pathways. To preserve this 

identity, the pattern of gene expression must be maintained and inherited throughout 

generations of cells. The mechanisms that control gene activity without changing the 

underlying DNA sequence are generally referred to as “epigenetic” gene regulations.  

Cellular DNA of eukaryotes is not “naked” but resides in the cell nucleus in a 

“chromatinized” form, packed around small histone proteins. Histones aid to compact 

the large amounts of DNA into chromatin fibers and eventually into chromosomes 

that fit into the nucleus. In addition to its packing function, chromatin provides an 

important mechanism that controls DNA access. Nucleosomes are the fundamental 

units of chromatin; octameric histone complexes consisting of four different types of 

core histone proteins (H2A, H2B, H3 and H4) and the DNA packaged around them. 

This structure is stabilized by a fifth type of histone, the linker histone H1 (Fig. 1). 

While packaging into chromatin is necessary for efficient and accurate segregation of 

daughter cells during each cell cycle, access to DNA must also be allowed in order 

for transcription, replication, repair and recombination to take place. Thus, alterations 

of the nucleosome structure and the chromatin fiber influence these processes by 

making DNA more or less accessible to nuclear factors. Chromatin based inheritance 

participates during development when genome information must be used selectively 

to shape a highly complex organism. One mechanism to “remodel” chromatin is via 

histone alterations, generated through sequence variants or via the chemical 

modification of histones. Histone variants incorporated into the nucleosome can 

confer specific properties to the chromatin fiber that determine a more or less 
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accessible structure to the DNA interacting factors. Furthermore, the activity of 

factors involved in nuclear processes can be modulated through their interaction with 

covalently modified histone tails that protrude from the nucleosome. Certain histone 

modifications signal gene activation while others serve as a signal for the inactivation 

of genes. Interestingly, just like some histone variants, many histone modifications 

are also evolutionarily conserved across species, suggesting organisms share the 

fundamental mechanisms of gene regulation through chromatin dynamics. 
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Figure 1 Chromatin structure and levels of organization. The double 
helix of DNA is wrapped around the nucleosome core consisting of eight 
histone proteins [(H3-H4)2 (H2A-H2B)2)]. With the binding of the linker 
histone H1, this results in a “beads-on-a-string” structure of 11 nm which 
condenses further into a helical 30 nm fiber. Association with the nuclear 
scaffold will further package the chromatin into loops and a structure of 
300-700 nm. During the metaphase of the cell cycle, chromatin strands 
become even more condensed and form metaphase chromosomes, leading to 
~500 fold compaction of the DNA. Modified from (Pray, 2008). 

- 3 - 
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1.1. Packaging DNA into the nucleus – basic 
chromatin elements 

All eukaryotic organisms face the problem that they must compact long DNA 

molecules more than 10 000 fold into a small nucleus, on the order of 10 μm in size. 

The packaging of DNA into chromatin and chromosomes is a solution that is 

conserved throughout the animal and plant kingdoms. Likewise, histones are some of 

the most conserved proteins known with some members of different species being 

virtually identical in amino acid sequence.  

1.1.1. The Histones 

Histones were first purified by Albrecht Kossel from bird erythrocytes and sperm in 

1884 (Turner, 2001). As they were further characterized during the last century, five 

histone families were distinguished which are now universally designated H1, H2A, 

H2B, H3 and H4. Histones are small and highly positively charged proteins spanning 

a molecular weight range of 10-32 kDa. High content of positive lysine and arginine 

residues make histones excellent DNA binding proteins and contribute to their tight 

interaction with negatively charged DNA (Turner, 2001).  

Among the five histone families, H2A, H2B, H3 and H4 are the core histones, 

characterized by a structural domain known as the “histone fold”. This domain 

comprises a sequence of three alpha helices, one long and two short, with two non-

helical loops separating them (Arents et al., 1991). The histone fold domains are 

structurally important motifs for nucleosome formation. Through the histone fold, 

core histones interact among themselves and with the nucleosomal DNA (Fig. 2). 

Histone fold domains further confer interactions with other nuclear factors and 

nucleosome-nucleosome contacts which explains their extreme degree of amino acid 

sequence conservation. In contrast to the histone fold domain, the N-terminal and C-

terminal tails of histones are more variable in sequence and lengths, depending on the 

type of histone. They protrude from the nucleosome, are highly flexible and also 

contain sites for different histone posttranslational modifications. The four H3 and 

H2B N-terminal tails exit through the minor groove of the DNA superhelix and 
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contribute to chromatin compaction by attaching to the entering and exiting linker 

DNA (Hill and Thomas, 1990; Kan et al., 2007; Luger and Richmond, 1998). Histone 

H2A is unique among the core histones in having both an N-and a C-terminal basic 

tail (Fig. 2). The H2A C-terminal tail binds the DNA around the dyad axis 

(Usachenko et al., 1994) whereas the N-terminal tails of H2A contact DNA towards 

the periphery of the nucleosome (Pruss and Wolffe, 1993),. Furthermore, histone tails 

play important roles in the assembly of higher order structures and individual histone 

tails affect the process of chromosome assembly with different efficiencies (de la 

Barre et al., 2000; Dorigo et al., 2003; Hansen et al., 1998). Among all histone tails, 

H4 tails mediate the most internucleosomal interactions, followed by the H3, H2A, 

and H2B tails in decreasing order (Arya and Schlick, 2006). Nevertheless, the role of 

histone tails remains somewhat enigmatic, given that they do not yield clear electron 

density maps. 

Linker histones are another class of histones that are important for further compaction 

into the 30 nm fiber and higher order chromatin structures. Structurally, metazoan 

H1s are divided into three domains: A short, flexible N-terminal, a globular domain 

containing a winged-helix fold and a long, extremely lysine rich C-terminal tail 

(Allan et al., 1980).  

1.1.2. The first level of folding – nucleosome structure  

Octameric nucleosomes form the fundamental unit of chromatin with essentially the 

same basic structure across different organisms. They exist in all eukaryotes, except 

dinoflagellates that appear to have lost their bulk histones (Hackett et al., 2005). In 

the core particle, 147 bp of DNA are wrapped in 1.7 left-handed superhelical turns 

around the histone octamer consisting of 2 H2A-H2B dimers flanking a H3-H4 

tetramer (Luger et al., 1997).  

A structurally important motif for the formation of the (H3-H4)2 (H2A-H2B)2 

octamer are the histone fold domains. They interlock with each other through 

hydrophobic residues and give rise to another important structure, the “histone 

handshake” (Arents et al., 1991) (Fig. 2). Assembly of the canonical eukaryotic 
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nucleosome is thought to begin with an (H3–H4)2 tetramer, held together by a strong 

4-helix bundle between the two H3 molecules, consisting of salt bridges and 

hydrogen bonds (Luger et al., 1997) (Fig. 2). The addition of two H2A–H2B dimers 

forms an octamer with a left-handed helical ramp that subsequently locks the DNA 

into a negatively supercoiled configuration. The H2A–H2B dimers also interact with 

the (H3–H4)2 tetramer through a weak 4-helix bundle between the �2 and �3 helices 

of H4 and H2B (Fig.2). These contacts involve the docking domain of H2A which 

interacts with the C-terminal domain in H4 and parts of H3 on one side and a four-

helix bundle between the histone fold regions of H4 and H2B. However, the 

interactions linking H2A-H2B dimers to the (H3-H4)2 tetramer cannot persist in the 

absence of DNA, and the histone octamer is not stable under physiological ionic 

conditions 

1.1.3. The chromatin fiber and higher order folding 

The next step in the packaging of DNA is the binding of the linker histones to the 

linker DNA between the nucleosomes that will make up the “chromatosome” (Fig. 1). 

The globular domain of the linker histone binds at the entry-exit site of the 

nucleosome particle, whereas specific residues of the positively charged C-terminal 

portion bind both linker DNAs, bringing them together into the so-called “stem” 

structure (Syed et al., 2010). This interaction further tightens the association of the 

DNA and the nucleosome and produces a more defined angle of DNA entry and exit 

with folding to a “beads-on-a-string” structure of 11 nm observable by electron 

microscopy (Thoma et al., 1979). A current view is that these polynucleosomal arrays 

are further stabilized by internucleosomal histone interactions and the association of 

additional proteins including linker H1 histones to condense into a helical 30 nm 

fiber, which would result in a 40-fold compaction of the linear DNA. The two main 

models proposed for the 30nm structure are the solenoid (one-start) and the zig-zag 

(two start) model that depend on the length of the linker DNA. However, the 30 nm 

fiber has not been crystallized and its very existence is still debated. Alternatively it 

has been proposed that the nucleosome fiber exists in a disordered state that 

undergoes dynamic movement to control the accessibility of DNA (Maeshima et al.,  
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Figure 2 Structure of the nucleosome core particle and histone 
modifications. A Pymol generated ribbon diagram of an X-ray crystal 
structure of the Xenopus laevis NCP (PDB: 1kx) showing the DNA helix 
(grey) around the histone core and histone-histone interactions within the 
core. For easier view, only one of the two H2A (green) and H2B molecules 
are shown. The histone folds of H2A and H2B and H3 (blue) and H4 
(yellow) interact with each other through the “histone handshake motif” 
(indicated with arrows). The two H3-H4 dimers interact through a 4-helix 
bundle (asterisks) formed only by the H3 molecules to form the H3-H4 
tetramer and each pair of H2A-H2B molecules interacts with the tetramer 
through a 4-helix bundle between H2B and H4. The major methylation-, 
acetylation, ubiquitinylation and phosphorylation marks found on the N-
terminal tail and histone core of H3, the N-terminal tail of H4 and H2B and 
the N- and C-terminal tail of H2A are shown as indicated in the legend. 

- 7 - 
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2010). To achieve additional packaging of the chromatin fiber into chromosomes, a 

current model proposes that the chromatin fiber form loops of 300-700 nm 

dimensions held together by a proteinaceous structure referred to as the nuclear 

scaffold (Cremer et al., 1993; Kantidze and Razin, 2009). 

1.2. Epigenetic information and histone 
modifications  

The term epigenetics, was originally derived from ‘epigenesis’ (Gr. epi, on top of; 

genesis, beginning), a general theory first expressed by Aristotle to describe the 

gradual changes during the development of animals [Aristotle’s ‘On the Generation 

of Animals’, cited in Jablonka and Lamb (Jablonka and Lamb, 2002)]. The meaning 

of the word has gradually narrowed and today epigenetics is generally accepted as 

‘‘the study of changes in gene function that are mitotically and/or meiotically 

heritable and that do not entail a change in DNA sequence.’’ (Russo et al. 1996). 

Epigenetic modifications considered crucial for regulating chromatin structure 

comprise histone variants, posttranslational modifications of histones, and covalent 

modifications of DNA bases.  

The predominant modification in mammalian DNA is methylation of cytosine in a 

CpG nucleotide context, converting cytosine to 5-methylcytosine by a DNA 

methyltransferase. Because the promoter regions of silenced genes possess 

significantly more methylated cytosines in comparison with actively transcribed 

genes, a current view is that DNA methylation causes gene inactivation. Methylation 

of cytosine may prevent the binding of specific transcription factors or attract 

mediators of chromatin remodeling, such as histone-modifying enzymes or other 

repressors of gene expression (Klose and Bird, 2006). 

1.2.1. Posttranslational modifications of histones and 
the histone code 

Histones are subject to a variety of posttranslational modifications (PTMs) that can 

alter gene expression and chromatin structure. Histone modifications can distinguish 
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large domains in heterochromatin and euchromatin, sometimes in conjunction with 

histone variants, and may have an ‘indexing’ function involved in large scale genome 

organization. According to the “histone code hypothesis”, single or combined marks 

on histones store and transmit information on the gene expression status through 

mitosis and subsequent cell generations (Strahl and Allis, 2000). Nevertheless, 

histone modifications can also directly influence replication, transcription and cell 

cycle regulation in a transient manner which does not contribute to cellular memory. 

Hence, more recently it was suggested to restrict the term “histone code” to PTM 

marks that exert a heritable and therefore epigenetic function (Turner, 2007). 

Residues of the N-termini of histones H3 and H4 and the amino and C-termini of 

histones H2A, H2B and H1, are particularly subject to a variety of PTMs (Fig. 2). 

Phosphorylation; acetylation and methylation have been studied extensively (Peterson 

and Laniel, 2004), while relatively little is known about ubiquitination; sumoylation; 

ADP ribosylation; glycosylation; biotinylation, carbonylation (Bartova et al., 2008; 

Bergmann, 2010; Fujiki et al., 2010; Garcia-Dominguez and Reyes, 2009; Hassan 

and Zempleni, 2008) and lysine butyrylation and propionylation (Chen et al., 2007). 

Here we focus on the first three types of PTMs. 

1.2.1.1. Histone acetylation 
Acetyltransferases catalyze the addition of acetyl groups to either the �- (side chain 

acetylation) or the �-amino group of specific lysines in histones and other proteins 

(Turner, 2001). Histone �-acetylation is normally associated with transcription and 

euchromatin. Acetylations of several lysine residues within the N-termini of H3 (K9, 

K14, K18, K23) and H4 (K5, K8, K12, K16) are hallmarks of transcription and 

localize to the promoters of active genes in yeast, Drosophila, human and mouse 

(Rando, 2007). Not surprising, histone acetylation is a highly dynamic modification 

and the removal of acetyl groups is catalyzed by deacetylases, some of which are 

transcriptional repressors (Taunton et al., 1996). The role of histone acetylation in 

transcriptional activation has been explained by two different but not mutually 

exclusive models. In the first, acetylation of core histone lysine residues directly 

inhibits chromatin condensation by neutralizing the positive charge of lysine residues 
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and thereby disrupting interaction with the negatively charged DNA backbone. 

Consequently, relaxation of chromatin makes the transcriptional site available to the 

transcription machinery (Choi and Howe, 2009). In the second model, covalently 

modified core histone amino termini serve as a signal for the binding of trans-acting 

factors. Effector proteins bind acetylated histones through specific bromodomain-

motifs and enhance the binding of the RNA polymerase complex and related factors. 

They may also recruit further structure remodeling or chemical modification activities 

(Ruthenburg et al., 2007). For instance, loss of deacetylases in yeast results in the 

transcription initiation of cryptic promoters, supporting the view that histone 

acetylation enhances access to DNA (Carrozza et al., 2005). Furthermore, studies on 

H4K16 acetylation suggest that histone acetylation may disrupt intranucleosomal 

interactions and regulate compaction of the 30 nm chromatin fiber (Shogren-Knaak et 

al., 2006).  

1.2.1.2. Histone methylation 
Histone methylation occurs on the nitrogens in arginine and lysine side chains 

through the activity of methyltransferases that catalyze the addition of a methyl group 

from S-adenosyl methionine (SAM). Arginine residues can be modified by one or 

two methyl groups in either a symmetric or asymmetric conformation whereas lysine 

residues can be mono-, di- or trimethylated. Arginine methylation has been associated 

with transcriptional activation whereas lysine methylation has been linked to both 

activation and repression. For instance, methylated H3K4, H3K36 and H3K79 are 

considered to be marks for transcriptionally potentiated chromatin structures while 

methylated H3K9, H3K27 and H4K20 mark silent chromatin (Peters and Schubeler, 

2005).  

Histone methylation and in particular trimethylation, was long regarded as 

irreversible because of the high thermodynamic stability of the N–CH3 bond. The 

recent identification of several demethylases showed that methylation can also be 

reversed without the exchange of bulk histones (Cloos et al., 2008). Although 

methylation of lysine and arginine residues does not influence the net charge of the 

affected residues, it increases the hydrophobicity and the steric bulk of the amino acid 
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side chain (Honda et al., 1975). Indeed, it was recently shown that trimethylation of 

H4 at lysine 20 enhanced the ability of nucleosomal arrays to fold and condense in 

vitro, demonstrating that histone methylation can indeed affect higher order 

chromatin structure directly (Lu et al., 2008). Nevertheless, it is now clear that 

histone lysine methylation also creates binding sites that can alter the local properties 

of chromatin for transcription. Methylated lysines recruit proteins through binding to 

small domains such as PhD fingers and chromodomains, whereas methylated 

arginines recruit tudordomains (Bannister et al., 2001; Boisvert et al., 2005; Shi et al., 

2007). H3 trimethylated at Lys 9 for example recruits HP1 (heterochromatin protein 

1) that binds H3K9me3 directly through its chromodomain. HP1 mediates silencing 

through the interaction with the H3K9-specific methyltranserase, which then in turn 

cooperates with histone deacetylaeses to establish long term transcriptional repression 

(Fischle et al., 2005).  

1.2.1.3. Histone phosphorylation 
In vivo, proteins are phosphorylated at the side chains of serine, threonine and, rarely, 

tyrosine, residues by substituting a phosphate for a hydroxyl group to give an O-

phosphate linkage. Phosphorylation is enacted by protein kinases using nucleotide 

triphosphates (ATP, GTP, cyclic AMP) as PO4 donors (Turner, 2001), and reversed 

by phosphatases. Phosphorylation plays important roles in a wide range of cellular 

processes such as enzyme activation and inhibition and protein degradation. In 

histones, posttranslational phosphorylation of linker H1 histones and histone H3 have 

been most extensively studied. Both types of histone phosphorylations are prevalent 

during mitosis.  

Phosphorylation is the most extensively studied modification of linker histones but its 

exact role in chromatin structure remains controversial. As it peaks during the G2 cell 

cycle phase and mitosis it seems to invoke condensation of chromatin. 

Contradictorily, it is believed to control chromatin decondensation and DNA 

replication during S-phase (Baatout and Derradji, 2006). Core histones H3 variants 

have conserved residues within their N-terminal tail, namely Thr3, Ser10, Thr11 and 

Ser28 which are phosphorylated in a wide range of organisms during mitosis. While 
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Ser10 and Ser28 phosphorylation (H3S10P and H3S28P) appear to have an additional 

role in the transcriptional activation of genes in interphase nuclei, the other residues 

have thus far only been described as a mitotic mark. However, across different 

species there seems to be neither a consistency in the spatial distributions of these 

phosphorylation marks nor in their mechanistic function. While in some organisms, 

specific H3 residues are phosphorylated at centromeres, the same phosphorylation 

signal is excluded from the centromeric site in others (Perez-Cadahia et al., 2009). 

Ser10 phosphorylation has been linked to chromosomes condensation in 

Tetrahymena (Wei et al., 1999) but it dispensable for it in yeast (Hsu et al., 2000). 

Possibly there is little functional conservation of the specific phosphorylated residues 

among different species. A recently proposed idea is that the connotation of a specific 

H3 phosphorylation mark may only become meaningful in combination with other 

histone modifications which would infer a lineage-specific “histone code” (Cerutti 

and Casas-Mollano, 2009). A prominent example of the interplay of H3S10P with 

other modifications is “cross talk” with the di- and trimethylation of H3K9. H3S10P 

has been shown to promote dissociation of H3K9me3-bound HP1 from chromosomes 

without an alteration in H3K9me3 levels as cells enter mitosis (Fischle et al., 2005; 

Hirota et al., 2005). The ejection of HP1 at these sites may allow the dynamic 

rearrangements of chromatin higher-order structure required for mitotic chromosome 

condensation.  

1.2.2. The writers and erasers of histone modification 
marks  

As mentioned above, histone modifying enzymes catalyze the addition or removal of 

an array of covalent modifications of histones. These modifications need to be set and 

erased in a dynamic fashion for efficient switching between gene expression stages 

and different chromatin structures. An overview of several histone modifying and de-

modifying enzymes and their modes of action is given in Fig. 3. A table of the 

modifying and demodifying enzymes identified in the genome of Oikopleura dioica, 

is provided in the appendix (appendix, table A1A and A1B).  
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Figure 3 Selection of modifying and demodifying enzymes acting on H3 
and H4. A selected panel of H3 and H4 modifying and demodifying 
enzymes is shown. Methyltransferases and demethylases (see enzyme keys) 
add and remove histone methylation marks on lysines and arginines (blue) 
repectively, while acetyltransferases and deacetylases add and remove 
acetylations from lysines (Siegel et al.). Kinases phosphorylate histones at 
serines, threonines and tyrosines (yellow) but not much is known about 
histone phosphatases, the enzymes responsible for histone 
dephosphorylation. Modified from (Bjerga, 2009). 

1.2.2.1. Acetyltransferases and deacetylates  
Lysine acetyltransferases (KATs) catalyze the addition of acetyl groups from the co-

substrate Ac-CoA (Lee et al., 2007) and are evolutionary conserved across the animal 

kingdom from yeast to human. The first KAT identified was the N-acetyltransferase 

Gcn5, cloned from yeast and Tetrahymena (Brownell et al., 1996; Kleff et al., 1995). 

- 13 - 
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Today, five families of acetyltransferases are known, the GCN5 class (GNATs), the 

CBP/p300-family , the MYST proteins, TAF1 family and the nuclear receptor co-

activator family (Marmorstein and Roth, 2001). Structurally, KAT proteins share a 

structurally conserved central core region for Ac-CoA cofactor binding despite a 

significant divergence in sequence between the different KAT families (Marmorstein 

and Trievel, 2009). Most KATs have broad substrate specificity and all families 

acetylate H3. While the GNAT family members act primarily on H3 and H4, 

CBP/p300 proteins are able to acetylate all other core histones. MYST enzymes such 

as Tip 60, MOF, HBO and MOZ are known to act on H3, H4 and H2A (Roth et al., 

2001).  

The “erasers” of acetylation marks are the Histone deacetylases (HDACs) which are 

divided into two superfamilies, the classical HDACs and the sirtuins (de Ruijter et al., 

2003). Remarkably, none of the deacetylases contain “reader domains” such as 

bromodomains, PHD finger, tudordomains or chromodomains and the sequence 

similarity among family members is very low. However, HDACs have been found in 

complexes with reader domain-containing proteins such as the nucleosome 

remodeling and deacetylase complex (NuRD) (Cunliffe, 2008).  

1.2.2.2. Methyltransferases and demethylases  
Methyltransferases catalyze the transfer of methyl groups from S-adenosyl 

methionine to lysines (KMT) or arginines (PRMT) in histones and exist in all 

eukaryotes studied to date. They are divided into eight distinct families: The TRX, 

EZ, SUV3-9, ASH1, SET8, SUV4-20, SMYD, RMT, SET7/9 and PRDM 

subfamilies. All family members contain a catalytic SET domain, which was first 

recognized as a conservative sequence in the three Drosophila genes, suppressor of 

position effect variegation (Suv39) (Tschiersch et al., 1994), the Polycomb-group 

chromatin regulator Enhancer of zeste (E(z)) (Jones and Gelbart, 1993) and the 

trithorax-group chromatin regulator trithorax (Trx) (Akasaka et al., 1996). The 

exception to the rule is the DOT1 family. Their members contain no SET domain and 

are structurally unrelated to SET-domain proteins (Dillon et al., 2005). The Dot1 

methyltransferase is an evolutionarily conserved protein that was originally identified 



1. Introduction 

- 15 - 

in S. cerevisiae as a disruptor of telomeric silencing (Singer et al., 1998). Dot1 

specifically methylates Lys79 in the globular region of H3 and has also been shown 

to play an important role in heterochromatin formation and the embryonic 

development of mammals (Jones et al., 2008). The remarkable substrate specificity of 

KMT proteins is probably achieved through the recognition of the histone residues 

flanking the methylated lysine residue (Park et al., 2002; Qian and Zhou, 2006). Two 

more substrate-specific methyltransferases are the KMT proteins Suv4-20 and 

SET8/PR-Set7 which both methylate the N-terminal tail of H4 at lysine 20 (H4K20). 

While in yeast a single enzyme Set9, mediates all stages of H4K20 methylation 

(Sanders et al., 2004) two enzymes, PR-Set7 and Suv4-20, exist in human that are 

responsible for monomethylation and di-or trimethylation of H4K20 respectively 

(H4K20me2/3) (Yang et al., 2008). The strict monomethylation product specificity of 

PR-Set7 is thought to result from the presence of a tyrosine residue in the active PR-

Set7 site which may hydrogen bond to the monomethyl-lysine product and inhibit 

further methylation (Collins et al., 2005; Couture et al., 2005). While H4K20 

methylation in general has been associated with heterochromatin, the subcellular 

localization of the three different H4K20 methylation stages and their genomic 

distribution differs, suggesting that they are functionally distinct (Yang et al., 2008). 

It is now clear that histone methylation is also reversible. The removal of methyl 

marks is catalyzed by demethylases which are grouped into three major families, the 

LSD1 family, the Jumonji C familiy (JMJC) (Mosammaparast and Shi, 2010) and the 

PAD familiy (Wang et al., 2004). Several lysine demethylases (KDMs) identified so 

far are also known to be substrate-specific including the two JMJC familiy members 

JHDM1 that demethylates H3K36 and JHDM1 that demethylates H3K9 (Tsukada et 

al., 2006; Yamane et al., 2006). 

1.2.2.3. Kinases and phosphatases regulate histone 
phosphorylation  

Protein kinases, the enzymes that catalyze the linkage of a phosphate group to the 

side chains of serine, threonine or tyrosine residues, belong to a very large and 

divergent family of enzymes, constituting approximately 2% of the human proteome 
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(Johnson and Hunter, 2005). Eukaryotic cells contain hundreds of different protein 

kinases that are organized into a complex network of signaling pathways to 

coordinate cellular activities such as cell cycle regulation, cell movement, 

transcription, apoptosis and DNA repair. The 518 kinases identified in human are 

divided into 18 major groups consisting of more than 90 subfamilies (Manning et al., 

2002). However, most protein kinases belong to a single superfamily containing a 

eukaryotic protein kinase (ePK) catalytic domain. 

Linker histone H1 phosphorylation is attributable to the action of growth-associated, 

cyclin dependant kinases (CDKs) that phosphorylate H1s in a cell cycle regulated 

fashion (Hale et al., 2006).  

The phosphoinositide 3-kinase related kinases (PIKKs) comprise a family of proteins 

that play central roles in stress-induced signaling pathways. Upon DNA damage, the 

PIKK kinases DNA-PK, ATM and Rad3 related (ATR) and ataxia–telangiectasia 

mutated (ATM) phosphorylate the histone variant H2AX to �H2AX, which is one of 

the earliest marks of DNA damage. DNA repair-related proteins subsequently 

congregate at the �H2AX foci during the repair process and �H2AX is an important 

element in proper damage response foci formation by enhancing the retention of 

repair factors after their initial recruitment (Celeste et al., 2003).  

The phosphorylation of the four characteristic phosphor-residues within the N-

terminal tail of H3, Thr3, Ser10, Thr11 and Ser28 is tightly regulated by site-specific 

kinases. Several studies have identified the members of the Aurora kinase family 

Aurora A and Aurora B as the enzymes responsible for the phosphorylation of Ser10 

and Ser28 during the mitotic phase of the cell cycle. While in vitro results from 

Xenopus suggest that Aurora A and Aurora B both phosphorylate Ser10 and Ser28 

(Murnion et al., 2001), data from human cells implicate Aurora B as a potential 

mitotic Ser10 and Ser28 kinase (Prigent and Dimitrov, 2003). Mammalian Aurora 

kinases are normally regulated in a cell cycle dependant manner with peak expression 

profile at the gap 2 (G2)-mitosis transition phase (Kimura et al., 1999). Interestingly, 

overexpression of Aurora kinases has been observed in many human cancer cell lines, 



1. Introduction 

- 17 - 

suggesting an important role for the Aurora enzymes in the regulation of cell 

proliferation. The protein kinase responsible for the H3 phosphorylation at Thr3 has 

only recently identified in human cells as the haploid germ cell specific nuclear 

protein kinase (haspin) (Dai et al., 2006). Haspin phosphorylates histone H3 at Thr3 

during mitosis, particularly at the inner centromeres and appears to play a role in 

chromatid cohesion (Higgins, 2010). In most organisms the kinase responsible for 

Thr3 phosphorylation has not been identified but genes encoding haspin homologs 

are present in all major eukaryotic phyla (Higgins, 2003). This suggests that this 

kinase may be involved in essential functions for eukaryotes. Mitotic H3 

phosphorylation of Thr11 is regulated by the death-associated protein-like (DAP) 

kinase although the role for this phosphorylation mark is not clear (Preuss et al., 

2003). Thr11 phosphorylation also occurs in plants but the responsible kinase still 

remains to be identified. 

After chromosome segregation all mitotic phosphorylation marks on H3 decrease and 

mitotic H3 kinase activity is reversed by specific phosphatases such as PP1, a type 1 

protein phosphatase (Hsu et al., 2000). In mammalian cells, PP1 dephosphorylates H3 

at Ser10 and Ser28, whereby the Ser28 residue seems more sensitive to PP1 activity 

(Goto et al., 2002). Aurora B is activated upon PP1 inhibition and human Aurora B 

kinase forms a complex with PP1 to regulate the spatiotemporal features of H3 

phosphorylation during mitosis (Sugiyama et al., 2002).  

1.3. Replicating epigenetic histone marks 

An increasing body of data has shown that histone modifications and some histone 

variants such as H2A.Z and CenH3 can serve as epigenetic memory marks (Bernad et 

al., 2009; Brickner et al., 2007). Nevertheless, a prerequisite for histone based 

information to serve an epigenetic function is the recycling of modified histones and 

histone variants, so they may serve as a blueprint for the newly synthesized histones 

through cell divisions. Consequently, one of the key questions in chromatin research 

is how histones are deposited and transmitted to the two daughter strands during 

DNA replication.  
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Evidence that the pre-existing nucleosomes ahead of the replication fork are 

disrupted and segregate to the daughter strands came from in vivo density and 

radiolabeling experiments revealing that “hybrid nucleosomes” exist on nascent DNA 

and are mainly constituted of an old (H3-H4)2 tetramer with one new and one old 

H2A-H2B dimer or a new H3-H4 tetramer with two old H2A-H2B dimers 

(Annunziato et al., 1982; Jackson and Chalkley, 1981a, b). The assembly of both 

parental and newly synthesized histones occurs without particular preference for 

either the leading or lagging DNA strand and occurs in a semi-conservative manner 

(Fig. 4) (Jackson, 1988; Sogo et al., 1986). Studies investigating the fate of new 

histones and the exchange of histone-GFP fusions in living cells showed that H2A-

H2B and H1 have a high exchange rate during replication, but the majority of H3 and 

H4 remain permanently bound (Kimura and Cook, 2001; Misteli et al., 2000). Due to 

the less dynamic behavior of H3-H4, the research of the past years has been focused 

on the role of H3-H4 as putative vehicles for histone marks. The recent discovery that 

the initial substrate for H3-H4 de novo assembly are H3-H4 dimers and not tetramers 

(Benson et al., 2006; Tagami et al., 2004) further spurred the idea that “mixed” (H3-

H4)2 tetramers consisting of new and old H3-H4 dimers could provide a mechanism 

to transfer information via H3 and H4 histones onto daughter strands. Recent 

evidence suggests the chaperone anti silencing function 1 (Asf1) may be involved in 

tetramer splitting and the management of parental histones during replication. 

Histones in the Asf1-H3/H4-MCM (Mini chromosome maintenance) helicase 

complex display a parental signature of posttranslational modifications, suggesting 

that the histones bound to Asf1 have been removed from the parental chromatin 

(Groth et al., 2007). The existence of mixed tetramers in vivo, however, has only very 

recently been confirmed in human cell lines (Xu et al., 2010). Here, a combined 

approach of SILAC (Stable Isotope Labeling with Amino acids in Cell culture)-

labeled and flag-tagged histones was employed. Histones were purified and 

subsequently analyzed by quantitative mass-spectrometry to distinguish old from new 

histones. Intriguingly, significant amounts of tetramers containing the variant H3.3 

were split during replication, while tetramers consisting of canonical H3.1 histones 

were maintained, suggesting that both types of parental histone segregation exist in 
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vivo. The results support the idea that the H3.1 modifications of large 

heterochromatic regions are maintained by copying them from the neighboring, pre-

existing nucleosome. Furthermore, it raises the interesting possibility that H3-H4 

tetramer splitting, if it occurs, may depend on the type of histone variant or the 

chromatin region.  

 

Figure 4 Model of the nucleosome disruption and restoration at the 
replication fork. The MCM helicase complex mediates unwinding of the 
DNA as part of the replication fork progression complex. Old H2A-H2B 
dimers are removed by the histone chaperone complex FACT, allowing 
binding of the chaperone Asf1 that triggers the disruption of the H3-H4 
tetramer. On nascent DNA, nucleosome assembly occurs in a stepwise 
fashion, with the addition of (H3-H4)2 by the chaperone CAF-1 via 
recruitment to PCNA and the addition of two H2A-H2B dimers by the 
chaperone NAP1. The question mark indicates that the semi-conservative 
distribution of parental and new histones may result in mixed (H3-H4)2 
containing one old and new H3-H4 dimer or either new or old (H3-H4)2. 
From (Groth, 2009). 

1.4. Histone variants 

Specific properties of histone proteins can alter underlying nucleosome dynamics. In 

addition to histone modifications, this includes variation in the amino acid sequence 
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of the conserved histone proteins. With the exception of histone H4, several sequence 

variants of each histone family have been reported for most organisms. These histone 

variants are able to replace the canonical histones, and alter the composition of 

individual nucleosomes, whereby the term “histone variant” usually refers to non-

allelic sequence variants. Histone variants can be classified according to their 

expression patterns as either replication dependent (RD or canonical histones) or 

replication independent (RI or replacement) variants that replace the major histones 

outside of S-phase. RD histone genes are intron-less and contain a stem-loop (Black 

et al.) structure within the 3`UTR of the (RD) histone mRNA instead of a 

polyadenylation signal (Marzluff and Duronio, 2002). In contrast, replacement 

variants are usually encoded by single orphan genes that contain introns. They are 

expressed at a constant level throughout the cell cycle and transcribed through 

polyadenylated mRNAs (Malik and Henikoff, 2003).  

1.4.1. Histone variant families 

1.4.1.1. Linker histone variants 
H1 variants form a complex family of related proteins with distinct species, tissue and 

developmental specificity. Multiple linker histone family members are expressed in 

animals and plants and up to 11 linker histone subtypes have been identified in 

human and mouse. Due to the heterogeneity of this histone family, different H1 

subtypes are usually classified by their mode of expression, i.e. as being S-phase 

dependant (H1.1-H1.5 in human) or replacement linker histones (H1x and H1.0 in 

human). H1x is ubiquitously expressed while H1.0 exists mainly in terminally 

differentiated cells (Happel and Doenecke, 2009). Additionally, vertebrates usually 

have germ cell-specific H1s, such as the testes-specific variants H1t, H1T2, Hils1 and 

the oocyte-specific H1Foo of human. Knock out studies suggest, that individual H1s 

might be partially redundant, at least in their ability to compact chromatin globally 

(Izzo et al., 2008). Nevertheless, H1 variants differ in their biophysical properties, 

their association with repressed or active chromatin and their ability to increase or 

decrease transcription when overexpressed. Beyond their function in gene regulation, 
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H1 variants may also be implicated in other biological processes such as DNA repair 

(Hashimoto et al., 2007).  

1.4.1.2. H3 variants 
Because of the strong 4-helix bundle between the two H3 molecules, H3 variants 

have a key structural role in organizing the nucleosome and are extremely conserved 

in their primary sequence. Several universal H3 variants have been identified in 

metazoans that exhibit distinct roles and modes of assembly into chromatin. The 

replication-dependent H3.1 and H3.2 differ by only a single amino acid change at 

position 96 where serine is replaced by cysteine in H3.1. H3.1 is mammalian-specific 

but the function of Cys96 in H3.1 is not known. It has been proposed that Cys96 may 

form intermolecular disulfide bonds and thereby facilitate the formation of 

heterochromatin (Hake and Allis, 2006). While H3.1 and H3.2 are incorporated 

through bulk chromatin assembly, the replacement variant H3.3 can undergo RD or 

RI assembly and deposition occurs primarily in the transcribed regions of 

euchromatin. Additionally, H3.3 has shown to contain marks associated with 

transcriptional activity (Johnson et al., 2004; McKittrick et al., 2004). Four, highly 

conserved amino acid changes distinguish H3.3 from H3.1/H3.2. Three of these 

substitutions lie within the alpha 2 helix and exclude H3.2 from RI deposition in 

Drosophila (Ahmad and Henikoff, 2002). Additionally, H3.3 contains a substitution 

of one Ala to Ser residue within the N-terminal tail at position 31. Ser31 has been 

shown to constitute a H3.3-specific phosphorylation mark in the mitosis and meiosis 

of mammals and Drosophila (Hake et al., 2005; Sakai et al., 2009).  

Ranging from yeast to mammals, all organisms additionally express a 

centromere-specific H3 variant, now commonly called CenH3, which is the least 

conserved H3 family member. CenH3 is essential for recruitment of kinetochore 

components and accounts for the specialized higher order folding of centromeric 

chromatin through distinct changes in the structure of nucleosomes. Replacement of 

canonical H3 by CenH3 therefore determines centromere identity, inheritance and 

function (Torras-Llort et al., 2009).  
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The different spatial and temporal deposition for the H3 variants and their 

association with different PTM marks (Hake et al., 2006) have lead to the hypothesis 

that they define a persistent epigenetic cellular memory by indexing the genome into 

functionally separate domains such as euchromatin, facultative heterochromatin or 

constitutive heterochromatin (Hake and Allis, 2006).  

1.4.1.3. H4 histones 
Histone H4 proteins are the most conserved histone proteins and all vertebrates share 

one H4 that is 100% identical in its amino acid sequence. So far no amino acid 

sequence variants have been reported in any multicellular organism and diversified 

H4s are so far only known from trypanosomes and ciliates (Hayashi et al., 1984; 

Lowell et al., 2005). Why H4s are so invariable is not fully understood. It is 

speculated that since H4 makes contact with all other histones in the octamer, 

variation in its sequence is less well tolerated (Bernstein and Hake, 2006).  

1.4.1.4. H2A variants  
The H2A histone family is the most diverse with the greatest number of variants. To 

date 4 H2A variants have been characterized in mammals that can substitute 

canonical H2A, but most vertebrate genomes encode an even higher number of H2A 

sequence isoforms with unknown functions. In addition to the canonical H2A.1, the 

variants H2AX, H2AZ, macroH2A and H2ABbd have been described in different 

organisms. The functions of H2As are very diverse and their deposition may alter the 

structure of the chromatin fiber and access to the DNA significantly.  

H2AX and H2AZ are of nearly universal occurrence and present in most 

animal species. H2AX plays an important role in the maintenance of genome 

integrity of eukaryotic genomes by participating in the repair of double stranded 

DNA-breaks (DSB). H2AX has arisen multiple times during evolution but similar 

evolutionary constrains have led to the convergent acquisition of the H2AX-specific 

phosphorylation motif SQE/D� (in which � represents a hydrophobic residue) within 

the C-termal tail (Malik and Henikoff, 2003). As a response to DSBs, this motif 

becomes rapidly phosphorylated by the phosphoinositide 3-kinase-like kinases, ataxia 

telangiectasia mutated (ATM), ataxia telangiectasia and RAD3-related (ATR) and the 
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DNA-dependent protein kinase (DNA-PK) creating the �-H2AX form. �-H2AX then 

helps to recruit and/or retain DNA repair proteins, histone modifying enzymes and 

chromatin remodeling complexes (Pinto and Flaus, 2010). H2AX is also essential for 

condensation and silencing of the male sex chromosome in mice although it is not 

crucial for meiotic homologous recombination (Fernandez-Capetillo et al., 2003). In 

mammals, H2AX represents only 10% of the total H2A pool while H2AX is the 

major H2A-component in S. cerevisiae and entirely replaces the canonical H2A in 

fungi, Giardia spp. and Cryptosporidium spp. (Talbert and Henikoff, 2010). However, 

the nematode Caenorhabditis elegans and protozoan parasites such as Plasmodium 

and Trypanosomes have no H2AX. The variant H2A.Z has been one of the most 

extensively studied histone variants in the recent years. H2A.Z diverged from 

canonical H2A before the diversification of modern eukaryotes. H2A.Z is only 60% 

identical to canonical H2A, but its amino acid sequence is highly conserved between 

different organisms. H2A.Z histones are essential for the viability in a range of 

species, including Tetrahymena, Drosophila, Xenopus and mice (Clarkson et al., 

1999; Liu et al., 1996; Ridgway et al., 2004; van Daal and Elgin, 1992), yet the role 

for this variant remains controversial and its functions may also have some species-

specificity. H2A.Z has been implicated in many diverse biological processes, such as 

gene activation, chromosome segregation, heterochromatin silencing, and progression 

through the cell cycle (Zlatanova and Thakar, 2008). Recent studies on the genome-

wide deposition of H2A.Z point towards a function for H2A.Z in the establishment 

and maintenance of chromatin boundaries that define promoter elements and those 

that demarcate genes (Jin et al., 2009). The H2A.Z of Drosophila (H2AvD) is an 

exception in that the H2AX phosphorylation-motif feature is merged with the H2A.Z 

variant (van Daal et al., 1988). 

Macro H2As (mH2As) are characterized by a histone fold domain followed by 

a large, non-histone domain that includes a basic region and a macro domain. The 

macrodomain reduces transcription factor access and represses transcriptional 

activation mediated by the histone acetyltransferase p300 (Doyen et al., 2006). 

Isoforms of mH2A are enriched in the Xi chromosomes of females mammals 
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(Chadwick and Willard, 2002) and it has been proposed that mH2A interacts with the 

to facilitate the silencing of one X chromosome in mammals to achieve dosage 

compensation (Nesterova et al., 2002). Initially mH2A was thought to be vertebrate-

specific but more recently mH2A genes have also been identified in other animal 

phyla such as cnidarians, echinoderms and cephalochordates (Talbert and Henikoff, 

2010).  

1.4.1.5. H2B variants  
In comparison with members of the H1, H2A and H3 families, H2B histones lack 

specialized replication-independent variants in the somatic cell lineage. Most 

organisms possess genes for several H2B isoforms but the variability observed in 

H2Bs seems to occur exclusively in the male germ line of vertebrates and 

invertebrate organisms and the pollen of plants with largely unknown functions (Aul 

and Oko, 2002; Marzluff et al., 2006; Ueda and Tanaka, 1995). So far two testes-

specific variants have been described in human, including the testes-specific TSH2B 

(Zalensky et al., 2002), and H2BFW (Churikov et al., 2004). TSH2B is present 

during male meiosis but also retained in human sperm and enriched in genes for 

spermatogenesis, suggesting that it might promote their transcription or prevent their 

packaging in protamines (Hammoud et al., 2009). In contrast to other testes-specific 

histone variants, the assembly of H2BFWT into nucleosomes is not associated with 

an increased instability but allows the chromatin fibers to resist chromatin 

compaction. It was found that H2BFWT is unable to recruit chromosome 

condensation factors or assist in mitotic chromosome assembly (Boulard et al., 2006).  

In addition to universal histone variants, the histone complements of most metazoans 

also include lineage-specific histone isoforms that exhibit lineage specific 

substitutions in their amino acid sequence.  

1.4.2. Lineage-specific histone variants within the male 
germline 

The majority of lineage-specific variants described for metazoans are specific to the 

male germline. Chromatin undergoes extensive reorganization and remodeling during 
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spermatogenesis (Gaucher et al., 2010) and testes-specific histone variants are 

thought to participate in the genome-wide displacement of the canonical histones to 

facilitate reprogramming of the male genome. Histone subtypes exclusive to the male 

germline have been identified in all of the core histone families except H4. 

Spermatogenesis-specific H2A variants have been described in human and mice. The 

variant H2A.Bbd was initially identified as being largely excluded from the inactive, 

female X chromosome of humans (Chadwick and Willard, 2001) and has recently 

been found to be involved in the spermiogenesis of mice (Ishibashi et al., 2010). A 

study of the mouse orthologs of H2A.Bbd, H2AL1/H2AL2 (Syed et al., 2009) and 

another testes-specific variant H2AL3 showed that they become specifically 

associated with pericentric regions after male meiosis, just before and during the 

synthesis and assembly of protamines (Govin et al., 2007). While H2B variants are 

subject to rapid diversification primarily in the male germline of most metazoans (see 

1.3.1.5), testes-specific H3s have so far only been described in rat, human and few 

plant species (Okada et al., 2005; Trostle-Weige et al., 1984; Witt et al., 1996).  

1.4.3. Histone variants -The structure behind the 
function 

Chromatin higher order structure is affected by amino acid variations on the histone 

octamer surface and in the histone tails that mediate nucleosome – nucleosome 

interactions. Thus, it may be plausible to assume that the incorporation of histone 

variants modulates the structure of the nucleosome. Crystallographic data is now 

available for most of the universal histone variants and various techniques have been 

established to study the dynamic behavior of histone variants in vitro and in vivo. 

The structural effects of H2A variants are of particular interest since they have 

diverged significantly in amino acid sequence from canonical H2A and appear to 

designate the nucleosome for a diverse set of functions. Many studies have attempted 

to identify certain characteristics of H2A.Z that might directly affect the behavior of 

nucleosomes but data on the biochemical and physical properties of the H2A.Z-

nucleosome have not yet provided clear answers on its stability or how H2A.Z 

performs its many functions (Zlatanova and Thakar, 2008). Some recent studies 
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suggest that acetylation of H2A.Z leads to destabilization (Abbott et al., 2001; 

Thambirajah et al., 2006) and alters the conformation of the nucleosomal core particle 

(NCP) when it is reconstituted with other acetylated core histones (Ishibashi et al., 

2010). A common model is that the acetylation of N- or C-terminal histone lysine 

residues neutralizes the positive charge of histone tails, thereby leading to a 

relaxation of densely packed chromatin (Roth et al., 2001). Like the H2A.Z-

nucleosome, NCPs containing the variant H3.3 show only a subtle destabilization but 

co-existence of both variants within a nucleosome affects nucleosome position 

(Thakar et al., 2009). 

Destabilization of the nucleosome also appears to be a common theme in 

histone variants specific to the male germline and has also been reported for the 

testes-specific TSH2B variant (Li et al., 2005). Another H2A variant that has shown 

to lead to a less stable nucleosome is the variant H2A.Bbd. H2A.Bbd appears to be a 

highly specialized, variant which is expressed in mammalian testes and only 48% 

identical to H2A.1. H2A.Bbd displays some unusual structural properties leading to a 

more relaxed nucleosome that protects only 130bp DNA. However, its effect on the 

nucleosome structure are not yet clear, since it also appears to repress transcription 

and inhibits remodeling by the, SWI/SNF complex (Bao et al., 2004; Doyen et al., 

2006; Menoni et al., 2007). 

In contrast, NCPs containing macroH2A are stabilized as revealed by 

sedimentation analysis and salt dissociation experiments (Abbott et al., 2001; Pehrson 

and Fried, 1992). This data further supports the view that macroH2A is a “chromatin 

silencer” that interferes with transcription factor binding and the SWI/SNF 

remodeling complex (Angelov et al., 2003). However, several PTMs have been 

described for mH2A, suggesting roles beyond heterochromatinization (Thambirajah 

et al., 2009). 

So far there is little structural information for the H2AX variants. Experiments 

mimicking the phosphorylation of the SQE/D� motif by a replacement of Ser with 

Glu, resulted in a more relaxed chromatin structure that protects less DNA from 
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MNase digest which may facilitate the function of H2AX in DNA repair (Fink et al., 

2007). An increase in stability has also been reported for nucleosomes containing the 

testes-specific H3 variant of mammals (Tachiwana et al., 2010). 

Despite the high sequence divergence that exists in some histone variants and 

their significant functional consequences, crystallographic analyses suggest that the 

effects of most histone variants on the overall structure of the nucleosome core 

particle (NCP) are surprisingly subtle. CenH3, however, appears to be a histone 

variant that may indeed induce more drastic structural alterations of the NCP. The 

actual composition and structure of the CenH3-containing nucleosomes is still a 

matter of debate and might also be species-specific. While in vitro reconstitution and 

affinity purification experiments suggest that human and fly CenH3-nucleosomes 

form “canonical” (CenH3/H4/H2A/H2B)2 octamers (Blower et al., 2002; Foltz et al., 

2006; Yoda et al., 2000), intranucleosomal cross-linking experiments and atomic-

force microscopy measurements, led to the proposition of a “half-nucleosome” model 

for Drosophila, suggesting that CenH3-nucleosomes exist as (CenH3/H4/ H2A/H2B) 

tetramers, rather than as octamers (Dalal et al., 2007). The latter idea and results from 

supercoiling assays, further led to the proposal that CenH3-nucleosomes may direct 

the DNA into a right handed superhelix, introducing positive superhelical turns which 

may in turn provide a single uncondensed location in the condensed mitotic 

chromosomes that remains accessible for kinetochore binding proteins (Furuyama 

and Henikoff, 2009). Moreover, recent results from S. cerevisiae suggest, that the 

single CenH3-nucleosome (Cse4 in yeast) lacks the H2A/H2B dimers. Instead, Cse4- 

nucleosomes contain the non-histone protein Scm3, suggesting that Cse4-

nucleosomes are composed of (CenH3Cse4/H4/Scme3)2 hexamers (Mizuguchi et al., 

2007). Nevertheless, despite these different models, it is now widely accepted that 

CenH3 nucleosomes must adopt highly unconventional arrangements on the DNA 

that presents centromeric chromatin to the poleward face of the condensing 

nucleosome. 
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1.4.4. Mixing and matching histone variants  

The increasing data on variant nucleosomes indicates that different histone variants 

most likely co-exist in vivo (Fig. 5). Nucleosomes containing several histone variants 

may provide an additional degree of freedom for altering the composition and thus 

the stability of the nucleosome.  

H3.3 and H2A.Z are considered as “active” replacement variants that co-exist 

in the NCPs of active promoter, enhancer and insulator regions as revealed by 

genome wide studies (Jin et al., 2009; Mito et al., 2005). In support for this view is 

the fact that H2A.Z/H3.3-double variant nucleosome are highly unstable and appear 

to mark chromatin regions “in flux” with a high turnover (Jin and Felsenfeld 2007, 

Jin et al. 2009). Another example for a variant that might preferable be incorporated 

within a H3.3-nucleosome is H2A.Bbd. Assembly and disassembly of H2A.Bbd-

nucleosomes is accomplished more efficiently in vitro when NCPs contain H3.3 

instead of canonical H3 (Okuwaki et al., 2005). The distinct structural properties of 

centromeric chromatin containing the variant CenH3 may further be enhanced by the 

incorporation of other variants. In human cell lines, the centromeric CenH3-

nucleosomes purified from human cell lines are enriched in macroH2A and H2A.Z 

(Foltz et al., 2006). Furthermore, the synchronized expression of testes-specific H3-, 

H2A- and H2B- variants during the spermatogenesis of different organisms suggest 

that these variants may potentially be part of the same NCP. The testes-specific H2A 

variants of mice (H2AL1/L2) for example dimerize more efficiently with TH2B than 

with the canonical H2B, suggesting that “male nucleosomes” do exist in vivo (Govin 

et al., 2007).  

1.4.5. The evolution of histone variability 

Although chromatin is considered to be eukaryotic, the evolutionary origins of 

eukaryotic core histones already lead back to the histone proteins found in the 

Archaea. Similar to eukaryotic histones, archeal histones comprise a single histone 

fold domain containing three alpha helices and two intervening loops but their lack 

the C- and the N-terminal tail (Sandman et al., 1990). In halobacteria however, 
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unusual “doublet” histones were identified consisting of an end-to-end duplication of 

the histone fold which may have led to a subfunctionalization of the N- and the C-

termini and eventually, to the evolution of eukaryotic histones (Malik and Henikoff, 

2003). 

  

Figure 5 Variant nucleosomes. The figure shows potential combinatorial 
possibilities of histone variants within one histone octamer. One 
nucleosome may contain only one type of variant as either mixed dimers 
(e.g. H2A.Z/H2A.1) or alternatively as a dimer of the same variant (e.g. 
H2A.Z/ H2A.Z). Variant nucleosomes may also be composed of multiple 
variants from different families as for example (H2A.Z/H2Bv/H3/H4.1)2 or 
(H2A.Z/H2B.1/H3.3/H4.1)2. instead of the conventional 
(H2A.1/H2B.1/H3/H4.1)2. The cartoon is based on the nucleosome code 
hypothesis (Bernstein and Hake, 2006). 

 

Because of the extreme sequence conservation among the canonical histone 

proteins, histones were long viewed as slowly evolving proteins that lack any 

diversification. With the increasing number of sequenced genomes it is now clear that 

histone variants have diversified in many species to assume crucial functions in gene 

regulation, DNA repair, chromosome segregation and other processes. While 

“universal” histone variants are found in nearly all eukaryotes and reflect ancient 

functions common to eukaryotic cells, lineage-specific variants have specialized to 

the unique biology of their host organism.  
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Analyses on histone complements show that histone gene organization differs 

considerably among species. The majority of the human-, mouse, sea urchin- and 

Drosophila histone genes are organized as large clusters (Marzluff et al., 2002; 

Marzluff et al., 2006; Nagel and Grossbach, 2000) and in Drosophila and sea urchin, 

these genes form arrays with several hundred genes tandemly reiterated. In contrast, 

C. elegans has a much smaller number of histone genes that are dispersed in small 

groups throughout the genome (Roberts et al., 1987). Likewise, histone genes are not 

physically linked in O. dioica, as shown by a first analysis of the histone complement 

by Chioda and colleagues (Chioda et al., 2002), suggesting that there is no correlation 

between histone organization and phylogenetic position.  

However, the underlying mechanisms that drive histone variant evolution have 

only marginally been explored in higher metazoans and with the completion of 

genome sequencing in these organisms; it has become clear that the number of 

histone isoforms is larger than previously identified. Furthermore, comprehensive 

developmental expression data is only available for sea urchin histone genes and thus 

information on the function of histone variants in metazoans, mainly comes from 

studies of universal histone variants described in the previous chapters.  

There is recent evidence that histone variants may indeed evolve adaptively to 

specific life history traits of organisms. The H2A variants of rotifers are an interesting 

example of histone variants that might have adapted to specific environmental 

conditions. Bdelloid rotifers are asexual freshwater invertebrates and are known for 

their extraordinary ability to survive desiccation and high dosages of ionizing 

radiation that cause hundreds of DNA double-strand breaks (DSBs) per genome 

(Gladyshev and Meselson, 2008). Remarkably, no H2AX, H2A.Z or canonical H2As 

exists in these animals, but H2A variants have extended C-terminal tails. The 

function of these variants is unknown, but it is speculated that they are part of the 

adaptations that have evolved to survive desiccation and the attendant burden of DNA 

damage (Van Doninck et al., 2009). The diversified H4 and H3 variants of ciliates 

may likewise reflect a histone complement adaptation to the specific life history traits 

of an organism. Ciliates are single-celled alveolates that have two types of nuclei. A 



1. Introduction 

- 31 - 

diploid, mitotic micronucleus gives rise to a second, polyploid macronucelus through 

differential DNA elimination, amplification and fragmentation. The fact that the 

expression of the two Euplotes crassus variants H3(P) and H2A(P) is synchronized 

with these processes and exclusive to the developing macronucleus suggests that they 

may have specialized to facilitate these processes (Ghosh and Klobutcher, 2000; 

Talbert and Henikoff, 2010). Diversified forms of each of the core histones also exist 

in trypanosomes that lack the typical RNAPol II promoters of eukaryotes. Instead, 

termination and initiation of transcription occurs at strand switch regions (SSR) 

which separate the polycistronic trypanosome transcription units. SSRs are 

punctuated with specific sets of histone variants, depending on whether they initiate 

or terminate transcription, suggesting an ancestral mode of transcriptional regulation 

based on histone variants and not on transcription factors (Siegel et al., 2009).  

The fact that histone variants may evolve adaptively to the life history traits or 

genome features of organisms also raises the possibility that the same may be true for 

the panel of histone modifications. Indeed, there is some evidence that the repertoire 

of PTMs becomes more complex from unicellular organisms to mammals. 

Assessment of the PTM profiles of Tetrahymena, Yeast and Plasmodium revealed a 

general predominance for modifications associated with a transcriptionally active 

state as well as novel modifications (Garcia et al., 2007; Trelle et al., 2009). 

The idea that organisms may have evolved species-specific strategies to adapt 

their chromatin interface is intriguing but further metazoan models will be required to 

complement the current knowledge on histone variability and PTM profiles across 

species. Ideally, these may include other chordates with genome features and 

biological traits distinct from those of mammals. Rapidly evolving, marine 

urochordates, that bridge the plyogenetic gap of the invertebrate-vertebrate transition, 

present an opportunity to investigate whether specific life history strategies, 

phylogenetic position or underlying genome features correlate with the histone 

variability and histone modifications of organisms. The genome of the dioecious 

larvacean Oikopleura dioica has undergone extreme compaction which makes O. 

dioica an exciting new chordate model to further investigate these questions. 
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1.5. The urochordate Oikopleura dioica  

Appendicularians (larvaceans) are marine zooplankton that represent the second most 

abundant component of marine meso-zooplankton after copepods (Fenaux, 1998). 

Serving as food for other zooplankton and fishes, appendicularians have ecological 

importance in the marine food web. Oikopleura dioica populations respond very 

quickly and opportunistically to algal blooms with growth rates exceeding those of 

copepods (Nakamura et al., 1997; Troedsson et al., 2002) and the species O. dioica 

has been the topic of many ecological studies. More recently, the sequencing of the 

O. dioica genome and improvements of the laboratory culture of this animal have 

also provided the basis for a number of insightful studies on the evolution and cellular 

biology of this organism, revealing its potential as an experimental model.  

1.5.1. Ecological impact and O. dioica phylogeny  

Within the chordate phylum, appendicularia is one of three classes belonging 

to the urochordates (tunicates), which are now considered to be the closest living 

relatives of vertebrates (Fig. 6) (Delsuc et al., 2006). Urochordates exhibit a 

simplified chordate body plan, characterized by a tail with a notochord and dorsal 

neural tube, an endostyle and gill slits. Appendicularians are also called larvaceans 

because they retain the larval tail throughout their entire life. While the two tunicate 

classes of ascidiacea and thaliacea eventually resorb their tadpole tail and undergo a 

metamorphosis that involves major changes in the body plan, the metamorphosis of 

the larvaceans consists of a simple “tail shift” with respect to the trunk axis, orienting 

the distal end of tail in the same direction as the mouth (Fig. 7). The species O. dioica 

was first described in 1821 by Chamisso and Eysenhart (Flood and Deibel, 1998). 

The animal (Gr. oikos house), lives and filter feeds on particles in a gelatinous house, 

which is secreted from polyploid epidermis cells of the trunk also referred to as the 

oikoplastic epithelium (Fenaux, 1985; Spada et al., 2001; Thompson et al., 2001). 

During the growth of the animal, houses are repeatedly discarded and renewed and 

constitute a main component of the marine snow and the carbon cycling of marine 

ecosystems (Alldredge, 1976; Robison et al., 2005).  



1. Introduction 

 

 

Figure 6 Phylogeny of the chordates. According to the new phylogeny of 
chordates (Delsuc et al., 2006), tunicates (urochordates) are the new sister 
group of vertebrates. Modified from a drawing of Billie Swalla, University 
of Washington. 

1.5.2. O. dioica development and life cycle 

O. dioica is now cultured and bred under laboratory conditions in Norway, USA, 

France and Japan with a very short life cycle (6 days at 15°C) (Bouquet et al., 2009). 

Schematically, the life cycle of O. dioica can be characterized by a developmental 

switch between two different cell cycle types, mitotic and endoreduplicative (Fig. 7).  

Oocytes and sperm are released into the sea water and following fertilization, 

the first division is already observed after 30 min. Early embryonic development is 

highly determinant and a fixed number of cells is established through rapid mitotic 

divisions. Organogenesis commences approximately at 2.5 h post-fertilization (pf), 30 

min before the tadpole hatches. Organogenesis is completed at metamorphosis (tail 

shift) which occurs 9-11 h pf, when cells in most tissues exit mitosis and increase 

their nuclear volume by endoreduplication, making the animal grow about 10-fold in  
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Figure 7 Life cycle of Oikopleura dioica. The life cycle begins with rapid 
mitotic divisions, 30 min pf (2c). 2.5 h pf, the tadpole is already visible in a 
tail bud stage (TB). The tadpole hatches 3 – 3.5 h pf (H) at the onset of 
organogenesis when the majority of cells still divide mitotically. At early 
tadpole stages (ETP 5-7 h pf) cells of the oikoplastic epithelium gradually 
shift from mitosis to endocycling. At approximately 12 h pf, embryos 
undergo a metamorphosis (tail shift) and juvenile day 1 (D1) animals will 
start to inflate their first house. Gonads start to differentiate at D4 and by 
D6, mature oocytes and sperm are clearly visible in females and males 
respectively. Adult animals die shortly after releasing their mature gametes 
into the sea water. 

size until day 6 (D6). In the oikoplastic epithelium of adult animals that 

secretes the mucous house, this results in different cell field-specific ploidy levels 

(Ganot and Thompson, 2002). Only few tissues such as the gut epithelium and the 

gonad continue mitotic divisions. The subsequent stages are referred to as day1-day6 

(D1-D6), whereby females and males can only be distinguished from D4 onwards. 
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Contrary to all other tunicate species which are hermaphroditic, O. dioica has 

separate male and female sexes. The female and male gonads of O. dioica show 

similarities to the syncitium of Drosophila, where proliferating germline nuclei 

occupy a common cytoplasm. The ovary, in which the germline compartment has 

been termed the “coenocyst”, gives rise to two types of nuclei: meiotic nuclei and 

endocycling nurse nuclei (Ganot et al., 2007a; Ganot et al., 2007b). At the end of the 

life cycle, female gonads are filled with metaphase I arrested oocytes and male and 

female gametes are released into the sea water. The underlying cellular processes that 

make O. dioica particularly adept in producing a highly variable number of oocytes 

have recently been addressed in studies on the ovary (suppl. paper I). 

Endoreduplication, or endocycling, is common in protists, plants and animals 

including arthropods, molluscs and mammals. In endocycling cells, S-phases 

alternate with distinct gap-phases, but there is no cell-division. Endocycling cell 

cycles vary among species in that some retain hallmarks of mitosis while other 

examples lack mitotic remnants including chromosome condensation, nuclear 

envelope breakdown and reorganization of microtubules (Edgar and Orr-Weaver, 

2001). Endocycling is usually found in cell cycle types with high secretory activities 

or reserved for nutrient uptake and storage with high metabolic activity. Some of the 

best-studied examples include Drosophila follicle and nurse cells, rodent 

Trophoblasts and plant endosperm that can reach polyploidy levels of 24 000 C 

(DNA contents as a multiple of the haploid genome) (Traas et al., 1998). A common 

hypothesis is that increasing DNA content by endocycling sustains the mass 

production of proteins. Additionally, the steady increase in DNA content also 

provides a strategy for growth. C. elegans and Drosophila larvae are examples where 

overall growth is mainly driven by endocycling (Lozano et al., 2006). 

1.5.3. O. dioca as a model for chromatin studies 

Many recent advances in our understanding of the molecular and cellular mechanisms 

that govern development stem from model organisms with short life cycles in which 

genetic approaches are feasible, such as Drosophila and C. elegans. Several traits 



1. Introduction 

- 36 - 

make O. dioica an interesting model for ecology, developmental cell biology, gene 

expression studies and evolution. These include i) its key phylogenetic position near 

the invertebrate-vertebrate transition, ii) the extremely compacted genome and high 

gene density, iii) its short life cycle and the availability of long-term cultures, iv) the 

invariant cell fate and v) its transparency throughout the entire life cycle. For the 

study of chromatin dynamics, the transition between different cell cycle types and its 

extremely compacted genome architecture is of particular interest. O. dioica has the 

smallest genome ever found in a chordate of only 72 Mb (Seo et al., 2001) and the 

first assembly of the draft genome is now available at Genoscope 

(http://www.genoscope.cns.fr/externe/GenomeBrowser/Oikopleura/). Despite the tiny 

genome size, the number of genes is estimated as 18000 with a high gene density of 

one gene per 4–5 kb. Intergenic sequences are very short, and 62% of introns are 

smaller than 50 bp. Indeed, the extreme compaction of the chordate genome in the 

larvacean lineage of the urochordates means that regulatory regions have been 

strongly compressed. Often these are in the order of a single nucleosome or less. 

Furthermore, 25% of the O. dioica genes are transcribed as operons and there is 

complex interlacing of transcriptional units with very different expression profiles. 

An example is given in Fig. 8, showing the tiling array expression data of the polo-

like kinase 1 (Plk1) gene locus. Male-specific, female specific and embryonic gene 

expression are specifically regulated within less than 6 kb by very short, bidirectional 

promoters with the smallest being only 100 bp in size. In such a context, interesting 

questions regarding genome wide active and repressive chromatin marks arise. Are 

promoters and enhancers defined by similar histone modification combinations and 

histone variants as described for other species? How significant are histone 

modifications and histone variants in indexing regulatory regions of such a small 

size? Furthermore, the cell cycle regulated acquisition and deposition of some histone 

modifications and histone variants suggests that not all chromatin marks serve as an 

“information” code about transcriptional activity. Instead, some marks might function 

as determinants that facilitate chromatin condensation and confer topological changes 

specific to mitotic chromosomes. O. dioica also provides the opportunity to study 

such a “structure based chromatin code” and the chromatin dynamics associated with 



1. Introduction 

the rapid transitions from mitosis to endocycling and meiosis that occur during the O. 

dioica development.  

 

Figure 8 The Polo-like kinase-1b locus in O. dioica. The male-specific, 
female-specific and embryonic gene expression are specifically regulated 
within less than 6 kb by very short promoters. A) Tiling array expression 
data of the Plk1b-locus in D6 females, D6 males and 7 h embryos. Green 
bars show the intensity of probe signal obtained after hybridization with 
cDNA. Gene annotations of the Plk1b genes and exons (indicated in 
brackets), the female-specific TPR gene and a male-specific gene (M) 
upstream of Plk1b are shown below. Arrows indicate promoters and 
direction of transcription. B) Detailed exon-intron organization of the Plk1-
locus. The Plk1b-gene is expressed in somatic tissues throughout 
development and in late animals predominantly in females. Expression of 
the first Plk1b-exon is driven from a 350 bp, bidirectional promoter region 
that also regulates the male-specific gene upstream of Plk1b. In mature 
females, exons 2-12 of Plk1b are expressed from a second bidirectional 100 
bp-promoter located within the first intron of the Plk1b gene. The first Plk1-
intron contains a female-specific TPR gene in opposite orientation which is 
expressed from the same bidirectional promoter region. 
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2. Aims of study 

Histone variants participate in important cellular processes, including DNA repair, 

cell division, transcriptional repression and the activation of genes. Despite their 

central roles in these essential functions, and generally high degree of sequence 

conservation across evolution, histone complements among different species vary in 

their divergence, the number of lineage-specific variants and partly, in the absence or 

presence of the universal variants H2A.Z, H2AX, MacroH2A, CenH3 and H3.3. 

Histone complements may therefore reflect specific life history traits and genome 

features of different organisms and reveal relevant information about the function and 

evolution of histone variants. The switch between mitosis and endocycling during the 

O. dioica development and the absence of mitosis in most tissues of the later stages, 

raises for example intriguing questions with respect to the centromeric histone variant 

CenH3. Do endocycling chromosomes still need to incorporate this variant? Is a 

possible absence of CenH3-chromatin achieved through the regulation of CenH3 

expression or a lack of the CenH3 deposition machinery? Furthermore, the important 

phylogenetic position of O. dioica provides an interesting opportunity to compare the 

diversity of histone variants found in the chordate lineage and to study their function 

with respect to the specific life history traits of this dioecious urochordate. Moreover, 

the possible lineage specific function that has been proposed for mitotic histone H3 

phosphorylation at different residues, make O. dioica an interesting model to study 

the degree of conservation or specialization of histone modifications within the 

chordates.  

 

More specifically the aims of this work have been: 

 

1) To identify the full complement of histone genes that are present in first 

assembly of the Oikopleura dioica genome and to characterize their expression 

throughout development.  
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2) To establish a public data base for O. dioica histone sequences- and expression 

data.  

3) To purify O. dioica histones for subsequent mass spectrometry analysis for the 

identification of the histone modifications present in O. dioica and to verify 

the expression of histone variants at the protein level.  

4) To establish a histone-eGFP fusion expression system for in vivo studies on 

the centromeric variant CenH3 in mitotic and endocycling cells. 

5) To study the temporal and spatial distribution of histone H3 phosphorylation 

during, mitosis, meiosis and endocycling in O. dioica cells.
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4. Summary of results 

4.1. High diversity of developmental stage-specific 
histone variants in the urochordate Oikopleura 
dioica (Paper I) 

With the first assembly of the O. dioica draft genome available at Genoscope, this 

work characterizes the complete histone complement of O. dioica including the 

number of histone genes, histone gene organization and all histone sequence variants. 

We have previously reported that, similar to the histone gene complements of other 

higher eukaryotes, the canonical histone genes of O. dioica are organized as clusters 

and share divergent promoters (Chioda et al., 2002). In contrast to the histone 

complements of most higher metazoans, the number of histone genes is relatively 

low, lacking the organization in large clusters or tandem arrays that have for example 

been found in mammals and Drosophila, respectively. In this work, we have 

identified 47 histone genes in the O. dioica genome encoding 31 different histone 

proteins (6 histone H3s, 5 histone H1s, 2 histone H4s, 7 histone H2Bs and 11 histone 

H2As) dispersed in small clusters of 2 – 5 genes throughout the genome.  

Developmental and sex-specific expression of some histone genes has been 

reported from other organisms (Marzluff et al., 2006; Wolfe and Grimes, 1991) but 

has rarely been comprehensive. We investigated the developmental stage-specific 

expression of histone genes throughout O. dioica development by quantitative reverse 

transcriptase-polymerase chain reaction (quantitative RT-PCR). O. dioica histone 

genes are co-regulated in clusters and genes belonging to the same locus mostly 

showed the same expression profile throughout the development. Moreover, many 

histone genes were indeed exclusively expressed at distinct developmental stages and 

histone gene clusters could be assigned to seven expression patterns: 1) throughout 

the entire life cycle, 2) exclusively during organogenesis, 3) male-specific expression 

in mature D6 animals, 4) expression peaking at metamorphosis, 5) expression that 

primarily takes place in D3/D4 adults, 6) expression peaking in early tadpoles and 

male D5 animals and 7) transcripts that are predominantly present from 1h pf to D4. 
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4. Summary of results 

We have summarized all the cDNA, genomic sequences and expression in the 

“Oikopleura histone database” (http://apps.cbu.uib.no/oikohistonedb/. Login: oiko, 

password: JasVopoi) where all the sequence data is also available for download. 

Comparison of the O. dioica histone protein sequences with the histone 

variants identified in other organisms and urochordates revealed that despite the low 

number of histone genes, the O. dioica genome encodes a very diverse array of 

different histone isoforms. Most universal histone variants are present including the 

variants H3.3, CenH3 and H2A.Z but O. dioica lacks the variants macroH2A and 

H2AX. Additionally, O. dioica expresses 17 different core histones that appear to be 

specific to the appendicularian lineage of which 15 are significantly enriched in the 

male gonad. These also include one H4 sequence variant (H4t), exclusively expressed 

in the male gonad of maturing animals, which is the first H4 variant reported thus far 

for higher metzoans. In most animals, histones are removed by protamines during the 

condensation phase of the spermatid nuclei but a certain percentage of the DNA 

remains nucleosome bound in mature sperm (Gatewood et al., 1990). These 

observations have led to the idea that canonical histones and histone variants retained 

in sperm could mark the paternal genome and transfer epigenetic information to the 

zygote. Considering the large number of male-specific histone isoforms in O. dioica, 

we therefore asked if these were still present in the chromatin of mature sperm and 

subjected O. dioica sperm histones to mass-spectrometric analyses. Interestingly, we 

found several canonical histones and nearly all of the male-specific ones to be 

retained in O. dioica sperm, supporting the idea that they may serve functions beyond 

spermatogenesis. O. dioica lineage-specific histone proteins further include two very 

divergent H2A variants (H2A.3 and H2A.4) of which H2A.3 appeared to be enriched 

in the female gonad. Finally, we found that O. dioica uses alternative splicing to 

expand its repertoire of histone variants. Within the genomic sequence of the 

OdH2A.Z gene, several putative alternative splice sites exist suggesting that O. dioica 

is able to modify the number of GK-residue motifs within its H2A.Z N-terminal tail 

by alternative splicing. We were able to confirm the expression of two H2A.Z splice 

variants, that lack one (H2A.Zb) and two N-terminal lysine residues (H2A.Zc) by 

rapid amplification of cDNA ends (RACE) and cloning with specific primer pairs.  
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4. Summary of results 

A current view is that histone modification patterns become more complex 

from unicellular eukaryotes to mammals (Garcia et al., 2007) Its highly compact and 

gene-dense genome with short promoters and the extensive use of cellular endocycles 

for growth, make O. dioica an interesting candidate to study histone posttranslational 

modifications (PTMs) with respect to current paradigms about their function in 

higher eukaryotes. Purifying O. dioica histones from adult animals and their 

subsequent mass-spectrometric analysis identified many PTMs that are conserved 

marks for transcriptional activity or repression in a wide range of organisms. These 

included several acetylated lysine residues within N-terminal tails of histone H3 and 

H4 as well as the methylation of H3 at lysine 4 (H3K4), H3K36 and H3K79 which 

have previously been associated with transcriptionally competent chromatin. 

Furthermore, O. dioca histones carried histones marks that typically mark silent 

chromatin including the methylation of H3K9, H3K27 and H4K20. We found all of 

these modifications to occur in O. dioica. Previously it has been reported that these 

“silent” marks are reduced in unicellular organisms (Garcia et al., 2007; Trelle et al., 

2009), which has been explained by the fact that in contrast to higher vertebrates, the 

majority of the genome in unicellular eukaryotes is transcriptionally competent 

(Garcia et al., 2007). Considering the high gene-density of the O. dioica genome (one 

gene per 4–5 kb) and the short intergenic regions, we also expect the proportion of 

the O. dioica genome that is permanently silenced to be relatively low compared to 

that of human. However, our analysis revealed no obvious lack of “silent” 

heterochromatic marks in O. dioica, since methylation of H3K27 and H4K20 were 

both detected by our mass spectrometry analysis and the methylation of H3K9 was 

confirmed by immunofluorescence staining (Paper III). Thus, we conclude that while 

there are some differences in the panel of histone sequence variants deployed in O. 

dioica, the spectrum of histone modifications and histone modifying- and 

demodifying enzymes (appendix, table A1A and A1B) is generally very similar to 

that found in other chordates. 
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4. Summary of results 

4.2. Phosphorylation of H3 variants in mitosis and 
meiosis of the urochordate Oikopleura dioica 
(Paper I and paper II) 

H3 phosphorylation is considered as a hallmark of mitosis, yet its precise role during 

chromosome condensation and segregation is not clear. While the H3 

phosphorylation marks themselves are conserved, their spatial and temporal 

distributions vary widely across species (Perez-Cadahia et al., 2009). We assessed the 

spatial and temporal patterns of canonical H3 phosphorylated at residues Thr3 

(H3T3P), Ser10 (H3S10P) and Ser28 (H3S28P) and of the replacement variant H3.3 

phosphorylated at Ser31 (H3.3S31P) in mitotic and meiotic chromosomes of O. 

dioica by immunofluorescence staining. With the exception of H3T3P, the 

distribution of these marks in the mitosis of O. dioica deviated considerably from the 

reported signals of other animals and plant species. H3T3P and H3S28P were both 

significantly enriched at the inner core of centromeres in the mitotic chromosomes of 

O. dioica, whereas H3S10P and H3.3S31P were more widely distributed throughout 

prophase, prometaphase and metaphase chromosomes (paper III). Furthermore we 

observed different temporal kinetics for these PTMs. H3T3P, H3S10P and H3.3S31P 

commenced at the onset of prophase followed by H3S28- phosphorylation in late 

prometaphase. While signals for H3S28P and H3S10P could still be observed during 

anaphase (paper III), no signal for H3T3P and H3.3S31P was observed during this 

stage. 

We also identified H3.3S31P as a modification during oogenic meiosis in the 

dioecious O. dioica. The female and male gonads of O. dioica show similarities to the 

syncitium of Drosophila, where proliferating germline nuclei occupy a common 

cytoplasm (Ganot et al., 2007a; Ganot et al., 2007b). H3.3S31P initiated together with 

H3S28P in all meiotic nuclei in late diplotene, after H3S10P. However, H3.3S31P 

was retained only on the subset of meiotic nuclei that seeded maturing oocytes that 

resumed meiosis after prophase I arrest (paper II). The functional role(s) of this mark 

in meiotic resumption and oocyte maturation remain to be determined. 
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4.3. Chromatin signatures at the Oikopleura dioica 
centromere (paper III) 

Centromeric chromatin is packaged by specialized nucleosomes containing the 

centromere-specific histone H3 variant CenH3. CenH3 is considered as the 

determinant for centromere identity, function and the epigenetic inheritance of 

centromeres but how CenH3 is guided specifically to centromeres is not fully 

understood. In this work we have established a histone-GFP fusion expression system 

to study the localization of CenH3 in endocycling and mitotic cells of O. dioica in 

vivo. Microinjection of CenH3-GFP cmRNA showed that OdCenH3 was readily 

deposited at the centromeres of mitotically dividing chromosomes. In contrast we did 

not observe a “reloading” of OdCenH3-GFP at the centromeres of endocycling cells 

and CenH3 transcription appeared to decrease in developmental stages dominated by 

endocycling. This suggests that CenH3 is no longer required during the endocycling 

cell cycle of O. dioica when mitosis is completely bypassed.  

Centromeric histone modifications might be one mechanism that guides the 

specific deposition of CenH3, which led us to investigate PTMs at the centromeres of 

mitotic O. dioica chromosomes by immunofluorescence. OdCenH3-eGFP 

nucleosomes faced out towards the kinetochore, while H3 nucleosomes 

phosphorylated at H3T3 and H3S28 were located at the interface between sister-

chromatids. H3K4 dimethylation was absent from centromeres and we observed no 

clear enrichment of H3K9 trimethylation at the peri-centromeric regions and no 

exclusion from centromeres, which is in contrast to what has been reported from 

other organisms. Testing a mutual dependency between H3S28P and CenH3 

deposition, we used the Aurora phosphatase PP1 inhibitor Calyculin A to 

hyperphosphorylate O. dioica chromosomes. Results from these experiments and the 

overexpression of CenH3 showed that CenH3 deposition in mitotic cells occurred 

independently of H3S28P but the localization of the CenH3 variant appeared to 

restrict the H3S28P mark to centromeres.  



 

5. General discussion 

A unicellular parasite invading its host, a fertilized oocyte developing into a human, 

temperature drops and salinity increases, as diverse as the challenges for different 

organisms may seem to quickly adapt to environmental changes and to develop into 

different shapes and sizes, they all master them through a “high fidelity”, temporal 

and tissue-specific regulation of their genes. One mechanism that regulates gene 

activity by controlling the accessibility to the DNA is the packaging of this genetic 

information with the help of histone proteins into chromatin. While the DNA 

sequence constitutes the general information potential of a cell, chromatin dynamics 

may be viewed as part of the “instruction manual” that can determine variable read 

outs of the same DNA sequences at different times, tissues or in different organisms. 

Histone variability, by chemical modification and/or through histone amino acid 

changes, is one factor that can profoundly alter chromatin structure as well as 

chromatin “interface” and thereby influence the read out of different genes. How 

universal are the “chromatin manuals” across different species and how much do they 

correlate with specific life history strategies or underlying genome features are 

interesting questions that have begun to be investigated. Nevertheless, due to the 

large genome sizes of most multicellular organisms and the largely repetitive 

organization of histone genes, functional studies of histone subtypes have thus far 

focused on few divergent universal histone variants and the picture of the sequence 

variability that exists within the histone complement of even established models is 

most likely not yet complete. With this work, we would like to introduce the small 

yet diverse histone complement of the chordate O. dioica 

(http://apps.cbu.uib.no/oikohistonedb) as an exciting model to study histone 

modifications and the function of histone variants in the context of the animal’s 

development and gametogenesis.  
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5.1. The histone complement of Oikopleura dioica 
– small but diverse 

To date only a few histone complements have been analyzed completely but it is 

already apparent that the genomic organization of histone genes varies significantly 

between organisms. While in yeast there are two copies of each of the core histones, 

the majority of the human-, mouse-, sea urchin- and Drosophila histone genes are 

organized as large clusters (Marzluff et al., 2002; Nagel and Grossbach, 2000). In 

Drosophila and sea urchin, these genes form arrays with several hundred genes 

tandemly reiterated, while the histone genes of C. elegans cluster in small groups 

which are dispersed throughout the genome (Roberts et al., 1987) Why the 

organization of histone complements differ to such an extent in different species is 

not known. It has been proposed that tandem repeats of histone genes correlate with 

rapid embryonic development in organisms but the small and dispersed histone 

cluster of the rapidly developing O. dioica provides another example in opposition to 

this idea (Chioda et al., 2002). Our comparison of the histone complements of O. 

dioica and that of the two ascidian species C. savigny and C. intestinalis further 

showed that within the urochordates- and even within the ascidian lineage, histone 

gene organization differs significantly. While at least 130 histone gene copies are 

present in the C. savigny genome (estimated 180 Mb), partly organized in large 

clusters, we find only very few (27) histone genes in the C. intestinalis genome (156 

Mb) that are mostly interspersed with non-histone genes. The fact that the O. dioica 

histone gene complement rather resembles the organization of the C. elegans histone 

complement than the complement of either of the two other urochordate species 

further supports the view that the differences in histone gene complements can not be 

attributed to phylogenetic position or genome size.  

Similar to C. elegans, O. dioica also belongs to a very rapidly evolving branch 

and shows a number of specializations, including a rapid embryonic development, a 

very compacted genome with very short promoters and intergenic regions, 

transcription as polycistrons (Seo et al., 2001), and the extensive use of the 

endoreduplicative cell cycle (Ganot and Thompson, 2002). What is the “chromatin 
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toolbox” of such a rapidly evolving and specialized planktonic chordate? In O. 

dioica, 31 different histone proteins are encoded in only 47 histone genes and most of 

the universal histone variants are also present including the variants CenH3, H3.3, 

H3.2 and H2A.Z (paper I). The mass spectrometry analysis conducted in this work 

and previously performed immunofluorescence stainings further showed that O. 

dioica histones also carry all of the major histone methylation-, acetylation- and 

phosphorylation marks reported from other organisms (Spada et al., 2005a; Spada et 

al., 2005b). Additionally, the most commonly known “writers” and “erasers” of 

histone modifications are present within the O. dioica genome assemblage (appendix, 

table A1A and A1B). This indicates that despite fundamental differences in life 

histories, genome sizes and different types of cell cycle regulation, organisms share 

the fundamental mechanisms to regulate their chromatin structure and interface. 

5.2. A histone variant complement linked to small 
genome size and endocycling? 

Most multicellular organisms appear to express a minimum set of histone variants 

including H3.2, H3.3, CenH3, H2A.Z, H2AX and MacroH2A (mH2A) in addition to 

their canonical histones. However, more recent data from “exotic” model organisms 

have raised interesting questions on how histone complements might evolve 

adaptively to the specific life history traits, the genome architecture and cell cycle 

regulations of different species. Trypanosomes for example lack the typical RNA 

polymerase II promoter elements and mark the transcription start and stop sites of 

their polycistronic transcription units with specific sets of diversified H2Bv, H3v and 

H4v variants (Siegel et al., 2009). In bdelloid rotifers no H2AX, H2A.Z or canonical 

H2As exists. Instead these animals have H2A variants with extended C-terminal tails 

that may be part of an adaptation mechanism to survive desiccation and an extreme 

burden of DNA damage that these animals are able to endure (Van Doninck et al., 

2009). Some indications suggest that the histone complement of O. dioica has also 

undergone some specializations, particularly within the family of H2A histones. 

These include the deployment of two very divergent H2A variants (H2A.3 and 
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H2A.4) and H2A.Z splice variants that differ in their number of acetylatable lysines 

within their N-terminal tail. Moreover, O. dioica appears to have lost the variant 

H2AX and no mH2A was found.  

The absence of the variant H2AX raises interesting questions about genome 

integrity and the pathway for double stranded break repair (DSB) in our model 

chordate. H2AX is present in most animals species, including the urochordate Ciona 

but is absent in some protozoan parasites and C. elegans. Rapid phosphorylation of 

H2AX (�-H2AX) occurs during both of the two alternative DNA repair pathways, the 

nonhomologous end-joining (NHEJ) pathway and the alternative homologous 

recombination (HR) pathway that compete for DSB in eukaryotic cells (Shrivastav et 

al., 2008). However, more recently it was shown that this variant is neither essential 

for the HR pathway (Yuan and Chen, 2010), nor for meiotic recombination 

(Fernandez-Capetillo et al., 2003) which could mean that HR is the DSB-repair 

pathway of choice in O. dioica. In support for this idea is the observation that, as in 

C. elegans, the PIKK kinase DNA-PK, one of the key proteins in NHEJ, appears to 

be absent in O. dioica. While during mitosis, larger genomes of higher eukaryotes 

generally present a challenge to locating a homologous template for HR repair this 

may not be an obstacle in the small genome of O. dioica where, at least in the 

endocycling tissues, several hundred copies of each locus are available for 

recombination.  

Another interesting question is whether the switch to endocycling and the 

absence of mitosis changes the evolutionary pressure on the conserved histone 

structure, allowing for more diverse sequence variants to occur. One example 

showing that polyploidy presents opportunities for specialized adaptation of histones 

are the variant H3(P) and H2A(P) of the ciliate Euplotes crassus which are both 

exclusively expressed in the developing, polytene chromosome stage of the 

macronucleus (Ghosh and Klobutcher, 2000). However, lineage-specific somatic 

H2A variants that are not testes-specific have so far not been described for chordates. 

The replacement H2A.3 and H2A.4 variants of O. dioica exhibit only 55 % sequence 

identity to their canonical counterpart and are therefore an interesting exception. We 
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found both variants predominantly expressed during the endocycling stages and 

OdH2A.3 appeared to be enriched in the female gonads. Interestingly, a similar 

divergent H2A variant is also present in the C. elegans and D. melanogaster 

genomes. Each of these organisms also employs endocycles in growth. However, 

whether these variants are expressed in the endocycling tissues of these animals is not 

known.  

An intriguing finding is the fact that O. dioica appears to reduce the number of 

acetylatable lysines within the variant H2A.Z through the translation of different 

splice variants. Acetylation of H2A.Z is generally associated with a less stable 

nucleosome structure and occurs at the promoter of transcriptionally active genes 

(Bruce et al., 2005; Ishibashi et al., 2009). Studies on H2A.Z (hv1) acetylation in the 

ciliate Tetrahymena revealed that acetylation of the N-terminus works to modulate an 

essential charge patch that, in contrast to a site-specific histone code, is used to alter 

the charge of the N-terminal domain (Ren and Gorovsky, 2001, 2003). Neutralizing 

the charge of the highly positive, N-terminal H2A.Z tail by acetylation may lower 

affinity for DNA and facilitate access for essential competing factors at promoters or 

prevent higher order folding. Reducing the number of the 6 N-terminal Lys residues 

present in O. dioica H2A.Z would similarly result in a significant loss of positive 

charge and create different H2A.Z variants with gradually differing affinities for 

DNA. Why would such a regulation be beneficial over a regulation by acetylation? If 

indeed the function of H2A.Z is to set up a chromatin architecture that is compatible 

with gene regulation, H2A.Z variants may provide a more “static” mechanism to 

configure genes for a specific level of transcriptional activity. In the endocycling cells 

of the O. dioica epithelium, where predominantly genes for house production are 

expressed, once established, gene activity patterns are essentially maintained for the 

rest of the animal’s life. Thus, in mitotically inactive, differentiated cells the 

deposition of H2A.Z splice variants could facilitate the establishment of more 

permanent marks to modulate transcriptional activity. Furthermore, our discovery that 

putative alternative splice sites exist in the H2A.Z genes of a wide range of organisms 

raises the interesting possibility that differentially charged H2A.Z splice variants 

exist in other species. 
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5.3. Histone variants of the male germline in O. 
doica – evolution in action 

Another interesting feature of the histone complement of O. dioica is the notable high 

number of histone sequence variants that were either exclusive to or significantly 

enriched in the male germline, including three different H3 proteins and, remarkably, 

a variant of the H4 family. Testes-specific H3 variants appear to be rare in animals 

and have only been reported for rat and human (Trostle-Weige et al., 1984; Witt et 

al., 1996), while no histone variants seem to exist in the H4 family of other 

multicellular organisms. The function of male germline-specific histones is not well 

understood and may vary, depending on the exact timing of their expression during 

spermatogenesis. Thus far, the replacement of canonical histones with male-specific 

variants has been associated with the erasure and re-establishment of the paternal 

epigenetic state and the chromatin organization of late spermatid condensation 

(Gaucher et al., 2010).  

A notable feature of “male” histone variants across different species is their 

divergence in amino acid sequence compared to their canonical counterparts and the 

fact that they have diversified more rapidly within different lineages than somatic 

histones. This is particularly apparent in our model. Among all of the different core 

histone sequence variants, 15 of 31 were significantly enriched in the male gonad of 

O. dioica and they appear to have diverged to a greater extent from the canonical 

histones than what has been described for the testes-specific histones of vertebrates 

(paper I). The rapid evolution of histone H2B variants, which are all restricted to the 

male germinal cell lineage, has been explained as a consequence of 

neofunctionalization and subfunctionalization events after gene duplication 

(Gonzalez-Romero et al., 2010). However, why male germline histone variants 

diverge so rapidly and appear to “escape” the usually high selective pressure on the 

histone amino acid sequence is not clear. Are the structural/functional constraints 

during spermatogenesis more relaxed or does the sequence variability in these histone 

variants reflect specificity? Some data suggest it could potentially be a combination 

of the two that drives histone evolution in the male germline. At least for the testes 
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H2B variants there is support that a selection mechanism exists that maintains a 

biased amino acid composition in these variants which might be related to their role 

in the reorganization of chromatin during spermatogenesis (Gonzalez-Romero et al., 

2010). Nevertheless, this may not explain why such variants did not arise in other 

tissues where chromatin undergoes extensive remodeling. So far, three conclusions 

about the properties of testes-specific histones can be drawn from the few studies on 

mammalian variants that exist to date: i) They are expressed at specific time windows 

during spermatogenesis (Gaucher et al., 2010), ii) they can be deposited at specific 

chromatin regions (Govin et al., 2007) and iii) they appear to destabilize the structure 

of the nucleosome (Gautier et al., 2004; Li et al., 2005; Tachiwana et al., 2010). 

Likewise, the male gonad-specific histones of O. dioica were expressed at specific 

time windows during male maturation and some of their predicted structural 

properties  indicate a destabilizing role for these histones in the “male nucleosome” 

(paper I). The co-activation of several male-specific histone clusters at a precise time 

in the urochordate could be an indication that nucleosomes are evicted and replaced 

on a large scale. The exact onset of spermiogenesis in O. dioica is not known but the 

late expression of some of the male histone clusters suggests that the incorporation of 

these histones, as in other species, may occur after the completion of meiosis when 

transcription is very low and processes such as mitosis and DNA replication are 

absent. While the absence of these processes may lead to more relaxed evolutionary 

constraints on the nucleosome and chromatin structure, the synchronous and large 

scale eviction of previous histones at the same time might select for “destabilizing” 

histones. Several evolutionary “routes” might lead to histones forming less stable 

nucleosomes which could explain the lineage-specific diversification of these 

histones. In support for partly relaxed evolutionary constraints on histones during 

spermatogenesis is also the notion that we found possible polymorphisms within the 

N-terminal region of the male gonad-specific H3 variants of O. dioica (e.g. Ile to 

either Leu or Phe in H3t.3 at position 62), indicating that male histone variants appear 

to diversify very rapidly in O. dioica. Another conclusion that can be drawn from 

these observations is that even within this rapidly evolving urochordate, the amino 

acid sequence of the universal somatic variants and canonical histones remain 
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extremely conserved, demonstrating the high evolutionary constraints that preserve 

these histone structures within the chordates.  

The simplest explanation of why O. dioica appears to be the only multicellular 

organism with a male-specific H4 variant might be that they have not yet been 

identified. Indeed, testes-specific expression of H4 genes uncoupled from replication 

in meiosis also occurs in mammals (Wolfe and Grimes, 1991) and genes encoding for 

putative H4 sequence variants can be found in the Xenopus tropicalis, C. savigny and 

C. elegans genomes through inspection of genome sequence data, although 

expression of such loci in these organisms has not been confirmed. Interestingly, the 

X. tropicalis H4 gene (Ensemble, scaffold_188 1555479 to 1555724) also contains a 

residue change from Ala to Thr at position 69 (the substitution in O. dioica comprises 

a change from Ala to Ser). Based on the histone structure, Ser69 resides within the 

alpha 2 helix and is not solvent accessable but faces towards the alpha 3 of H4. It is 

not clear whether substitutions at this position can invoke any structural changes 

within the nucleosome. However, the identification and expression analysis of further 

H4 genes encoding for H4 sequence isoforms in other organisms could be an 

interesting goal for future studies. 

5.4. Histone variants of the male germline – are 
they epigenetic marks? 

The fact that some of the male germline-specific and canonical histone variants are 

not replaced by protamines but are retained within the mature sperm in some 

organisms has further raised the interesting possibility that they may mark the 

paternal genome and transfer epigenetic information to the zygote. A recent analysis 

of human sperm chromatin has for example shown that nucleosomes retained in 

sperm are significantly enriched at many loci important for embryo development, 

including genes of key embryonic transcription factors and signaling pathway 

proteins (Hammoud et al., 2009). We also found most male gonad-specific variants 

and canonical histones to be present in the mature sperm of O. dioica, suggesting that 

beyond a possible function in remodeling and structural organization during 
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spermatogenesis, they could potentially play a role in the epigenetic control of 

embryogenesis (paper I).  

Although there are few studies on the histone variants specific to the male 

germline, there is evidence from other histone variants that may indeed serve an 

epigenetic function. The variant CenH3 is a prominent example as it is retained at the 

centromeres of mammalian sperm chromatin, suggesting that it organizes the 

centromeres of the paternal genome during early embryogenesis (Palmer et al., 1990). 

The genome wide distribution of H3.3 and nuclear transplantation experiments in 

Xenopus support the idea that the distribution of H3.3 reflects patterns of active 

chromatin and that H3.3 might function as a potential epigenetic mark through which 

active gene states can be inherited (Mito et al., 2005; Ng and Gurdon, 2008; Schwartz 

and Ahmad, 2005; Wirbelauer et al., 2005). H3.3 also appears to play a role in the 

genome-wide remodeling of the decondensing male pronucleus in C. elegans, flies 

and mice (Orsi et al., 2009) and has been reported to replace canonical H3 in a locus-

specific manner (Santenard submitted, cited in Santenard and Torres-Padilla, 2009). 

This suggests that H3.3 could establish epigenetic signatures in the male pronucleus 

after fertilization. How specific incorporation of H3.3 is achieved at those loci may 

provide a potential link to the function of sperm-specific histone variants. As male 

germline-specific histone H2A, H2B and H3 variants appear to generally cause a 

destabilization of the nucleosome (Gautier et al., 2004; Li et al., 2005; Tachiwana et 

al., 2010), they could potentially “label” distinct loci for replacement by H3.3 and 

facilitate histone eviction at those sites as the sperm chromatin decondenses. 

However, no functional studies of testes-specific histone variants have yet been 

performed and it remains to be seen whether their presence in the male pronucleus is 

essential. 

5.5. Centromeric chromatin signatures in the 
presence and absence of mitosis  

The switch from mitosis to endoreduplication in O. dioica also provides an 

interesting opportunity to study the cell cycle regulated deposition of histones. The 
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variant CenH3 determines the function and epigenetic inheritance of centromeres and 

malfunctioning CenH3 deposition usually results in lethality (Torras-Llort et al., 

2009). However, how the variant is targeted specifically to centromeres in different 

organisms is not well understood, since the incorporation of CenH3 can occur 

independently of the underlying DNA sequence. One important mechanism thought 

to contribute to CenH3 incorporation at centromeres, is the specific cell-cycle timing 

of CenH3 deposition which occurs during late mitosis in human and flies 

(Hemmerich et al., 2008; Jansen et al., 2007; Schuh et al., 2007). This suggests that 

the mitotic phase of the cell cycle is crucial for CenH3 deposition in some organisms 

and led us to hypothesize that during endocycling, CenH3-chromatin is constantly 

diluted and gaps are not replenished with new CenH3 due to the absence of mitotic 

stages. Our data suggest that this may indeed be the case and even when a GFP-

tagged CenH3 protein is abundant, we do not see a renewal of CenH3 at the 

centromere of endocycling nuclei (paper III). However, it is not clear whether this is 

due to the lack of the deposition machinery because the mitotic cell cycle phase is 

bypassed or there is no requirement for CenH3 due to an underreplication of 

centromeric DNA. Endocycling cell cycles vary among species in that some retain 

hallmarks of mitosis while other examples lack mitotic remnants including 

chromosome condensation, nuclear envelope breakdown and reorganization of 

microtubules (Edgar and Orr-Weaver, 2001). Consequently, the centromere dynamics 

during endocycles in different species are variable. In Arabidopsis the organization of 

endoreduplicated sister centromeres for example even depends on the type of 

endoreduplicating tissue (Fang and Spector, 2005). While in root epidermal cells, 

CenH3-tagged centromere foci are normally bigger, and some foci with irregular 

shapes are composed of two to three clustered fluorescent spots, the CenH3 foci of 

the larger leaf epidermal pavement cells CenH3 foci become smaller and 

continuously increases in number, indicating that endoreduplicated sister centromeres 

in these cells are more disassociated than those in the root epidermal cells. Studying 

CenH3 deposition in the endocycling tissues of different species could therefore 

provide important information about the underlying mechanisms essential for CenH3 

deposition.  
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The centromeric and pericentromeric chromatin of different species also 

contains distinct histone modification marks that might play a role in centromere 

determination and function. H3S28 and H3T3 phosphorylation (H3S28P/T3P) are 

interesting candidates in O. dioica since we found these modifications to be 

particularly enriched at centromeres (paper III). Putative ectopic CenH3 foci resulting 

from CenH3-overexpression are likewise Ser28 phosphorylated in O. dioica. 

However, hyperphosphorylation of Ser28 throughout the chromosome did not lead to 

an obvious spreading of CenH3 localization, although the number of foci observed 

exceeded that of diploid cells. This suggests at least that H3S28P alone may not 

determine CenH3 deposition.  

The function of centromeric H3 phosphorylation is not well studied and 

H3S28 phosphorylation at centromeres has not been reported elsewhere. It is possible 

that H3S28P also plays a role in sister chromatid cohesion as has been reported for 

H3T3P which is enriched at the centromeres of human cell lines (Dai et al., 2005; 

Higgins, 2010). However, H3TSP and H3S28P at centromeres exhibited slightly 

different temporal kinetics in O. dioica, suggesting that their functions may not 

entirely overlap. Alternatively, it has been suggested that mitotic PTMs might also 

function as a “ready” production label or as a “licensing system” that distinguishes 

chromosomes that have successfully passed through the metaphase-anaphase 

checkpoint (Hans and Dimitrov, 2001). The dynamics of H3.3S31P (paper II) and 

H3S28P (suppl. paper I) during female meiosis in O. dioica for example provide 

indirect support for the ready production label hypothesis as these marks are retained 

only on those nuclei of the coenocyst that seed oocytes and complete meiosis. The 

remaining unselected meiotic nuclei lose these labels and fail to complete meiosis. 

Thus, one might also envision a possible role for H3S28P in mitotic checkpoint 

regulation in O. dioica.  

- 56 - 



5. General discussion 

5.6. Plasticity in histone modifications across 
species – a lineage-specific “mitotic histone 
code”? 

Several observations have recently lead to the proposal that transient mitotic histone 

marks may constitute a lineage-specific “mitotic histone code”. These include the fact 

that the temporal and spatial patterns of mitotic histone modifications, particularly H3 

phosphorylations, vary widely across species. H3 phosphorylation has been 

associated with mitotic chromosome condensation, sister chromatid cohesion and, 

partly, gene activation in interphase nuclei (Perez-Cadahia et al., 2009) but the 

subject is still a matter of debate. The data on H3 phosphorylation available so far 

suggests that phosphorylation of the same residues may not have the same function in 

different species (Cerutti and Casas-Mollano, 2009). Our observations in the 

metaphase chromosomes of O. dioica confirm that there is indeed very little 

conservation in the localization of H3 phosphorylation marks (paper II and paper III) 

between species. Another conclusion that can be drawn from our data is that this is 

not only true for H3 phosphorylation but also for other cell cycle regulated marks 

such as the trimethylation of H3K9 (H3K9me3) and dimethylation of H3K4 

(H3K4me2). The “active” H3K4me2 mark co-localizes with the CenH3-chromatin of 

metaphase chromosomes in Drosophila and human (Sullivan and Karpen, 2004) 

while the heterochromatic H3K9me3 mark is enriched at pericentromeres, but is 

excluded from centromeric chromatin in these species (Peters et al., 2003). Both 

marks are associated with opposing function with respect to transcriptional activation 

and it has been proposed that they may determine the chromatin borders of 

centromeres. However, the broad distribution observed for both marks and the 

exclusion of H3K4me2 from centromeres in the mitotic chromosomes O. dioica 

suggest that the function of these marks, at least during mitosis, may not be conserved 

(paper III). More recently it has become clear that different H3 phosphorylation 

marks may not necessarily act as “point” signals but rather depend on co-existing 

modifications on the same H3 tail that could confer distinct “read outs” of these 

combinational marks. A recent report for example suggests that H3T3P in human 

cells is always found within a combinatorial modification pattern with H3K4me3 and 
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H3R8me2 in mitotic cells (Markaki et al., 2009). Considering that neither H3K4me2 

(paper III) nor H3K4me3 (Coen Campsteijn, personal communication) did extend into 

the H3T3P positive centromeres of O. dioica, raises the interesting possibility is that 

combinational marks may also vary among organisms and create lineage-specific 

read outs. In support of this view is the notion that the role for the dual 

H3S10P/H3K9me3 in the mitotic release of HP1 does not seem to have been 

conserved in the plant lineage. H3S10P, in combination to H3K9me3 in mammals, is 

believed to provide a “mitotic binary switch”, which determines recruitment or 

eviction of heterochromatin protein 1 (HP1) from mitotic chromatin, whereby the 

addition of Ser10 phosphorylation ejects the HP1 that is bound to H3K9me3 

(Dormann et al., 2006; Hirota et al., 2005). The plant homolog of HP1 however, does 

not bind H3K9me3 but instead binds trimethylated H3K27 (Turck et al., 2007) raising 

some doubts about a conserved role of H3K9 methylation in HP1 recruitment. It thus 

seems that the chromosomal localization, the timing and putative functions of H3 

phosphorylation and other transient mitotic marks, with the possible exception of 

H3T3P, may have diverged substantially and a lineage specific mitotic histone code 

exists.  

5.7. Future goals and perspectives 

O. dioica is an attractive new model system for a variety of chromatin studies. We 

have now established a histone-eGFP fusion expression system to study the 

distribution of histone variants in embryos and young adults and future studies will 

address the localization of other histone variants including the divergent H2A.3/.4 

histones of O. dioica. 

Chromatin immunoprecipitation (ChIP) and ChIP-chip experiments are 

already successfully underway to determine the distribution of chromatin marks over 

the compacted regulatory regions and open reading frames of O. dioica genes and to 

study the distribution of these marks on a genome-wide scale. We further plan to 

extend these experiments to ChIP-seq studies in combination with O. dioica histone 

variant specific antibodies. An antibody against the H4t variant monomethtylated at 
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Lys20 used in ChIP-chip and ChIP-seq on mature sperm chromatin will for example 

enable us to determine whether this modified variant localizes to developmentally 

important loci.  

Additionally, the establishment of ChIP-chip experiments presents an 

opportunity to study intriguing epigenetic questions in O. dioica. We have developed 

large scale experimental set up for “density stress conditions” that induces growth 

arrest at D3/D4 (prior to gonad maturation) in our model. Animals with stalled 

growth can be kept under these conditions for several days/weeks, which can prolong 

the normal life span 3-fold (Coen Campsteijn and David Osborne, personal 

communication). Animals “released” from these conditions will mature and spawn 

normally. In the rapidly evolving urochordate, the genome-wide expression patterns 

of subsequent generations derived from “stressed” parents may reveal whether 

environmental conditions can affect the epigenetic state of the germline. 

To further test the interplay between the different mitotic chromatin marks we 

have generated an H3.2S28A-mutant expression vector (paper III, Fig. S2B). Cells 

that exhibited a high expression for the tagged H3.2S28A mutant showed no H3S28P 

signal (appendix, Fig. A1), suggesting that the Ser28-mutated H3.2 protein replaces 

endogenous H3.2 and is able to drown out the H3S28P signal. With this construct we 

plan to test the effect of H3S28P abrogation on CenH3 deposition and the spatial 

distribution of other histone modifications during mitosis. Additional clonings are 

currently underway to generate a H3.2S28E plasmid where the Ser28 is replaced by 

the residue glutamate, which “mimics” a phosphorylated Ser28. We expect that 

deposition of this mutant will mimic a Ser28 phosphorylation throughout the entire 

chromosome, thereby abrogating the centromeric restriction of H3S28P in a similar 

way as the PP1 inhibitor Calyculin A causes spreading of H3S28P. This construct 

however, will allow us to dissect the causative effects of H3S28P more directly. 

Incubating embryos in different chemicals provides another powerful tool to study 

the function of H3S28 phosphorylation in O. dioica. Our preliminary experiments 

with an Aurora B kinase inhibitor suggest for example that endocycling can be 

induced in the proliferating O. dioica cells (not shown).  
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Finally, the female and male gonads of O. dioica present some exquisite tools 

to study histone variant deposition and the function of histone modifications. 

Recombinant fusion proteins are now successfully expressed from cmRNA and 

plasmids when injected into the male and female gonad and we plan to inject the 

H3S28A and the H3S28E mutant constructs into the gonads of females. This 

experimental set up may provide direct evidence whether H3S28P is required for 

progression through meiosis after fertilization or whether maturation can be “forced” 

upon non-H3S28P-labeled oocytes with the overexpression of the H3S28E construct. 

Furthermore generating new constructs by mutating the H4t variant-specific residues 

will provide clues whether these residue determine a specific localization of this 

variant in male germline chromatin.  

The results presented in this thesis provide new insights into the diversity of 

histone variants and their developmental-specific regulation that exists among the 

chordates. Histone variants assume crucial roles in gene expression, centromere 

function, DNA repair, and sperm compaction and the causal relationships between 

dysregulation of some histone variants and tumorigenesis and infertility are already 

well established. Novel histone variants are continuously being discovered in 

mammals and other species and their studies provide an important contribution to 

understand the function behind histone variability and their implications in diseases. 

With this work we have developed new tools to study the deposition and the function 

of novel and universal histone variants and their histone modifications in the different 

cell cycles of the urochordate O. dioica. 



 

6. Appendix 

Table A1A. Modifying enzymes responsible for histone methylation, 
acetylation and phosphorylation in O. dioica.  

Protein Family Modifying enzyme  Histone substrate  
(residue numbers of 

mammalian 
histones) 

Isoforms identified in 
O. dioica 

    
Acetyltransferases    
GNAT GCN5 H3, H4 Not found* 
 PCAF H3, H4K8 1 
 HAT1 H4K12, H4K5 1 
CBP/p300 CBP/P300 H3, H4 1 
Myst Myst3 H3K14 1 
 ESA1/Myst1/Kat5  H3, H4, H2A  2 
 Tip60 H3K14 1 
BET  BRDT (testes)  2 
BR140 Brpf1  2 
Nuclear receptor 
coactivator family 

SRC1 
 Not found 

Nuclear receptor 
coactivator family 

ACTR 
 Not found 

    
Methyltransferases    
Suv3-9 Suv39  H3K9, H4K79 2 
RMT type I Carm1 H3R2, H3R17, 

H3R26 
1 

Dot1 Dot1 H3K79 1 
TRX MLL4 H3K4 2 
 Set1 H3K4 1 
 SETDB1 H3K4 1 
SET3/4 MLL5 H3K4 1 
RMT type II PMRT5 H3R8, H4R3 1 
EZ EZH2 H3K27, H3K9 1 
Set8 Set7/8 H4K20Me1 1 
Suv4-20 Suv4-20 H4K20Me2/Me3 2 
 SETMar  1 
Set Set2/ NSD1/WHSC1 H3K36, H4K20 2 
 EHMT1a H3K9 2 
SMYD SMYD5  1 
 SMYD3 H3K4 2 
    
Kinases    
 Haspin H3T3 1 
Aurora Aurora A H3S10, H3S28 1 
 Aurora B H3S10, H3S28 1 
PIKK ATM/ATR H2AX 1 
PIKK DNA-PK H2AX Not found* 

*Enzymes not found in O. dioica but identified in Ciona. Ciona protein sequences were used as 

queries to search the Od genome. 
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Table A1B Demodifying O. dioica enzymes removing histone 
methylation-, acetylation- and phosphorylation. 

Protein Family Demodifying 
enzyme  

Residue targets identified 
so far  

Isoforms identified in O. 
dioica 

    
Deacteylases    
Sirtuins SIRT1 H3K9, 

H4K16 1 
 SIRT1 H3K9, 

H4K16 1 
 SIRT2 H4K16 1 
 SIRT5  1 
 SIRT4  1 
 SIRT6  1 
 SIRT7  1 
HDAC HDAC8  2 
 HDAC7  1 
 HDAC1  1 
 HDAC3  1 
    
Demethylases    
JMjC JHDM1 H3K36 1 
 UTX/UTY H3 K27 3 
 JMJD3 H3K9, H3K36 1 
 KDM7A H3K9, H3K27 1 
LSD LSD1 H3K4, H3K9 2 
PAD4 PAD4 H3R26, H3R17, H4R3 1 
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Figure A1 Overexpression of a H3.2-DsRed fusion protein containing a 
mutation at Ser28 to Ala28. Immunostaining of embryos with an anti 
DsRed- (green) and anti H3S28P antibody after microinjection of the 
pH3A28-DsRed expression plasmid. Mitotic cells that were successfully 
transfected expressed a mutated form of canonical H3.2 histone where 
Ser28 had been replaced by Ala28. The strength of H3.2A28-DsRed signal 
varied between transfected cells but cells with a high enrichment for the 
mutated H3.2 never showed a H3S28P signal. 
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