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Abstract
The efficient healing of skin wounds is crucial for securing the vital barrier
function of the skin, but pathological wound healing and scar formation are
major medical problems causing both physiological and psychological
challenges for patients. A number of tightly coordinated regenerative
responses, including haemostasis, the migration of various cell types into
the wound, inflammation, angiogenesis, and the formation of the
extracellular matrix, are involved in the healing process. In this article, we
summarise the central mechanisms and processes in excessive scarring
and acute wound healing, which can lead to the formation of keloids or
hypertrophic scars, the two types of fibrotic scars caused by burns or other
traumas resulting in significant functional or aesthetic disadvantages. In
addition, we discuss recent developments related to the functions of
activated fibroblasts, the extracellular matrix and mechanical forces in the
wound environment as well as the mechanisms of scarless wound healing.
Understanding the different mechanisms of wound healing is pivotal for
developing new therapies to prevent the fibrotic scarring of large skin
wounds.
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Introduction
Intact healthy skin protects the body from outside threats; there-
fore, proper wound healing is an essential process in response 
to tissue damage1–3. The formation of a scar comprises a cru-
cial part of normal mammalian tissue repair but defects in its 
resolution can lead to excessive accumulation of extracellular 
matrix (ECM) in the tissue and cause pathological scarring. In 
addition, overproduction of ECM components and tissue harden-
ing characterise other fibrotic conditions of the skin, namely scle-
roderma affecting limited areas of the skin and systemic sclerosis 
affecting the whole skin and internal organs4. Fibrosis also 
affects many other organs, such as the heart, liver, kidney, and  
lungs, leading to severe dysfunction of these tissues. Aberrant 
skin wound repair leading to chronic non-healing wounds and 
pathological scarring and fibrosis after severe trauma affect  
millions of people worldwide, but effective cure or therapeutics  
for adverse scarring are still lacking. However, because cuta-
neous wound healing and fibrosis are extensively studied, the 
obtained data can be exploited for developing therapies for the  
related pathological conditions in many other tissues as well.

Tissue damage repair aims at restoring tissue integrity and con-
sists of complex and tightly regulated biological processes 
involving extensive cooperation of several cell types, growth 
factors and the cytokines secreted by them and the surrounding  
ECM5. Adult skin wounds heal by scarring, which restores 
the barrier function of the skin and thereby prevents the body 
from dehydration and protects wounds from infections5. A  
normal scar is composed of loose fibrous connective tissue and 
is slowly remodelled during the healing process to become 
stronger; however, it remains weaker and functionally deficient 
compared with uninjured tissue5. Chronic inflammation of the 
dermis and uncontrolled function of activated connective tissue  
cells, myofibroblasts, may lead to abnormal overgrowth of the 
scar, resulting in a hypertrophic scar or a keloid with an excess 
of ECM proteins6 (Figure 1). These two pathological types of  
scars have a different aetiology and unique and distinct structural 
and molecular characteristics, as will be discussed below 
in more detail. Promoting wound healing without excessive  
scarring is important in terms of both function and aesthetics.

Notably, foetal skin wounds heal without a visible scar until  
gestational week 24. Even some adult tissues, including the oral 
mucosa, heal with minimal scar formation7. We propose that 
a detailed understanding of the mechanisms of foetal and oral 
wound healing will increase our understanding of the scarless  
repair process in general and help in developing therapies for 
wounds and fibrotic scars8–11.

In this review, we briefly summarise the processes and key 
mechanisms of normal and scarless wound healing and the fea-
tures and pathogenesis of hypertrophic and keloid scars. We also 
discuss the impact of myofibroblasts and mechanical stress as 
well as cell–cell interactions in cutaneous wound healing and  
fibrosis, uncovering recent advances in the field.

Normal wound healing
Cutaneous wound healing in adults is well understood and con-
sists of four partly overlapping phases: haemostasis, inflammation, 

proliferation, and remodelling5,12,13. The three latter phases 
determine whether the wound heals normally or whether an 
aberrant healing process leads to the excessive production of  
ECM proteins and to fibrosis6,11,12,14.

Haemostasis starts with the formation of a blood clot that arrests 
bleeding and protects the wound area from microbial invasion5,14. 
The formed fibrin network stores growth factors and serves as 
a platform for migrating vascular cells, leukocytes and fibrob-
lasts. An inflammatory reaction is induced by growth factors 
(principally by the transforming growth factor beta 1, or 
TGFβ1), cytokines (for example, interleukins IL-1 and IL-6) 
and chemokines (for example, chemokine C-X3-C ligand 1, or  
CX3CL1) released from platelets and damaged keratinocytes5,12,14. 
Infiltrating inflammatory cells eliminate microbes and produce 
oxygen radicals and proteinases to fight pathogens. They also 
secrete growth factors, cytokines and chemokines that activate 
the proliferation phase, which comprises neovascularisation, 
formation of granulation tissue, and re-epithelisation5,14. The  
formation of new blood vessels is activated by cytokines and  
vascular growth factors—for example, vascular endothelial growth 
factors (VEGFs) and basic fibroblast growth factor (bFGF)— 
and is important for the progression of healing since the newly 
formed wound area suffers from hypoxia and lack of nutri-
ents. Dermal fibroblasts start to proliferate and produce large 
amounts of ECM components, forming a temporal connective 
tissue called granulation tissue rich in capillaries, macrophages 
and fibroblasts. Re-epithelisation starts when basal keratinocytes 
and regenerative epidermal stem cells derived from interfol-
licular epidermis, hair follicles and sebaceous glands15–17 divide  
and differentiate in the wound edges and migrate along the 
surface of the granulation tissue to cover it and form the  
outermost protective layer of the wound. Keratinocytes lying in 
the wound edge produce matrix metalloproteases (MMPs) such 
as MMP-1, which degrades ECM and decreases adhesion of 
keratinocytes, thereby promoting their migration. Mechanical 
stress, resulting from ECM deposition, and secreted factors, prima-
rily TGFβ1, activate many different cell types, such as fibroblasts, 
pericytes, adipocytes, resident mesenchymal progenitor cells, and 
bone marrow–derived mesenchymal stem cells, to form a het-
erogenic population of myofibroblasts that actively proliferate 
and secrete ECM proteins such as collagens I and III and  
fibronectin6,18,19. Myofibroblasts attach to the ECM via integrins 
and contract through the alpha-smooth muscle actin (αSMA)-
rich stress fibres, effectively narrowing the wound area. The last 
phase of wound healing, maturation, is characterised by the 
apoptosis of myofibroblasts and other cells and by the remod-
elling of the connective tissue (for example, through action 
by MMPs), all in all resulting in a tight scar structure12,13.  
Finally, the ratio of fibrillar collagen I to collagen III returns to 
the level of normal skin (5:1) from that in the temporal wound 
matrix (2:1), and fibril size increases, corresponding to the  
characteristics of a healthy dermis5,14.

Pathological scarring: hypertrophic scars and 
keloids
Whereas superficial epidermal skin damage heals efficiently, 
the healing of deeper dermal wounds may lead to abnormal 
scar overgrowth and formation of two different types of fibrotic 
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Figure 1. Foetal and oral wound healing and different types of fibrotic skin scars. A schematic drawing showing the structures of normal 
skin, scarless foetal and oral wounds, and the two main types of fibrotic cutaneous scars. The wound area is depicted with a dashed line. Foetal 
and oral wound healing share many characteristics. For example, these wounds contain a low number of myofibroblasts and extracellular 
matrix (ECM) does not accumulate in the wound bed. In addition, the inflammatory reaction is weak, which is manifested here by the low 
number of inflammatory cells in the wound. In oral wounds, saliva offers a humid environment with microbes, which is suggested to promote 
oral wound healing. The hypertrophic scar is limited to the area of the original wound and contains plenty of contracting myofibroblasts, 
which adhere to ECM via focal adhesion-like structures. Thin collagen fibres in the ECM are orientated in parallel to the cutaneous epithelia 
(insert). The keloid scar transcends the edges of the wound and extends into the surrounding skin. The inflammatory reaction is strong, 
dermal fibroblasts proliferate actively and thick hyalinised collagen bundles are orientated randomly (insert). Chronic inflammation persists, 
and angiogenesis is active in the keloids.
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skin disorders: hypertrophic scars or keloids. The mecha-
nisms of scar formation, the characteristic features and partially 
the treatments of these two types of pathological scars are  
different20–24. In clinical settings, despite intensive research aim-
ing to unravel the molecular and morphological differences of 
hypertrophic scars and keloids, their separation remains chal-
lenging and sometimes an injured area contains features from  
both scar types24.

Hypertrophic scars are defined as raised, erythematous, pruritic 
lesions that do not extend beyond the boundaries of the origi-
nal wound area (Figure 1). They usually appear near the joints 
or other areas exposed to stretching9,10, grow rapidly during 
4 to 12 weeks after wounding and tend to mature and flatten  
over time. Keloids protrude from the original wound site, invad-
ing the surrounding skin (Figure 1), and they may appear even 
years after the trauma, develop slower than hypertrophic scars 
and almost never regress but continue to grow like a benign fibro-
proliferative tumour9,10,25. They arise from different kinds of skin 
damage such as scratches, insect bites, vaccination, perforation, 
acne, surgical wounds, and burn injuries, and they usually  
appear in skin areas that lack hair follicles, namely in the neck, 
chest, shoulders, upper back, auricles and abdomen10,25. Keloids 
are most common among individuals of African or Asian 
ancestry and tend to have a strong but poorly characterised  
genetic background8. Hypertrophic and keloid scars also  
differ structurally, the main disparities existing in the size and 
architecture of the collagen fibres (Figure 1) and their cellular 
composition. However, the differences in the orientation of  
collagen fibres in various scar types have also been questioned26.

The pathogenesis of both hypertrophic scars and keloids is poorly 
understood9,11. According to the current understanding, scar over-
growth is thought to be controlled by the inflammation in the 
reticular dermis, with accumulation of inflammatory cells and 
fibroblasts to the scar area. In addition, neovascularisation and 
the formation of collagen fibres are active25,27. In the keloids, the 
inflammatory reaction is strong, and the levels of pro-inflammatory 
cytokines, such as IL-1, IL-6, and tumour necrosis factor alpha  
(TNFα), are high. This promotes chronic inflammation and results 
in the protrusion of the keloid beyond the original wound area. 
Mast cells and T and B lymphocytes are prominent in keloid 
scars. In addition, alternatively activated type M2 macrophages, 
which have been associated with fibroblast activation, colla-
gen formation and fibrogenic disorders28, accumulate in keloids.  
However, the exact roles of macrophages in the formation of  
pathological scars are incompletely understood and the contri-
bution of these cells will be discussed later in this review. In  
hypertrophic scars, the inflammatory reaction is weaker than in 
keloids because of differences in the intensity, frequency and 
duration of the inflammation in the reticular dermis. For exam-
ple, immune cells are less frequent than in keloids (Figure 1),  
and expression of several inflammatory genes (for example, 
TNFα, IL-1, and IL-10) is decreased in human hypertrophic  
scars when compared with normally healing scars29.

Other key factors affecting the pathogenesis of hypertrophic 
scars and keloids are fibroblasts, growth factors, cytokines and 

ECM remodelling6,30–33. In keloids, fibroblasts are more sensitive 
to TGFβ1 than in normal skin, and their density and prolifera-
tion rate are high, whereas apoptosis is lower. The constant pres-
ence of αSMA-positive contracting myofibroblasts is typical  
for hypertrophic scars. Fibroblasts and myofibroblasts, stimu-
lated by several growth factors such as TGFβ, platelet-derived 
growth factor (PDGF), and insulin-like growth factor (IGF), 
produce high amounts of collagen and other ECM components, 
thereby accelerating the formation of abundant fibrotic tissue 
in pathological scars31,32. Collagen synthesis is estimated to be 
7-fold higher in hypertrophic scars and up to 20-fold higher in 
keloids compared with normal skin30. In hypertrophic scars,  
the ratio (6:1) between collagen I and collagen III is lower than 
it is in keloids (17:1) and thus is closer to the value of normal 
skin (5:1). In keloids, the amount of collagen cross-links is twice 
that of hypertrophic scars, resulting in the formation of thick  
collagen bundles. In addition, the levels of many other ECM 
components, such as hyaluronic acid, fibronectin, tenascin and 
MMP-19, are increased in both pathological scar types31–33,  
but their relative expression and the localisation in the scar area 
may vary in between24.

Myofibroblasts and mechanical forces in cutaneous 
wound healing and fibrosis
Deposition of ECM and temporary scar formation are part of 
a normal healing process; however, accumulation of abnor-
mally organised stiff ECM that replaces the normal tissue is 
a characteristic feature of fibrotic scars. The most important 
cells promoting scarring and fibrosis are activated fibroblasts— 
myofibroblasts—that secrete high amounts of ECM components 
with abnormal structural and mechanical properties and with an 
altered capacity to bind growth factors34–36. Ultimately, excessive 
ECM accumulation and cross-linking lead to increased tissue 
stiffness and pathological scarring, causing impaired function of  
the skin34.

The mechanical microenvironment affects scar contracture, and 
if the contraction continues after healing, it results in a poor  
functional and cosmetic outcome2,3,34,36. Fibroblasts are sensitive 
to exogenous mechanical forces, which trigger the upregulation 
of several fibrotic genes, encoding proteins such as TGFβ, αSMA 
and collagen I, through different mechanoreceptors such as 
integrins, growth factor receptors, G protein–coupled receptors  
and ion channels2,37. The cellular contractile forces in the acti-
vated myofibroblasts are critical to maintain scar contracture 
through their adhesion to the ECM. The integrin-focal adhesion 
kinase (FAK) pathway is central in regulating skin mechan-
otransduction. FAK is activated in response to mechanical forces 
during wound healing, and it affects intracellular signalling by  
numerous downstream factors, such as PI3K and MAPK kinases, 
which mediate fibrotic responses2,36,38. Decreased FAK sig-
nalling has been observed in non-healing wounds, whereas  
excessive FAK activation leads to the formation of hypertrophic  
scars. In addition, FAK degradation in diabetic ulcers has been 
associated with delayed wound healing and abnormal scar  
architecture39. Increased tension in the wound area induces hyper-
trophic scarring36,37, and scarless foetal wounds are known to  
have a lower resting stress compared with post-partum wounds2.
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Therapeutic possibilities for preventing pathological skin scar-
ring are still limited and have been focused mainly on reducing 
inflammation and contraction of the wound2,21–23. TGFβ1, as an 
inducer of myofibroblast differentiation, is considered a potential 
therapeutic target for the prevention of pathological scars9,21,40.  
In addition, several other secreted factors, such as connective 
tissue growth factor (CTGF), PDGF, IGF, VEGF, and IL-6, 
are known to promote myofibroblast differentiation37, whereas  
others, such as FGF, epidermal growth factor, interferon gamma 
and IL-10, have the opposite effect. Other recently described 
factors that affect myofibroblasts and fibrosis include integrin  
α11β1, a mediator of pro-fibrotic signals in dermal fibroblasts; 
cartilage oligometric matrix protein (also known as throm-
bospondin-5), which has a role in exporting collagen from 
fibroblasts; and integrin-linked kinase, a mechanotransducer and  
signal transmitter that controls TGFβ1 secretion34. The absence 
or inhibition of these proteins in mice has been shown to reduce 
fibrosis and thus has been suggested to be a suitable target for  
anti-fibrotic therapies34. Since scar formation is reduced upon 
decreasing mechanical forces in the wound area, scar-reducing 
therapies use mechanical off-loading2,41. Several biochemi-
cal signals related to mechanical tension have been reported 
to alleviate skin scarring, such as TGFβ1 inhibition, addition 
of TGFβ3 or down-regulation of connexin 4342. Currently,  
three different off-loading techniques are used in humans: 
silicone gel sheets, paper tape and embrace advanced scar  
therapy2. However, specific molecular mechanisms behind the 
therapies that use reducing tension in the wound area are still  
incompletely understood2 and more knowledge is needed to  
improve the current therapies.

The emerging roles of cell–cell interactions during 
wound healing and fibrosis
Wound healing involves several cell types, and unravelling their 
roles and mutual interactions is important for understanding 
the different phases of wound closure. For example, hair follicle 
stem cells interact with fibroblasts through the Wnt/β-catenin 
pathway to convert them to myofibroblasts to help in wound  
contraction36. In addition, the importance and therapeutic potential 
of macrophages in the wound healing process have been  
highlighted in recent years3,36,43. A recent study reports an inter-
esting cross-talk between myofibroblasts and macrophages 
during skin repair, indicating the potential role of adipogenic 
cells in wound healing and scarring44. Lineage tracing and flow  
cytometry revealed different subpopulations of myofibroblasts 
in adult mouse wounds, including those derived from CD26- 
expressing adipocyte precursors (APs) and others from cells 
with high CD29 (β1 integrin) expression44. Growth factors, 
such as PDGF-C and IGF1, secreted by CD301b+ M2-type  
macrophages were shown to selectively stimulate the prolifera-
tion of the AP-derived myofibroblasts but no other myofibroblast  
subsets, contributing to myofibroblast heterogeneity. In the  
wounds of aged mice or in experimentally induced mouse skin 
fibrosis, the AP-derived myofibroblasts and CD301b+ macrophages 
were significantly reduced, and the CD29+ pool was increased 
when compared with a normal wound healing environment. 
Interestingly, in keloids, the numbers of CD301b+ macrophages 
and CD26+ AP-derived myofibroblasts are also increased45.  

Another recent study showed that, during lung fibrosis, cad-
herin-11 mediates the adhesion between macrophages and 
myofibroblasts, promoting the activation of myofibroblasts and  
supporting their activity by targeting the macrophage-produced  
TGFβ to myofibroblasts46. Taken together, these results suggest 
that the presence of distinct myofibroblast populations in  
different fibrotic microenvironments provides possibilities 
for targeting specific subpopulations of cells in anti-fibrotic  
therapies aiming at scarless wound healing.

Scarless wound healing: foetal and oral wounds
Foetal and oral mucosal wound healing have been regarded as 
key models for scarless healing. However, despite intensive stud-
ies over the years, the mechanisms of both healing processes 
remain largely unknown47,48. Several studies have described 
mechanistic differences between scar-forming and scarless 
wound healing; however, a better understanding of the key  
cellular and molecular factors regulating these pathways would 
benefit the development of therapeutic tools for pathological  
cutaneous scars47,48.

Foetal wound healing
Skin wounds arising during the first and second trimesters of 
pregnancy heal perfectly without forming any scar5,10,47. Foetal 
wound healing does not follow the four-step process of adults. 
In addition, the wounds do not contract, ECM components do 
not accumulate, and granulation tissue is not formed (Figure 1).  
Also, skin appendages such as hair follicles and sweat glands 
re-form perfectly during foetal wound healing in contrast to the 
adult scar that forms without any skin appendages5,47,48. Recent 
studies have revealed that adult skin lacks, but foetal/neonatal 
skin includes, a subpopulation of fibroblasts in the upper part of 
the dermis which is needed for hair follicle regeneration after  
wounding18,49. Thus, foetal wound healing is considered to 
be more like a regenerative process, in which the damaged  
components are replaced and the tissue returns to its normal state, 
than a reconstructive healing (termed repair) aiming to restore  
the tissue architecture and structure with fibrotic healing and 
scar formation. The signalling pathways regulating the develop-
ment and growth of the skin are thought to play a key role in this  
regenerative healing50.

Multiple cell- and molecular-level distinctions exist between the 
foetal and adult wound healing processes in mammals1,12,20,47,48,50. 
One of these is a weak inflammatory reaction in foetal wounds 
which is due to an immature immune system. The degree  
and duration of the inflammatory reaction as well as the  
composition of the immune cells influence the final healing  
outcome51. Neutrophils, macrophages and mast cells are involved 
in skin scarring52, and foetal wounds have a lower amount 
of these cells; furthermore, the cells are less differentiated. 
Their growth factor and cytokine profiles are different as well.  
For example, the pro-inflammatory cytokines IL-6 and IL-8 are 
produced for several days in human adult wounds but only for a 
relatively short period during the foetal stage20. Moreover, the 
levels of anti-inflammatory cytokines, especially IL-10, which 
inhibits neutrophil and macrophage infiltration and prevents 
scarring, are high. The crucial role of the inflammatory cells in 
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scarring is further demonstrated in mutant mice that lack the 
essential hematopoietic transcription factor PU.1 and thus also  
neutrophils, macrophages, and mast cells: the adult skin wounds 
in these mice heal efficiently without scarring53. These obser-
vations suggest that the inflammatory reaction is a crucial 
mediator promoting fibrosis and scarring in adults but its role 
is still unclear. However, since fibrosis has been observed in  
the wounds of several immunodeficient mouse lines, it is 
known that scarring does not depend only on the lymphocyte-
mediated response. Furthermore, some studies suggest a  
supportive role for inflammatory cells during repair and regen-
eration. For example, knockdown of macrophages, but not  
neutrophils, resulted in impaired healing in rabbits, and in 
lower vertebrates the depletion of macrophages was reported to 
result in failing regeneration (for example, regarding the limb in  
salamander or the tail fin in zebrafish)51.

Another important difference between adult and foetal wounds is 
the production of ECM components, ECM-degrading enzymes 
and tissue inhibitors of metalloproteinases (TIMPs)30,47. There 
are disparities in the size and orientation of the collagen fibres 
and in the mechanical properties of the ECM, even between 
healthy adult and foetal skin. In foetal skin wounds, the number 
of αSMA-positive contracting myofibroblasts is very low  
(Figure 1) and fibroblasts migrate faster to injured sites, simul-
taneously proliferating and producing ECM that more closely 
resembles the ECM of developing skin and maintains this nor-
mal architecture and strength during the healing process47. 
Therefore, foetal scarless wounds also contain more collagen III 
than collagen I (collagen III comprises 30 to 60% of total  
collagen in foetal skin and only 10 to 20% in adult skin) and more  
hyaluronic acid2,47,54. The ratio of MMPs to TIMPs is high in  
foetal wounds; thus, the ECM components are actively degraded, 
favouring remodelling over accumulation of the ECM in  
the wound area30,47,48,55. In addition, the amounts of some adhe-
sion proteins, such as tenascin and fibronectin, which are more 
prominent in healing wounds than in healthy skin, are higher in 
foetal wounds, supporting cell attraction and migration to the 
sites of injury thereby facilitating scarless wound repair36,47. 
Finally, the expression of the collagen cross-linking enzyme lysyl  
oxidase (LOX), associated with pathogenesis of fibrotic diseases,  
is lower47.

Of particular interest is the difference in the expression of the 
TGFβ family of growth factors that are involved in every step 
of wound healing dealing with processes such as cell prolif-
eration, differentiation, angiogenesis, ECM production and 
modulating immune response40,56. Different isoforms (TGFβ1, 2  
and 3) bind to the same receptors (TGFβRI and II) and signal 
through both canonical and non-canonical pathways. There is 
emerging evidence that the biological roles of these isoforms 
are different, but their mechanisms of action have remained 
partly unclear, although some evidence for differences in  
signal transduction, including transcriptional regulation of tar-
get genes, has been suggested40,56. In addition, the expression 
of TGFβ isoforms varies during different phases of wound heal-
ing. Foetal skin wounds, completely opposite to adult wounds, 
show high levels of TGFβ3 and low levels of TGFβ1 and  

TGFβ21,47,56. In foetal wounds, TGFβ3 signalling decreases 
the number of macrophages and monocytes and the expres-
sion of collagens and fibronectin in the wound bed47. In clinical 
experiments, TGFβ3 injected into adult wounds was shown to 
reduce scar formation and induce collagen organisation equiva-
lent to that of normal skin9,57. Moreover, blocking the function of  
TGFβ1 and TGFβ2 (for example, with neutralising antibod-
ies) reduced the severity of scarring, suggesting these growth 
factors as good candidates in scar prevention. Neverthe-
less, attempts to prevent scar formation by targeting different 
TGFβ isoforms have resulted in contradictory results so far, 
and many successful preclinical models have failed in clinical  
trials9,21,57.

Indeed, there are also some contradictory preclinical data such 
as the use of TGFβ3 in a rabbit ear wound model which showed 
faster healing but no decrease in the scarring40. In clinical trials, 
a TGFβ1 inhibitor and a monoclonal antibody against TGFβ1 
were found to be ineffective in the treatment of scleroderma and 
systemic sclerosis, and human recombinant TGFβ3 failed in a 
phase III clinical trial on human scarring57. In addition, a recent 
comparison of human hypertrophic scars with normally healing 
scars showed increased and persistent expression of the TGFβ3 
gene; surprisingly, there was no difference in TGFβ1 expression29.  
This result conflicts with the view of differing TGFβ signal-
ling between adult and foetal wounds and could partly explain 
the failure of TGFβ3 to prevent fibrosis in clinical trials1,9,21,47,57. 
Moreover, in hypertrophic scars, the expression of TGFβ1 and 
TGFβ2 is lower compared with keloids whereas the expression 
of TGFβ3 is higher. These observations, combined with several 
other examples, point out the importance and complexity of  
different TGFβ isoforms and their relative ratios in regulat-
ing wound healing processes and different forms of scarring. 
The context-dependent outcome of TGFβ signalling and its 
pleiotropic effects and the large number of different factors 
involved, such as the balance between ligands, different cells,  
signalling mediators, activated downstream pathways and ECM 
stiffness, make therapeutic targeting extremely challenging. 
Therefore, it is probable that effective therapies in the future will 
be based on a combination of different factors rather than any  
single molecular target40,56,58.

Oral wound healing
Oral mucosal wounds heal rapidly with minimal scar forma-
tion, sharing some characteristics of the foetal healing process  
(Figure 1). Compared with cutaneous wounds, oral wounds  
differ in the production of ECM components; for example, 
hyaluronan, tenascin and fibronectin are highly expressed in 
both oral and foetal wounds, and the ratios of collagen III to  
collagen I and MMPs to TIMPs are high1,7,59. Furthermore, 
the number of growth factors and cytokines as well as bone  
marrow–derived cells and blood vessels and levels of mediators  
contributing to immune and profibrotic responses show  
differences. For example, the numbers of neutrophils, macro-
phages and T cells are reduced in oral wounds (Figure 1). Several 
inflammatory cytokines, such as IL-23, IL-24 and inflammatory 
response–inducing interferons, are absent and the pro-inflammatory 
cytokines IL-6 and IL-8 are only briefly expressed7. In oral 
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wounds, compared with cutaneous wounds, the levels of VEGFs 
are reduced and thus angiogenesis is less active. Myofibroblast  
differentiation may also differ between oral and dermal wounds. 
Although oral wounds have more αSMA-positive myofibrob-
lasts with effective contraction capacity and a high proliferation 
rate, the cells are less responsive to TGFβ1, which is also  
less expressed in oral wounds, than adult dermal fibroblasts7,59–62.

Re-epithelialisation is faster in oral than in cutaneous 
wounds, suggesting greater proliferative capacity for oral  
keratinocytes57. Human oral and cutaneous keratinocytes show 
differences in their morphology and differentiation and in their 
gene expression profiles. Moreover, a recent study showed that 
biopsies from human oral and cutaneous repair sites exhibit 
specific transcriptional signatures during wound healing, high-
lighting the reduced differentiation capacity and inflammatory 
response of oral mucosa compared with skin63,64. In addition, it 
is suggested that environmental factors, primarily saliva with 
high levels of microbes, support oral wound repair7. It should be 
noted that addressing the mechanisms behind oral wound healing  
has resulted in contradictory findings in certain oral regions, 
and the healing outcomes vary considerably, ranging from  
scarless healing to extensive scar formation65. For example, 
palatal and gingival wounds have been reported to heal without 
scarring in one study but another study reported rigid scar  
formation in palatal wounds7.

Conclusions
Scar tissue is formed mainly of fibrillar collagen produced by 
myofibroblasts. Factors that are important in the activation of 
myofibroblasts include the availability of active growth fac-
tors, such as TGFβ1 and PDGF; the activation of inflammatory  
signalling; and a mechanical stress response. Currently, the key 
clinical treatments used for preventing pathological scarring are 
silicone gels or surgical operations to reduce wound contraction 
as well as medication that decreases inflammation in the wound 
area. Despite the already well-understood basic molecular mech-
anisms of wound healing, knowledge about hypertrophic and 
keloid scars is somewhat contradictory, which complicates the  

development of efficient wound care for different types of 
fibrotic scars. Part of the problem lies in the imperfect in vitro 
wound healing assays that lack the standardisation of experimen-
tal variables such as the used cell culture surfaces, which can 
range from plastic to biological scaffolds with variations in ECM  
composition and stiffness, as well as limited correlation between 
rodent, rabbit and pig wound healing models and human wound  
physiology29. In addition, understanding the details of the coor-
dinated actions and plasticity of different cell types in the 
wounds, regulation of growth factor and cytokine synthesis, 
and changes in ECM dynamics during various phases of  
wound healing and scar formation is still insufficient. However, 
the various mechanisms are extensively studied in the context 
of both scarless and fibrotic wound healing, and clinical trials— 
for example, with human recombinant TGFβ3, PDGF-B, fibrin 
platelet-rich plasma concentrate, estradiol and erythropoietin 
among many others—are ongoing (https://clinicaltrials.gov/ and 
https://www.clinicaltrialsregister.eu/). Hopefully, these clinical 
trials and basic science research efforts will lead to a better 
understanding and treatment of both cutaneous pathological  
scars and a wide spectrum of fibrotic diseases in other tissues.
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