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Abstract

Background

In most epithelial ovarian carcinomas (EOC), epigenetic changes are evident, and overex-

pression of histone deacetylases (HDACs) represents an important manifestation. In this

study, we wanted to evaluate the effects of the novel HDAC inhibitor (HDACi) panobinostat,

both alone and in combination with carboplatin, on ovarian cancer cell lines and in a murine

bioluminescent orthotopic surgical xenograft model for EOC.

Methods

The effects of panobinostat, both alone and in combination with carboplatin, on proliferation

and apoptosis in ovarian cancer cell lines, were evaluated using colony andWST-1 assays,

Hoechst staining and flow cytometry analysis. In addition, mechanisms were characterised

by western blotting and phosphoflow analysis. Immuno-deficient mice were engrafted ortho-

topically with SKOV-3luc+ cells and serial bioluminescence imaging monitored the effects of

treatment with panobinostat and/or carboplatin and/or surgery. Survival parameters were

also measured.

Results

Panobinostat treatment reduced cell growth and diminished cell viability, as shown by the

induced cell cycle arrest and apoptosis in vitro. We observed increased levels of cleaved

PARP and caspase-3, downregulation of cdc2 protein kinase, acetylation of H2B and higher

pH2AX expression. The combined administration of carboplatin and panobinostat synergis-

tically increased the anti-tumour effects compared to panobinostat or carboplatin treatment

alone. In our novel ovarian cancer model, the mice showed significantly higher rates of sur-

vival when treated with panobinostat, carboplatin or a combination of both, compared to the
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controls. Panobinostat was as efficient as carboplatin regarding prolongation of survival. No

significant additional effect on survival was observed when surgery was combined with car-

boplatin/panobinostat treatment.

Conclusions

Panobinostat demonstrates effective in vitro growth inhibition in ovarian cancer cells. The

efficacy of panobinostat and carboplatin was equal in the orthotopic EOCmodel used. We

conclude that panobinostat is a promising therapeutic alternative that needs to be further

assessed for the treatment of EOC.

Introduction
Epithelial ovarian cancer (EOC) is the sixth most common malignant neoplasm in women
worldwide, and the seventh most common cause of cancer death [1]. Maximum cytoreductive
surgery remains the cornerstone in EOC treatment, followed by adjuvant chemotherapy with
carboplatin/paclitaxel combination regimens [2]. First line treatment yields a response rate of
over 80% and 40–60% complete responses [3, 4]. In the course of the disease, the majority of
patients will relapse and develop drug resistance [5]. The overall five-year survival rate is still
below 45% [6]. Over the last 10 years, a large number of phase II and III studies have evaluated
multidrug combinations, dose-dense scheduling, intraperitoneal delivery routes and mainte-
nance therapy, as well as targeting of angiogenesis and poly/ADP-ribose polymerase (PARP)
with marginal or no improvement in overall survival [7–11]. New strategies are therefore to be
employed if survival rates are to be improved.

Epithelial ovarian cancer is driven by copy number alterations, somatic mutations and epi-
genetic changes as acetylation [12]. Epigenetic regulation refers to changes in gene expression
by modification of DNA and/or histones, with no alternation of the nucleotide sequence [13,
14]. DNA and histone proteins represent the building blocks of nucleosomes, which are the
basic structure of chromatin. These are important for the packaging of eukaryotic DNA, and
thereby the control of gene transcription. Acetylation of histones neutralizes the positive charge
of the histone tail, and consequently weakens the covalent bindings to the negatively charged
DNA, resulting in an open chromatin that facilitates gene transcription [15]. Hyperacetylated
histones, therefore, tend to activate genes, and the degree of acetylation is regulated by histone
acetyltransferases and histone deacetylase (HDAC)[12]. Hypoacetylation, on the other side can
result in downregulation of important tumour suppressor genes such as Tp53 and RB1, can
stimulate angiogenesis, and promotes carcinogenesis [16, 17].

HDACs, the important mediator of hypoacetylation, are overexpressed in ovarian cancer
tissue [18]. HDACis (Histone deacetylase inhibitors) are a promising class of drugs demon-
strating anticancer effects. HDACi can impede cell proliferation and angiogenesis, promote dif-
ferentiation and induce apoptosis [19]. The effects are mediated both through inhibition of
deacetylation of histones and interaction with non-histone proteins such as transcription fac-
tors and multiprotein complexes [20, 21]. The HDACis vorinostat and romidepsin, which were
approved by the U.S. Food and Drug Administration (FDA) in 2006 and 2009, respectively, are
permitted for treatment of T-cell lymphomas [22, 23].

Panobinostat (LBH 589) is a pan-HDACi that has demonstrated more effective antitumour
activity against both solid tumours and haematological malignancies than the earliest recog-
nised inhibitors [12]. Panobinostat appears to be the most potent HDACi yet developed; it has
been shown to be at least 10 times more potent than vorinostat [12]. Oral panobinostat was
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accepted by the FDA in 2015 for treatment of patients with recurrent multiple myeloma in
combination with bortezomib and dexamethasone [24]. Panobinostat has also demonstrated
effective HDAC inhibition in breast, prostate, colon and pancreatic cell lines, while its effects
on normal cells were marginal [12, 25]. Although panobinostat has entered phase I/II studies,
both with oral and intravenous formulations, for solid tumours, no recruiting studies evaluat-
ing the effect of panobinostat on EOC have been identified. Neutropenia, anaemia, thrombocy-
topenia, hypokalaemia and hypophosphatemia are the toxicities reported, while dose-limiting
symptoms may be diarrhoea, nausea and fatigue [14].

In vitro evidence exists for the use of different HDACis (valproic acid, sodium butyrate, vor-
inostat, belinostat, panobinostat and romidepsin) in EOC, including reports describing inhib-
ited proliferation and induced cell cycle arrest and apoptosis [26–28]. However, only a limited
number of studies have investigated the preclinical effects of HDACis in xenograft models [29,
30]. Vorinostat demonstrated a significant increase in survival in an intraperitoneal model of
EOC, but only when combined with paclitaxel [31]. No evaluation of HDACis has so far been
undertaken in orthotopic models of EOC that permit the study of early, localised disease,
tumour cell invasion and dissemination in a biologically relevant order [32].

In this study, we have evaluated the effects of panobinostat, both alone and in combination
with carboplatin, on the ovarian cancer cell lines SKOV-3 and CaOv3 in vitro. For the very first
time, panobinostat has been assessed in an orthotopic surgical xenograft in vivo EOCmouse
model [33]. Panobinostat effectively inhibited growth and induced apoptosis in ovarian cancer
cells in vitro, and the effects were synergistic when combined with carboplatin. The drug was
well tolerated in the in vivo study. Clinically, panobinostat treatment delayed disease progression
and was just as efficient as carboplatin when the survival parameters were analysed.

Materials and Methods

Cell Lines and Reagents
The human ovarian adenocarcinoma cell lines SKOV-3 and CaOv3 were obtained from Amer-
ican Type Culture Collection (ATCCManassas, VA, USA). These cell lines were chosen
because of their extensive prior use and characterisation [26, 34]. The cells were cultivated in
Dulbecco’s modified Eagle’s medium (DMEM; Gibco, Paisley, UK) and supplemented with
10% heat-inactivated foetal calf serum (FCS; Gibco), 2 mM L-glutamine (Gibco), penicillin 100
IU/ml and 100 μg/ml streptomycin (Gibco) at 37°C in a humidified atmosphere with 5% CO2.
Cells were grown in 75 cm² cell culture flasks (Costar, Cambridge, MA, USA) and subcultured
twice a week. Suspensions of the cells were obtained by washing the cells twice with 10% phos-
phate buffered saline (PBS; Dulbecco’s tablets, Oxoid Limited, Hampshire, UK) before dissoci-
ation of cell monolayers with Trypsin-EDTA (Gibco). Panobinostat was kindly provided by
Novartis (Basel, Switzerland), and carboplatin was purchased from Teva (Helsingborg, Swe-
den). Both drugs were dissolved in DMSO (ATCC1 4-X™, U.K.) and stored in aliquots at
-20°C until use.

Colony Formation Assay
SKOV-3 cells (300 cells/well) were seeded in a 6-wells plate (Costar, Cambridge, MA, USA) in
DMEM. After 24 hours of incubation, the media was changed and the cells were treated with 0,
3.1, 6.2, 12.5, 25 or 50 nM panobinostat. After 72 hours, the cells were gently washed and
allowed to form colonies in the complete medium without drugs for another 10 days, before
being fixed with 95% methanol, washed with PBS and stained with a tryphan blue stain solu-
tion (Thermo Fischer Scientific, Hannover Park IL, USA). Colonies comprising more than 50
cells were enumerated.

Panobinostat Improves Survival for Ovarian Cancer in a Mice Model

PLOS ONE | DOI:10.1371/journal.pone.0158208 June 28, 2016 3 / 16



Annexin V-FITC/Propidium Iodide (PI) Flow Cytometry
SKOV-3 and CaOv3 cells were seeded in DMEM in 6-well plates (Costar, Cambridge, MA,
USA) with 2 x 105 cells in each well. Cells were incubated for 24 hours; the media was then
changed, and the cells were treated with 0, 3.1, 6.2, 12.5, 25 or 50 nM of panobinostat. After 72
hours, the cells were collected and concentrated by centrifugation. Cells were re-suspended,
and cells in different apoptotic stages were identified using the Muse Annexin V & Dead Cell
Assay Kit (Merck Millipore, Billerica, MA, USA). The assay was carried out as described by the
manufacturer’s protocol. The cell sample was analysed by use of the MuseTM Cell Analyzer
(Merck Millipore).

Morphological Changes Observed by Hoechst 33342 Staining
Percentages of abnormal/apoptotic SKOV-3 cells were determined after fixation and staining
with 4% paraformaldehyde, supplemented with 10 μg of the DNA-dye, bisbenzimide (Hoechst
33342, Calbiochem, San Diego, CA, USA). The different treatment regimens were: panobino-
stat (0, 0.062, 0.310, 0.621, 3.10, 6.21, 31.0, 62.1, 310, 621 and 3100 nM), carboplatin (0, 0.175,
0.35, 1.75, 3.5, 17.5, 35, 175, 350, 1750 μM) and panobinostat/carboplatin combined. 300–500
cells were counted for each well. Viable cells had a uniform diffused and well-defined nuclear
fluorescence, while the apoptotic cells appeared condensed and/or fragmented, with more
intense staining [35]. The morphology was analysed using a Leica DM IRB epifluorescence
microscope (Leica, Bensheim, Germany).

Cell Cycle Analysis
SKOV-3 cells were seeded into 6-well plates (2 x 105 cells per well) for 24 hours before being
treated with 0, 3.1, 6.2, 12.5, 25 or 50 nM of panobinostat for 48 hours. Suspensions of cells
were obtained as described above; the cells were then fixed in ice-cold methanol (Kemetyl, Ves-
tby, Norway). The cells were re-suspended in PBS, and the Muse Cell Cycle Kit (Merck Milli-
pore, Billerica, MA, USA) was used to measure the cellular DNA content, according to the
manufacturer’s instructions. The Muse Cell Analyzer (Merck Millipore) was used for the quan-
titative measurements, and the number of cells was plotted as a function of DNA content.

Analysis of Cell Viability
Cell viability was determined using the cell proliferation reagent WST-1 (Roche Applied Sci-
ence). Aliquots (100 μl) of SKOV-3 and CaOv3 (50,000 cells/ml) were seeded into 96 well-
plates (Costar), and cultured with the following concentrations of panobinostat (0, 0.062,
0.310, 0.621, 3.10, 6.21, 31.0, 62.1, 310, 621 and 3100 nM), carboplatin (0, 0.175, 0.35, 1.75, 3.5,
17.5, 35, 175, 350 and 1750 μM), or a combination of these concentrations. After 72 hours,
10 μl WST-1 was added for two hours before the absorbance at 620 nm was measured with a
microplate reader (Tecan Infinite 200, software Magellan version 6). The results are presented
as a ratio of treated viable cells relative to viable control cells, using the formula: [(treated viable
cells) / (control viable cells)] x 100. The effect of combining panobinostat with carboplatin was
calculated [36].

Western Blot Analysis
SKOV-3 cells were plated at 75% confluence in 6-well plates, and allowed to attach overnight.
Cells were treated with panobinostat at 0, 3.1, 6.2, 12.5, 25 or 50 nM for 24 hours before being
lysed with a cell lysis (Shieh) buffer. Protein concentrations were determined, and equal
amounts of protein were subjected to SDS-polyacrylamide gel electrophoresis and
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electroblotted onto nitrocellulose membranes. After blocking with 5% non-fat skimmed milk
in tris-buffered saline with tween (TBST) for one hour at room temperature, the blots were
incubated with primary antibodies diluted in a blocking buffer and directed against p21
(ab16767, Abcam, Cambridge, UK), PARP-1 (Santa Cruz Biotechnology Inc., Santa Cruz, CA,
USA), H2B (Upstate, Lake Placid, USA), caspase-3 (sc-7148, Santa Cruz, CA, USA), cdc2 (sc-
166135, Santa Cruz, CA, USA), α-Tubulin (mAb #3873, Sigma, Saint Louis, USA), cox IV
(ab183629, Abcam) and GAPDH (mAbcam 9484, Abcam) for one hour at 37 C. GAPDH, cox
IV and tubulin were used as loading controls. After washing and incubation with appropriate
horseradish peroxidase conjugated secondary antibodies (Jackson ImmunoResearch, West
Grove, PA, USA), the bound antibodies were detected with the use of the Pico Stable peroxide
solution and luminol enhancer solution (Pierce Biotechnology, Inc., Rockford, IL, USA).
KodakImage Station 4000R (Eastman Kodak Company, Rochester, NY, USA) was used for
visualisation.

The DNA Damage Mark pH2AX Detection
To examine whether the cells were injured by the DNA damage response pathway, the level of
H2AX phosphorylation (pH2AX) was measured. SKOV-3 cells were seeded into 6-well plates
(2 x 105 cells per well) for 24 hours before being treated with 0, 25 or 50 nM of panobinostat
for 24 hours. To measure the DNA damage mark from gamma-H2AX phosphorylation
(pH2AX), the MuseTMH2AX activation detection kit (Merck Millipore, Billerica, MA, USA)
was performed according to the manufacturer’s description.

Retroviral Transfection of SKOV-3 Cells
Retroviral transfection with the establishment of SKOV-3 clones, which steadily expressed
luciferase denoted as SKOV-3luc+, was performed as described earlier [33].

Animals
The protocol for animal studies was approved by the Norwegian State Commission for Labora-
tory Animals (ID 4602), and the experiments were performed according to the European Con-
vention for the Protection of Vertebrates Used for Scientific Purposes. Female NSG mice (six
to eight weeks old; Vivarium, University of Bergen) were maintained under defined flora con-
ditions in individually ventilated (HEPA-filtered air) sterile micro-isolator cages (Techniplast,
Buguggiate, Italy) at the University of Bergen’s animal facility. No more than five mice were
placed in each individually ventilated cage; cages were kept on a 12-hour dark/night schedule
at a constant temperature of 21°C, and at 50% relative humidity. Bedding and cages were auto-
claved and changed twice per month. The mice were offered a continuous supply of sterile
water and food, were monitored daily by the same staff for the duration of the experiment, and
were weighed three times per week. During imaging, mice were anaesthetised with 3% isoflur-
ane (Isoba Vet, Schering-Plough, Brussels, Belgium).

Toxicology Study
In this study, all drugs and control substances were administered through the intraperitoneal
route. In human studies, intraperitoneal delivery has shown at least the same response rate as
the intravenous route [37, 38]. To determine the maximum tolerated dose (MTD) of panobino-
stat, the following dosages and schedules were evaluated: panobinostat at 15, 25 or 50 mg/kg,
five days per week, for three consecutive weeks (Q5Wx3), with three mice in each group. Pano-
binostat was dissolved in 10% DMSO. The controls were matched for the concentration of the
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solvent. Carboplatin was tested in an earlier study [33]. Based on the combined results, an
amalgamation consisting of panobinostat at 7.5 mg/kg (Q5Wx3) and carboplatin at 12 mg/kg
(Q2Wx3) was chosen for further studies. During the MTD study, body weight was monitored
daily for 28 days, and at the end of the study the mice were euthanized.

Necropsy
The health status and weight of the mice were monitored daily, and mice were humanely
euthanized when moribund, as defined by weight loss of> 10–15% of body weight, signs of
lethargy or ruffled fur.

Orthotopic Ovarian Cancer Model
The establishment of orthotopic xenografts was performed as described earlier [33]. Formation
and growth of tumours was followed by bioluminescent imaging (BLI). Surgical intervention
was performed 21 ± 7 days after orthotopic injection of tumour cells. Prior to initiation of the
therapeutic study, mice were divided into groups based on BLI and body weight. We performed
an ANOVA analysis to avoid selection bias. The surgical procedure and optical imaging tech-
nique used, as well as the administration methodology of chemotherapeutics, were the same as
described earlier [33].

Design of Trials
The therapeutic schedules were divided into an isolated chemotherapeutic cohort and a com-
bined surgical/chemotherapeutic cohort. The mice were randomised into four different treat-
ment arms in both cohorts, with an equal number of mice in each group (n = 6). First cohort
(chemotherapeutic): (a) control, (b) panobinostat 15 mg/kg (Q5Wx3), (c) carboplatin 20 mg/
kg (Q2Wx3) and (d) carboplatin 12 mg/kg (Q2Wx3) + panobinostat 7.5 mg/kg (Q5Wx3). Sec-
ond cohort (surgical/chemotherapeutic): (a) control, (b) surgery alone (hysterectomy, bilateral
salpingo-oophorectomy and removal of metastasis if present), (c) panobinostat 7.5 mg/kg
(Q5Wx3) + carboplatin 12 mg/kg (Q2Wx3) and (d) surgery, followed by panobinostat 7.5 mg/
kg (Q5Wx3) + carboplatin 12 mg/kg (Q2Wx3). Efficacy was evaluated throughout the study
period using BLI and survival time.

Statistical Methods
Cell analysis was based upon triplicates, and results are given as means +/- standard deviation.
The statistical significance of differences between treatment groups in vitro and in vivo was
determined using a two-tailed student t test. Synergism was calculated by bliss independence
analysis [36]. Survival data was analysed using the Kaplan and Meier method. The Mantel-
Haenzel log-rank statistics (GraphPad Prism 5.0, GraphPad Software, La Jolla, CA) was used to
analyse survival distribution.

Results

In Vitro Effects of Panobinostat
A colony formation efficacy assay was performed to assess the effects of panobinostat on
SKOV-3 cell proliferation (Fig 1A). The results, which are summarised in Fig 1A and 1B, show
a dose-dependent inhibition. Already, after exposure to 3.1 nM panobinostat, a reduction of
visible colonies could be demonstrated. A significant reduction of colonies was seen after 6.2
nM (P = 0.013). After treatment with 25 nM, almost no colonies of SKOV-3 were identified
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(P< 0.0001). No visible colonies were detected when the cells were treated with 50 nM of
panobinostat.

When SKOV-3 and CaOv3 cells were exposed to 12.5 nM of panobinostat for 72 hours, a
significant increase in cell death was observed by use of annexin V/PI staining flow cytometry.
Different stages of apoptosis (early and late apoptosis, and necrosis) were identified, a signifi-
cant increase of all stages (P< 0.05) was observed, and the effect was increased in a dose-
dependent manner (Fig 1C–1F). In addition, a significant increase of cells entering late apopto-
sis was observed when the cells were exposed to 50 nM (Fig 1D–1F).

Morphological changes, due to cellular apoptosis and cell death, were seen after exposure to
panobinostat, carboplatin or a combination of both. By the use of a fluorescence microscopy,
nuclear changes in cells were detected with Hoechst staining (Fig 2A). Treatment with both

Fig 1. Panobinostat inhibits colony formation and induces cell death of SKOV-3 cells assessed by flow cytometry after 72 hours of treatment. A:
Representative images of the colony formation after exposure to various drug concentrations. The blue dots represent vital cell clusters.B: Percentages of
viable colonies relative to control (untreated) cells.C: Apoptosis for SKOV-3 measured by annexin V/PI staining. Viable cells (lower left quadrant) were
negative for both annexin V and PI, apoptotic cells were positive for annexin V staining and negative for PI, and the dead/late apoptosis cells were positive
for both annexin V and PI (upper right quadrant).D: Percentages of the different cell death stages for SKOV-3. All results were presented as mean ± SD
(n = 3), * P < 0.05, ** P < 0.005 and *** P < 0.001 compared to controls, calculated by unpaired t-test. E, F: Apoptosis by annexin V/PI staining and
percentage of the different cell death stages for CaOv3.

doi:10.1371/journal.pone.0158208.g001
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panobinostat and carboplatin showed a dose-dependent effect, while a potentiated effect was
seen when combinations of the two were used (Fig 2B).

The WST-1 assay was used to assess cell viability after exposure to panobinostat, carboplatin
or a combination of these drugs for 72 hours. Panobinostat monotherapy resulted in a signifi-
cant reduction in viability, with a half-maximal inhibitory concentration (IC50) of 15 nM.
IC50 for carboplatin was 69 μM.When panobinostat and carboplatin were combined, the IC50
value was calculated to be 1 nM for panobinostat (Fig 2C). Analysis of the combination treat-
ment demonstrated a higher actual response than expected for the specified concentrations
(Fig 2D and 2F), reflecting a synergistic effect. The effect is, however, not as noticeable for
CaOv3 as for SKOV-3.

To explore if the inhibition of ovarian cell line proliferation by panobinostat was due to
cell cycle arrest, we analysed cell cycle distribution using flow cytometry (PI staining). Panobi-
nostat treatment altered cell cycle scatter in the SKOV-3 cells, and resulted in an accumulation

Fig 2. Apoptosis on SKOV-3 cells after treatment with panobinostat, carboplatin or a combination of these drugs for 72 hours. The combination
of panobinostat and carboplatin resulted in synergism. A: Nuclear morphology was evaluated by Hoechst 33342 staining. Abnormal nuclei with
condensed chromatin were consistent with cell apoptosis/death (highlighted in white). B: The percentages of apoptotic nuclei are shown as mean ± SD
(n = 3). C:Cell viability for SKOV-3 is measured with the use of theWST-1 assay.D: The effect of combining panobinostat and carboplatin on SKOV-3 was
calculated from the response to each of the drugs alone, compared to the expected response by combining similar concentrations (calculated by Bliss
independence analysis). A positive difference between actual response and expected was then ascribed to synergy. E,F:Cell viability for CaOv3, and Bliss
independence analysis of expected and actual responses for combinational therapy of panobinostat and carboplatin for CaOv3.

doi:10.1371/journal.pone.0158208.g002
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of the cells in the G2/M phase and a significant decrease of cells in both the S (P< 0.05) and
G0/G1 (P< 0.01) phases (Fig 3A and 3B). The exposure also resulted in a dose-dependent
increase in the sub-G/debris fraction (data not shown).

By immunoblotting, panobinostat was found to induce hyper-acetylation of histone H2B
protein (Fig 3C). Protein levels of p21 and the apoptotic cleavage products of PARP-1 were
both upregulated in a dose-dependent manner. The cell-regulatory protein, cdc2, was downre-
gulated and caspase-3 was cleaved. When examining the apoptosis regulators Bak, Mcl-1 and
Bcl-2, and the cell-regulatory protein cyclin D1 no consistent pattern was revealed (data not
shown). The loading control GAPDH and tubulin showed consistent expression (Fig 3C).
After SKOV-3 cells were treated with panobinostat for 24 hours, a dose-dependent induction
of pH2AX was seen (Fig 3D and 3E).

Chemotherapy and Surgery in a Bioluminescent and Orthotopic
Xenograft Model
The MTD studies identified carboplatin at 20 mg/kg [39], panobinostat at 15 mg/kg and a
combination of carboplatin at 12 mg/kg and panobinostat at 7.5 mg/kg to be well tolerated,

Fig 3. Exposure of SKOV-3 cells to panobinostat for 24 hours results in cell cycle arrest and upregulation of proteins regulating cell cycle arrest,
histone acetylation and cell death. A, B: Cell cycle arrest revealed by cell cycle analysis.C: Upregulation of p21 and H2B. PARP1 and caspase-3
cleavage and activation of cdc2 detected by immunoblotting techniques. D, E: Increased phosphorylation of H2AX examined by phosphoflow cytometry.

doi:10.1371/journal.pone.0158208.g003
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with no significant loss of body weight (S1 Fig). No major complications of surgery were to be
reported. Except for the first three days after the surgical procedure, all mice gained weight
over the following three weeks. When their performance status declined due to progression of
the disease, they started to lose weight again (S2 Fig).

Panobinostat and carboplatin monotherapies significantly increased the mean overall sur-
vival to 69% (P< 0.005) and 81% (P< 0.005), respectively, compared to the control group.
The difference between the two treatment groups was not significant (P = 0.85). A 92% increase
in survival time was observed when carboplatin and panobinostat were combined (P< 0.005),
compared to the control group, but the effect was not significant when compared to single
agent panobinostat (P = 0.26) or carboplatin (P = 0.52) treatment (Fig 4C and 4D).

A combined surgical/chemotherapeutic xenograft model of EOC has recently been estab-
lished [39], and the effects of surgery, panobinostat/carboplatin, and surgery followed by pano-
binostat/carboplatin were analysed. An increase in the BLI signal corresponded to progress of
the disease and overall survival (Fig 4A and 4B). The surgical cohort with no post-operative
treatment had a final 25% increase in survival compared to the control group (P< 0.05) (Fig
5). The differences in mean overall survival for the carboplatin/panobinostat (68.8 ± 3.4 days)

Fig 4. Chemotherapeutic in vivo cohorts. A: Illustration of weekly bioluminescent image analysis of representative groups of xenografted mice: a) control,
b) panobinostat, c) carboplatin and d) combination of panobinostat and carboplatin.B:Relative tumour growth measured by BLI. C: Kaplan-Meyer
cumulative survival curves of control, panobinostat-, carboplatin- and a combination of panobinostat- and carboplatin-treated mice.D:Median survival time
and increase in survival time (%) for the variously treated groups.

doi:10.1371/journal.pone.0158208.g004
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and surgery + carboplatin/panobinostat cohort (78.6 ± 3.6 days) were, however, not significant
(P = 0.65) (Fig 5C and 5D). Further, through the autopsies differences in the pattern of meta-
static spread between the treatment and control groups could not be revealed.

Discussion
In the present study, we have shown that HDACi panobinostat inhibited growth and induced
apoptosis in EOC cells in vitro. In addition, we demonstrated significant prolongation of sur-
vival time by administration of panobinostat, carboplatin or panobinostat/carboplatin in an
orthotopic EOC xenograft model. Panobinostat was equally as effective in extending survival
time as carboplatin. No additional effect on survival parameters was seen when panobinostat
was combined with carboplatin, and when surgery was combined with carboplatin/panobino-
stat treatment.

There are a limited number of studies assessing the effects of panobinostat on ovarian carci-
noma cells in vitro. The inhibition of cell proliferation and induction of apoptosis, shown in
our report, are in accordance with these previous findings [26, 34] (Figs 1–3). Initiation of cell

Fig 5. Surgical in vivo cohorts. A: Illustration of weekly bioluminescent image analysis of representative group of xenografted mice: a) control, b) surgery,
c) surgical and panobinostat/carboplatin-treated and d) combination of panobinostat and carboplatin. B: Relative tumour growth measured by BLI.C:
Kaplan-Meyer cumulative survival curves of control, panobinostat-, carboplatin- and a combination of panobinostat- and carboplatin-treated mice. D:Median
survival time and increase in survival time (%) for the variously treated groups.

doi:10.1371/journal.pone.0158208.g005
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demise was shown by finding increasing amounts of PARP cleavage products and cleavage of
caspase-3 (Fig 3C), while panobinostat-mediated acetylation of H2B (Fig 3C) and up-regula-
tion of pH2AX (Fig 3D and 3E) suggest that the effects are mediated by HDAC inhibition [40].
Although described for other carcinomas [41], the anti-proliferative effects of panobinostat
through cell cycle arrest had not previously been described for ovarian carcinoma cells (Fig 3A
and 3B). We suggest, in line with what is described for pancreatic cancer treated with the
HDACi belinostat [42], that the halt of cells in the G2/M phase to be, at least in part, mediated
by an interaction with p21. The latter was induced in a dose-dependent manner upon downre-
gulation of the cdc2 protein kinase (Fig 3C).

In our in vitro studies, concentrations were chosen to cover the entire spectrum of clinically
achievable free panobinostat concentrations [43]. Compared to other HDACis, panobinostat is
very effective [40], and the IC50 values for ovarian cancer cell viability confirm this (Fig 2C
and 2E. The efficacy was even more potent than for treatment with carboplatin alone. A pre-
clinical test system, which allowed analysis of synergism or antagonism of up to three different
agents in defined cell lines in vitro, showed similar results [34]. In addition, panobinostat com-
bined with carboplatin and gemcitabine has demonstrated synergistic effects [34]. The syner-
gistic activity of panobinostat when used together with other cytostatics is of interest, as
combinations of agents are widely used in the treatment of EOC in an attempt to achieve a syn-
ergistic therapeutic effect, dose and toxicity reduction, and the minimisation or delay of the
induction of drug resistance.

Panobinostat treatment of the orthotopically xenografted mice suppressed tumour growth,
and significantly increased the mean overall survival (Fig 4). The potency was similar to what
was identified for carboplatin, the main pillar of all primary treatment regimens [44], suggest-
ing that this represents a potential alternative for patients that cannot be treated with carbopla-
tin [45]. Treatment alternatives are needed for those patients who have experienced severe
allergies or other toxic side effects [46], as well as for those who have developed drug resistance.
As shown in the toxicology study, treatment with panobinostat alone, and when combined
with carboplatin, was reasonably well tolerated by the mice (S2 Fig). Allergic reactions that are
known to inhibit clinical use of different cytostatic drugs [47] have not, to our knowledge, been
reported for panobinostat. Together with the described acceptable safety and tolerability profile
in humans, this makes panobinostat a promising substance to be examined further in clinical
human EOC studies [48]. Although we have used an intraperitoneal administration form,
panobinostat is known to have favourable pharmacokinetic characteristics, thus making oral
administration of this drug an attractive alternative [24, 49].

More than 70% of patients with EOC will need second-line chemotherapy, due to recur-
rence of the disease within 18 months. The response rates to the treatment alternatives
decreases with each subsequent line of therapy [5], and many patients will develop a resistance
to carboplatin [50]. The use of alternative treatment options to carboplatin regimen, in order
to prolong the platinum-free interval, has gained increased interest as it may augment the like-
lihood of response to platinum if reintroduced at later relapses [51–53]. It is therefore impor-
tant to determine whether panobinostat can represent a non-platinum treatment alternative
for patients with a partially platinum-sensitive disease, who will eventually benefit from a delay
in platinum re-treatment [54, 55].

Discrepancies between in vitro and in vivo results, as well as between xenograft models and
clinical trials, have been shown previously [56, 57]. This may be explained by the differences in
complexity between the model systems, and could be driven by the less effective exposure of
the respective agents. We were not able to follow up the promising in vitro results when carbo-
platin and panobinostat were combined. However, few HDACis have been tested in in vivo
models [58] and this is the very first in vivo study of panobinostat against ovarian cancer.
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In contradiction to the findings shown when the mice were treated with carboplatin/pacli-
taxel and surgery [33], no additional effect on survival parameters was seen when surgery was
combined with panobinostat/carboplatin, compared to panobinostat/carboplatin treatment
alone (Fig 5). The mice in the present cohorts were allowed to develop a more advanced stage
of disease than in our earlier study [33] before treatment was initiated, and sufficient debulking
was not achieved (Fig 5). The limited success of the combination therapy is therefore, at least
in part, the presence of increased micrometastasis not visible to the surgical team and not
merely due to the use of the alternative chemotherapeutic regimen.

Conclusion
New strategies must be employed if survival rates are to be improved for ovarian cancer. Alter-
native options to standard carboplatin chemotherapeutic regimen are necessary for when car-
boplatin cannot be utilised. This is the first study to show the potential benefits of the use of
the HDACi panobinostat in an orthotopic xenograft model of ovarian cancer. These results,
together with the data from human in vitro studies, suggest that panobinostat should be evalu-
ated in clinical human EOC trials.

Supporting Information
S1 Fig. Toxicology study with measurements of weights after treatment with panobinostat,
carboplatin or a combination of these drugs. Percentage changes in weights for the mice after
(A) carboplatin, (B) panobinostat and (C) a combination of panobinostat and carboplatin.
(EPS)

S2 Fig. Surgery and a combined treatment with panobinostat and carboplatin affect the
weights. Percentage changes in weights for surgical group and combination group (surgery fol-
lowed by panobinostat and carboplatin).
(EPS)
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