
University of Bergen
Department of Informatics

Quantum Computing, how it is
jeopardizing RSA, and Post-Quantum

Cryptography

Author: Anna Fossen-Helle
Supervisor: Matthew Parker

Co-supervisor: Sondre Rønjom

June, 2020

Abstract

Quantum computers are a fact and with the quantum computers follows quantum algorithms.
How will quantum computing affect how we look at public-key cryptography? And more
specifically: how will it affect the most widely used public-key algorithm RSA? The impact
of quantum computing is unimaginable and it will affect a massive amount of applications
like e-commerce, social networks, mobile phones, generally our day to day life.

A solution has been presented: Post-Quantum Cryptography. Even though Post-
Quantum primitives have been suggested, there is not yet any algorithms that has been
chosen to replace our current public-key standards. A standardizing process was started in
2016 by NIST and is still ongoing.

Acknowledgements

I would like to thank my supervisors, Matthew G. Parker and Sondre Rønjom at the Selmer
Center, for guidance, support and patience through the process of writing my thesis. Also
a special thanks to Martha Norberg Hovd, PhD candidate at Simula@UiB, for being of
assistance whenever I needed it.

Also I would like to thank my fellow students and the Department of Informatics for
providing me with a great study environment. It has been a joy to be able attend all the
student functions and informative Department seminars.

Last but not least, a big thanks to my family and friends, both at home and here in
Bergen, for all the support and love throughout my studies. I am forever grateful.

Anna Fossen-Helle
16 June, 2020

Contents

1 Introduction 1
1.1 Cryptography . 1

1.1.1 Basics of cryptography . 2
1.1.2 The purpose of cryptography . 2

1.2 Complexity . 3
1.3 Outline . 4

2 Public-key cryptography 6
2.1 Symmetric vs. asymmetric cryptography . 6
2.2 Important public-key algorithms . 10
2.3 Number theory for public-key algorithms . 11

2.3.1 Euclidean algorithm . 11
2.3.2 Extended Euclidean algorithm . 13
2.3.3 Euler’s Phi function . 14
2.3.4 Fermat’s Little Theorem and Euler’s Theorem 15

3 The RSA cryptosystem 17
3.1 Encryption and decryption . 17
3.2 Key generation and proof of correctness . 19
3.3 Finding large primes . 22
3.4 Attacks on RSA . 22

3.4.1 Protocol attacks . 23
3.4.2 Mathematical attacks . 23
3.4.3 Side-channel attacks . 24

4 Quantum mechanics 25
4.1 The postulates of quantum mechanics . 25

i

4.2 Linear algebra . 26
4.2.1 Bases and linear independence . 28
4.2.2 Linear operators and matrices . 28
4.2.3 The Pauli matrices . 29
4.2.4 Inner products . 30
4.2.5 Eigenvectors and eigenvalues . 31
4.2.6 Tensor products . 31

4.3 Entanglement . 32
4.4 Conditions for quantum computation . 35

4.4.1 Representation of quantum information 35
4.4.2 Performance of unitary transformations 35
4.4.3 Preparations of fiducial initial states 36
4.4.4 Measurement of output result . 37

5 Quantum computation 39
5.1 Quantum bits . 39

5.1.1 Single qubits . 39
5.1.2 Multiple qubits . 40

5.2 Quantum gates and circuits . 41
5.3 The quantum Fourier transform . 43
5.4 Phase estimation . 47
5.5 Order-finding and factoring . 50

5.5.1 Order-finding . 50
5.5.2 Factoring . 53

5.6 How does it apply to RSA? . 54

6 Post-quantum cryptography 56
6.1 Post-quantum primitives . 59
6.2 Post-quantum candidates . 61

7 Conclusion 63
7.1 Path forward . 63

Bibliography 65

ii

List of Figures

1.1 Overview of the research field of cryptology [31, p.3]. 2

2.1 Basics of symmetric-key encryption [31, p.150] 7
2.2 Analogy for symmetric cryptography [31, p.151]. 7
2.3 Analogy for asymmetric encryption [31, p.151]. 8
2.4 Basic protocol for public-key encryption [31, p.152]. 9
2.5 Basic key transport protocol with AES as an example of a symmetric cipher

[31, p.153]. 9

3.1 Principal approach to generating primes for RSA [31, p.187] 22

5.1 Illustration of unitary transformation [32, p.6]. 42
5.2 Illustration of the CNOT transformation [32, p.7]. 42
5.3 Efficient circuit for the quantum Fourier transform. This circuit is easily de-

rived from the product representation (5.14) for the quantum Fourier trans-
form. Not shown are the swap gates at the end of the circuit which reverse
the order of the qubits, or normalization factors of 1/

√
2 in the output [29,

p.219]. 45
5.4 The first stage of the phase estimation procedure. Normalization factors of

1/
√
2 have been omitted, on the right [29, p.222]. 48

5.5 Schematic of the overall phase estimation procedure. The top t qubits (the
’\’ denotes a bundle of wires, as usual) are the first register, and the bottom
qubits are the second register, numbering as many as required to perform U.
|u〉 is an eigenstate of U with eigenvalue e2πiϕ. The output of the measurement
is an approximation to ϕ accurate to t−

⌈
log

(
2+ 1

2ε

)⌉
bits, with probability

of success at least 1− ε [29, p.223]. 49
5.6 Quantum cicuit for the order-finding algorithm. This circuit can also be used

for factoring, using the reduction given in the next section [29, p.229]. 51

iii

List of Tables

4.1 Summary of some standard quantum mechanical notation for notions from
linear algebra [29, p.62]. 27

5.1 Additional notation for quantum circuits [29]. 43

6.1 Impact of quantum computing on common cryptographic algorithms [16, p.2] 58
6.2 Continued: Impact of quantum computing on common cryptographic algo-

rithms [1, p.24] . 58
6.3 Public-key encryption, key-establishment and digital signature algorithm can-

didates remaining in round 2 of the NIST competition [30]. 62

iv

Chapter 1

Introduction

We are entering a new era of computing and quantum computers are becoming more realized.
Quantum computers have existed for quite a few years now but they are extremely expensive
and exist at near zero Kelvin - so they won’t be on your desk any time soon. There is
research into topological quantum computers, which would exist at room temperature, but
they are still just theoretical - although there has been progress recently in this area. For
my thesis I want to look at one of the most widely used public-key algorithms, namely RSA,
and how the existence of quantum computing is jeopardizing the security of the algorithm,
based on the factoring problem. The security of public-key cryptosystems are based on the
difficulty of the number theoretic problems that are used in the cryptosystems, so further
on I will introduce post-quantum cryptographic algorithms that may extinguish the threat
from quantum algorithms that have been created to solve factoring.

1.1 Cryptography

Cryptography is one of the two components covered by the research field of cryptology.
Cryptology is the word used for the study of secrecy. It is divided into two main components,
cryptography, as mentioned, and cryptanalysis. Cryptography is the component for the
study of building algorithms for encryption and decryption. This component is also divided
in to three parts, which is symmetric cryptography, asymmetric cryptography and protocols.
Cryptanalysis is the other component of cryptology which is the study of ciphertext analysis
to recover hidden information [21, p.322]. For my thesis I will mainly focus on cryptography
and more specified: asymmetric(public-key) cryptography.

1

Figure 1.1: Overview of the research field of cryptology [31, p.3].

1.1.1 Basics of cryptography

In the cryptography universe, there are three well known people. Namely Alice, Bob and
Eve. Alice and Bob acts as the parts of sender and receiver of messages and Eve acts as
eavesdropper in the conversation. Even though Alice and Bob would like to think that the
conversation is exclusively just between them, this is not strictly a fact. A malicious user,
like Eve, can eavesdrop into the conversation or even pose as one of the users if proper
security measures are not taken.

1.1.2 The purpose of cryptography

Cryptography is used to preserve some functionalities or services to overcome potential
threats. These functionalities or services can be represented by the acronym CAIN[21,
p.324]:

• Confidentiality
• Authentication
• Integrity
• Nonrepudiation

1. Confidentiality is ensured by using encryption algorithms on the information stored or
manipulated. It consists of preventing unauthorized access to information for user that
are not supposed to access it. These users are able to access the ciphertext after the
encryption of the information, but they are not able to decrypt the ciphertext in order
to get their hands on the information [21, p.324–325].

2

2. Authentication of the participants of message or information exchange. In order to
preserve this functionality one must be able to recognize identity theft. Alice and Bob
may authenticate themselves to each other by proving that they know a secret S and
that they are the only ones that knows it [21, p.325].

3. Integrity of the messages sent or information stored. This is about checking that noth-
ing has been falsified during transmission. We want the information to be unchanged
while transmitted from Alice to Bob. A malicious person, Eve, may change the infor-
mation in the message during transmission. Integrity checks are in place to notify Alice
and Bob when the integrity of the transmission has been compromised [21, p.325].

4. Nonrepudiation of information is not a protection against a third party, but rather a
protection for protagonists against each other. If Alice sends a message M, she must
not be able to afterward pretend to Bob that she did not send it, or that she has
sent a message M ′ and that it was actually misunderstood. For this, one associates
signature-based algorithms [21, p.325–326].

1.2 Complexity

Going forward, it is important to state that all problems belong to a complexity class.
Computational complexity theory is the subject of classifying the difficulty of various compu-
tational problems, both classical and quantum. The most basic idea is that of a complexity
class. A complexity class can be thought of as a collection computational problems, all of
which share some common feature with respect to the computational resources needed to
solve these problems.

Two of the most important complexity classes are P (Polynomial) and NP (Non-
deterministic). Roughly speaking, P is the class of computational problems that can be
solved quickly on a classical computer. NP is the class of problems which have solutions
which can be quickly checked on a classical computer. To understand the distinction between
P and NP, consider the problem of finding the prime factors of an integer, n. So far as is
known, there is no fast way of solving this problem on a classical computer, which suggests
that the problem is not in P. On the other hand, if somebody tells you that some number p
is a factor of n, then we can quickly check that this is correct by dividing p into n. Therefore,
factoring is a problem in NP.

It is clear that P is a subset of NP, since if one is able to solve a problem it also implies

3

that one can check the solution. What is not so clear is whether or not there are problems in
NP that are not in P. Perhaps the most important unsolved problem in theoretical computer
science is to determine whether these two classes are different.

Most researchers believe that NP contains problems that are not in P. In particular,
there is an important subclass of the NP-problems, the NP-complete problems, that are of
especial importance for two reasons. First, there are thousands of problems that are known
to be NP-complete. Second, any given NP-complete problem is in some sense ’at least as
hard’ as all other problems in NP. More precisely, an algorithm to solve a specific NP-
complete problem can be fitted to solve any other problem in NP, with a small overhead. In
particular, if P 6= NP, then it will follow that no NP-complete problem may be efficiently
solved on a classical computer.

It is not known whether quantum computers can be used to quickly solve all the problems
in NP, despite the fact that they can be used to solve some problems, like factoring, which is
believed to be in NP but not in P. Note that factoring is not known to be an NP-complete
problem, otherwise we would already know how to efficiently solve all problems in NP using
quantum computers. It would certainly be very exciting if it were possible to solve all the
problems in NP efficiently on a quantum computer[29, p.40–42].

1.3 Outline

• Chapter 2 Public-key cryptography: in this chapter I will introduce public-key cryp-
tography and some number theoretic problems that are widely used in public-key
schemes. For this chapter and the next I will be using my old textbook from an in-
troductory course in cryptography that I attended at the University of Bergen, named
”Understanding Cryptography” [31] from 2010.

• Chapter 3 The RSA cryptosystem: in this chapter I will go into depth in the RSA
cryptosystem. As mentioned earlier, this will be the public-key cryptosystem that my
main focus will be on.

• Chapter 4 Quantum mechanics: this chapter will introduce quantum mechanics which
is the base for quantum computing. This chapter and the next will be heavily based
on the book ”Quantum Computation and Quantum Information: 10th anniversary
edition” [29] and lecture notes [32] from John Preskill, Professor of Theoretical Physics,
also based on the book.

• Chapter 5 Quantum Computation: here I will introduce quantum computing and

4

algorithms used to break public-key algorithms, mainly RSA.
• Chapter 6 Post-quantum cryptography: in this chapter I will introduce post-quantum

cryptography, and the post-quantum algorithm competition initiated by NIST (Na-
tional Institute of Standards and Technology). I will also give a brief overview of
post-quantum primitives that may extinguish the threats from quantum algorithms
in the previous chapter on quantum computing. This chapter is mainly based on the
”Report on Post-Quantum Cryptography” [16] released by NIST in 2016.

• Chapter 7 Conclusion.

5

Chapter 2

Public-key cryptography

Now that we know the basics of which services cryptography provides, we can move on to
public-key cryptography. Public-key cryptography, also known as asymmetric cryptography,
was publicly introduced by Whitfield Diffie, Martin Hellman and Ralph Merkle in 1976.

In this section I will show that asymmetric cryptography is very different from symmetric
cryptography and algorithms like AES or DES. Most public-key algorithms are based on
number-theoretic functions. This is quite different from symmetric ciphers, where the goal
is usually not to have a compact mathematical description between input and output. Even
though mathematical structures are often used for small blocks within symmetric ciphers,
for instance, in the AES S-box, this does not mean that the entire cipher forms a compact
mathematical description [31, p.149–150].

2.1 Symmetric vs. asymmetric cryptography

Symmetric cryptography
In order to understand the basics of asymmetric cryptography, we first need to understand the
basics of symmetric cryptography. Here is a scheme to illustrate symmetric-key encryption
[31, p.150]:

6

Figure 2.1: Basics of symmetric-key encryption [31, p.150]

A system is symmetric when it satisfies these two criteria:

1. The same secret key is used for encryption and decryption.

2. The encryption and decryption functions are very similar.

Figure 2.2: Analogy for symmetric cryptography [31, p.151].

There is a simple analogy for symmetric cryptography, as shown in Fig. 2.2. Assume
there is a safe with a strong lock. Only Alice and Bob are able to open it with their copy
of the key to the lock. The action of encrypting of a message can be seen as putting the
message in the safe and locking it. In order to read it, i.e., decrypt the message, Bob uses
his key and opens the safe.

Modern symmetric algorithms such as AES or 3DES are very secure, fast and are
frequently used. However, there are several shortcomings associated with symmetric-key
schemes, which is further discussed below [31, p.150].

Key distribution problem The key must be established between Alice and Bob using
a secure channel. Remember that the communication link for the message is not secure,
so sending the key over the channel directly - which would be the most convenient way of
transporting it - can’t be done [31, p.150].

7

Number of keys Even if the key distribution problem is solved, we must potentially deal
with a very large number of keys. If each pair of users needs a separate pair of keys in a
network wit n users, there are:

n · (n− 1)

2

key pairs, and every user has to store n− 1 keys securely. Even for mid-size networks, say, a
corporation with 2000 people, this requires more than 4 million key pairs must be generated
and transported via secure channels [31, p.150–151].

No protection against cheating by Alice or Bob Alice and bob have the same capa-
bilities, since they possess the same key. As a consequence, symmetric cryptography cannot
be used for applications where we would like to prevent cheating by either Alice or Bob as
opposed to cheating by an outsider like Eve. For instance, in e-commerce applications it is
often important to prove that Alice actually sent a certain message, say, an online order for a
pair of shoes. If only symmetric cryptography is used and Alice changes her mind later, she
can always claim that Bob, the vendor, has falsely generated the electronic purchase order
Preventing this is called nonrepudiation as you may recall from earlier in section 1.1.2 and
can be achieved using asymmetric cryptography [31, p.151].

Asymmetric cryptography
In order to overcome these drawbacks in symmetric cryptography, Diffie, Hellmann and
Merkle had a revolutionary proposal based on the idea that it is not necessary that the key
possessed by the person who encrypts the message (here: Alice) is secret. The crucial part
is that Bob, the receiver, can only decrypt the message using a secret key. In order to realize
a system like this, Bob publishes a public encryption key which is known to everyone. Bob
also has a matching secret key, which is used for decryption. Thus, Bob’s key k consists of
two parts, a public part, kpub and a private part, kpr [31, p.152].

Figure 2.3: Analogy for asymmetric encryption [31, p.151].

8

A simple analogy of such a system is shown in Fig. 2.3. This system works quite similarly
to the old mailbox on the corner of a street: Everyone can put a letter in the box, i.e., encrypt,
but only a person with a private (secret) key can retrieve letters, i.e., decrypt. If we assume
we have cryptosystems with such a functionality, a basic protocol for public-key encryption
looks as illustrated in Fig. 2.4 [31, p.152].

Figure 2.4: Basic protocol for public-key encryption [31, p.152].

By looking at that protocol one might argue that even though we can encrypt a message
without a secret channel for key establishment, we still cannot exchange a key if we want to
encrypt with, say, AES. However, the protocol can be easily modified for this use. What we
have to do is to encrypt a symmetric key, e.g., an AES key, using the public-key algorithm.
Once the symmetric key has been decrypted by Bob, both parties can use it to encrypt and
decrypt messages using symmetric ciphers. Fig. 2.5 shows a basic key transport protocol
where AES is used as the symmetric cipher for illustration purposes. The main advantage of
the protocol in Fig. 2.5 over the protocol in Fig. 2.4 is that the payload is encrypted with a
symmetric cipher, which tends to be much faster than an asymmetric algorithm[31, p.152].

Figure 2.5: Basic key transport protocol with AES as an example of a symmetric cipher [31,
p.153].

9

From the discussion so far, it looks as though asymmetric cryptography is a desirable tool
for security applications. The question remains how one can build public-key algorithms. In
the next chapter I will introduce one of the most used schemes, RSA. I would also like to
mention that there are widely used schemes based on the Discrete Log Problem and Elliptic
Curves even though I will not go into detail on such schemes. What they all have in common
is that they are built from a common principle, the one-way function. The informal definition
is as follows [31, p.152–153]:

Definition 2.1.1. One-way function
A function f() is a one-way function if:

1. y = f(x) is computationally easy, and

2. x = f−1(y) is computationally infeasible.

Obviously, the adjectives ”easy” and ”infeasible” are not particularly exact. In mathe-
matical terms, a function is easy to compute if it can be evaluated in polynomial time, i.e.,
its running time is a polynomial expression. In order to be useful in practical crypto schemes,
the computation y = f(x) should be sufficiently fast that it does not lead to unacceptably
slow execution times in an application. The inverse computation x = f−1(y) should be so
computationally intensive that it is not feasible to evaluate it in any reasonable time period,
say, 10,000 years, when using the best known algorithm [31, p.153].

There are two popular one-way functions which are used in practical public-key schemes.
The first is the integer factorization problem, on which RSA is based. Given two large
primes, it is easy to compute the product. However, it is very difficult to factor the resulting
product. In fact, if each of the primes has 150 or more decimal digits, the resulting product
cannot yet be factored, even with thousands of PCs running for many years. The other
one-way function that is used widely is the discrete logarithm problem [31, p.153].

2.2 Important public-key algorithms

In public-key cryptography, there are only three major families which are of practical rele-
vance. They can be classified by their underlying computational problem:

• Integer-Factorization schemes Several public-key schemes are based on the fact
that it is difficult to factor large integers. The most prominent representative of this
algorithm family is RSA [31, p.155].

10

• Discrete Logarithm schemes There are several algorithms which are based on what
is known as the discrete logarithm problem in finite fields. The most prominent ex-
amples include the Diffie-Hellmann key exchange, Elgamal encryption or the Digital
Signature Algorithm(DSA) [31, p.155].

• Elliptic Curve (EC) schemes A generalization of the discrete logarithm algorithm
are elliptic curve public-key schemes. The most popular examples include Elliptic
Curve Diffie-Hellmann key exchange (ECDH) and the Elliptic Curve Digital Signature
Algorithm (ECDSA) [31, p.155].

The first two families were proposed in the mid-1970s, and elliptic curves were proposed in
the mid-1980s. There are no known attacks against any of these schemes if the parameters,
especially the operand and key lengths, are chosen carefully. The RSA scheme based on
integer factorization will be explained in more detail in the next chapter, but not schemes
from the other families. This is because the consequences of solving the problem of integer
factorization has the highest impact out of the three families. It is also important to note
that each of these three families can be used to provide the main public-key mechanisms
of key establishment, nonrepudiation through digital signatures and encryption of data [31,
p.155].

2.3 Number theory for public-key algorithms

I will now show a few techniques from number theory which are essential for public-key
cryptography. This will be the Euclidean algorithm, Euler’s phi function, Fermat’s Little
Theorem and Euler’s theorem. All are important for asymmetric algorithms, especially for
understanding the RSA crypto scheme.

2.3.1 Euclidean algorithm

I start with the problem of computing the greatest common divisor (gcd). The gcd of two
positive integers is denotes by

gcd(r0, r1)

and is the largest positive number that divides both r0 and r1. For instance gcd(21, 9) = 3.
For small numbers, the gcd is easy to calculate by factoring both numbers and finding the
largest common factor. The gcd is the product of all common prime factors:

11

2 · 3 = 6 = gcd(30, 84).

For the large numbers appearing in public-key schemes, factoring is often not possible,
and a more efficient algorithm is used for gcd computations, the Euclidean algorithm. The
algorithm, often referred to as Euclid’s algorithm, is based on the simple principle that

gcd(r0, r1) = gcd(r0 − r1, r1),

where we assume that r0 > r1, and that both numbers are positive integers. The process
can also be applied iteratively:

gcd(r0, r1) = gcd(r0 − r1, r1) = gcd(r0 − 2r1, r1) = · · · = gcd(r0 −mr1, r1)

as long as (r0 −mr1) > 0. The algorithm uses the fewest number of steps if the maximum
value of m is chosen. This is the case if we compute:

gcd(r0, r1) = gcd(r0 mod r1, r1).

Since the first term (r0modr1) is smaller than the term r1, they are usually swapped:

gcd(r0, r1) = gcd(r1, r0 mod r1).

The core observation from this process is that we can reduce the problem of finding the
gcd of two given numbers to that of the gcd of two smaller numbers. This process can be
applied recursively until gcd(rl, 0) = rl is finally obtained. Since each iteration preserves the
gcd of the previous iteration step, it turns out that this final gcd of the original problem,
i.e.,

gcd(r0, r1) = · · · 0gcd(rl, 0) = rl.

The Euclidean algorithm is very efficient, even with the very long numbers typically used
in public-key cryptography. The number of iterations is close to the of digits of the input
operands. That means, for instance, that the number of iterations of a gcd involving 1024-
bit numbers is 1024 times a constant. Of course, algorithms with a few thousand iterations
can easily be executed on today’s PCs, making the algorithms very efficient in practice [31,

12

p.157–160].

2.3.2 Extended Euclidean algorithm

Above it was shown that finding the gcd of two integers r0 and r1 can be done by recursively
reducing the operands. However, it turns out that finding the gcd is not the main application
of the Euclidean algorithm. An extension of the algorithm allows us to compute modular
inverses, which is of major importance in public-key cryptography. In addition to computing
the gcd, the extended Euclidean algorithm (EEA) computes a linear combination of the form:

gcd(r0, r1) = s · r0 + t · r1

where s and t are integer coefficients. This equation is often referred to as Diophantine
equation [31, p.160].

The question now is: how are the coefficients s and t computed? The idea behind the
algorithm is that the standard Euclidean algorithm is executed, but the current remainder
ri is expressed in every iteration as a linear combination of the form:

ri = sir0 + tir1. (2.1)

If we succeed with this, we end up in the last iteration with the equation:

rl = gcd(r0, r1) = slr0 + tlr1 = sr0 + tr1.

This means that the last coefficient sl is the coefficient s in Eq. 2.1 we are looking for, and
also tl = t [31, p.160].

Now we want to establish a recursive formulae for computing si and ri in every iteration.
Assume we are in iteration with the index i. In the two previous iterations we computed the
values

ri−2 = [si−2]r0 + [ti−2]r1 (2.2)

ri−1 = [si−1]r0 + [ti−1]r1 (2.3)

13

In the current iteration i we first compute the quotient qi−1 and the new remainder ri
from ri−1 and ri−2 [31, p.161]:

ri−2 = qi−1 · ri−1 + ri.

This equation can be written as:

ri = ri−2 − qi−1 · ri−1 (2.4)

Recall that the goal is to represent the new remainder ri as a linear combination of r0 and
r1 as shown in Eq. 2.1. The core step for achieving this happens now: in Eq. 2.4 we simply
substitute ri−2 by Eq. 2.2 and ri−1 by Eq. 2.3 [31, p.161]:

ri = (si−2r0 + ti−2r1)− qi−1(si−1r0 + ti−1r1)

If we arrange the terms we obtain the desired result:

ri = [si−2 − qi−1si−1]r0 + [ti−2 − qi−1ti−1]r1 (2.5)

ri = [si]r0 + [ti]r1

Eq. 2.5 also gives us immediately the recursive formulae for computing si and ti, namely
si = si−2− qi−1si−1 and ti = ti−2− qi−1ti−1. These recursions are valid for index values i ≥ 2.
Like any recursion, we need starting values for s0, s1, t0 and t1. These initial values is set to
be s0 = 1, s1 = 0, t0 = 0 and t1 = 1 [31, p.161–162].

2.3.3 Euler’s Phi function

This is a number theoretic tool that is useful for public-key cryptography, and especially for
RSA. We consider the ring Zm, i.e., the set of integers 0, 1, . . . ,m− 1. We are interested
in the problem of knowing how many numbers in this set that are relatively prime to m,
This quantity is given by Euler’s phi function, which is defined as follows [31, p.164–165]:
Definition[chapter]

Definition 2.3.1. Euler’s phi function
The number of integers in Zm relatively prime to m is denoted by Φ(m).

14

From examples with small numbers, one can count all the integers in Zm which are
relatively prime. This is a relatively naive way to compute Euler’s phi function and is
completely out of reach for the large numbers used in public-key cryptography. Fortunately,
there exists a relation to calculate it much easier if know the factorization of m:

Theorem 2.3.1. Let m have the following canonical factorization

m = pe11 · pe22 · . . . · penn

where the pi are distinct prime numbers and ei are positive integers, then

Φ(m) =
n∏

i=1

(peii − p
ei−1

i).

Since the value of n, i.e., the number of distinct prime factors, is always quite small even for
large numbers m, evaluating the product symbol

∏
is computationally easy [31, p.165–166].

It is important to stress that the factorization of m needs to be known in order to calculate
Euler’s phi function quickly this way. As you’ll see in the next chapter, this property is at
the heart of the RSA public-key scheme: Conversely, if the factorization of a certain number
is known, Euler’s phi function can be computed and the ciphertext can be decrypted. If
the factorization is not known, then the phi function can not be computed and, hence, the
ciphertext can not be decrypted [31, 166].

2.3.4 Fermat’s Little Theorem and Euler’s Theorem

The next to theorems I will describe is quite useful in public-key cryptography. I will start
with Fermat’s Little Theorem. This theorem is quite useful for primality testing and in
many other aspects of public-key cryptography. For the RSA crypto scheme this theorem
is useful for finding large primes. The theorem gives a seemingly surprising result if we do
exponentiations modulo an integer.

Theorem 2.3.2. Let a be an integer and p be a prime, then:

ap = a(mod p)

Note that arithmetic in finite fields GF(p) is done modulo p, and hence, the theorem holds
for all integers a which are elements of a finite field GF(p). The theorem can be stated in
the form:

15

ap−1 ≡ 1(mod p)

which is often useful in cryptography. One application is the computation of the inverse in
a finite field. The equation can be rewritten as a · ap−2 ≡ 1(mod p). This is exactly the
definition of the multiplicative inverse. Thus, it immediately follows that we have a way of
inverting an integer a modulo a prime:

a−1 ≡ ap−2(mod p) (2.6)

Note that this inversion method only holds if p is a prime.
Performing the exponentiation in Eq. (3.1) is usually slower than using the Extended

Euclidean algorithm. However, there are situations where it is advantageous to use Fermat’s
Little Theorem, e.g., on smart cards or other devices which have a hardware accelerator
for fast exponentiation anyway. This is not uncommon because many public-key algorithms
require exponentiation[31, p.166–167].

A generalization of Fermat’s Little Theorem to any integer moduli, i.e., moduli that are
not necessarily primes, is Euler’s theorem.

Theorem 2.3.3. Let a and m be integers with gcd(a,m) = 1, then:

aΦ(m) ≡ 1(mod m).

Since it works in modulo m, it is applicable to integer rings Zm [31, p.167–168].

This concludes my section on public-key cryptography. I will now move on to looking at the
RSA cryptosystem.

16

Chapter 3

The RSA cryptosystem

The RSA crypto scheme, also referred to as the Rivest-Shamir-Adleman algorithm, is one of
the most widely used asymmetric cryptographic schemes. RSA was patented in the USA(but
not in the rest of the world) until 2000.

There are many applications for RSA, but in practice it is most often used for:

• encryption of small pieces of data, especially for key transport.
• digital signatures.

However, it should be noted that RSA encryption is not meant to replace symmetric
ciphers because it is several times slower than ciphers such as AES. This is because of
the many computations involved in performing RSA. Thus, the main use of the encryption
feature is to securely exchange a key for a symmetric cipher(key transport). In practice, RSA
is often used together with a symmetric cipher such as AES, where the symmetric cipher
does the actual bulk data encryption [31, p.174].

The underlying one.way function of RSA is the integer factorization problem: Multiplying
two large primes is computationally easy, while factoring the resulting product is very hard.
Euler’s theorem and Euler’s phi function play important roles in RSA [31, p.174].

3.1 Encryption and decryption

RSA encryption and decryption is done in the integer ring Zn and modular computations
play a central role. RSA encrypts plaintext x, where we consider the bit string representing
x to be an element in Zn = {0, 1, . . . , n − 1}. As a consequence the binary value of the
plaintext x must be less than n. The same holds for the ciphertext. Encryption with the

17

public key and decryption with the private key are as shown below:

RSA Encryption: Given the public key (n, e) = kpub and the plaintext x, the encryp-
tion function is:

y = ekpub(x) ≡ xe mod n (3.1)

where x, y ∈ Zn.

RSA Decryption: Given the private key d = kpr and the ciphertext y, the decryption
function is:

x = dkpr(y) ≡ yd mod n (3.2)

where x, y ∈ Zn.
In practice, x, y, n and d are very long numbers, usually 1024 bit long or more. The

value e is sometimes referred to as encryption exponent or public exponent, and the private
key d is sometimes called decryption exponent or private exponent. If Alice wants to send an
encrypted message to Bob, Alice needs to have his public key (n, e), and Bob decrypts with
his private key d [31, p.175].

Even without knowing more details, we can already state a few requirements for the RSA
cryptosystem [31, p.175]:

1. Since an attacker has access to the public key, it must be computationally infeasible
to determine the private-key d given the public-key values e and n.

2. Since x is only unique up to the size of the modulus n, we cannot encrypt more than l
bits with one RSA encryption, where l is the bit length of n.

3. It should be relatively easy to calculate xe mod n, i.e., to encrypt, and yd mod n,
i.e., to decrypt. This means we need a method for fast exponentiation with very long
numbers.

4. For a given n, there should be many private -key/public-key pairs, otherwise an attacker
might be able to perform a brute-force attack.

18

3.2 Key generation and proof of correctness

A distinctive feature of all asymmetric schemes is that there is a set-up phase during which
the public and private key are computed. Depending on the public-key scheme, key genera-
tion can be quite complex [31, p.175].

Here are the steps involved in computing the public and private key for an RSA cryp-
tosystem.

RSA Key Generation:
Output: public-key: kpub = (n, e) and private-key: kpr = (d)

1. Choose two large primes p and q.

2. Compute n = p · q.

3. Compute Φ(n) = (p− 1)(q − 1).

4. Select the public exponent e ∈ {1, 2, . . . ,Φ(n)− 1} such that

gcd(e,Φ(n)) = 1.

5. Compute the private key d such that

d · e = 1 mod Φ(n)

The condition that gcd(e,Φ(n)) = 1 ensures that the inverse of e exists modulo Φ(n), so
that there is always a private key d [31, p.175–176]. Two parts of the key generation are
nontrivial: Step 1, in which the two large primes are chosen, as well as Steps 4 and 5 in
which the public- and private-key are computed. The prime generation of Step 1 is quite
involved and is addressed later. The computation of the keys d and e can be done at once
using the extended Euclidean algorithm (EEA). In practice, one often starts by first selecting
a public parameter e in the range 0 < e < Φ(n). The value e must satisfy the condition
gcd(e,Φ(n)) = 1. We apply the EEA with the input parameters n and e and obtain the
relationship:

gcd(Φ(n), e) = s · Φ(n) + t · e

19

If gcd(e,Φ(n)) = 1, we know that e is a valid public-key. Moreover, we also know that the
parameter t computed by the extended Euclidean algorithm is the inverse of e, and thus:

d = t mod Φ(n)

In case that e and Φ(n) are nor relatively prime, we simply select a new value for e and
repeat the process. Note that the coefficient s of the EEA is note required for RSA and does
not need to be computed [31, p.176].

What is interesting is that the message x is first raised to the eth power during encryption
and the result y is raised to the dth power in the decryption, and the result of this is again
equal to the message x. Expressed as an equation, this process is:

dkpr(y) ≡ dkpr(ekpub(x) ≡ (xe)d ≡ xde ≡ x mod n. (3.3)

This is the essence of RSA. I will now provide a proof why the RSA scheme works [31, p.178].

Proof. We need to show that the decryption is the inverse function of encryption,
dkpr(ekpub(x) = x. We start with the construction rule for the public- and private-key:
d · e ≡ 1 mod Φ(n). By definition of the modulo operator, this equivalent to:

d · e = 1 + t · Φ(n),

where t is some integer. Inserting this expression in Eq.(3.3):

dkpr(y) ≡ xde ≡ x1+t·Φ(n) ≡ xt·Φ(n) · x1 ≡ (xΦ(n))t · x mod n. (3.4)

This means we have to prove that x ≡ (xΦ(n))t · x mod n. We now use Euler’s Theorem,
which states that if gcd(x, n) = 1 then 1 ≡ xΦ(n) mod n. A minor generalization immediately
follows:

1 ≡ 1t ≡ (xΦ(n))t mod n, (3.5)

where t is any integer. For the proof, two cases are distinguished:

First case: gcd(x, n) = 1

Euler’s Theorem holds here and we can insert Eq.(3.5) into (3.4):

20

dkpr(y) ≡ (xΦ(n))t · x ≡ 1 · x ≡ x mod n. q.e.d.

This part of the proof establishes that decryption is in fact the inverse function of encryption
for plaintext values x which are relatively prime to the RSA modulus n [31, p.178]. I will
now provide the proof for the second case:

Second case: gcd(x, n) = gcdx, p · q 6= 1

Since p and q are primes, x must have one of them as a factor:

x = r · p or x = s · q,

where r, s are integers such that r < q and s < p. Without loss of generality we assume
x = r ·p, from which follows that gcd(x, q) = 1. Euler’s Theorem holds in the following form:

1 ≡ 1t ≡ (xΦ(q))t mod q,

where t is any positive integer. We now look at the term (xΦ(n))t again:

(xΦ(n))t ≡ (x(q−1)(p−1))t ≡ ((xΦ(q))t)p−1 ≡ 1(p−1) ≡ 1 mod q.

Using the definition of the modulo operator, this is equivalent to:

(xΦ(n))t = 1 + u · q,

where u is some integer. We multiply this equation by x:

x · (xΦ(n))t = x+ x · u · q

= x+ (r · p) · u · q

= x+ r · u · (p · q)

= x+ r · u · n

x · (xΦ(n))t ≡ x mod n. (3.6)

Inserting Eq.(3.6) into (3.4) yields the desired result [31, p.178–179]:

dkpr = (xΦ(n))t · x ≡ x mod n.

21

3.3 Finding large primes

There is one important part of the RSA crypto scheme that has not been discussed yet, and
that is finding large primes p and q in Step 1 of the key generation.Since their product is
the RSA modulus n = p · q, the two primes should have about half the bit length of n. For
instance, if we want to set up RSA with a modulus of length dlog2ne = 1024, p and q should
have a bit length of 512 bit. The general approach is to generate integers at random which
are then checked for primality, as depicted in Fig.4.1 , where RNG is the random number
generator. The RNG should be non predictable because if an attacker can compute or guess
one of the two primes, The RSA algorithm will be compromised [31, p.187].

Figure 3.1: Principal approach to generating primes for RSA [31, p.187]

In order to make this approach work, we have to answer to questions [31, p.187]:

1. How many random integers do we have to test before we have a prime? (If the chance
of a prime is too small, it might take too long).

2. How fast can we check whether a random number is a prime? (if the test is too slow,
then the method might be impractical).

3.4 Attacks on RSA

There has been many attacks proposed on RSA since it was invented in 1977. None of them
were serious, and moreover, they typically exploit weaknesses in the way RSA is implemented
or used rather than the RSA algorithm itself. There are three general attack categories
against RSA [31, p.194].

1. Protocol attacks

2. Mathematical attacks

3. Side-channel attacks

22

I will now give a short explanation of the three attack categories. Forward the focus for my
thesis will be on mathematical attacks and factoring of large numbers, so the explanation
on mathematical attacks will be more in depth than the others.

3.4.1 Protocol attacks

Protocol attacks exploits the weaknesses in how RSA is being used. There has been numerous
of the over the years and the more known attacks exploit the malleability of RSA. Many
of them can be prevented by using padding. Modern security standards describe exactly
how RSA should be used, and if one follows the guidelines, protocol attacks should not be a
threat [31, p.194].

3.4.2 Mathematical attacks

The best mathematical cryptoanalytical method known is factoring the modulus. An at-
tacker, Eve, knows the modulus n, the public key e and the ciphertext y. Her goal is to
compute the private key d which has the property the e · d ≡ modΦ(n). It seems that she
could simply apply the extended Euclidean algorithm and compute d. However, she does
not know the value of Φ(n). At this point factoring comes in: the best way to obtain this
value is to decompose n into its primes p and q. If Eve can do this, the attack succeeds in
three steps [31, p.194]:

Φ(n) = (p− 1)(q − 1)

d−1 ≡ e mod Φ(n)

x ≡ yd mod n.

In order to prevent this attack, the modulus must be sufficiently large. This is the reason
why moduli of 1024 or more bit are needed for a RSA. The proposal of the RSA scheme in
1977 sparked much interest in the old problem of integer factorization. Major progress has
been done in the field of integer factorization because of the creation of RSA. These advances
have been possible mainly due to improvements in factoring algorithms, an to a lesser extent
due to improved computer technology. Even though factoring has become easier than the
RSA designers had assumed in 1977, factoring RSA moduli beyond a certain size is still out
of reach. Which exact length the RSA modulus should have is the topic of much discussion.

23

Many RSA applications used a bit length of 1024 bits as default [31, p.194–195].
Through the years since RSA was invented in 1977, there has been a lot of progress in

factoring numbers [31, p.194–195]. As late as February 2020, the factoring of a number of
the longest bit length yet was done by researchers lead by Paul Zimmermann at Inria, Nancy.
The length of the number was 829 bits [35]. As you can see, 829 bits is not that much less
than 1024 bits. It has been recommended to change the RSA parameters in the range of
2048-4096 bits for long-term security.

3.4.3 Side-channel attacks

A third and quite different family of attacks are side-channel attacks. They exploit infor-
mation about the private key which is leaked through physical channels such as the power
consumption or the timing behaviour. In order to observe such channels, an attacker must
typically have direct access to the RSA implementation, e.g., in a cellphone or a smart
card[31, 195]. Side-channel attacks are a large and interesting field of research in modern
cryptography, but I will not further explain how the attacks are performed on RSA.

24

Chapter 4

Quantum mechanics

Before we can dive in to the quantum computation in the next chapter, we need an intro-
duction to quantum mechanics and I will now provide the basics.

4.1 The postulates of quantum mechanics

First, I want to start off with the postulates of quantum mechanics. The postulates are the
rule set of the quantum realm and important to keep in mind. There are in total 6 postulates
and they are listed below:

• Postulate 1: The state of a quantum mechanical system is completely specified by
a function Ψ(r, t) that depends on the coordinates of the particle(s) and on time.
This function, called the wave function or state function has the important property
that Ψ∗(r, t)Ψ(r, t)dτ is the probability that the particle lies in the volume element dτ
located at r at time t [33].

• Postulate 2: To every observable in classical mechanics there corresponds a linear,
Hermitian operator in quantum mechanics [33].

• Postulate 3: In any measurement of the observable associated with operator Â, the
only values that will ever be observed are the eigenvalues a, which satisfy the eigenvalue
equation [33]

ÂΨ = aΨ. (4.1)

• Postulate 4: Is a system is in a state described by a normalized wave function Ψ,

25

then the average value of the observable corresponding to Â is given by [33]

< A >=
w ∞

−∞
Ψ∗ÂΨdτ. (4.2)

• Postulate 5: The wave function or state function of a system evolves in time according
to the time-dependent Schrödinger equation [33]

ĤΨ(r, t) = i~
∂Ψ

∂t
. (4.3)

• Postulate 6: The total wave function must be antisymmetric with respect to the
inheritance of all coordinates of one fermion with those of another. Electronic spin
must be included in this set of coordinates [33].

4.2 Linear algebra

Linear algebra is the study of vector spaces and of linear operations on those vector spaces.
To understand the basics of quantum mechanics, we need to have a solid grasp on linear
algebra. In this section I will introduce the standard notations which are used for these
concepts in the study of quantum mechanics in table [] [29, p.61].

The basic objects of linear algebra are vector spaces. The vector space of most interest to
us is Cn, the space of all n-tuples of complex numbers, (z1,…,zn). The elements of a vector
space is called vectors, and I will sometimes use the column matrix notation

z1
...
zn

 (4.4)

to indicate a vector[29, p.61]. There is an addition operation defined which takes pairs of
vector to other vectors. In Cn the addition operation for vectors is defined by

z1
...
zn

+

z
′
1
...
z
′
n

 ≡

z1 + z

′
1

...
zn + z

′
n

 , (4.5)

where the addition operations on the right are just ordinary additions for complex num-
bers[29, p.61]. Furthermore, in a vector space there is a multiplication by a scalar operation.

26

In Cn this operation is defined by

z

z1
...
zn

 ≡

zz1
...
zzn

 , (4.6)

where z is a scalar, a complex number, and the multiplications on the right are ordinary
multiplication of complex numbers, sometimes referred to as c-numbers[29, p.61–62].
The standard quantum mechanical notation for a vector in a vector space is:

|ψ〉. (4.7)

ψ is a label for the vector, though any label is valid it is preferred to use simple labels like
ψ and ϕ. The |·〉 notation is used to indicate that the object is a vector [29, p.62].

A vector space also contains the zero-vector, which is denoted by 0. It satisfies the
property that for any vector |v〉, |v〉+ 0 = |v〉.

Notation Description
z∗ Complex conjugate of the complex number z. (1 + i)∗ = 1− i
|ψ〉 Vector. Also known as a ket.
〈ψ| Vector dual to |ψ〉. Also known as a bra.

〈ϕ|ψ〉 Inner product between vectors |ϕ〉 and |ψ〉.
|ϕ〉 ⊗ |ψ〉 Tensor product of |ϕ〉 and |ψ〉.

|ϕ〉|ψ〉 Abbreviated notation for tensor product of |ϕ〉 and |ψ〉.
A∗ Complex conjugate of the A matrix.
AT Transpose of the A matrix.
A† Hermitian conjugate or adjoint of the A matrix, A† = (AT)∗.[

a b
c d

]†
=

[
a∗ c∗

b∗ d∗.

]
〈ϕ|A|ψ〉 Inner product between |ϕ〉 and A|ψ〉. Equivalently, inner product

between A†|ϕ〉 and |ψ〉.

Table 4.1: Summary of some standard quantum mechanical notation for notions from linear
algebra [29, p.62].

27

4.2.1 Bases and linear independence

A spanning set for a vector space is a set of vectors |v1〉, . . . , |vn〉 such that any vector |vn〉
in the vector space can be written as a linear combination |vn〉 =

∑
i ai|vi〉 of vectors in that

set. For example, a spanning set for the vector space Cn is the set

|v1〉 ≡

[
1

0

]
; |v1〉 ≡

[
0

1

]
, (4.8)

since any vector

|v〉 =

[
a1

a2

]
(4.9)

in Cn can be written as a linear combination |v〉 = a1|v1〉 + a2|v2〉 of the vectors |v1〉 and
|v2〉. We say that the vectors |v1〉 and |v2〉 span the vector space Cn [29, p.62–63].

A set of non-zero vectors |v1〉, . . . , |vn〉 are linearly independent if there exists a set of
complex numbers a1, . . . , an with ai 6= 0 for at least one value of i, such that

a1|v1〉+ a2|v2〉+ · · ·+ an|vn〉 = 0. (4.10)

A set of vectors is linearly independent if it is not linearly independent. It can be shown that
any two sets of linearly independent vectors which span a vector space V contain the same
number of elements. We call such a set basis for V. Furthermore, such a basis set always
exists. The number of elements in the basis is defined to be the dimension of V [29, p.63].

4.2.2 Linear operators and matrices

A linear operator between vector spaces V and W is defined to be any function A : V → W

which is linear in its inputs,

A

(∑
i

ai|vi〉
)

=
∑
i

aiA(|vi〉). (4.11)

Usually A|v〉 is written to denote A(|v〉). When a linear operator A is defined on a vector
space, it means that A is a linear operator from V to V. An important linear operator on
any vector space V is the identity operator, IV , defined by the equation IV |v〉 ≡ |v〉 for all
vectors |v〉. Where no chance of confusion arises, one can drop the subscript V and just write
I to denote the identity operator. Another important linear operator is the zero operator,

28

which is denoted by 0. The zero operator maps all vectors to a zero vector, 0|v〉 ≡ 0. It is
clear from equation (5.8) that once the action of a linear operator A on a basis is specified,
the action of A is completely determined on all inputs [29, p.63–64].

The most convenient way to understand linear operators is in terms of their matrix
representations. In fact, the linear operator and matrix viewpoints turn out to be completely
equivalent. The matrix viewpoint may be more familiar , however. To see the connection,
it helps to first understand that an m by n complex matrix A with entries Aij is in fact a
linear operator sending vectors in the vector space Cn to the vector space Cm, under matrix
multiplication of the matrix A by a vector in Cn. More precisely, the claim that the matrix
A is a linear operator just means that

A

(∑
i

ai|vi〉
)

=
∑
i

aiA|vi〉 (4.12)

is true as an equation where the operation is matrix multiplication of A by column vectors[29,
p.64].

We’ve seen that matrices can be regarded as linear operators, but can linear operators
be given a matrix representation? They can! This equivalence between the two viewpoints
justifies our interchanging terms from matrix theory and operator theory. Suppose A : V →
W is a linear operator between vector spaces V and W. Suppose |v1, . . . , |vm〉 is a basis for
V and |w1, . . . , |wn〉 is a basis for W. Then for each j in the range 1, . . . ,m, there exists
complex numbers A1j through Anj such that

A|vj〉 =
∑
i

Aij|wi〉. (4.13)

The matrix whose entries are the values Aij is said to form a matrix representation of the
operator A. This matrix representation of A is completely equivalent to the operator A.
Note that to make the connection between matrices and linear operators we must specify
a set of input and output basis states for the input and output vector spaces of the linear
operator[29, p.64].

4.2.3 The Pauli matrices

Four extremely useful matrices that are often used are the Pauli matrices. They are all 2
by 2 matrices and they go by a variety of notations. The matrices, and their variety of
notations, are listed underneath [29, p.65].

29

σ0 ≡ I ≡

[
1 0

0 1

]

σ1 ≡ σx ≡ X ≡

[
0 1

1 0

]

σ2 ≡ σy ≡ Y ≡

[
0 −i
i 0

]

σ3 ≡ σz ≡ Z ≡

[
1 0

0 −1

]

4.2.4 Inner products

An inner product is a function which takes as input two vectors |v〉 and |w〉 from a vector
space and produces a complex number as output. For the time being, the notation for
writing the inner product of |v〉 and |w〉 as (|v〉, |w〉). The standard quantum mechanical
notation for the inner product (|v〉, |w〉) is 〈v|w〉, where |v〉 and |w〉 are vectors in the inner
product space, and the notation 〈v| is used for the dual vector to the vector |v〉; the dual
is a linear operator from the inner product space V to the complex numbers C, defined by
〈v|(|w〉) ≡ 〈v|w〉 ≡ (|v〉, |w〉) [29, p.65].

A function (·, ·) from V ×V to C is an inner product if it satisfies the requirements that:

1. (·, ·) is linear in the second argument,

(|v〉,
∑
i

λi|wi〉) =
∑
i

λi(|vi〉, |wi〉). (4.14)

2. (|v〉, |w〉) = (|v〉, |w〉)∗.

3. (|v〉, |w〉) ≥ 0 with equality if and only if |v〉 = 0.

We call a vector space equipped with an inner product an inner product space. Discussions
of quantum mechanics often refers ti Hilbert space. In the finite dimensional complex vector
spaces that come up in quantum computation and quantum information, a Hilbert space
is exactly the same thing as an inner product space. In infinite dimensions Hilbert spaces
satisfy additional technical restrictions [29, p.65–66].

30

4.2.5 Eigenvectors and eigenvalues

An eigenvector of a linear operator A on a vector space is a non-zero vector |v〉 such that
A|v〉 = v|v〉, where v is a complex number known as the eigenvalue of A corresponding to
|v〉. It will often be convenient to use the notation v both as a label for the eigenvector and
to represent the eigenvalue. The characteristic function is used for finding eigenvalues and
eigenvectors and is defined to be c(λ) ≡ det|A− λI|, where det is the determinant function
for matrices. The solutions of the characteristic equation c(λ) = 0 are the eigenvalues of
the operator A. By the fundamental theorem of algebra, every polynomial has at least
one complex root, so every operator A has at least one eigenvalue, and a corresponding
eigenvector. The eigenspace corresponding to an eigenvalue v is the set of vectors which
have eigenvalue v. It is a vector subspace of the vector space on which A acts [29, p.68–69].

A diagonal representation for an operator A on a vector space V is a representation
A =

∑
i λi|i〉〈i|, where the vectors |i〉 form an orthogonal set of eigenvectors for A, with

corresponding eigenvalues λi. An operator is said to be diagonalizable if it has a diagonal
representation. Diagonal representations may also be called orthonormal decompositions [29,
p.69].

4.2.6 Tensor products

The tensor product is a way of putting vector spaces together to form larger vector spaces.
This construction is crucial to understanding the quantum mechanics of multiparticle sys-
tems. By definition the tensor product satisfies the following basic properties [29, p.72–73]:

1. For an arbitrary scalar x and elements |v〉 of V and |w〉 of W ,

z(|v〉 ⊗ |w) = (z|v〉)⊗ |w〉 = |v〉 ⊗ (z|w〉). (4.15)

2. For arbitrary |v1〉 and |v2〉 in V and |w〉 in W ,

(|v1〉+ |v2〉)⊗ |w〉 = |v1〉 ⊗ |w〉+ |v2〉 ⊗ |w〉. (4.16)

3. For arbitrary |v〉 in V and |w1〉 |w2〉 in W ,

|v〉 ⊗ (|w1〉+ |w2〉) = |v〉 ⊗ |w1〉+ |v〉 ⊗ |w2〉. (4.17)

31

A linear operator A⊗B on V ⊗W can be defined by the equation

(A⊗B)(|v〉 ⊗ |w〉) ≡ a|v〉 ⊗B|w〉. (4.18)

The definition of A ⊗ B is then extended to all elements of V ⊗W in the natural way to
ensure linearity of A⊗B. Finally I want to mention the useful notation |ψ〉⊗k, which means
|ψ〉 tensored with itself k times [29, p.73–74].

4.3 Entanglement

The deep ways that quantum information differs from classical information involve the prop-
erties, implications, and uses of quantum entanglement. Entangled states are interesting
because they exhibit correlations that have no classical analog. For example, the maximally
entangled state of two qubits(or EPR pair) is defined as [32, p.4]:

|φ+〉AB =
1√
2
(|00〉AB + |11〉AB). (4.19)

”Maximally entangled” means that when we trace over qubit B to find the density operator
ρA of qubit A, we obtain a mutiple of the identity operator:

ρA = trB(|φ+〉〈φ+|) = 1

2
IA, (4.20)

(and similarly ρB = 1
2
IB). This means that if we measure spin A along any axis, the result

is completely random - we find spin up with probability 1/2 and spin down with probability
1/2. Therefore, if we perform local measurement of A or B, we acquire no information
about the preparation of the state, instead we merely generate a random bit. This situation
contrasts sharply with case of a single qubit in a pure state; there we can store a bit by
preparing, say, either | ↑n̂〉 or | ↓n̂〉, and we can recover that bit reliably by measuring along
the n̂−axis. With two qubits, we ought to be able to store two bits, but in the state |φ+〉AB

this information is hidden; at least, we can’t acquire it by measuring A or B [32, p.4–5].
In fact, |φ+〉AB is one member of a basis of four mutually orthogonal states for the two

qubits, all of which are maximally entangled - the basis:

32

|φ±〉 = 1√
2
(|00〉 ± |11〉), (4.21)

|ψ±〉 = 1√
2
(|01〉 ± |10〉). (4.22)

Imagine that Alice and Bob play a game with Charlie. Charlie prepares one of these four
states, thus encoding two bits in the state of the two-qubit system. One bit is the parity bit
(|φ〉 or |ψ〉): are the two spins aligned or antialigned? The other is the phase bit (+ or −):
what superposition was chosen of the two states of like parity. Then Charlie sends qubit A
to Alice and qubit B to Bob. To win the game, Alice (or Bob) has to identify which of the
four states Charlie prepared [32, p.5].

Of course, if Alice and Bob bring their qubits together, they can identify the state
by performing an orthogonal measurement that projects onto the {|φ+〉, |φ−〉, |ψ+〉, |ψ−〉}
basis. But suppose that Alice and Bob are in different cities, and that they are unable to
communicate at all. Acting locally, neither Alice nor Bob can collect any information about
the identity of the state [32, p.5].

What they can do locally is manipulate this information. Alice may apply σ3 to qubit
A, flipping the relative phase of |0〉A and |1〉A. This action flips the phase bit stored in the
entangled state:

|φ+〉 ↔ |φ−〉, (4.23)

|ψ+〉 ↔ |ψ−〉. (4.24)

On the other hand, she can apply σ1, which flips her spin (|0〉A ↔ |1〉A), and also flips the
parity bit of the entangled state:

|φ+〉 ↔ |ψ+〉, (4.25)

|φ−〉 ↔ −|ψ−〉. (4.26)

Bob can manipulate the entangled state similarly. In fact, either Alice or Bob can perform
a local unitary transformation that changes one maximally entangled state to any other
maximally entangled state. What their local unitary transformations cannot do is alter

33

ρA = ρB = 1
2
I - the information they are manipulating is information that neither one can

read [32, p.5–6].
But suppose that Alice and Bob are able to exchange (classical) messages about their

measurement outcomes; together, then, they can learn about how their measurements are
correlated. The entangled basis states are conveniently characterized as the simultaneous
eigenstates of two commuting observables:

σ
(A)
1 ⊗ σ

(B)
1 , (4.27)

σ
(A)
3 ⊗ σ

(B)
3 ; (4.28)

the eigenvalue of σ(A)
3 ⊗σ

(B)
3 is the parity bit, and the eigenvalue of σ(A)

1 ⊗σ
(B)
1 , is the phase

bit. Since these operators commute, they can in principle be measures simultaneously. But
they cannot be measured simultaneously if Alice and Bob perform localized measurements.
Alice and Bob could both choose to measure their spins along the z-axis, preparing a si-
multaneous eigenstate of σ(A)

3 and σ
(B)
3 . Since σ

(A)
3 and σ

(B)
3 both commute with the parity

operator σ(A)
3 ⊗σ

(B)
3 , their orthogonal measurements do not disturb the parity bit, and they

can combine their results to infer the parity bit. But σ
(A)
3 and σ

(B)
3 do not commute with

phase operator σ(A)
1 ⊗σ

(B)
1 , so their measurement disturbs the phase bit. On the other hand,

they could both choose to measure their spins along the x-axis; then they would learn the
phase bit at the cost of disturbing the parity bit. But they can’t have it both ways. To have
hope of acquiring the parity bit without disturbing the phase but, they would need to learn
about the product σ(A)

3 ⊗σ
(B)
3 without finding out anything about σ(A)

3 and σ
(B)
3 separately.

That cannot be done locally [32, p.6].
Now let us bring Alice and Bob together, so that they can operate on their qubits jointly.

How might they acquire both the parity bit and the phase bit of their pair? By applying an
appropriate unitary transformation, they can rotate the entangled basis {|φ±〉, |ψ±〉} to the
unentangled basis {|00〉, |01〉, |10〉, |11〉}. Then they can measure qubits A and B separately
to acquire the bits they seek. But how is this transformation constructed [32, p.6]?

34

4.4 Conditions for quantum computation

Now I want to discuss the four basic requirements for quantum computation before we go on
to the next chapter on quantum computation. These requirements are the abilities to [29,
279]:

1. Robustly represent quantum information

2. Perform a universal family of unitary transformations

3. Prepare a fiducial initial state

4. Measure output result

4.4.1 Representation of quantum information

Quantum information is based on transformation of quantum states. Quantum bits are
two-level quantum systems, and as the simplest elementary building blocks for a quantum
computer, they provide a convenient labeling for pairs of states and their physical realizations
[29, 279].

For the purpose of computation, the crucial realization is that the set of accessible states
should be finite. The position of x of a particle along a one-dimensional line is not generally
a good set of states for computation, even though the particle may be in a quantum state
|x〉, or even some superposition

∑
x cx|x〉. This is because x has a continuous range of

possibilities, and the Hilbert space has infinite size, so that in the absence of noise the
information capacity is infinite. It is in fact generally desirable to have some aspect of
symmetry dictate the finiteness of the state space, in order to minimize decoherence. If the
choice of representation is poor, the decoherence will result [29, 279].

4.4.2 Performance of unitary transformations

Closed quantum systems evolve unitarily as determined by their Hamiltonians, but to per-
form quantum computation one must be able to control the Hamiltonians to effect an ar-
bitrary selection from a universal family of unitary transformations. In fact, any unitary
transform can be composed from single spin operations and controlled-NOT gates, and thus
realization of those two kinds of quantum logic gates are natural goals for experimental
quantum computation. However, implicitly required also is the ability to address individual

35

qubits, and to apply these gates to select qubits or pairs of qubits. This is not simple to
accomplish in many physical systems [29, 281].

Unrecorded imperfections in unitary transforms can lead to decoherence. Similarly, the
cumulative effect of systematic errors is decoherence, when the information needed to be able
to reverse them is lost. Furthermore, the control parameters in the Hamiltonian are only
approximately classical controls: in reality, the controlling system is just another quantum
system, and the true Hamiltonian should include the back-action of the control system upon
the quantum computer [29, 281].

Two important figures of merit for unitary transforms are the minimum achievable fidelity
F and the maximal time top required to perform elementary operations such as single spin
rotations or a controlled-NOT gate [29, 281].

4.4.3 Preparations of fiducial initial states

One of the most important requirements for being able to perform a useful computation, even
classically, is to be able to prepare the desired output. If one has a box which can perform
perfect computations, what use is it if numbers cannot be input? With classical machines,
establishing a definite input state is rarely a difficulty - one merely sets some switches in the
desired configuration and that defines the input state. However, with quantum systems this
can be very difficult, depending on the realization of qubits. Note that it is only necessary to
be able to (repeatedly) produce one specific quantum state with high fidelity, since a unitary
transform can turn it into any other desired input state [29, 281].

Input state preparation is a significant problem for most physical systems. Moreover,
for physical systems in which ensembles of quantum computers are involved, extra concerns
arise. Two figures of merit are relevant to input state preparation: the minimum fidelity
with which the initial state can be prepared in a given state ρin, and the entropy of ρin. The
entropy is important because, for example, it is very easy to prepare the state ρin = I/2n with
high fidelity, but that is a useless state for quantum computation, since it is invariant under
unitary transforms. Ideally, the input state is a pure state, with zero entropy. Generally,
input states with non-zero entropy reduce the accessibility of the answer from the output
result [29, 282].

36

4.4.4 Measurement of output result

What measurement capability is required for quantum computation? For the purpose of
this discussion, let’s think of measurement as a process of coupling one or more qubits to a
classical system such that after some interval of time, the state of the qubits is indicated by
the state of the classical system. For example, a qubit state a|0〉 + b|1〉, represented by the
ground and excited stated of a two-level atom, might be measured by pumping the excited
state and looking for fluorescence. If an electrometer indicates that fluorescence had been
detected by a photonmultiplier tube, then the qubit would collapse into the |1〉 state, and
this would happen with the probability |b|2. Otherwise, the electrometer would detect no
charge, and the qubit would collapse into the |0〉 state [29, 282].

An important characteristic of the measurement process for quantum computation is
the wave function collapse which describes what happens when a projective measurement is
performed. The output of a good quantum algorithm is a superposition state which gives
a useful answer with high probability when measured. For example, one step in Shor’s
quantum factoring algorithm is to find an integer r from measurement result, which is an
integer close to qc/r, where q is the dimension of a Hilbert space. The output state is actually
in a nearly uniform superposition of all possible values of c, but a measurement collapses
this into a single, random integer, thus allowing r to be determined with high probability
[29, 282].

Many difficulties with measurement can be imagined. Furthermore, projective measure-
ments are often difficult to implement. They require that the coupling between the quantum
and classical systems be large, and switchable. Measurements should not occur when not
desired; otherwise they can be a decoherence process. Surprisingly, however, strong mea-
surements are not necessary; weak measurements which are performed continuously and
never switched off, are usable for quantum computation. This is made possible by com-
pleting the computation in time short compared with the measurement coupling, and by
using large ensembles of quantum computers. These ensembles together give an aggregate
signal which is macroscopically observable and indicative of the quantum state. Use of an
ensemble introduces additional problems. For example, in the factoring algorithm, if the
measurement output is q〈c〉/r, the algorithm would fail because 〈c〉, the average value of
c, is not necessarily an integer (and thus the continued fraction expansion would not be
possible). Fortunately, it is possible to modify quantum algorithms to work with ensemble
average readouts [29, 282–283].

A good figure of merit for measurement capacity is the signal to noise ratio (SNR).

37

This accounts for measurement inefficiency as well as inherent signal strength available from
coupling a measurement apparatus to the quantum system [29, p.283].

38

Chapter 5

Quantum computation

Changes made to a quantum state can be described using the language of quantum compu-
tation. The same way a classical computer is built from an electrical circuit containing wires
and logic gates, a quantum computer is built from a quantum circuit containing wires and
elementary quantum gates to pass around the quantum information and manipulate it[29,
p.17].

5.1 Quantum bits

The bit is the fundamental concept of classical computation and classical information. Quan-
tum computation and quantum information is built upon a similar concept, the quantum
bit, qubit for short. Here, properties for single and multiple qubits will be introduced and
compared with properties of classical bits before we move on further in this chapter [29,
p.13].

5.1.1 Single qubits

So what is a qubit then? Just like a classical bit has a state - either 0 or 1 - a qubit also has
a state. Two possible states for a qubit are the states |0〉 and |1〉, wish as you might guess
correspond to the states 0 and 1 for a classical bit. Notation like ’| 〉’ is called the Dirac
notation, and this will be seen a lot as it is the standard notation for states in quantum
mechanics. The difference between bits and qubits is that a qubit can be in a state other
than |0〉 or |1〉. It is also possible to form linear combinations of states, called superpositions

39

[29, p.13]:

|ψ〉 = α|0〉+ β|1〉. (5.1)

The numbers α and β are complex numbers, although for many purposes not much is lost by
thinking of them as real numbers. In another way, the state of a qubit is a vector in a two-
dimensional complex vector space. The special states |0〉 and |1〉 are known as computational
basis states, and form an orthonormal basis for this vector space [29, p.13].

We can examine a bit to determine whether it is in the state 0 or 1. For example,
computers do this all the time when they retrieve the contents of their memory. Rather
remarkably, we cannot examine a qubit to determine its quantum state, that is, the values
of α and β. Instead, quantum mechanics tells us that we can only acquire much more
restricted information about the quantum state. When we measure a qubit we get either
the result 0, with the probability |α|2, or the result 1, with the probability |β|2. Naturally,
|α|2 + |β|2 = 1, since the probabilities must sum to 1. Geometrically, we can interpret this
as the condition that the qubit’s state be normalized to length 1. Thus, in general a qubit’s
state is a unit vector in a two-dimensional complex vector space [29, p.13].

5.1.2 Multiple qubits

Suppose we have two qubits. If these were classical bits, then there would be four possible
states, 00, 01, 10, and 11. Correspondingly a two qubit system has four computational basis
states denoted |00〉, |01〉, |10〉, |11〉. A pair of qubits can also exist in superpositions of these
four states, so the quantum state of two qubits involves associating a complex coefficient -
sometimes called an amplitude - with each computational basis state, such that the state
vector describing the two qubits is [29, p.16]:

|ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉. (5.2)

Similar to the case for a single qubit, the measurement result x=(00,01,10,11) occurs with
probability |ax|2, with the state of the qubits after the measurement being |x〉. The condition
that probabilities sum to one is therefore expressed by the normalization condition that∑

x∈{0,1}2 |ax|2 = 1, where the notation ’{0, 1}2’ means ’the set of strings of length two with
each letter being zero or one’. For a two qubit system, we could measure just a subset of
the qubits, say the first qubit: measuring the first qubit alone gives 0 with the probability

40

|α00|2 + |α01|2, leaving the post measurement state [29, p.16]:

|ψ′〉 = α00|00〉+ α01|01〉√
|α00|2 + |α01|2

(5.3)

Note how the post-measurement state is re-normalized by the factor
√

|α00|2 + |α01|2 so that
it still satisfies the normalization condition, just as we expect for a legitimate quantum state
[29, p.16].

A important two qubit state is the Bell state or EPR pair,

|00〉+ |11〉√
2

. (5.4)

This innocuous-looking state is responsible for many surprises in quantum computation and
quantum information. It is the key ingredient in quantum teleportation and superdense
coding and prototype for many other interesting quantum states. The Bell state has the
property that upon measuring the first qubit, one obtains two possible results: 0 with prob-
ability 1/2, leaving post-measurement state |ψ′〉 = |00〉, and 1 with probability 1/2, leaving
|ψ′〉 = |11〉. As a result, a measurement of the second qubit always gives the same result as
the measurement of the first qubit. That is, the measurement outcomes are correlated [29,
p.17].

More generally, we may consider a system of n qubits. The computational basis states of
this system are of the form |x1x1 . . . xn〉, and so a quantum state of such a system is specified
by 2n amplitudes. For n = 500 this number is larger than the estimated number of atoms
in the unvierse. Trying to store all these complex numbers would not be possible on any
conceivable classical computer. Hilbert space is indeed a big place. In principle, however,
nature manipulates such enormous quantities of data, even for systems containing only a
few hundred atoms. It is as if nature were keeping 2500 hidden pieces of scratch paper on
the side, on which she performs her calculations as the system evolves [29, p.17].

5.2 Quantum gates and circuits

Classical computers are built of wires and logic gates. The wires are used to carry information
around the circuit, while logic gates perform manipulations of the information, converting it
from one form to another. And then together, the wires and logic gates form circuits.

Now I will introduce some notation that will be used going forward. Qubits are repre-
sented with horizontal lines, and the single-qubit unitary transformation U is denoted:

41

Figure 5.1: Illustration of unitary transformation [32, p.6].

A particular single-qubit unitary we will find useful is the Hadamard transform

H =
1√
2

[
1 1

1 −1

]
=

1√
2
(σ1 + σ3), (5.5)

which has the properties

H2 = I (5.6)

and

Hσ1H = σ3, (5.7)

Hσ3H = σ1. (5.8)

Also useful is the two-qubit transformation known at the reversible XOR or controlled-
NOT transformation; it acts as

CNOT : |a, b〉 → |a, a⊕ b〉, (5.9)

on the basis states a, b = 0, 1, where a ⊕ b denotes addition modulo 2. The CNOT is
denoted:

Figure 5.2: Illustration of the CNOT transformation [32, p.7].

Thus this transformation flips the second bit if the first is 1, and acts trivially if the first bit
is 0; it has the property

(CNOT)2 = I ⊗ I (5.10)

42

In addition to these gates, there is also some notation used in quantum circuits that
should be introduced:

Measurement Projection onto |0〉 and |1〉

Qubit Wire carrying a single qubit(left to right)
Classical bit Wire carrying a single classical bit(left to right)

n qubits Wire carrying n qubits

Table 5.1: Additional notation for quantum circuits [29].

5.3 The quantum Fourier transform

In this section I will provide the development of the quantum Fourier transform, which is the
key ingredient for quantum factoring and many other quantum algorithms. The quantum
Fourier Transform is an efficient quantum algorithm for performing a Fourier transform of
quantum mechanical amplitudes. It does not speed up the classical task of computing Fourier
transforms of classical data. But one important task which it does enable is phase estimation,
the approximation of the eigenvalues of a unitary operator under certain circumstances. This
allows us to solve several other interesting problems, including the order-finding problem and
the factoring problem [29, p.216].

One of the most useful ways of solving a problem in mathematics or computer science is
to transform it into some other problem for which a solution is known. A great discovery
of quantum computation has been that some such transformations can be computed much
faster on a quantum computer than on a classical computer, a discovery which has enabled
the construction of fast algorithms for quantum computers [29, p.217].

One such transformation is the discrete Fourier transform. In the usual mathemati-
cal notation, the discrete Fourier transform takes as input a vector of complex numbers,
x0, . . . , xN−1 where the length N of the vector is a fixed parameter. It outputs the trans-
formed data, a vector of complex numbers y0, . . . , yN−1, defined by [29, p.217]:

yk ≡
1√
N

N−1∑
j=0

xje
2πijk/N . (5.11)

The quantum Fourier transform is exactly the same transformation, although the con-

43

ventional notation for the quantum Fourier transform is somewhat different. The quantum
Fourier transform on an orthonormal basis |0〉, . . . , |N − 1〉 is defined to be a linear operator
with the following action on the basis states [29, p.217],

|j〉 → 1√
N

N−1∑
k=0

e2πijk/N |k〉. (5.12)

Equivalently, the action on an arbitrary state may be written

N−1∑
j=0

xj|j〉 →
N−1∑
k=0

yk|k〉, (5.13)

where the amplitudes yk are the discrete Fourier transform of the amplitudes xj. it is
not obvious from the definition, but this transformation is a unitary transformation, and
thus can be implemented as the dynamics for a quantum computer. The unitary of the
Fourier transform will be demonstrated by construction a manifestly unitary quantum circuit
computing the Fourier transform [29, p.217].

In the following, we take N = 2n, where n is some integer, and the basis |0〉, . . . , |2n−1〉 is
the computational basis for an n qubit quantum computer. it is helpful to write the state |j〉
using the binary representation j = j1j2 . . . jn. More formally, j = j12

n−1+j22
n−2+· · ·+jn20.

It is also convenient to adopt the notation 0.jljl+1 . . . jm to represent the binary fraction
jl/2 + jl+1/4 + · · ·+ jm/2

m−l+1 [29, p.217–218].
With a little algebra the quantum Fourier transform can be given the following useful

product representation:

|j1, . . . , jn〉 →
(
|0〉+ e2πi0.jn|1〉

)(
|0〉+ e2πi0.jn−1jn|1〉

)
· · ·

(
|0〉+ e2πi0.j1j2···jn|1〉

)
2n/2

. (5.14)

This product representation is so useful that one may even wish to consider this to be the
definition of the quantum Fourier transform. As explained shortly this representation allows
us to construct an efficient quantum circuit computing the Fourier transform, a proof that
the quantum Fourier transform is unitary, and provides insight into algorithms based upon
the quantum Fourier transform [29, p.218].

The equivalence of the product representation (5.14) and the definition (5.12) follows
from some elementary algebra [29, p.218]:

44

|j〉 → 1

2n/2

2n−1∑
k=0

e2πijk/2
n (5.15)

=
1

2n/2

1∑
k1=0

· · ·
1∑

kn=0

e2πij
(∑n

l=1 kl2
−l
)
|k1 . . . kn〉 (5.16)

=
1

2n/2

1∑
k1=0

· · ·
1∑

kn=0

n⊗
l=1

e2πijkl2
−l |kl〉 (5.17)

=
1

2n/2

n⊗
l=1

[
1∑

kl=0

e2πijkl2
−l |kl〉

]
(5.18)

=
1

2n/2

n⊗
l=1

[
|0〉+ e2πij2

−l |1〉
]

(5.19)

=

(
|0〉+ e2πi0.jn|1〉

)(
|0〉+ e2πi0.jn−1jn|1〉

)
· · ·

(
|0〉+ e2πi0.j1j2···jn|1〉

)
2n/2

. (5.20)

The product representation (5.14) makes it easy to derive an efficient circuit for the
quantum Fourier transform. Such a circuit is shown in Fig. 5.3. The gate Rk denotes the
unitary transformation

Rk ≡

[
1 0

0 e2πi/2
k

]
. (5.21)

Figure 5.3: Efficient circuit for the quantum Fourier transform. This circuit is easily derived
from the product representation (5.14) for the quantum Fourier transform. Not shown are
the swap gates at the end of the circuit which reverse the order of the qubits, or normalization
factors of 1/

√
2 in the output [29, p.219].

To see that the pictured circuit computes the quantum Fourier transform, consider what
happens when the state |j1 . . . jn〉 is input. Applying the Hadamard gate to the first bit

45

produces the state

1

21/2
(
|0〉+ e2πi0.j1|1〉

)
|j2 . . . jn〉, (5.22)

since e2πi0.j1 = −1 when j1 = 1, and is +1 otherwise. Applying the controlled-R2 gate
produces the state

1

21/2
(
|0〉+ e2πi0.j1j2 |1〉

)
|j2 . . . jn〉. (5.23)

We continue applying the controlled-R3, R4 through Rn gates, each of which adds an extra
bit to the phase of the co-efficient of the first |1〉. At the end of this procedure we have the
state

1

21/2
(
|0〉+ e2πi0.j1j2...jn|1〉

)
|j2 . . . jn〉. (5.24)

Next, we perform a similar procedure on the second qubit. The Hadamard gate puts us in
the state

1

22/2
(
|0〉+ e2πi0.j1j2...jn|1〉

)(
|0〉+ e2πi0.j2|1〉

)
|j3 . . . jn〉, (5.25)

and the controlled-R2 through Rn−1 gates yield the state

1

22/2
(
|0〉+ e2πi0.j1j2...jn|1〉

)(
|0〉+ e2πi0.j2...jn|1〉

)
|j3 . . . jn〉. (5.26)

We continue this way for each qubit, giving a final state

1

2n/2
(
|0〉+ e2πi0.j1j2...jn|1〉

)(
|0〉+ e2πi0.j2...jn |1〉

)
. . .

(
|0〉+ e2πi0.jn|1〉

)
. (5.27)

Swap operations, omitted from Figure 6.1 for clarity, are then used to reverse the order of
the qubits. After the swap operations, the state of the qubits is

1

2n/2
(
|0〉+ e2πi0.jn|1〉

)(
|0〉+ e2πi0.jn−1jn|1〉

)
. . .

(
|0〉+ e2πi0.j1j2...jn|1〉

)
. (5.28)

Comparing with Eq. 5.14 we can see that this is the desired output from the quantum
Fourier transform. This construction also proves that the quantum Fourier transform is
unitary, since each gate in the circuit is unitary [29, p.218–219].

But how many gates does this circuit use? We start by doing a Hadamard gate and n−1

conditional rotations on the first qubit, a total of n gates. This is followed by a Hadamard

46

gate and n − 2 conditional rotations on the second qubit, for a total of n + (n − 1) gates.
Continuing this way, we see that n + (n− 1) + · · · + 1 = n(n + 1)/2 gates are needed, plus
the gates in the swaps. At most n/2 swaps are needed, and each swap can be accomplished
using three controlled-NOT gates. Therefore, this circuit provides a Θ(n2) algorithm for
performing the quantum Fourier transform[29, p.219–220].

In contrast, the best classical algorithms for computing the discrete Fourier transform on
2n elements are algorithms such as the Fast Fourier Transform (FFT), which compute the
discrete Fourier transform unsing Θ(n22) gates. That is, it requires exponentially more op-
erations to compute the Fourier transform on a classical computer than it does to implement
the quantum Fourier transform on a quantum computer [29, p.220].

At face value this sounds terrific, since the Fourier transform is a crucial step in so
many real-world data processing applications. For example, in computer speech recognition,
the first step in phoneme recognition is to Fourier transform the digitized sound. Can the
quantum Fourier transform be used to speed up the computation of these Fourier transforms?
Unfortunately, the answer is that there is no way to do this. The problem is that the
amplitudes in a quantum computer cannot be directly accessed by measurement. Thus,
there is no way of determining the Fourier transformed amplitudes of the original state.
Worse still, there is in general no way to efficiently prepare the original state to be Fourier
transformed. Thus, finding uses for the quantum Fourier transform is more subtle than
first hoped. Further I will introduce the use of the quantum Fourier transform in phase
estimation, which is used in order-finding and factoring problems[29, p.220].

5.4 Phase estimation

The Fourier transform is the key to the general procedure phase estimation, which in turn is
the key for many quantum algorithms. Suppose a unitary operator U has an eigenvector |u〉
with eigenvalue e2πiϕ, where the value of ϕ is unknown. The goal for the phase estimation
algorithm is to estimate ϕ. To perform the estimation we assume that we have available
black boxes (sometimes known as oracles) capable of preparing the state |u〉 and performing
the controlled-U2j operation, for suitable non-negative integers j. The use of black boxes
indicates that the phase estimation procedure is not a complete quantum algorithm in its
own right. Rather, you should think of phase estimation as a kind of ”subroutine” or
”module” that, when combined with other subroutines, can be used to perform interesting
computational tasks. In specific applications of the phase estimation procedure we shall do

47

exactly this, describing how these black box operations are to be performed, and combining
them with the phase estimation procedure to do useful tasks. Continuing forward, we will
continue imagining them as black boxes[29, p.221].

The quantum phase estimation procedure uses two registers. The first register contains
t qubits initially in the state |0〉. How t is chosen depends on two things: the number of
digits of accuracy we wish to have in the estimate for ϕ, and with what probability we wish
the phase estimation procedure to be successful. The dependence of t on these quantities
emerges naturally from the following analysis[29, p.221].

Figure 5.4: The first stage of the phase estimation procedure. Normalization factors of 1/
√
2

have been omitted, on the right [29, p.222].

The second register begins in the state |u〉, and contains as many qubits as is necessary to
store |u〉. Phase estimation is performed in two stages. First, we apply the circuit shown in
Fig. 5.4. The circuit begins by applying a Hadamard transform to the first register, followed
by application of controlled-U operations on the second register, with U raised to successive
powers of two. The final state of the first register is easily seen to be:

1

2t/2
(
|0〉+ e2πi2

t−1ϕ|1〉
)(
|0〉+ e2πi2

t−2ϕ|1〉
)
. . .

(
|0〉+ e2πi2

0ϕ|1〉
)

=
1

2t/2

2t−1∑
K=0

e2πiϕk|1〉. (5.29)

We omit the second register from this description, since it stays in the state |u〉 throughout
the computation [29, p.221–222].

48

The second stage of the phase estimation is to apply the inverse quantum Fourier trans-
form on the first register. This is obtained by reversing the circuit for the quantum Fourier
transform, and that can be done in Θ(t2) steps. The third and final stage of phase estimation
is to read out the state of the first register by doing a measurement in the computational
basis. It will now be shown that this provides a good estimate for ϕ. An overall schematic
of the algorithm is shown in Fig. 5.5 [29, p.222].

Figure 5.5: Schematic of the overall phase estimation procedure. The top t qubits (the
’\’ denotes a bundle of wires, as usual) are the first register, and the bottom qubits are
the second register, numbering as many as required to perform U. |u〉 is an eigenstate of U
with eigenvalue e2πiϕ. The output of the measurement is an approximation to ϕ accurate to
t−

⌈
log

(
2 + 1

2ε

)⌉
bits, with probability of success at least 1− ε [29, p.223].

To see why phase estimation works, suppose ϕ may be expressed exactly in t bits, as
ϕ = 0.ϕ1 . . . ϕt. Then the state (6.19) resulting from the first stage of phase estimation may
be rewritten

1

2t/2
(
|0〉+ e2πi0.ϕt |1〉

)(
|0〉+ e2πi0.ϕt−1ϕt |1〉

)
. . .

(
|0〉+ e2πi0.ϕ1ϕ2···ϕt|1〉

)
. (5.30)

Summarizing, the phase estimation algorithm allows one to estimate the phase ϕ of an
eigenvalue of a unitary operator U, given the corresponding eigenvector |u〉. An essential
feature at the heart of this procedure is the ability of the inverse Fourier transform to perform
the transformation

1

2t/2

2t−1∑
j=0

e2πiϕj|j〉|u〉 → |ϕ̃〉|u〉, (5.31)

where the |ϕ̃〉 denotes a state which is a good estimator for ϕ when measured [29, p.223].

49

5.5 Order-finding and factoring

The phase estimation procedure can be applied to solve a variety of problems. Here, I am
going to describe two of the more interesting problems: the order-finding problem and the
factoring problem. These to problems are equivalent to each other and after explaining how
the order finding problem works, I will explain how it further applies the ability to factor as
well.

5.5.1 Order-finding

For positive integers x and N , x > N , with no common factors, the order of x modulo N
is defined to be the least positive integer, r, such that xr = 1(mod N). The order-finding
problem is to determine the order for some specified x and N . Order-finding is believed to
be a hard problem on a classical computer, in the sense that no algorithm is known to solve
the problem using resources polynomial in the O(L) bits needed to specify the problem,
where L ≡ dlog(N)e is the number of bits needed to specify N . It will be explained in
this section how phase estimation may be used to obtain an efficient quantum algorithm for
order-finding.

The quantum algorithm for order-finding is just the phase estimation algorithm applied
to the unitary operator.

U |y〉 ≡ |xy(mod N)〉, (5.32)

with y ∈ {0, 1}L. (Note that here and below. When N ≤ y ≤ 2L − 1, we use the convention
that xy(mod N) is just y again. That is, U only acts non-trivially when 0 ≤ y ≤ N − 1). A
simple calculation shows that the states defined by

|us〉 ≡
1√
r

r−1∑
k=0

exp

[
−2πisk

r

]
|xk mod N〉, (5.33)

for integer 0 ≤ s ≤ r − 1 are eigenstates of U , since

50

U |us〉 =
1√
r

r−1∑
k=0

exp

[
−2πisk

r

]
|xk+1 mod N〉 (5.34)

= exp

[
2πis

r

]
|us〉. (5.35)

Using the phase estimation procedure allows us to obtain, with high accuracy, the corre-
sponding eigenvalues exp(2πis/r), from which we can obtain the order r with a little bit
more work.

There are two important requirements for us to be able to use the phase estimation
procedure: we must have efficient procedures to implement a controlled-U2j operation for
any integer j, and we must be able to efficiently prepare an eigenstate |us〉 with a nontrivial
eigenvalue, or at least a superposition of such eigenstates. The first requirement is satisfied
by using a procedure known as modular exponentiation, with which we can implement the
entire sequence of controlled-U2j operations applied by the phase estimation procedure using
O(L3) gates.

The second requirement is a little trickier: preparing |us requires that we know r, so
this is out of the question. Fortunately, there is a clever observation which allows us to
circumvent the problem of preparing |us〉, which is that

1√
r

r−1∑
s=0

|us〉 = |1〉. (5.36)

In performing the phase estimation procedure, if we use t = 2L+1+ dlog(2+ 1
2ε
)e qubits in

the first register, and prepare the second register in the state |1〉 - which is trivial to construct
- it follows that for each s in the range 0 through r − 1, we will obtain an estiamte of the
phase ϕ ≈ s/r accurate to 2L+1 bits., with probability at least (1−ε)/r. The order-finding
algorithm is schematically depicted in Fig. (5.4).

Figure 5.6: Quantum cicuit for the order-finding algorithm. This circuit can also be used
for factoring, using the reduction given in the next section [29, p.229].

51

Algorithm: Quantum order-finding [29, p.232]

Inputs: (1) A black box Ux,N which performs the transformation |j〉|k〉 → |j〉|xjk mod N ,
for x co-prime to the L-bit number N , (2) t = 2L+1+ dlog(2+ 1

2ε
)e qubits initialized to |0,

and (3) L qubits initialized to the state |1〉.
Outputs: The least integer r > 0 such that xr = 1(mod N).
Runtime: O(L3) operations. Succeeds with probability O(1).

Procedure:
1.

|0〉|1〉
initial state

2.

→ 1√
2t

2t−1∑
j=0

|j|1〉

create superposition

3.

→ 1√
2t

2t−1∑
j=0

|j|xj mod N〉

≈ 1

r
√
2t

r−1∑
s=0

2t−1∑
j=0

e2πisj/r|j|us〉

apply Ux, N

4.

→ 1√
r

r−1∑
s=0

|s̃/r〉|us〉

apply inverse Fourier transform to
first register

5.
→ s̃/r

measure first register

6.
→ r

apply continued fractions algorithm

52

5.5.2 Factoring

Given a composite number N , what prim numbers are multiplied together to get it? This
factoring problem turns out to be equal to the order-finding problem above. This in the
sense that a fast algorithm for order-finding can easily be turned into a fast algorithm o r
factoring. Here I will show the method used to reduce factoring to order-finding.

The reduction of factoring to order-finding goes on in two basic steps. The first step is
to show that a factor can be computes of N if we can find a non-trivial solution x 6= ±1 mod
N) to the equation x2 = 1(mod N). The second step is to show that a randomly chosen
y co-prime to N is quite likely to have an order r which is even, and such that yr/2 6= ±1(

mod N), and thus x ≡ yR/2(mod N) is a non-trivial solution to x2 = 1(mod N). These
two steps are embodied in the two following theorems[29, p.232–233].

Theorem 5.5.1. Suppose N is an L bit composite number, and x is a non-trivial solution
to the equation x2 = 1(mod N) in the range 1 ≤ x ≤ N , that is, neither x = 1(mod N)

nor x = N − 1 = −1(mod N). Then at least one of gcd(x − 1, N) and gcd(x + 1, N) is a
non-trivial factor of N that can be computed using O(L3) operations[29, p.233].

Theorem 5.5.2. Suppose N = pα1
1 . . . pαm

m is the prime factorization of an odd composite
positive integer. Let x be an integer chosen uniformly at random, subject to the requirements
that 1 ≤ x ≤ N − 1 and x is co-prime to N . Let r be the order of x modulo N [29, p.233].
Then

p(r is even and xr/2 6= −1(mod N)) ≥ 1− 1

2m
. (5.37)

Theorems 5.5.1 and 5.5.2 can be combined to give an algorithm which, with high prob-
ability, returns a non-trivial factor of any composite N . All the steps in the algorithm can
be performed efficiently on a classical computer except an order-finding subroutine. By re-
peating the procedure, a total prime factorization of N can be found. The algorithm is
summarized below.

Algorithm: Reduction of factoring to order-finding[29, p.233–234]

Inputs: A composite number N .
Outputs: A non-trivial factor of N .
Runtime: O((logN)3) operations. Succeeds with probability O(1).

53

Procedure:

1. If N is even, return the factor 2.
2. Determine whether N = ab for integers a ≥ 1 and b ≥ 2, and if so return

the factor a.
3. Randomly choose x in the range 1 to N − 1. If gcd(x,N) > 1 then return

the factor gcd(x,N)

4. Use the order-finding subroutine to find the order r of x mod N .
5. If r is even and xr/2 6= −1(mod N) then compute gcd(xr/2 − 1, N) and

gcd(xr/2 + 1, N), and test to see if one of these is a non-trivial factor,
returning that factor if so. Otherwise, the algorithm fails.

Steps 1 and 2 of the algorithm either return a factor, or else ensure that N is an odd
integer with more than one prime factor. These steps may be performed using O(1) and
O(L3) operations, respectively. Step 3 either returns a factor, or produces a randomly chosen
element x of 0, 1, 2, . . . , N − 1. Step 4 calls the order-finding subroutine, computing the order
r of x modulo N . Step 5 completes the algorithm, since Theorem (5.2) guarantees that with
probability at least one-half r will be even and xr/2 6= −1(mod N), and then Theorem (5.1)
guarantees that either gcd(xr/2 − 1, N) or gcd(xr/2 + 1, N) is a non-trivial factor of N [29,
p.234].

5.6 How does it apply to RSA?

There are two ways of breaking RSA using the algorithms described in this chapter. One
is based on order-finding and the other is based on factoring. Suppose Eve receives an
encrypted message xe mod n, and knows the public key (n, e) used to encrypt the message.
Suppose she can find the order of the encrypted message, that is, she can find the smallest
positive integer r such that (xer) = 1 mod n. (Without loss of generality, we may suppose
such an order exists, that is, xe is co-prime to n. If it is not the case, then xe mod n and n

have a common factor that may be extracted by the Euclidean algorithm, which would allow
us to break RSA, as in the second method described shortly.) r divides Φ(n), and since e is
co-prime to Φ(n) it must also be co-prime to r, and thus has a multiplicative inverse modulo
r. Let d′ be such a multiplicative inverse, so ed′ = 1 + kr for some integer k. Then Eve
can recover the original message x by raising the encrypted message to the d′th power [29,
p.643]:

54

(xe)d
′
(mod n) = x1+kr(mod n) (5.38)

= x · xkr(mod n) (5.39)

= x(mod n). (5.40)

The interesting thing is that Eve never actually learns the secret key (d, n); she only learns
(d′, n). Of course, d′ is closely related to d, since d′ is the inverse of e modulo r, d is the
inverse of e modulo Φ(n), and r divides Φ(n). Nevertheless, this example shows that it is
possible to break RSA without necessarily determining the exact value of the secret key. of
course, this method only works if Eve has an efficient method for order-finding, and no such
method is known for a classical computer. On a quantum computer, however, order-finding
(as you may recall from section 5.5.1) can be efficiently accomplished, and thus RSA can be
broken [29, p.643].

A second method for breaking RSA (and the most implicit) allows on to determine the
secret key completely using factoring. Suppose Eve could factor n = pq, extracting p and q,
and thus giving a means for efficiently computing Φ(n) = (p− 1)(q − 1). It is then an easy
matter for Eve to compute d, the inverse of e modulo Φ(n), and thus completely determine
the secret key (d, n). So, if factoring large numbers were easy then it would be easy to break
RSA. As you may recall from section 5.5.2, this is possible and can be done efficiently on a
quantum computer [29, p.643].

55

Chapter 6

Post-quantum cryptography

In the last three decades, public-key cryptography has become an indispensable part of
global communication digital infrastructure. These networks support a massive amount of
applications that are important to our economy, our security, our way of life, such as mobile
phones, internet commerce, social networks and cloud computing. In the connected world we
live in now, the ability of individuals, businesses and governments to communicate securely
is of the utmost importance[16].

Many of our most crucial communication protocols rely on three core cryptographic
functionalities: public-key encryption, digital signatures and key exchange. Currently, these
functionalities are primarily implemented using Diffie-Hellman key exchange, the RSA cryp-
tosystem, and elliptic curve cryptosystems. The security of these systems depends on the
difficulty of number theoretic problems, such as Integer Factorization or the Discrete Log
Problem over different groups [16].

In 1994, Peter Shor of Bell Laboratories showed that quantum computers, a new technol-
ogy using the physical properties of matter and energy to perform calculations, can efficiently
solve each of these number theoretic problems. Therefore all public-key cryptosystems based
on these number theoretic problems are rendered impotent. That means a sufficiently pow-
erful quantum computer will put many forms of modern communication, from key exchange
to encryption to digital authentication, in jeopardy [16].

The discovery that quantum computers could potentially be used to solve certain prob-
lems faster than classical computers sparked great interest in quantum computing and raised
a lot of questions that researchers are working on. For example is quantum complexity fun-
damentally different from classical complexity? Or when will large-scale quantum computers
be built? Is there a way to resist both a quantum and a classical adversary [16]?

56

In the years since Shor’s discovery, the theory of quantum algorithms has developed
significantly. Quantum algorithms achieving exponential speed-up have been discovered for
several problems relating to physics simulation, number theory and topology. Nevertheless,
the list of problems admitting exponential speed-up by quantum computation remains rel-
atively small. In contrast, more modest speed-ups have been developed for broad classes
of problems related to searching, collision finding and evaluation of Boolean formulae. Par-
ticularly Grover’s search algorithm proffers a quadratic speed-up on unstructured search
problems. Even though such a speed-up does not render cryptographic techniques obsolete,
it can have the effect of requiring larger key sizes, even in the symmetric key case. See
table 6.1 and 6.2 for a summary of the impact of large-scale quantum computers on common
cryptographic algorithms, such as RSA and AES. It is not known how far these quantum
advantages can be pushed, in addition to how wide the gap is between feasibility in the
classical and quantum models [16].

The question of when a large-scale quantum computer will be built is complicated and
contentious. While in the past it was less clear that large quantum computers are a physical
possibility, researchers now believe it to be merely a significant engineering challenge. Some
experts even predict that within the next 20 years or so years, sufficiently large quantum
computers will be built to break essentially all public-key cryptography schemes currently in
use. It has taken almost 20 years to deploy our modern public-key cryptography infrastruc-
ture. It will take significant effort to ensure a smooth and secure transition from the current
widely used cryptosystems to their quantum computing resistant counterparts. Therefore,
regardless of whether we can estimate the exact time of the arrival of the quantum comput-
ing era, we must begin now to prepare our information security systems to be able to resist
quantum computing [16].

57

Cryptographic
Algorithm

Type Purpose Impact from large-
scale quantum
computer

AES Symmetric key Encryption Larger key sizes
needed

SHA-2, SHA-3 ——— Hash functions Larger output needed
RSA Public-key Signatures, key

establishment
No longer secure

ECDSA, ECDH
(Elliptic Curve
Cryptography)

Public-key Signatures, key
establishment

No longer secure

DSA (Finite Field
Cryptography)

Public-key Signatures, key
establishment

No longer secure

Table 6.1: Impact of quantum computing on common cryptographic algorithms [16, p.2]

I addition to the cryptographic algorithms taken into consideration by NIST, these algo-
rithms has also been considered in the next table:

Cryptographic
Algorithm

Type Purpose Impact from large-
scale quantum
computer

Diffie-Hellmann Public-key Key-exchange No longer secure
Algebraically ho-
momorphic

Public-key Encryption No longer secure

McEliece Public-key Encryption Still secure
Lattice based
cryptography

Public-key Encryption Still secure

Table 6.2: Continued: Impact of quantum computing on common cryptographic algorithms
[1, p.24]

A large international community has emerged to address the issue of information security
in a quantum computing future, in the hope that our public-key infrastructure may remain
intact by utilizing new quantum-resistant primitives. In the academic world, this new area
of science bears the name ”Post-Quantum Cryptography”. This is an active area of research,
with its own conference series, PQCrypto, which started in 2006. It has received substantial
support from national funding agencies, most notably in Europe and Japan, through the
European Union(EU) projects PQCrypto and SAFEcrypto, and the CREST Crypto-Math
project in Japan [16].

58

These contributions have led to advances in fundamental research, paving the way for the
deployment of post-quantum cryptosystems in the real world. In the past few years, industry
and standards organizations have started their own activities in this field: since 2013, the
European Telecommunications Standards Institute(ETSI) has held three ”Quantum-Safe
Cryptography” workshops, and in 2015 NIST held a workshop on ”Cybersecurity in a Post-
Quantum World”, which was attended by over 140 people from government, industry and
academia [16].

6.1 Post-quantum primitives

The most important uses of public-key cryptography today are for digital signatures and key
establishment. As mentioned above, the construction of a large-scale quantum computer
would render many of these public-key cryptosystems insecure. In particular, this includes
those based on integer factorization, such as RSA, in addition to the ones based on the
hardness of the discrete log problem. In contrast, the impact on symmetric key systems
will not be as drastic. Grover’s algorithm provides a quadratic speed-up for quantum search
algorithms in comparison with search algorithms on classical computers. It is not known
whether Grover’s algorithm will ever be practically relevant or not, but if it is, doubling the
key size will be sufficient to preserve security. Furthermore, it has been shown that an expo-
nential speed-up for search algorithms is impossible, suggesting that symmetric algorithms
and hash functions should be usable in a quantum era [16].
Consequently, the search algorithms believed to be resistant to attacks from both classical
and quantum computers has focused on public-key algorithms. In this section there will be
given a brief overview of the main families for which post-quantum primitives have been pro-
posed. These families include those based on lattices, codes and multivariate polynomials,
in addition to a handful of others [16].

Lattice-based cryptography - Cryptosystems based on lattice problems have received
renewed interest, for a few reasons. Exciting new applications (such as fully homomorphic
encryption, code obfuscation and attribute-based encryption) have been made possible using
lattice-based cryptography. Most lattice-based key establishment algorithms are relatively
simple, efficient and highly parallelizable. Also, the security of some lattice-based systems
are provably secure under a worst-case hardness assumption, rather than on the average
case. On the other hand, it has proven difficult to give precise estimates of the security of

59

lattice schemes against even known cryptanalysis techniques [16].

Code-based cryptography - In 1978, the McEliece cryptosystem was first proposed, and
has not been broken since. Since that time other systems based on error-correcting codes
have been proposed. While quite fast, most code-based primitives suffer from having very
large key sizes- Newer variants have introduced more structure into the codes in an attempt
to reduce the key sizes, however the added structure has also led to successful attacks on
some proposals. While there have been some proposals for code-based signatures, code-based
cryptography has seen more success with encryption schemes [16].

Multivariate polynomial cryptography - These schemes are based on the difficulty of
solving systems of multivariate polynomials over finite fields. Several multivariate cryptosys-
tems have been proposed over the past few decades, with many having been broken. While
there have been some proposals for multivariate encryption schemes, multivariate cryptog-
raphy has historically been more successful as an approach to signatures [16].

Hash-based signatures - Hash-based signatures are digital signatures constructed using
hash functions. Their security, even against quantum attacks, is well understood. Many of
the more efficient hash-based signature schemes have the drawback that the signer must keep
a record of the exact number of previously signed messages, and any error in this record will
result in insecurity. Another drawback is that they can produce only a limited number of
signatures. The number of signatures can be increased, even to the point of being effectively
unlimited, but this also increases the signatures size [16].

Other - A variety of systems have been proposed which do not fall into the above families.
One such proposal is based on evaluating isogenies on supersingular elliptic curves. While
the discrete log problem on elliptic curves can be efficiently solved by Shor’s algorithm on
a quantum computer, the isogeny problem on supersingular curves has no similar quantum
attack known. Like some other proposals, for example those based on the conjugacy search
problem and related problems in braid groups , there has not been enough analysis to have
much confidence in their security [16].

60

6.2 Post-quantum candidates

NIST (National Institute of Standards and Technology) launched a process in 2016 to find a
new standard for one or more quantum-resistant public-key encryption and key-establishment
algorithms. In addition to public-key and key-establishment algorithms, they also wanted
find a new Digital Signature Standard.

In November 2017, there were submitted 82 candidates to NIST for consideration. 69
among these met the submission requirements and the minimum acceptance criteria. While
the process is still ongoing, there are now 17 Second-Round candidates remaining public-
key encryption and key-establishment candidates and 9 digital signature candidates. For
simplicity public-key encryption and key establishment algorithms will be abbreviated to
PKE and KEM and digital signature algorithms will be abbreviated to DS in the table when
describing the type of the algorithms.

61

Algorithm Type Primitive fam-
ily

Reference to sub-
mission paper

BIKE PKE and KEM Code-based [5]
Classic McEliece PKE and KEM Code-based [10]
CRYSTALS-
Dilithium

DS Lattice-based [20]

CRYSTALS-
KYBER

PKE and KEM Lattice-based [7]

Falcon DS Lattice-based [22]
FodoKEM PKE and KEM Lattice-based [3]
GeMSS DS Multivariate [14]
HQC PKE and KEM Code-based [23]
LAC PKE and KEM Lattice-based [26]
LEDAcrypt PKE and KEM Code-based [9]
LUOV DS Multivariate [12]
MQDSS DS Multivariate [17]
NewHope PKE and KEM Lattice-based [4]
NTRU PKE and KEM Lattice-based [15]
NTRU Prime PKE and KEM Lattice-based [11]
NTS-KEM PKE and KEM Code-based [2]
Picnic DS Other [34]
qTESLA DS Lattice-based [13]
Rainbow DS Multivariate [19]
ROLLO PKE and KEM Code-based [27]
Round5 PKE and KEM Lattice-based [8]
RQC PKE and KEM Code-based [28]
SABER PKE and KEM Lattice-based [18]
SIKE PKE and KEM Other [25]
SPHINCS+ DS Hash-based [6]
ThreeBears PKE and KEM Lattice-Based [24]

Table 6.3: Public-key encryption, key-establishment and digital signature algorithm candi-
dates remaining in round 2 of the NIST competition [30].

62

Chapter 7

Conclusion

In my thesis I have shown how quantum computing with quantum algorithms can efficiently
break public-key algorithms built upon a certain number theoretic problem, that is, factoring.
Factoring has not yet been efficiently solved on a classical computer, and the RSA crypto
scheme can be broken using either the quantum order-finding algorithm or the quantum
factoring algorithm. Both of them are able to solve the factoring problem in polynomial
time, which is a big difference from classical computing seeing that RSA has not yet been
broken using classical measures.

One thing is for sure and that is the fact that a sufficiently large-scale quantum computer
able to run the quantum algorithms discussed in my thesis will render widely used public-
key algorithms based on factoring, like RSA, insecure. Even though quantum computers
have existed for a while, they are not yet in commercial use seeing that they are expensive
and exist at near zero Kelvin. This will not only affect the public-key schemes, but also
the symmetric cryptography schemes that rely on the security of public-key algorithms to
exchange keys in order to go through the process of encryption and decryption.

7.1 Path forward

Going forward one should carefully address the issue of quantum algorithms and quantum
computers. The public-key algorithms needs to be replaced by post-quantum algorithms in
the event that quantum computers are able to run the quantum algorithms discussed in my
thesis. As to the matter of which algorithms that will replace the public-key algorithms
in use now, this is not a recommendation that I am fit to give. But I am confident that
the researchers in the post-quantum community will find a suitable fit that will provide

63

security in the foreseeable future. After looking at the candidates in the NIST post-quantum
competition it seems like lattice-based cryptography is a popular option to explore going
forward. What we also can expect is progress in classical computing and attacks on public-
key algorithms. As shown in [35] progress is being made in classical terms. Those threats
may be mitigated by increasing key sizes.

64

65

Bibliography

[1] Post-Quantum Cryptography. Lecture notes in computer science Post-quantum cryp-
tography. Springer Berlin Heidelberg : Imprint: Springer, Berlin, Heidelberg, 1st ed.
2009. edition, 2009. ISBN 1-282-00091-8.

[2] Martin Albrecht et al. Nts-kem. 2019.
URL: https://drive.google.com/file/d/1N3rv4HKCt9yU4xn6wuepsBUrfQW8cuFy/view.

[3] Erdem Alkim et al. Frodokem: Learning with errors key encapsulation. 2020.
URL: https://frodokem.org/files/FrodoKEM-specification-20200325.pdf.

[4] Erdem Alkim et al. Newhope. 2020.
URL: https://newhopecrypto.org/data/NewHope_2020_04_10.pdf.

[5] Nicolas Aragon et al. Bike: Bit flipping key encapsulation. 2020.
URL: https://bikesuite.org/files/v4.0/BIKE_Spec.2020.05.03.1.pdf.

[6] Jean-Philippe Aumasson et al. Sphincs+ submission to the nist post-quantum project.
2019.
URL: https://sphincs.org/data/sphincs+-round2-specification.pdf.

[7] Roberto Avanzi et al. Crystals-kyber: Algorithm specifications and supporting docu-
mentation. 2019.
URL: https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf.

[8] Hayo Baan et al. Round5: Kem and pke based on (ring) learning with rounding. 2020.
URL: https://round5.org/doc/Round5_Submission042020.pdf.

[9] Marco Baldi et al. Ledacrypt. 2020.
URL: https://www.ledacrypt.org/documents/LEDAcrypt_v3.pdf.

66

https://drive.google.com/file/d/1N3rv4HKCt9yU4xn6wuepsBUrfQW8cuFy/view
https://frodokem.org/files/FrodoKEM-specification-20200325.pdf
https://newhopecrypto.org/data/NewHope_2020_04_10.pdf
https://bikesuite.org/files/v4.0/BIKE_Spec.2020.05.03.1.pdf
https://sphincs.org/data/sphincs+-round2-specification.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf
https://round5.org/doc/Round5_Submission042020.pdf
https://www.ledacrypt.org/documents/LEDAcrypt_v3.pdf

[10] Daniel J. Bernstein et al. Classic mceliece: conservative code-based cryptography. 2019.
URL: https://classic.mceliece.org/nist/mceliece-20190331.pdf.

[11] Daniel J. Bernstein et al. Ntru prime: reducing attack surface at low cost. 2019.
URL: https://ntruprime.cr.yp.to/ntruprime-20170816.pdf.

[12] Ward Beullens et al. Luov. 2019.
URL: https://github.com/WardBeullens/LUOV/blob/master/Supporting_Documentation/

luov.pdf.

[13] Nina Bindel et al. Submission to nist’s post-quantum project(2nd round): lattice-based
digital signature scheme qtesla. 2020.
URL: https://qtesla.org/wp-content/uploads/2020/04/qTESLA_round2_14.04.2020.pdf.

[14] Antoine Casanova et al. Gemss: A great multivariate short signature. 2020.
URL: https://www-polsys.lip6.fr/Links/NIST/GeMSS.html.

[15] Chong Chen et al. Ntru. 2019.
URL: https://ntru.org/f/ntru-20190330.pdf.

[16] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner, and
Daniel Smith-Tone. Report on post-quantum cryptography. 2016.
URL: https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf.

[17] Ming-Shing Chen et al. Mqdss specifications. 2020.
URL: http://mqdss.org/files/mqdssVer2point1.pdf.

[18] Jan-Pieter D’Anvers et al. Saber: Mod-lwr based kem. 2020.
URL: https://www.esat.kuleuven.be/cosic/pqcrypto/saber/resources.html.

[19] Jintai Ding et al. Rainbow - algorithm specification and documentation. 2020.
URL: https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.

[20] Léo Ducas et al. Crystals-dilithium. 2019.
URL: https://pq-crystals.org/dilithium/data/dilithium-specification-round2.pdf.

[21] Jean‐Guillaume Dumas, Jean‐Louis Roch, Éric Tannier, and Sébastien Varrette.
In Foundations of Coding, pages 321–474. John Wiley Sons, Inc, 2015. ISBN
9781118881446.

67

https://classic.mceliece.org/nist/mceliece-20190331.pdf
https://ntruprime.cr.yp.to/ntruprime-20170816.pdf
https://github.com/WardBeullens/LUOV/blob/master/Supporting_Documentation/luov.pdf
https://github.com/WardBeullens/LUOV/blob/master/Supporting_Documentation/luov.pdf
https://qtesla.org/wp-content/uploads/2020/04/qTESLA_round2_14.04.2020.pdf
https://www-polsys.lip6.fr/Links/NIST/GeMSS.html
https://ntru.org/f/ntru-20190330.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf
http://mqdss.org/files/mqdssVer2point1.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/resources.html
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://pq-crystals.org/dilithium/data/dilithium-specification-round2.pdf

[22] Pierre-Alain Fouque et al. Falcon: Fast-fourier lattice-based compact signatures over
ntru. 2019.
URL: https://falcon-sign.info/falcon.pdf.

[23] Philippe Gaborit et al. Hamming quasi-cyclic (hqc). 2020.
URL: http://pqc-hqc.org/doc/hqc-specification_2020-05-29.pdf.

[24] Mike Hamburg et al. Post-quantum cryptography proposal: Three bears. 2019.
URL: https://sourceforge.net/p/threebears/code/ci/master/tree/threebears-spec.pdf.

[25] David Jao et al. Supersingular isogeny key encapsulation. 2020.
URL: https://sike.org/files/SIDH-spec.pdf.

[26] Xianhui Lu et al. Lattice-based cryptosystems (lac). 2020.
URL: https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.

[27] Carlos A. Melchor et al. Rollo - rank-ouroboros, lake locker. 2020.
URL: https://pqc-rollo.org/doc/rollo-specification_2020-04-21.pdf.

[28] Carlos A. Melchor et al. Rank quasi-cyclic (rqc). 2020.
URL: http://pqc-rqc.org/doc/rqc-specification_2020-04-21.pdf.

[29] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge University Press, 2010. ISBN 9781139495486.
URL: https://books.google.no/books?id=-s4DEy7o-a0C.

[30] NIST. Post quantum cryptography, round 2 submissions, 2020.
URL: https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.

[31] C. Paar and J. Pelzl. Understanding Cryptography: A Textbook for Students and Prac-
titioners. Springer Berlin Heidelberg, 2010. ISBN 9783642446498.

[32] John Preskill. Lecture notes for ph219/cs219: Quantum information and computation,
chapter 4. 2001.
URL: http://www.theory.caltech.edu/~preskill/ph229/notes/chap4_01.pdf.

[33] David Sherill. Postulates of quantum mechanics, 2006.
URL: http://vergil.chemistry.gatech.edu/notes/quantrev/node20.html.

68

https://falcon-sign.info/falcon.pdf
http://pqc-hqc.org/doc/hqc-specification_2020-05-29.pdf
https://sourceforge.net/p/threebears/code/ci/master/tree/threebears-spec.pdf
https://sike.org/files/SIDH-spec.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://pqc-rollo.org/doc/rollo-specification_2020-04-21.pdf
http://pqc-rqc.org/doc/rqc-specification_2020-04-21.pdf
https://books.google.no/books?id=-s4DEy7o-a0C
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
http://www.theory.caltech.edu/~preskill/ph229/notes/chap4_01.pdf
http://vergil.chemistry.gatech.edu/notes/quantrev/node20.html

[34] Greg Zaverucha et al. The picnic signature algorithm. 2020.
URL: https://github.com/microsoft/Picnic/blob/master/spec/spec-v3.0.pdf.

[35] Paul Zimmermann. Factorization of rsa-250, 2020.
URL: https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/

001166.html.

69

https://github.com/microsoft/Picnic/blob/master/spec/spec-v3.0.pdf
https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html
https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html

	Introduction
	Cryptography
	Basics of cryptography
	The purpose of cryptography

	Complexity
	Outline

	Public-key cryptography
	Symmetric vs. asymmetric cryptography
	Important public-key algorithms
	Number theory for public-key algorithms
	Euclidean algorithm
	Extended Euclidean algorithm
	Euler's Phi function
	Fermat's Little Theorem and Euler's Theorem

	The RSA cryptosystem
	Encryption and decryption
	Key generation and proof of correctness
	Finding large primes
	Attacks on RSA
	Protocol attacks
	Mathematical attacks
	Side-channel attacks

	Quantum mechanics
	The postulates of quantum mechanics
	Linear algebra
	Bases and linear independence
	Linear operators and matrices
	The Pauli matrices
	Inner products
	Eigenvectors and eigenvalues
	Tensor products

	Entanglement
	Conditions for quantum computation
	Representation of quantum information
	Performance of unitary transformations
	Preparations of fiducial initial states
	Measurement of output result

	Quantum computation
	Quantum bits
	Single qubits
	Multiple qubits

	Quantum gates and circuits
	The quantum Fourier transform
	Phase estimation
	Order-finding and factoring
	Order-finding
	Factoring

	How does it apply to RSA?

	Post-quantum cryptography
	Post-quantum primitives
	Post-quantum candidates

	Conclusion
	Path forward

	Bibliography

