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Abstract

Pollen grains are one of the primary tools of palaeoecologists to reconstruct vegetation

changes in the past. The description, counting and analysis of pollen grains (palynology)

has contributed to our understanding of establishment and dynamics of past and present

plant communities. Advances in identification accuracy, precision and increased taxo-

nomic resolution have greatly improved our understanding of biogeography and plant

community interactions. Nevertheless, the techniques by which palynological studies are

performed have not fundamentally changed. Taxonomic resolution and automation have

been identified as some of the key challenges for palynology and palaeoecology. Chemi-

cal methods have been proposed as a potential alternative to morphological approaches

and have demonstrated promising results in the classification of modern pollen grains

and in the analysis of pollen chemical responses to UV-B radiation. The application

of chemical methods for palynological needs have not been thoroughly explored, with

analysis of (sub-)fossil pollen lagging behind their modern counterpart. Especially the

application of infrared methods have gained popularity as an alternative to traditional

morphological approaches.

In this thesis, I explore the use of infrared methods for palynological applications, by

exploring the chemical variation in modern pollen grains and in the analysis of fossil

pollen grains with IR microscope approaches. The objectives of this thesis are formulated

into three research objectives:

• Collect modern pollen and explore the variation in chemical composition

• Apply chemical methods to fossil material

• Explore microscopy chemical methods on modern pollen

The thesis is structured into four studies to study these objectives. Papers I and II

explore variation and classification based on the chemical composition of modern Quercus

pollen using two IR approaches, Fourier transform infrared spectroscopy (FTIR) and

Fourier transform Raman spectroscopy (FT-Raman). After exploring modern chemical

composition of pollen, paper III investigates FTIR methods for the analysis of fossil

pollen, in spectra of Holocene Pinus pollen. Additionally, the effects of acetolysis and
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density separation on Pinus pollen is described. Paper IV addresses the challenge of

scattering signals when measuring small pollen grains of four Quercus species with FTIR

microscopy and ways to surpress or weaken the scattering signals.

The results from paper I and II show classification success, surpassing traditional mor-

phological approaches, at the Quercus section level and ~90% recall on species level with

both IR approaches. Chemical bands most useful for classification are lipids, sporopol-

lenin and proteins for both FT-Raman and FTIR. We observe differences in the im-

portance of chemical functional groups for the classification. FT-Raman relies more on

sporopollenin chemistry, while FTIR utilizes more variation in lipid bands. After find-

ing considerable variation in sporopollenin chemistry in modern pollen samples, FTIR

methods were applied to pollen from sediment cores spanning the Holocene. Paper III

examines the differences between modern and sub-fossil pollen and reported large differ-

ences between them, mainly the removal of labile components, such as lipids and protein

peaks from the sub-fossil spectra during diagenesis. Additionally, paper III finds changes

to pollen chemistry caused by acetolysis in the 1200 - 1000 cm-1 region of the spectra,

when comparing acetolysed spectra to non-acetolysed spectra. The paper concludes with

findings of unwanted inorganic signals (BSi) and contamination from density separation

media in the sediment pollen spectra. Paper IV demonstrates two successful methods of

removing scattering signals from pollen spectra. Two approaches were examined, embed-

ding and processing with signal correction algorithms. Spectra from embedded pollen

have no scattering anomalies, but part of the spectra is unusable, because of absorbance

of the embedding matrix (paraffin). The signal processing algorithm removes most of the

scatter components and allows the scatter components to be extracted. Classification of

the different data-sets (spectra without correction, embedded spectra, processed spectra,

scatter parameters) reveals that scatter correction methods reduce classification success

and that scatter parameters contain taxonomic information. This suggests that scatter

corrections may not be the best approach for applications mainly focused on classifica-

tion or identification, while reconstructions of, for example, UV-B radiation may benefit

from scatter correction methods, when measuring single grain spectra.

This thesis shows that the performance of IR methods surpasses traditional morphologi-

cal methods for pollen classification and that a considerable amount of taxonomic infor-
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mation is stored in functional groups associated with sporopollenin (phenylpropanoids).

In a study on fossil pollen, this thesis demonstrates that conventional chemical extrac-

tion methods, such as acetolysis, alter the chemical composition of pollen and may not

be ideal for palaeochemical purposes. Additionally, the scatter correction methods show

that IR can provide non-chemical information in the form of scatter parameters, which

contain taxonomic information. These results are useful additions to the growing knowl-

edge on chemical methods for palaeoecological and palynological analyses.
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1 Background

Sub-fossilised remains of plants and animals are used by palaeoecologists to reconstruct

vegetation changes in the past. The pollen produced by plants is both abundant and

easily preserved (e.g. in bogs and lakes), which makes it a useful tool to investigate veg-

etation changes over thousands of years. The study of pollen grains (palynology) has

a long tradition of reconstructing past vegetation since the presentation and publica-

tion of the first pollen diagram by Lennart von Post (von Post 1916, 1918). Von Post

counted arboreal pollen from peat samples in southern Sweden and showed changes in

relative abundance (Birks and Berglund 2018). Although the fundamentals and theory

behind pollen analysis have changed remarkably little since Von Post, newer methods

for the extraction, description, radiometric dating and analysis of pollen and their sedi-

ment samples (Erdtman and Praglowski 1959, Fægri and Deuse 1960, Fægri and Iversen

1989) have allowed insights into the past to become more detailed and complex: from

descriptive studies of past vegetation, to gaining new information of long-term succes-

sional processes, the establishment of and dynamics of plant communities (Delcourt et al.

1982, Ritchie 1995, Mitchell and Cole 1998) and temporal and spatial changes in plants

communities as linked to climate and anthropogenic change (Webb 1986, Odgaard 1999,

Haskell 2001, Davis and Shaw 2001, Birks 2019). Reliable and detailed identification of

pollen or other sub-fossil remains is an integral part of detailed environmental, archae-

ological and ecological reconstructions, which can give answers to complex questions.

Advances in the quality of plant fossil identification have played a key role in improving

our understanding of historical plant geography (Godwin 1975, Lang 1994, Magri et al.

2006, Birks 2008, 2014, Birks and Berglund 2018).

Nevertheless, taxonomic resolution remains a challenge for palynology and palaeoecology

as a whole, because pollen data are often constrained by low taxonomic resolution (Rull

2012). Current taxonomic resolution of pollen analysis is limited by a number of factors,

including: i. technical limitations to the optical resolution of light microscopes; ii. limi-

tations of modern reference collections resulting in insufficient sample sizes; iii. variety

in reference collections based on regional differences; iv. the abilities or confidence of an

expert palynologist to identify pollen at the lowest taxonomic level.
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Difficult to identify taxa are often classified to the level the analyst feels comfortable,

which can be sub-genus, genus or even family in some cases (Prentice 1988). In the age

of big data (Brewer et al. 2012), this poses a challenge when combining several datasets

originating from different analysts and from different locations. To counteract differ-

ences in taxonomic resolution, often the broader classification is chosen to opt for more

data instead of more detail. The reliable identification of pollen is a requirement for

palaeoecological reconstructions of past environments (Mitchell et al. 2014) and has im-

plications for the modelling of past and future vegetation/climate responses (Finkelstein

et al. 2006).

Pollen data with too low taxonomic resolution may not provide the necessary detail for

reconstructions, e.g. related to assessing human impact (Deza-Araujo et al. 2021). An-

thropogenic pollen indicators have been established based on their modern occurence as

agriculturual plants or weeds, yet only a few are identified to species, while a number

of domesticated species is grouped in a few families (e.g. Brassicaceae). An increase in

taxonomic precision would help to separate the influence of anthropogenic land-use on

vegetation change from other drivers, such as climate. Furthermore, improved precision

of taxonomic identification would improve fossil pollen as a record of past biodiversity

(Odgaard 1999). Environmental and ecological preferences are more detailed and defined

for species than they are for higher taxonomic groupings. Pollen-based biome reconstruc-

tions, for example, would be improved by higher taxonomic resolution, because certain

taxon associations have persisted for long time periods, but changes in species associ-

ations may be masked by the taxonomic resolution of the pollen data. Williams et al.

(2004) report, for example, an association between Carya and Quercus for over 21,000

yrs, but both taxa represent a variety of species with specific preferences and associa-

tions that occupy distinct niches and biomes. Another example is the distribution and

abundance of oaks, which are usually identified to two sub-genus morphotypes, but a

recent attempt to model future responses of Quercus in Europe using fossil pollen were

based on Quercus pollen resolved to genus (Nogués-Bravo et al. 2016). Quercus species

in Europe often have distinct geographical distributions and species-specific responses

to climate (Acácio et al. 2017). Limitations on taxonomic resolution (e.g. Quercus or

similar taxa) have implications for the reconstruction and interpretation of past environ-

ments using modern analogues and the modelling of past and future vegetation/climate



1.1 Technical limitations 15

responses, and hinders the ability to develop accurate predictions.

1.1 Technical limitations

Light microscopy (LM) is most commonly used to identify pollen, because of its ease

of use and long established standardized protocol for pollen extraction from sediment

samples (Erdtman and Praglowski 1959, Fægri and Deuse 1960, Fægri and Iversen 1989).

There have been innovations, such as extraction of pollen from sediments avoiding strong

acids (e.g. density separation using sodium polytungstate, see Regnéll and Everitt 1996,

Nakagawa et al. 1998) and technical improvements to LM, but the actual description and

counting of pollen has largely stayed the same since Erdtman and Praglowski (1959),

because of its efficiency in allowing the counting of a large number of pollen grains

(e.g. 300) extracted from the same sample. Scanning electron microscopy (SEM) is a

method with much higher resolution and detail, which is also more expensive, requires

special expertise, additional sample preparation and remains a tool for detailed morpho-

logical description of pollen for taxonomic purposes (Solomon 1983a, 1983b, Denk and

Grimm 2009, Denk and Tekleva 2014) instead of vegetation-assemblage reconstruction.

1.2 Limitations of expert evaluation

Pollen counting is a subjective process according to Stillman and Flenley (1996), who

called it the ‘personal equation’ that influences identification. Other decisions, such as

deciding which grains are within the counting window or access to and training with

reference collections are part of the ‘personal equation’. Palynologists do their best to

ensure consistency between analysts and between labs through reference databases (Mar-

tin and Harvey 2017) or counting protocols (Regal and Cushing 1979, Fægri and Iversen

1989), which standardise decisions on which grains are counted. Nevertheless, there are

differences in the specifics of how pollen is counted between individual palynologists,

laboratories and communities.

One aspect of pollen counting is the total number of pollen grains counted for each

sample. Pollen counting using LM is time consuming and rarely are all pollen grains
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counted that are found within a given sample slide. The number of samples and pollen

grains counted are often limited by the time or budget allocated to palynological analysis.

The recommendation is that at least 500-1000 grains are counted per sample to estimate

rare taxa sufficiently (Birks and Birks 1980, Moore et al. 1991, Bennett and Willis 2002,

Weng et al. 2006), but this threshold is not always met and other studies found lower

pollen counts sufficient, e.g. 200-250 (Barkley 1934, Hill 1996) or as low as 150 (Lytle

and Wahl 2005). Generally, pollen counts of ~300 grains are widely used (Birks and

Birks 1980, Keen et al. 2014). Pollen assemblages are biased representations of their

parent vegetation, and the variance in richness or evenness of this vegetation. Pollen-

count sums that are too low may therefore under- or over-estimate the importance of

some taxa compared to others, based on the abundance/ rarity of specific pollen types.

Furthermore, pollen assemblages are biased towards species that have a high pollen

productivity or disperse pollen well, e.g. wind-pollinated species. Tree and grass taxa

are overrepresented in pollen assemblages, as opposed to other flowering plants.

In addition, there may be human biases to expert evaluation, such as declining precision

due to fatigue, over familiarity with certain samples or other identification biases due to

reference-library access or study area familiarity (MacLeod et al. 2010). Studies that

evaluate expert accuracy and reproducibility are not very common (Gobalet 2001, Kelly

2001, Culverhouse et al. 2003), but have shown in some cases inconsistencies between

experts and in some cases call into question the accuracy of reported data (Gobalet

2001). These examples are from other proxies (e.g. dinoflagelates), but the underlying

problem is the same for pollen.

Studies that evaluate automated approaches’ consistency compared to palynologists’ give

some insight into palynologists’ performance in counting pollen grains, even though they

are the benchmark standard in this example. Holt et al. (2011) shows that pollen-count

standard deviations are higher for human experts compared to their automated pollen

counting system (Autostage). Unfortunately accuracy was not evaluated. Tcheng et al.

(2016) develop a system to differentiate two types of spruce and evaluate the performance

of human experts to identify the Picea variants on slides with different ratios of the two

pollen variants. Their results show that human experts generally overcounted the variant

that was less represented on the slide, while their automated system counted closer to the
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true ratios. These findings show that there is considerable variability, even though these

tests were very specific examples aimed at evalutating the performance of automated

approaches. Studies on the accuracy of palynologists ability to identify pollen would

be a vital resource to evaluate the performance of automated approaches and evaluate

uncertainty in pollen reconstruction. Some taxa are very hard to identify, even for

experts of those genera, which implies a certain degree of imprecision and/ or inaccuracy

to palynology, that is not well studied, but accepted as the ‘personal equation’.

1.3 New approaches to an old problem

One possible development in palynology which may help resolve issues related to observer

bias and data collection speed is automation. For the past 25 years several studies have

outlined the prospect and challenges of automation in palynology (Stillman and Flenley

1996, Li et al. 2004, Hodgson et al. 2005, Holt and Bennett 2014), with promising

results for partly- or fully-automated systems (Holt et al. 2011, Punyasena et al. 2012,

Holt and Bebbington 2014, Riley et al. 2015, Tcheng et al. 2016, Sevillano et al. 2020).

Alternatively, chemical methods have been developed (with focus on using infrared (IR)

radiation, e.g. Laucks et al. 2000, Dell’Anna et al. 2009, Zimmermann 2010) to provide

more objective techniques for identification with potential for automation. The potential

of these approaches was of interest at the start of my studies, and below, I outline some

fundamentals of these approaches.

1.3.1 Computer Vision approaches

Automation of pollen counting has been recognized as a solution to address a number

of the disadvantages in palynology (Stillman and Flenley 1996). Some of these I have

described above: limits to taxonomic resolution, objectivity of human palynologists,

pollen counting takes a long time. Additionally, they identify the need for finer resolution

and larger counts, to discover more detailed vegetation responses to e.g. climate change

or human impact from pollen records.

New methods and techniques have consistently been developed parallel to the refinement
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of palynology that aim to reduce the time spent counting pollen. They range from

improved databases to aid identification (Walker et al. 1968, Guppy et al. 1973) to

texture analysis based on digitised images of the exine surfaces (Langford et al. 1990).

With advances in computing capacity and performance, analysis of digital pollen images

assisted by machine-learning techniques have resulted in a number of studies. These

approaches are generally using morphological parameters extracted from images (Kaya

et al. 2013, Mander et al. 2013, Tcheng et al. 2016) or image-stacks (Punyasena et al.

2012), which are used for further identification using custom algorithms (Tcheng et al.

2016) or machine-learning methods (e.g. k-nearest-neighbour, Mander et al. 2013, or

artificial neural networks Holt et al. 2011). In parallel, the challenge of pollen detection

and segmentation on images has been investigated by analytical methods (Landsmeer

et al. 2009, Tcheng et al. 2016) and an automated microscope which captures images

of pollen directy from sample slides (Allen 2006, Holt et al. 2011). These approaches

mostly rely on the extraction of morphological and surface texture parameters (size,

tectum thickness, shape, etc.) instead of using the images directly. With advances in

computer vision, neural networks have became more and more sophisticated and capable

of difficult identification and segmentation tasks (He et al. 2015, Ren et al. 2015, Szegedy

et al. 2015b, Krizhevsky et al. 2017, Yu et al. 2019). These developments have found

application in palynological studies (Sevillano et al. 2020) and have great potential in

the automation of pollen counting.

1.3.2 Infrared Spectroscopy

Chemical analysis of pollen grains is an alternative approach to automation using

computer-vision and machine-learning approaches. Infrared spectroscopy is a fast, inex-

pensive and reproducible method to collect information about the chemical composition

of a sample (Zimmermann et al. 2017, Mondol et al. 2019). It gained popularity in

the ecological sciences and later palaeoecology after infrared spectrometers became

more accessible and affordable. In IR-spectroscopy, the sample is irradiated with

infrared light and specific chemical-functional groups absorb the IR radiation at specific

wavelengths. Different types of bonds absorb IR radiation, which causes characteristic

types of vibrations or stretching of particular bonds. The difference in IR intensity
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(absorbance) is recorded and called a chemical spectra. One type of IR spectroscopy is

Fourier transform infrared spectroscopy (FTIR). FTIR is more sensitive to vibrations

of polar bonds, found in carbonyl-functional groups (alcohols, ethers, esters, etc.). The

spectra provided by FTIR spectrometers provide balanced information on a variety

of types of chemical compounds, lipids, carbohydrates, proteins and more complex

compounds, such as sporopollenin.

A second type of IR spectroscopy, Raman spectroscopy operates in much the same way

but with important differences. Raman causes stronger vibrations in different types

of functional groups than FTIR, namely carbon-to-carbon bonds and hydrocarbons

(e.g. aliphatic bonds). Raman spectroscopy is based on inelastic scattering of photons,

when the photons interact with matter they transfer energy (matter gains vibrational

energy) and the photon changes direction (Raman scattering). The energy of the pho-

tons is shifted, which gives information about chemical composition. This information is

complementary to FTIR spectroscopy, where Raman preferentially induces vibrational

modes to non-polar based chemical functional groups (e.g. carotenoids, sporopollenin,

etc.). This sensitivity to aliphatic functional groups potentially makes Raman a bet-

ter choice, when samples are rich in complex compounds such as lignin, carotenoids

and sporopollenin. There are, however, a number of undesired effects that occur when

analysing pollen samples with Raman, especially fossil pollen. First, unequal absorption

of radiation can reduce Raman-band intensities, which is caused by near-IR absorption

by the sample, and which can weaken the incident laser. Second, a common problem for

pollen is intense heating and in some cases thermal decomposition, caused by absorption

at the laser wavelength. Adjustments to Raman spectroscopy, such as different lasers are

used to address these problem with varying results (Chase 1986, Baranski et al. 2005,

Kairyte et al. 2012).

1.3.3 Application of IR in Ecology and Palaeoecology

The study of pollen grains using IR methods is relatively young, even though the chem-

ical composition of pollen has been studied before, (e.g. Todd and Bretherick 1942,

Baker and Baker 1979, Hemsley et al. 1996, Moore et al. 2006). However, since the

beginning of my PhD in 2016, the application of IR spectroscopy to palaeoecological
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Figure 1: Studies published between 2000 and 2021 using IR spectroscopy to identify or
classify pollen grains. Studies are grouped if methods used were FTIR, Raman or both
approaches. Not included are studies focused purely on effects of UV-B radiation on
pollen or other chemical methods (e.g. MALDI-TOF). Dashed line represents the start
of my PhD.
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research, in addition to other related pollen-chemistry methods (including pyrolysis-Gas

Chromatography Mass Spectrometry, Bell et al. 2018, Seddon et al. 2021) has seen

rapid progress and development. Figure 1 shows the progression in the field since 2000.

Since a large number of the studies that have a palaeoecological application in mind (in

terms of classification of pollen grains) were published during or shortly before I started

my PhD in 2016, I will discuss these more recent studies together with my findings in

the discussion. In this section I will describe the overall state of the knowledge that was

available at the time and how that informed objectives for this thesis.

Most studies present classifications of tree and grass pollen types that are common aller-

gens (e.g. Poaceae, Alnus, Tilia, etc) and outline the potential of IR for the automization

of allergenic monitoring and identification of bioaerosols (Laucks et al. 2000, Pappas et

al. 2003, Ivleva et al. 2005, Gottardini et al. 2007, Dell’Anna et al. 2009, 2009, Zim-

mermann 2010, Guedes et al. 2014, Wang et al. 2015, Zimmermann et al. 2015b, 2016,

2017). These studies generally have high accuracy (>90% recall) and a high number of

different taxa. A variety of IR methods are employed in these studies, some use bulk

FTIR (e.g. Zimmermann 2010), some use IR microscopy (Raman and FTIR) to analyse

single grains (e.g. Ivleva et al. 2005, Dell’Anna et al. 2009), whilst others use bulk

Raman measurements (e.g. Laucks et al. 2000). What all of these studies have in com-

mon is that they use modern material collected from public parks, botanic gardens or

purchased from commercial suppliers. The results from these studies show that a variety

of IR methods (FTIR, Raman, bulk, microscopy) are capable of identifying pollen based

on their chemistry.

Based on these findings, building a system that could reliably identify pollen using their

chemical composition seems feasible, considering the promising performances of Pappas

et al. (2003), Dell’Anna et al. (2009), Zimmermann (2010) and Zimmermann et al.

(2015b), which carried out analyses across a diverse range of taxa. From my perspective,

these previous studies show the powerful capabilities of IR methods and show promising

results for application of chemical identification using FTIR or Raman microscopy. At

the same as FTIR methods were developed for pollen classification, there were parallel

developments happening in UV-B research where IR and other chemical methods were

being applied to fossil pollen grains to recover a UV-B signal (Blokker et al. 2005, 2006,
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Willis et al. 2011, Jardine et al. 2016).

Nevertheless, if chemical methods are to be applied to palaeoecological research, it was

clear that there were challenges that had to be overcome. The first was that the amount

of variation in pollen chemical composition was not clear, and whether it showed re-

gional patterns similar to morphological variations. Most of the classification studies

mentioned above had quite low replication for each of their sampled species, often only

one specimen per species. Low replication is a potential challenge, because low replica-

tion cannot capture potential regional variation in pollen chemistry. Some studies up

until that point had used IR spectroscopy to show the plasticity of pollen chemistry. For

example, Lahlali et al. (2014) demonstrated responses in pollen protein and lipid content

to heat stress and Buta et al. (2015) showed a possible link between biochemical com-

position, viability, and germination capacity, but important work that demonstrated the

variability of pollen chemistry across large sample sets was relatively limited (Bağcıoğlu

et al. 2017, Zimmermann et al. 2017). Understanding the natural variability of pollen

in the modern setting is a necessary step before applying chemical methods to fossil

pollen. In particular, understanding species and even subspecies differences, as well as

geographic differences in chemical composition in modern material, is something that

is necessary to achieve before application to fossil pollen grains. The spectra obtained

from pollen would then be an important reference with which to compare fossil pollen

to. This is analogous to reference collection for morphological identification, which can

show geographic variation in certain morphological characteristics. Sampling trees with

regional variety is one way to capture some of this variability of pollen chemistry.

The second challenge was the technical limitations of FTIR microscopes, where scattering

interference would be maximised while measuring small particles (<30 µm) (Lukacs et

al. 2015, Zimmermann et al. 2015a, Blümel et al. 2018). Analytical solutions to this

type of scattering have been demonstrated on biological particles and some pollen types

(Lukacs et al. 2015) by filtering scattering anomalies. Zimmermann et al. (2016) and

Zimmermann (2018) demonstrated scatter correction methods on more pollen types and

show promising results. The ability to capture single grain spectra of pollen is very

important for palaeoecological purposes and poses one of the biggest challenges for this

method.
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Whilst one side of the challenge to measure FTIR spectra of single pollen grains is tech-

nical (e.g. issues of scattering, reproducability of spectra, mounting medium, etc.), the

other side concerns the pollen samples and the possible effects of common palaeoecolog-

ical sample processing methods (e.g. acetolysis). At that point, FTIR studies on fossil

pollen or spores are rare (Fraser et al. 2012, 2014) and the effects of acetolysis are

tested on commercial Lycopodium spores using FTIR (Jardine et al. 2015). Acetolysis

is one of the most common techniques used to extract and isolate pollen from sediments

(Erdtman and Praglowski 1959, Fægri and Iversen 1989) for Quaternary pollen analy-

sis. It successfully hydrolyses most undesired organic debris during sample preparation

and leaves pollen and spores largely intact morphologically if used with care. It is un-

clear how it may impact pollen chemically. Jardine et al. (2015) find limited impact

of acetolysis under normal processing parameters on sporopollenin chemistry. These

are promising results that acetolysis would be a suitable method to extract fossil pollen

from sediment samples for chemical analysis. Given the large variations in both sedi-

ment types and in the FTIR spectra of different pollen grains (Zimmermann 2010), it

was clear that it would be important to understand the impacts of processing proce-

dures on additional taxa. For chemical methods to work on fossil pollen, it is necessary

to understand the chemical differences between sub-fossil, untreated pollen and modern

pollen. This requires comparisons between processing types and what effect they have

on pollen chemical composition, both modern and fossil.

In summary, the state of knowledge with regards to the application of IR methods to

palaeoecology in 2016 can be described as follows:

• i. chemical methods show promising classification performances, even with high

species numbers.

• ii. there are technical limitations for IR microscopes that have potential solutions

in need of testing (e.g. embedding to deal with scattering)

• iii. it is unclear how variable pollen chemical composition is based on regional or

other factors (e.g. climate)
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1.4 Objectives of the Thesis

The objective of the thesis is to investigate the application of chemical methods for

palaeoecology as a new method for classification of pollen. Note that I also initially

explore the possibilities of computer vision approaches in the beginning of my PhD.

The results of these preliminary investigations can be found in Appendix A. The rest

of this thesis will focus on chemical methods and their application for palaeoecological

investigations. For this purpose I formulate the following research objecctives:

• i. Collect modern pollen and explore variation of chemical composition. The first

aim was to study modern pollen chemistry to gain a better understanding of

the variability in chemical composition and estimate the sources of variation.

• ii. Explore microscopy chemical methods (e.g. FTIR microscopy) on modern

pollen. Microscope IR methods have their own challenges (see above) and

to explore solutions to, e.g., scattering of small pollen, tested on modern ma-

terial

• iii. Apply chemical methods on fossil material. Proof of concept of IR methods

on fossil pollen to explore fossil pollen chemistry.

In the following chapters I introduce the studies I performed to reach these goals and

present the results of my research.
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2 Design of Thesis

This thesis investigates the application of different IR methods with the goal to improve

taxonomic classification, it consists of four main studies: The first paper is designed

to investigate the variability of modern pollen chemistry and examine any differences

between pollen chemical components. The second paper is a closer investigation of

sporopollenin chemistry comparing the results of two IR methods, FTIR and FT-Raman.

The third paper is an application of a new type of FTIR microscope detector on fossil

pollen and examines two pollen extraction methods. The fourth and last paper utilizes

analytical and technical approaches to investigate scatter effects in FTIR spectra that

typically occur measuring small pollen or other particles. Here, I introduce each paper

individually to explain the research goals, methods and the data-sets used in the studies.

2.1 Paper I - Chemical variation in Quercus pollen

This paper addresses two of the major challenges faced in the application of pollen chem-

istry techniques to palaeoecological research (see introduction), that is understanding the

amount of chemical variation across species from different populations and regions, and

the ability of FTIR techniques to discern closely related (congeneric species). There

are several studies that report influences of temperature and UV-B radiation on pollen

chemistry, such as protein, lipid content and building blocks of sporopollenin (Rozema

et al. 2001, Bağcıoğlu et al. 2015, Jardine et al. 2017, Bell et al. 2018, Kendel and

Zimmermann 2020, Diehn et al. 2020). The aims of this paper are threefold:

• i. investigate the capabilities of FTIR to discern closely related (congeneric)

species

• ii. capture as much chemical variation as possible and determine which parts of

the pollen chemistry are more variable.

• iii. determine if this variation is present in the parts of the pollen grain that are

thought to be preserved in fossil pollen.
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Figure 2: Map of Portugal showing the locations where the Quercus trees where sampled.
Colour indicates species, shape indicates Quercus section following Denk et al. (2017)
and size of the symbol indicates number of trees sampled per location

2.1.1 Data-set

To achieve this, I collected pollen from 297 trees in Portugal. Compared to other stud-

ies published at the time, this data-set greatly increased the number of replicate pollen

samples, both for each species and at each location. I collected pollen from a variety

of geographic and climatic conditions between Porto and Lisbon and towards the Span-

ish border along the River Douro. The trees were either from wild populations, public

parks or a few botanic garden trees. The Iberian Peninsula, and especially Portugal, is

characterised by a bioclimatic range, from dry Mediterranean in the SE, to wet temper-

ate Atlantic in the North. I sampled trees ranging from evergreen sclerophyllous forests

with dry and hot summers to temperate areas, with cold winters and mild rainy summers

(Neophytou et al. 2010). Each of these environments is diverse in its species compo-

sition and thus, the presence of different oak species are likely indicative of changes in

ecological and edaphic conditions (García-Mijangos et al. 2015, Rivas-Martinez et al.

2017). Quercus contains 22 native species in two subgenera and three sections in Europe

(Denk et al. 2017), which often have distinct geographical distributions, e.g. clear tran-
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sitions of evergreen to decidous ecosystems are marked with striking changes in Quercus

presence. For this data-set I collected pollen from three Quercus sections, 5 species and

1 sub-species (Quercus suber, Quercus coccifera, Quercus rotundifolia, Quercus faginea,

Quercus robur and Quercus robur estremadurensis).

2.1.2 Spectroscopy and statistical analysis

I used a FTIR approach that measures bulk samples, based on previous studies exam-

ining the chemical composition of pollen from multiple species (Gottardini et al. 2007,

Zimmermann 2010). Bulk measurements allow for the rapid analysis of a larger number

of samples at higher spectral quality than FTIR microscopy approaches. It was impor-

tant for me to record high quality spectra to investigate fully the chemical variability. I

used chemometric techniques that allow for multivariate classification from the partial

least squares (PLS) family of methods. To evaluate the classification, n-fold cross val-

idation was performed, where multiple training- and test-versions of the data-set were

created to assess the classification. Performance metrics were evaluated across folds.

2.1.3 Environmental variable reconstruction

To investigate the influence of environmental variables on pollen chemistry, I recon-

structed temperature, precipitation and solar radiation from the Q. suber samples of

the data-set. Q. suber was present in most of the locations sampled and represents the

largest variation in environmental conditions in the data-set. I used weather data from

monitoring stations in Portugal, which were between 2 and 30 km from the sample lo-

cations to extract the last 14 days of weather data before sampling of each tree. The

predictions were done using a PLS model with the environmental variables as responses

and spectra of Q. suber as dependant variables. This reconstruction was part of an

earlier version of the manuscript, but was removed in a later version in order to focus

the manuscript more on classification and differences between the sections.
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2.2 Paper II - Sporopollenin chemistry of Quercus pollen

While the first paper explores the variability of modern pollen and identifies that some

of the variation is stored in sporopollenin, this second paper explores the sporopollenin

chemistry in more detail by using FT-Raman spectroscopy. Specifically, FTIR can be

heavily influenced by non-sporopollenin components for classification. This may not be

ideal for the purposes of palynology where most of these components are assumed absent.

In order to focus more on the sporopollenin chemistry, the Portugal Quercus data-set

was analysed with FT-Raman. FT-Raman is more sensitive to sporopollenin building

blocks and can give more information on the variability that is more relevant for fossil

applications. The goals for this paper are as follows:

• i. compare the classification performance of FT-Raman compared to FTIR and

when both sets are combined,

• ii. explore sporopollenin chemistry in more detail on Quercus section/species

level. Phenylpropanoids are the main bands used to study sporopollenin

chemistry with IR, but with Raman, additional information is obtained, such

as more sensitivity to carotenoids.

In order to build on the results of paper I, paper II uses the same data-set as the first

paper.

2.2.1 Spectroscopy and statistical analysis

FT-Raman analysis were performed as bulk samples, similar to paper I, and the results

from the FT-Raman analysis were combined with the results from FTIR in paper I.

The specific settings are outlined in the detailed methods section in the manuscript.

Raman spectroscopy of pollen can cause autoflouresence and even thermal decomposi-

tion. I observed some amount of both phenomena, but only in a few samples, which

were measurable without such intereference after adjusting laser power. FT-Raman in

general is less prone to autoflorescence with pollen than other Raman approaches, due
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to differences in the wavelength of the laser. Generally, high wavelength near infrared

lasers are less prone to autofluorescence than low wavelength visible lasers.

Classifications were performed using a hierarchical-classification tree, which identified

Quercus sections and then the species. This was done to simplify the task for the PLS

model as it improves classification performance (Tafintseva et al. 2018). A novel mul-

tivariate tool was used, multiblock (Westerhuis et al. 1998), to compare directly the

importance of chemical components from FT-Raman and FTIR for the classifications.

Normally, the regression coefficients of two PLS models are not directly comparable,

which was possible using multiblock. With multiblock, the different datablocks, in our

case pollen spectra from two methods (FT-Raman and FTIR), corresponding sample

measurements are established side by side. This integrated approach allows for the max-

imization of common variation in the data blocks, whereby variable variation patterns

can be visualized and compared between data blocks.

2.3 Paper III - Fossil Pollen chemistry

After exploring the variation in modern pollen, and finding strong signals in sporopollenin

components of modern pollen, the next step was to apply IR methods to fossil material.

The main goals for this article are threefold:

• i. to investigate the chemistry of fossil pollen compared to modern pollen,

• ii. to investigate the effect of acetolysis on fossil pollen chemistry and

• iii. to assess the performance of a new type of FTIR microscope detector that

allows simultaneous capture of spectra of multiple single grains.

An important motivation for this paper was to compare fossil pollen to modern material

to investigate how diagenesis and extraction methods can affect the chemical signal.

There are a variety of chemical extractions that are used to extract/isolate pollen grains

from lake or bogs. One of the most common used procedures is acetolysis, which uses a

combination of strong acids to hydrolyse organic material that are not pollen and spores.

Acetolysis may alter or remove taxonomic or other desirable information that is present in
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untreated fossil pollen. Some studies have investigated the effects of acetolysis on pollen

and found that it does alter parts of the chemistry under certain conditions (Jardine et al.

2015, 2017, 2021). Therefore, if we want to apply FTIR and other chemical analytical

methods on fossil pollen, we need to understand the differences between modern and

fossil material and how extraction methods can impact pollen chemistry. In this paper, I

also use an alternative extraction method, density separation, to extract pollen without

the use of acids and compare their chemistry to acetolysed fossil pollen and modern

material.

An additional motivation was to use a new detector in combination with a FTIR micro-

scope, which allows the capture of multiple single grains, by capturing multiple spectra

over a sample area (e.g. 500 x 500 µm) as opposed to single point spectra. This allows

extraction of multiple single-grain spectra from the same image and opens the door to

potential automization methods using deep learning approaches (Großerueschkamp et

al. 2017).

To achieve these goals, three cores from different locations were subsampled. Two varved

cores from Germany and a core from Greenland. The cores are Dalmuttladdo (DAL),

Tiefer See (TSK) and Meerfelder Maar (MFM). The samples have different ages, but

all from within the last 13,000 years. Samples from the DAL core span the past 9,800

years, while TSK samples are from the past 80 years and MFM samples were depositied

between 13,000 and 11,000 BP.

The chemical spectra were captured using a FTIR microscope to collect single grain

spectra. To answer the questions, I focused on Pinus sylvestris pollen, which is very

common in European sediment cores, easily identifiable and therefore a good candidate

for this study. Another more practical reason for chosing Pinus sylvestris was that the

FTIR microscope used for this study does not produce images of good enough quality

to identify pollen smaller than 50 µm, e.g. Betula, Alnus or Corylus. The pollen was

extracted from the sediment using density separation, using sodium polytungstate (SPT)

as extraction medium, to avoid any acid treatment (e.g. acetolysis). Density separation

has been used in other studies where chemically unaltered pollen is desirable, such as

pollen carbon-isotope studies (Regnéll and Everitt 1996).
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2.3.1 Adjustments to the study as a result of Covid-19

For this paper, I originally planned to analyse spectra of fossil Quercus grains from several

cores in Europe in addition to other common tree pollen taxa (e.g. Alnus, Pinus). For

this purpose, we had access to several cores from Italy, Germany and Iberian Peninsula

through colleagues that provided me with some of their residues, or even re-sampled the

cores. Unfortunately, the Covid-19 lockdown and other delays required changing the

design of the paper. Travel- and lab-restrictions greatly limited the available lab time

for me and I had to adjust the number of samples in each core and the number of pollen

types I was able to target.

Therefore, I decided to focus on Pinus pollen and three cores. Pinus pollen is much

larger than Quercus and other tree pollen, more abundant and therefore easier to find in

sediment samples. Focusing on Pinus pollen saved a lot of time in the lab, which meant

I could capture more grains from more samples as opposed to using a lot of time to look

for Quercus pollen. Despite the change in the studied genus, Pinus is still a fitting choice

for this type of research because Pinus pollen is a potential candidate for a UV-B proxy

(Willis et al. 2011, Jardine et al. 2017, Seddon et al. 2019) and Pinus pollen is hard to

identify to species using traditional LM. An obvious next step would be to apply these

methods to Quercus.

2.4 Paper IV - Scatter-correction approaches

In addition to the challenges of assessing chemical changes related to the extraction

fossil pollen grains, vibrational spectroscopy approaches such as FTIR on small particles

(i.e. > 30 µm), introduces anomalies in the spectra caused by scattering of the IR

beam (Lukacs et al. 2015, Zimmermann et al. 2015a, Blümel et al. 2018). These

scattering interferences are present in larger objects, but much more pronounced in

smaller objects. This is problematic for the analysis of pollen, because a lot of pollen

taxa are smaller than 30 µm and interesting for palaeoecologists, such as Quercus or

Poaceae. For palaeoecological applications, the effects of scattering and any potential

methods used to correct for them should be explored. In other disciplines scattering
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causes similar problems, e.g. analysis and/or identification of micro-plastics (Hufnagl et

al. 2019), diatoms (Alipour et al. 2016) and dinoflagellates (Versteegh et al. 2012).

Here, we undertook an exploratory study of a number of potential methods to correct

for scattering caused by small particles. We also aimed to investigate if there was any

taxonomic information stored in scattering parameters. Scattering effects can either be

addressed during measurement, or analytically during spectral processing. For example,

one solution to remove the effect of scattering is to embed the pollen in paraffin between

two layers of polyethylene (PEP Zimmermann et al. 2016). This method prevents any

scattering anomalies, but at the cost of losing part of the spectra (1520 - 1290 cm-1),

which are dominated by peaks of the polyethylene and paraffin matrix. Alternatively,

pollen grains can be measured on standard IR microscope slides (such as zinc selenide

slides), and analytical corrections can be made to identify scattering anomalies and

correct them. During scattering part of the radiation is absorbed by the particle and

partly scattered, therefore lost to the detector. The main type of scattering observed

with pollen grains is Mie-type scattering, which can be corrected by spectra processing

algorithms such as Mie-extinction extended multiplicative signal correction (ME-EMSC)

or averaging of single grain spectra until scattering effects are reduced (Zimmermann

2018). Mie-type scattering can be described by Mie theory of electromagnetic radiation

scattering on spherical objects. Pollen grains can be approximated as spheres and typical

Mie scatter correction algorithms calculate scattering spectra for spheres of different

radii and match them to the spectra that need to be corrected. We use Mie-extinction

extended multiplicative signal correction (ME-EMSC) in this paper (Bassan et al. 2012,

Konevskikh et al. 2018, Solheim et al. 2019) in addition to pollen embedding with PEP.

Using a subset of the Quercus pollen samples collected for previous studies, we selected a

number of representative samples to measure pollen both conventionally on ZnSe slides

Table 2: Species in the ’Scatter correction’ data-set. Taxonomy follows Denk et al 2017.

Subgenus Section Species Location
Quercus Lobatae Q. palustris Australia
Quercus Quercus Q. robur Portugal
Cerris Cerris Q. suber Portugal
Cerris Ilex Q. rotundifolia Portugal
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and embedded in paraffin/polyethylene matrix. This data-set was curated from the Por-

tugal data-set and supplemented with one species from a sampling field trip to Australia

in order to add an additional Quercus section. The data-set comprises four Quercus

species (Table. 2) The pollen of Q. palustris was collected in Melbourne, October 2017,

while pollen of Q. robur, Q. rotundifolia and Q. suber were collected in Portugal in April

2018.

Each species is from a different section of the Quercus genus and has morphological

differences that are used for light-microscope identification to Section level (Beug 2004),

such as grain size and ornamentation.

Microscopic transmission measurements of pollen were performed using a Vertex 70

FTIR spectrometer with a Hyperion 3000 IR microscope (Bruker Optik, Ettlingen, Ger-

many). All pollen samples were measured, without any chemical pretreatment, under

two different experimental settings: (1) on zinc selenide (ZnSe) optical windows, and

(2) embedded in a paraffin-polyethylene (PP) matrix. For the ZnSe measurements, the

pollen samples were deposited onto 1 mm thick zinc selenide (ZnSe) optical windows. For

each pollen sample, 50 spectra of different individual single pollen grains were obtained,

corresponding to 200 spectra per species. Thus, each experimental set (ZnSe and PP)

contained 800 µFTIR spectra of single pollen grains.
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3 Results

3.1 Paper I

Figure 3: Ordination of components 1–4 of canonical powered partial least squares (CP-
PLS) models (100-fold cross-validation). Each point represents a sampled Quercus tree.
The mean training scores for each sample over the 100-folds were calculated. Proportion
of variance explained by each component in parentheses. Colour indicates species, while
symbol indicates Quercus section

The first study used FTIR spectroscopy to investigate chemical differences across Quercus

sections and allowed us to separate Quercus pollen at the section level using major

differences in chemical composition. For example, our PLS model was able to clearly

differentiate the three Quercus sections using the first two components (Fig. 3). and

achieved some success on species level utilizing the third and fourth component.

The reconstruction of environmental variables shows a positive correlation for all three

variables (temperature, precipitation and solar radiation), but the predictions are quite

noisy. For example, predictions at precipitation 0 range from -1 to 1, while the entire ob-
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Figure 4: Loadings plot of classification of canonical powered partial least squares (CP-
PLS) model. Lipids (L), protein (P), sporopollenin (S), and carbohydrates (C). High
absolute loading indicates a high importance of a given wavenumber for the correspond-
ing component. Loadings are chosen in such a way as to describe as much as possible
of the covariance between the variables (wavenumbers) and the response (species). Pro-
portion of variance explained by each component in parentheses
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Table 3: Confusion matrix of linear discriminant analysis on the test sets using four
components of the fitted canonical powered partial least squares (CPPLS) model

Pred/Ref Q. faginea Q. robur Q. r. estr. Q. coccifera Q. rotund. Q. suber
Q. faginea 64 ± 12 18 ± 8 11 ± 13 0 0 3 ± 4
Q. robur 30 ± 12 76 ± 10 81 ± 18 0 0 1 ± 3
Q. r. estr. 1 ± 2 5 ± 6 6 ± 13 0 0 2 ± 6
Q. coccifera 1 ± 3 0 0 75 ± 14 25 ± 11 0
Q. rotund. 1 ± 2 0 0 25 ± 14 75 ± 11 0
Q. suber 3 ± 4 1 ± 3 2 ± 6 0 0 98 ± 2

Figure 5: Reconstruction of environmental variables using Q. suber spectra from Portugal
data set. A CPPLS model (four components) was fitted using 100-fold cross-validation
of environmental data as response and second derivative FTIR spectra as predictor.
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served precipitation range is from -2 to 2. The environmental variables were normalised,

because of the vastly different scales in measurement units for each environmental vari-

able.

We observed quite large variation between species of the same section, e.g. Q. rotun-

difolia and Q. coccifera (Fig. 3 a). The model was able to use some of the variation

on components 3 and 4 to differentiate between section Ilex species (Q. rotundifolia and

Q. coccifera) and section Quercus species (Q. robur and Q. faginea) (Fig. 3 b). The

model also identified the chemical functional groups that could best explain the vari-

ance between sections, high loadings (greater importance) of lipids, carbohydrates and

sporopollenins on component 1 and 2 (section level) and proteins and carbohydrates on

component 3 and 4 (species level) (Fig. 4). Our classification success is on par with

SEM and more detailed than most reported Quercus pollen counts (i.e. at section level

as opposed to Quercus decidous type vs Quercus evergreen type). Given that sporopol-

lenin was identified as one of the key chemical discriminators across the data-set, we

then decided to examine the sporopollenin chemistry of Quercus with the FT-Raman

approach.
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3.2 Paper II

Our results show that FT-Raman analyses of Quercus pollen grains provided similar

overall results to those obtained using FTIR. For example, at the section level both

FTIR and FT-Raman were able to correctly classify Quercus sections (Table 4), while

there were differences within sections.

We fitted PLS models that use the vibrational bands to differentiate the pollen by sec-

tion first and then by species. On each level we fitted three models using only FTIR,

only FT-Raman and using both (multiblock). For section Ilex, FTIR performed better

(Table 5), while FT-Raman performed better for section Quercus (Table 6). Overall,

the classification performance from paper I was exceeded and reached 90% to 95% accu-

racy on species level. The regression coefficients that indicate which chemical functional

groups were the most important showed a high importance of carbon hydrogen bonds

for FT-Raman, such as spropollenin peaks, e.g. the 1600 cm-1 region (Fig. 6 b). For

FTIR, lipids, proteins and sporopollenins had high regression coefficients (Fig. 6 a). The

importance of sporopollenin peaks was quite different between sections, which can be

seen in the regression coefficients of the 1600 cm-1 peaks and 1225 cm-1 peak (Fig. 6

b). Section Cerris pollen has the highest positive regression coefficients (1600 and 1225

cm-1), while section Quercus and Ilex have negative regression coefficients for the same

coefficients.

We compared the classification performance and important wavebands that had high

regression coefficients (high importance) for the classification model between FTIR and

FT-Raman. We observed vibrational bands belonging to the same functional groups in

both spectra, but with differences in intensity, e.g. the 1745 cm-1 peak is much stronger

in FTIR and weaker in FT-Raman, while the 1600 cm-1 peak is much wider and stronger

in FT-Raman compared to FTIR, which indicates phenylpropanoid groups. In general,

phenylpropanoid functional groups (eg. 1225 cm-1 ) are stronger in FT-Raman spectra

than the corresponding bands in FTIR spectra.

These results give an overview of modern Quercus pollen chemistry and show the differ-

ences between FTIR and FT-Raman methods.
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Table 4: Model performance for 1st Node differentiating spectra into the three Quercus
sections (Quercus, Ilex and Cerris). Comparison of model performance between methods:
Multiblock and single block models. Models were fitted using short spectra region of
interest (700-1900 cm−1) and window size 29 in Savitzky Golay step during preprocessing.

Recall in %
Method Cerris Ilex Quercus Acc.
FTIR 100.0 100 99.2 99.6
FT-Raman 100.0 100 100.0 100.0
Multiblock 98.5 100 100.0 99.6

Table 5: Model performance for 2nd Node differentiating section Ilex pollen. Comparison
of model performance between methods: Multiblock and single block models. Models
were fitted using short spectra region of interest (700-1900 cm−1) and window size 29 in
Savitzky Golay step during preprocessing.

Recall in %
Method Q. coc Q. rot Acc.
FTIR 91.2 88.2 89.7
FT-Raman 88.2 85.3 86.8
Multiblock 94.1 85.3 89.7

Table 6: Model performance for 3rd Node differentiating section Quercus pollen. Com-
parison of model performance between methods: Multiblock and single block models.
Models were fitted using short spectra region of interest (700-1900 cm−1) and window
size 29 in Savitzky Golay step during preprocessing.

Recall in %
Method Q. fag Q. rob Acc.
FTIR 88.7 93.5 91.5
FT-Raman 96.2 93.5 94.6
Multiblock 92.5 92.2 92.3
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Figure 6: Model regression coefficients for the first node: Classifying Quercus sections.
Multiblock model regression coefficients for FTIR data block (a) and FT-Raman data
block (b). Regression coefficients are off-set in figure a and b. Higher regression coef-
ficients indicates higher importance for the model. Preprocessing parameters for this
model were short SROI (1900 - 700 cm−1) and windowsize 29 for both data blocks.

3.3 Paper III

A FTIR microscope equipped with a FPA detector successfully recorded spectra from

both modern and fossil pollen grains. Furthermore, the results from this paper showed

differences between modern and fossil pollen grains (Fig. 7), e.g. the lipid peak at 1745

cm-1 and protein peak at 1550 cm-1, were not visible in the fossil pollen grains. Prominent

and characteristic sporopollenin peaks (1600, 1510 and 1170 cm-1), on the other hand,

were visible in the fossil pollen and modern pollen. There were also several differences in

the fingerprint region (1500 to 1800 cm-1) and carbohydrate region (1000 to 1250 cm-1)

between modern and fossil pollen grains. The differences between fresh and fossil grains

were very strong, as seen in the ordination (Fig. 8), where fossil and modern spectra

strongly separated on the first component axis.

When examining only the fossil grains, there were some differences, mainly in the car-

bohydrate region (1000 to 1250 cm-1). Acetolysed pollen grain spectra were dominated

by two peaks in this region, at 1040 and 1170 - 1190 cm-1, while non-acetolyzed pollen

was missing the 1040 cm-1 peak and showed the sporopollenin peak at 1170 cm-1 and a

wide peak at 1090 cm-1. We also observed two possible contaminations in the spectra.
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Figure 7: Mean spectra of fossil Pinus pollen from each sediment core and modern
samples. For each core the mean of the acetolysed and non-acetolysed spectra are shown.
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Figure 8: a. PLSR ordination scores of all samples showing the difference between
fresh vs fossil pollen b. regression coefficient of component 1 c. regression coefficient
of component 2; d PLSR ordination scores using only samples from sediment cores.
Difference between non-acetolysed and acetolyses; e. regression coefficient component 1;
f. regression coefficient component 2
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A peak at 1090 cm-1 is found in all non-acetolyzed samples and an introduced peak at

1630 cm-1 in all non acetolyzed samples of Tiefer See. These two peaks were relatively

wide and not present in any of the other fresh or fossil pollen samples. The 1090 cm-1

was most similar to spectra of dissolved silica and the 1630 cm-1 peak was identified as

part of a typical sodium polytungstate spectra, the density separation medium.
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3.4 Paper IV

An analytical and a experimental approach successfully removed scattering signals in

spectra of single grain pollen. The scattering signals were visible in the 2500-1800 cm-1

region of the spectra (Fig. 9 b), where there are no chemical absorbance signals in

Quercus. Scattering signals were successfully removed with PEP embedding, but with

a trade-off, since the absorbance bands of the paraffin-polyethylene matrix hid any sig-

nals of the pollen in the region 1520 - 1290 cm-1. The analytical method (ME-EMSC)

substantially removed the scatter signals, but did not completely suppress them (not

pictured here; see Fig. 2 in the paper).

The type of scattering observed in pollen grains is Mie-scattering, which depends on the

radius of the scattering particle. The pollen grains of the four species (Table 2) studied

in this paper showed differences in size. Although there is a significant overlap in pollen

size ranges, Q. rotundifolia pollen was generally smaller (polar d.: ~26 µm; eq. d.: ~19.9

µm) than pollen of the other three species (polar d.: ~34 µm; eq. d.: ~29.5 µm) (Table

7) (Beug 2004).

From the classification results we see that both scatter correction methods reduced the

classification accuracy (81.0%) compared to the uncorrected ZnSe data-set (91.5%) (Ta-

ble 8). In addition to the corrected spectra, the filtered scatter parameters from the

ME-EMSC method could also be used for classification and had a classification accuracy

of 66%, which shows that taxonomic information is stored in the scatter parameters.

These results showcase the successful suppression of scatter signals during measurement

(PEP embedding) and analytically during spectra processing (ME-EMSC).
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Figure 9: Pollen spectra measured: (a) in paraffin-polyethylene (PP) matrix, and (b)
on ZnSe optical windows. Spectra were baseline corrected and averaged (average of 200
spectra of individual pollen grains).

Table 7: Pollen grain sizes of species used in this study according to Beug 2004. Mean
diameter and ranges are based on 100 grains for each species.

Species Polar diameter
in µm

Equatorial
diameter in µm

Q. robur 36 (31-34) 28.9 (26.3-32)
Q. suber 33.1 (27.4-41.4) 30.4 (25.3-35)
Q. ilex (close relative to Q.
rotundifolia)

26.4 (21.2-30.2) 19.9 (15.2-24.7)

Q. palustris 34.6 (26-39.2)
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Table 8: Results of classification data analyses: classification accuracy (CA) for artificial
neural networks (ANN) and random forest (RF) classifiers.

Dataset CAANN (%) CARF (%)
PP 81.0 80.0
ZnSe 76.0 91.5
ZnSe ME-EMSC spectra 75.0 81.0
ZnSe ME-EMSC parameters 66.5 58.0
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4 Discussion

4.1 Species classification using IR methods

One of the main goals of this thesis was to investigate the application of IR methods

for taxonomic purposes, for example, to improve classification of cryptic species such

as Quercus based on pollen-grain chemistry. In order to do this with fossil pollen, it

was first important to understand the variation in modern pollen as much as possible.

I showed, using different vibrational spectroscopy approaches (FTIR, FT-Raman, FTIR

microscopy), that there is taxonomic chemical information stored in modern grains,

which matches or exceeds the performance of morphological approaches (e.g. SEM and

LM). The approaches I used were bulk sample FTIR (Papers I and II), bulk sample

FT-Raman (Paper II) and single grain FTIR microscopy (Paper IV) on Quercus pollen.

The taxonomic information reconstructed from the pollen spectra is stored in both the

chemically inert components of the grain wall (sporopollenin), and in the more labile in-

tracellular components (lipids, proteins, carbohydrates). In addition, we also found some

taxonomic information in the scatter anomalies (Paper IV). As expected, the relative

importance of the chemical components varied depending on the IR method used. For

FTIR, lipids and other carbon-oxygen bond-based components were more informative,

while sporopollenin and carbon-carbon and carbon-hydrogen based components were

more informative in FT-Raman. The addition of FT-Raman and a different variation of

PLS model improved the classification performance on species level substantially, from

~73% in paper I, to ~90% in paper II.

This work builds on the results of other studies examining pollen chemistry (Zimmer-

mann 2010, Bağcıoğlu et al. 2015, Jardine et al. 2019). Zimmermann (2010) showed the

variability of pollen chemical composition between ~30 different species of pollen, with

a high number of congeneric species, which inspired me to focus this thesis on cryptic

taxa to explore the potential of FTIR for increasing taxonomic resolution in palaeoe-

cology. A more recent study, Jardine et al. (2019) reported classification accuracy for

congeneric Poaceae species ranging from 25% to 87% recall. Further work by Bağcıoğlu

et al. (2015) utilised Raman and FTIR approaches to characterise pollen chemistry,
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which showed the potential of Raman for this thesis. The results from papers I and II

expand on these studies: paper I shows the between species variability, while paper II

utilizes Raman to explore spropollenin chemical composition in modern pollen samples

and improve classification to species level substantially.

Studying the performance of IR methods for con-generic species is especially important,

because taxa such as Quercus, Eucalyptus or Pinus are ecologically diverse and improving

the taxonomic resolution of these taxa would greatly improve our understanding of past

vegetation and dynamics. For example, studies forecasting the effect of climate change

on Mediterranean forest dynamics (Nogués-Bravo et al. 2016) use Quercus records on

subgenus level and may miss the species specific responses of trees to climate (Acácio

et al. 2017). The same is true for other taxa, such as Eucalyptus, Pinus and others.

This thesis shows that it is possible to identify Quercus at a species level using FTIR,

FT-Raman and FTIR microspectroscopy.

Despite our successes in classifying Quercus pollen, a majority of the variation was

unexplained or not utilized by the models used for classification. We attributed the

variation to be of largely environmental origin and due to population differences.

4.2 Influences on modern pollen chemistry

One of the most important contributions of papers I and II is that it studies pollen

chemistry using a smaller set of congeneric species with very high replication within

species (i.e. 50 ± 23 tree replicates per species) and locations (15), compared to other

studies with fewer replicates (Zimmermann 2010, Julier et al. 2016, Woutersen et al.

2018, Jardine et al. 2019) or fewer congeneric species (Julier et al. 2016, Zimmermann

et al. 2017). Other studies that focused on application of IR methods for palaeoecology

were influencial for this thesis (Julier et al. 2016, Woutersen et al. 2018, Jardine et

al. 2019) and I was able to demonstrate the importance of including larger number of

sample replicates for classification of cryptic taxa. The variability within Quercus was

quite high and overlaped considerably between species, and it is this which makes it

important to sample enough replicates for each species. In Zimmermann (2010) we see

considerable variability between Pinus species and Bağcıoğlu et al. (2017) showed year
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to year and geographic variation. Low replication would underestimate this chemical

variation and inflate classification success, as suggested by Woutersen et al. (2018). The

design of the Portugal data-set was designed to build on these findings and capture as

much variability as possible, by increasing replication at each location and sample from

a variety of locations.

My studies on the Quercus data show a substantial amount of variation in pollen chem-

istry, especially at subgenus and species level, thanks to the high number of replicates

and sampling locations. The approach I took was to sample a high number of trees

from wild populations, botanical gardens and parks in different parts of Portugal. This

approach was similar in some aspects compared to other studies that were published

with environmental impacts on pollen chemistry at the time. For example, Depciuch et

al. (2016) and Depciuch et al. (2017) studied impacts of pollution on pollen chemistry

using pollen from a national park and wild populations. Fraser et al. (2011) also used

wild populations studying the impacts of UV-B on spore chemistry. Bell et al. (2018)

and Seddon et al. (2021) used a combination of botanic garden and naturally occuring

Cedrus and Pinus populations, respectively, to study the impact of UV-B radiation.

Our approach was unique in this regard, because it utilized wild populations and high

replication (>50 specimen per species). Zimmermann et al. (2017) used similarly high

replication (>60 specimens) to study the effects of growing conditions and population.

However, one of the disadvantages of sampling this large number of replicates over a large

spatial area is the difficulties in characterising the effects of environmental variability on

pollen chemistry. For example, I reconstructed temperature, precipitation and solar

radiation for the Portugal set by using climate data from weather stations close to the

sampled trees. My reconstructions showed a positive correlation, but were quite noisy

and the variation they explained was relatively low (Fig. 5). Another challenge is the

fact that there is a strong correlation between both the climatic and geographic variables,

which makes it difficult to separate population-level from other environmental effects.

One approach that tries to untangle environmental influence on pollen chemistry are

fine-scale studies and common garden experiments, which have become more popular

with pollen chemical studies in the last 3-4 years. Here, some of the strongest results,

which show the plasticity of pollen chemistry, have been achieved with specimens grown
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in controlled environments (e.g. green houses), such as Zimmermann et al. (2017) and

Benca et al. (2018). Here, for example, temperature, growing conditions and UV-B ex-

posure are controlled and their impact on chemical variability are studied. Alternatively,

field experiments could be used, in combination with careful monitoring of local climate

conditions (Seddon et al. 2021).

In addition, a number of similar common garden studies have now shown that pollen-

chemistry response time to environmental stimuli may be as short as 14-21 days (Zim-

mermann and Kohler 2014, Jokerud 2017, Seddon et al. 2021) and may, in part, be driven

by population and genetic origin (Zimmermann et al. 2017, Bell et al. 2018). These

results demonstrate that green-house and field experiments are better suited to untangle

environmental and population differences. At the time of conception of the Portugal

data-set, the scale of environmental influence on pollen chemistry was not fully known

and my results show that a large amount of information is environmental, in addition

to taxonomy. The challenge going forward is to try and further resolve environmental,

population and geographic differences using fine-scale studies.

4.3 Applying modern knowledge to fossil pollen

In papers I and II the goal was to investigate the potential for chemical variations to

be used to identify modern Quercus pollen. The next step was to apply our under-

standing of modern pollen chemistry to fossil pollen. For this, we would ideally apply

our knowledge from modern pollen chemistry to fossil pollen, e.g. compare unknown

pollen spectra (e.g. of a Quercus pollen or any other taxa) to multiple modern spectra

and find the closest match, or measure the part of the spectra most responsive to, e.g.,

UV-B exposure and apply a transfer function created from modern pollen calibrations.

The results from papers I and II show that FTIR and FT-Raman are both capable of

differentiating Quercus pollen at species level. Others have shown similar results for

other taxa (Zimmermann 2010, Bağcıoğlu et al. 2015, Kendel and Zimmermann 2020),

which, taken together, suggest that we could compare fossil pollen to modern samples

to identify to species. Unfortunately for us, this is not as straightforward, because, as

expected, the results from paper III show that fossil pollen are chemically different com-
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pared to their modern counterparts. The main differences between fossil and modern

material in our results and from Jardine et al. (2021) show that labile components, such

as lipids and proteins are completely or partly removed from the pollen grain and not

detectable in the fossil pollen. These changes occur during diagenesis and it is not clear

what kind of chemical processes are causing them. Furthermore, deposition and burial

in lakes and bogs may differ depending on the type of sedimentation environment and

chemical conditions during burial and fossilisation. We found some differences between

cores measured in paper III, which suggest differences based on diagenesis, a finding also

made by Jardine et al. (2021). Understanding what occurs during diagenesis is critical

for any study using chemical methods on fossil material, be it identification of fossil

pollen or reconstruction of UV-B radiation.

We do not currently have a way to mimic the diagenetic processes present in lakes and

bogs, so that modern pollen grains might chemically resemble fossil pollen grains. Our

approach in paper III was to understand fossil pollen chemistry better, by extracting

non-acetolysed pollen from the sediment sample and compare it to acetolysed replicates.

We showed that acetolysis, a commonly used method to extract fossil pollen, alters

the chemical composition of the pollen. Comparing untreated fossil Pinus pollen with

acetolysed Pinus pollen revealed differences in the 1000 - 1200 cm-1 region. We observe

two large peaks at 1040 and 1190 cm-1, which are new C-O bonds that are created

through acetolysis and are the results of acetylation of hydroxyl groups according to

(Moore et al. 1991) and which were also observed in acetolysed Pinus pinaster pollen

by Dominguez et al. (1998). There have been other IR studies that report spectra of

sub-fossil pollen (Jardine et al. 2017, 2020, 2021), but these used multiple chemical

extractions to isolate the fossil pollen, such as acetolysis, HF, KOH, etc., which makes

it challenging to attribute the chemical alterations observed. Jardine et al. (2020)

extracted fossil Pinus pollen with HF and acetolysis from a varved core. Their spectra

are similar in the 1800 - 1500 cm-1 region, but show larger dissimilarities in the 1200 -

1000 cm-1 region, where we observe two large peaks at 1040 and 1190 cm-1, while their

spectra show multiple sharp peaks in the same region.

In another study, acetolysed spectra that are similar to ours in the 1200 - 1000 cm-1

region are acetolysed modern samples from herbaria of Nitrariaceae and Poaceae pollen
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(Woutersen et al. 2018, Jardine et al. 2021). Jardine et al. (2021) also report spec-

tra from chemically treated fossil Poaceae pollen, which are not similar to our Pinus

spectra nor the acetolysed modern Poaceae set from the same study. Not all the fossil

Poaceae samples were treated with acetolysis, but with a combination of lignite, HCl and

Na4P2O7. The two acetylation peaks we and others (Dominguez et al. 1998, Woutersen

et al. 2018, Jardine et al. 2021) observed in acetolysed pollen are not visible in other

studies that use acetolysis in addition to other chemical treatments (Jardine et al. 2020,

2021). Dominguez et al. (1998) write further on the nature of these acetylation peaks,

that the bands are removed by treatment with methanol under reflux conditions. It seems

that these peaks are only reported in pollen that is treated with acetolysis only, which

are often modern samples that are treated in order to mimic subfossil or fossil pollen.

It is very important to investigate the effect of sediment extraction methods and other

chemical treatments carefully going forward. Studies, like paper III, reporting untreated

or minimally treated fossil pollen and acetolysed replicates (or other treatments) are

important, to assess the changes due to chemical extraction methods, acetolysis among

them.

One of the difficulties with FTIR and IR methods in general is that spectra are converted

to relative absorbance, which makes it difficult to identify which part of the spectra has

changed. ABsolute absorbance is difficult to use, because e.g. scattering issues prevent

the use of Beer-Lamberts law. Modern studies can assume that changes in the sporopol-

lenin absorbance bands are relatively stable compared to changes in lipid peaks, but

this is not the case for fossil applications or reconstructions of UV-B. In our results, we

can identify the main sporopollenin peaks (phenylpropanoid) in the fossil spectra (1600,

1515, 1170 cm-1), but the relative peak height of these wavebands does change between

modern, acetolysed and non-acetolysed pollen (Fig. 7). Here, any changes to the relative

absorbance of sporopollenin peaks may as well be caused by changes to everything else.

Our results show that acetolysis alters the chemical spectra quite drastically compared

to untreated fossil and modern samples. It is therefore also important to examine the

effects of other chemical extractions on untreated fossil material to identify potential

changes.

There is a variety of methods being used to extract pollen or purify modern pollen,



4.3 Applying modern knowledge to fossil pollen 55

that progressively remove “labile” components from sporopollenin. In addition there are

multiple methods that are commonly used for sediment sample preparation. Studies

examing the chemical composition of sporopollenin over the past decade have revealed a

variety of possible sporopollenin chemical compositions (Wehling et al. 1989, de Leeuw

et al. 2006, Jardine et al. 2017, Li et al. 2019). It may be argued that these differ-

ences may be based in differences of methods and species used. Nierop et al. (2019)

demonstrate that different species produce structurally very different sporopollenins by

examing the composition of early plant spores sporopollenin and noticing differences in

the amount of phenolic acids bound to sporopollenin. Sporopollenin seems to be more of

a collection of chemically similar complex biopolymers that has evolved in parallel with

the development of plants. Indeed, we have observed differences in Quercus sporopol-

lenin chemistry analogous to morphological differences, which indicates that the different

surface ornamentations of the Quercus sections are also chemically distinct. The sugges-

tion from Nierop et al. (2019) is that the ornaments may have differences in the relative

amount of different polyphenolic compounds (e.g. para-coumaric, ferulic or caffeic acid).

Nevertheless, due to the relative nature of IR spectra and overlapping absorbance bands

of, e.g., lipids with sporopollenin components, makes it difficult to attribute the chem-

ical differences observed in the spectra purely to sporopollenin. Additional chemical

methods, such as NMR spectroscopy or pyrolysis GC-MS in addition to IR methods,

may supplement the chemical information from FTIR and FT-Raman with insights on

chemistry of sporopollenin components.

Other applications interested in pollen chemistry avoid acetolysis because it can con-

taminate the pollen with modern carbon isotopes, and use alternate extractions without

carbon-based heavy acids (e.g. only sulphuric acid see Loader and Hemming 2000). Al-

ternate extraction methods, such as heavy density separation may be a suitable replace-

ment, because it offers a way to extract pollen without the use of strong acids. Paper III

demonstrated the advantages and challenges for chemical palaeoecology of density sepa-

ration. It allowed us to analyse untreated fossil pollen, but it also outlined challenges: i.

pollen density varies for certain sediment types and requires testing and adjustment of

extraction density. ii. density separation requires careful washing to remove any residue

of the separation medium. I found contamination of SPT in samples of one of the cores,

despite no difference between cores in washing procedure after density separation. In
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summary, careful evaluation of the effects of chemical extractions on untreated fossil

pollen and modern material may provide a solution that identifies a method to fossilize

modern grains to resemble fossil grains.

4.4 Discussion of FTIR vs Raman.

The results of paper I and II have shown that FTIR spectra of modern pollen are most

variable in the labile components (lipids, carbohydrates, proteins). The sporopollenin

peaks visible in FTIR are connected to phenylpropanoids and are less variable. From

analysis of fossil Pinus pollen I showed that the phenylpropanoid peaks are also char-

acteristic for fossil pollen, in both acetolysed and non-acetolysed pollen. Raman is an

alternative vibrational spectroscopy method, that is less used than FTIR, and which

provided more detail on Quercus sporopollenin chemistry at the cost of less variation in

other areas (e.g. the lipid peak at 1745 cm-1 is almost not visible in Raman). For pollen

studies, Raman may be the a more suitable methods for identification and proxy devel-

opment. The results from paper II show that it provides complementary information,

which is mainly more detail on sporopollenin chemistry that improved the models ability

to differentiate Quercus pollen. Using FT-Raman we were able to utilise increased detail

on phenylpropanoid groups to increase the classification of Quercus pollen.

There are important draw-backs to Raman, however, compared to FTIR. FTIR as a

method is more transferable from bulk analyses to microscopy FTIR, which the result of

paper III and IV demonstrate. Our FTIR spectra of modern Pinus pollen is very close

to published spectra of bulk analysis FTIR techniques, such as ATR and KBr pellet

(Zimmermann 2010, Bağcıoğlu et al. 2015). FTIR microscopy spectra are noisier or

show scatter artifacts, but in general FTIR microscopy produces spectrum under most

circumstances. Spectral noise can be addressed by averaging spectra (Zimmermann

2018) and scattering effects can be suppressed by embedding or analytically, which paper

IV demonstrates. With Raman, there are a number of undesired effects that may be

produced, rendering the spectra unusable. For The near-IR absorption of the sample can

pose a problem, because absorption bands in the near-IR region can weaken the incident

laser and unequal absorption can reduce Raman band intensities. Another common
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problem for pollen is intense heating and in some cases thermal decomposition, caused

by absorption at the laser wavelength (Chase 1986, Baranski et al. 2005, Kairyte et al.

2012). FT-Raman can alleviate some of these issues, as we have seen in paper II where

I encountered some problems with sample heating, but reduction of laser power solved

these issues.

Nevertheless, flourescense and thermal decomposition are a significant problem when

measuring pollen grains with the labile components removed, such as acetolysised mod-

ern pollen or fossil pollen from the Quaternary. Interestingly, Raman spectroscopy may

be viable again for very old or thermally matured pollen and microfossils (Marshall et al.

2005, Marshall and Marshall 2015, Bernard et al. 2015). These studies are examples of

Raman microscopy used to record spectra from microfossil algae (acritarch) (Marshall et

al. 2005), which made up of a complex biopolymer, which is similar to sporopollenin. As

for pollen from the Quaternary, the problem of flourescense and thermal decomposition

remain significant and require novel solutions (such as Joseph et al. 2011). Here, pu-

rified modern pollen was embedded in silver nanoparticles that enabled the vibrational

spectroscopic access to the sporopollenin biopolymer based on surface-enhanced raman

scattering.

Another significant challenge for Raman is the development of suitable Raman mi-

croscopy technique to address autofluorescence and sample heating. Innovative new

sample preparations or embeddings may solve the heating issue for Raman, while other

adjustments to laser type or laser power may alleviate challenges further. I think more

experiments with Raman microscopes on modern and fossil pollen are a way to improve

measurement techniques. Our results have shown the successes of FT-Raman for pollen

analysis, which suggests studies with FT-Raman microscopes on modern pollen material

as a first step to investigate pollen chemistry.

FTIR microscopy on the other hand has made very promising developments in the past

five years, which allows the simultaneous capture of multiple fossil pollen spectra as evi-

denced in my work in paper III, where we record single grain spectra of fossil pollen from

sediment cores. Paper IV shows several approaches that can address scattering anoma-

lies in FTIR spectra. In fact, for taxonomic purposes, a certain amount of scattering

may be beneficial, because scattering does hold taxonomic information (see results in
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paper IV). For other applications, such as proxy reconstructions (UV-B), scatter sup-

pression by embedding or filtering of scatter effects by analytical means may improve

signal recovery.

In general, FTIR remains a promising method for modern and fossil studies, because of

its versatility in measuring both sporopollenin and labile components of pollen chem-

istry. For modern pollen Raman is already a viable alternative that adds important

information on carotenoids and sporopollenin composition. I was able to show the po-

tential of Raman, FTIR and FTIR microscopy for pollen chemical studies in this thesis.

Application of Raman for fossil or purefied sporopollenin remains challenging, but given

enough time and investment, I remain convinced that Raman can “catch up” to FTIR.

More work on fossil material is needed to refine these methods.

4.5 Perspectives for chemical palaeoecology

Figure 10: Proxy confidence graph first published in Elderfield (2002).

The development of new methods in palaeoecology is always connected to large risks and

new challenges that will reshape the goals of the development. Elderfield (2002) provides

a schematic representation of how confidence in palaeoecological proxies can evolve over

time (Fig. 10) and move through three phases: optimism, pessimism and realism. As the

development of the proxy continues, it moves through the different phases, where more

and more knowledge is learned about the controlling factors of the proxy and interactions
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to other systems in the pessimism phase, before it reaches the realism phase. They are

using the Mg/Ca palaeotemperature proxy as an example, which had the potential to

also provide an estimate of ocean δ 18O, which lead to new knowledge about dissolution

dynamics and factors controlling trace element incorporation. It is important to note

that this confidence graph is not a scientific fact but merely an illustration of proxy

development by one scientist.

4.6 Are we at the realism phase yet?

If we apply Elderfield’s graph to pollen chemistry and specifically palaeochemistry, I

would suggest the optimism phase is behind us. There have been multiple studies that

show the possibilities of classification on modern material and we have begun to accumu-

late more and more knowledge about the chemical composition of pollen. The field has

begun to explore the sources of chemical variation, because it was necessary to under-

stand modern pollen chemical variation. The first half of this thesis is a contribution to

this effort, exploring chemical variation of Quercus with FTIR and FT-Raman. Studies

in chemical palaeoecology have also begun to explore fossil pollen chemistry and how

it is affected by, e.g., extraction methods, diagenesis, etc.. Papers III and IV of this

thesis contribute to this aspect. Paper III explores fossil pollen chemistry and extrac-

tion methods alternative to acetolysis, while paper IV demonstrates the possibilities of

scatter correction techniques and shows that some taxonomic information is stored in

scattering signals. We, as a field, have begun to understand more and more about the

variations underlying pollen chemistry, but I think there are still too many known un-

knowns (e.g. chemical structure of sporopollenin, etc), and unknown unknowns to have

reached the realism phase. I would place chemical methods in the pessimism phase, with

quite a few unanswered questions and challenges.

In order to move into the realism phase, we have to address the challenges I described

earlier. I outlined the importance of examining commonly used chemical extraction

methods and their impact on (sub)-fossil pollen chemistry as a crucial point to consider

as a result of paper III. The development of methods to explain or bridge the differences

between modern and fossil pollen chemistry may be the main challenge for chemical
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palaeoecological methods. An important step is to measure additional untreated fossil

pollen species to examine the composition of sporopollenin in the fossil setting. The work

in paper III is a first step in that direction and spectra published in Jardine et al. (2021)

also show promising insights into the chemistry of sporopollenin and how it may be

affected by diagenetic processes and chemical extractions. Further studies on untreated

fossil and modern material may give more insight. Our use of density separation is one

method of acquiring untreated fossil pollen. We outlined the advantages: no chemical

alteration, and challenges: requires fine-tuning of density and sufficient washing after

extraction. Furthermore, the exploration of the stepwise degradation of modern pollen

material until they resemble fossil pollen, may further our understanding of the processes

affecting fossil pollen and our knowledge on the chemistry of sporopollenins. It would

also allow for artificial fossilization of larger amounts of pollen, easing the analysis with

destructive methods, such as pyrolysis GC-MS or more work intensive methods, such as

nuclear magnetic resonance (NMR) spectroscopy.

This is a truly exciting and oftentimes challenging moment, in which I look forward in

the future to contribute to moving chemical methods into the realism phase.

4.7 Perspectives of deep learning for chemical palynology

One of the most promising applications of chemical palynology is the combination with

deep-learning methods. Deep-learning, computer-vision methods and CNN architectures

have evolved and steadily improved over the course of my PhD. Newer deep-learning

models are able to locate objects of interest in images (Ren et al. 2015) and assign

descriptions or finer classifications via vector embeddings (Xu et al. 2018, Yu et al.

2019). These methods are all image-based and, after some exploratory work in the

beginning of my PhD with applying neural networks and deep learning on pollen images

(Appendix A), I think these techniques have great potential for the future of palynology.

I applied some, at the time, new neural network architectures on a small set of Eucalyptus

pollen, to compare to traditional approaches and found higher classification success. Due

to Covid-19 and some technical challenges, I was unable to pursue this work further, but

I see potential for deep learning in palynology and also for combination of image based-
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with chemical approaches.

New applications for palynology are exciting. One could design a network that describes

pollen the same way a palynologist would using morphological characteristic by utilizing

vector embeddings (Xu et al. 2018, Yu et al. 2019). This approach would also allow for

pollen types that are not part of the training set to be described if certain morphological

characteristics that the network knows are detected. In traditional CNNs, classes the

network does not know are always assigned a class even if it is not similar to any class

the network knows. This is problematic for palynology, where unexpected pollen types

could end up as mis-identifications with other common taxa and remain undetected mis-

identified. The before mentioned vector embeddings can also be used as a dissimilarity

estimation to check if a pollen is too dissimilar to pollen that the network knows before

identification. The prospects of new applications of deep-learning models for palynology

are very promising and could finally fulfill the demand by Stillman and Flenley (1996)

for automation of palynology.

The transfer of computer-vision methods to chemical palynology would be valuable and

open new research possibilities. In principal, an image with spectra for pixels is just a

picture with 100s of channels instead of three in convential image-files (RGB). Localiza-

tion, segmentation and identification of objects on images are tasks that deep-learning

models have performed well at (Long et al. 2015, Ren et al. 2015, Xiang and Fox

2017). The application of these models to spectra images for palynological purposes

is still a challenge, but not an insurmountable one. In theory, these models could be

applied to spectra images to, for example, extract and identify pollen grains from im-

ages taken with a FTIR microscopes equipped with a FPA detector. Data created from

FPA-FTIR microscopes produce large amounts of data, and deep-learning models are

excellent at processing such large amounts of data. In addition, with deep-learning mod-

els, combining spectral information with images is also possible as shown in Kang et

al. (2020) where spectra and images-stacks of bacteria were used together to train the

deep-learning model. This would allow the combination of chemical and morphological

information for classification or other applications. The combination of chemical and

traditional palynology is a promising development for the future of palaeoecology.
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Abstract
Aim: Fossil pollen is an important tool for understanding biogeographical patterns in 
the past, but the taxonomic resolution of the fossil-pollen record may be limited to 
genus or even family level. Chemical analysis of pollen grains has the potential to in-
crease the taxonomic resolution of pollen analysis, but present-day chemical variabil-
ity is poorly understood. This study aims to investigate whether a phylogenetic signal 
is present in the chemical variations of Quercus L. pollen and to assess the prospects 
of chemical techniques for identification in biogeographical research.
Location: Portugal.
Taxon: Six taxa (five species, one subspecies) of Quercus L., Q. faginea, Q. robur, Q. 
robur ssp. estremadurensis, Q. coccifera, Q. rotundifolia and Q. suber belonging to three 
sections: Cerris, Ilex and Quercus (Denk, Grimm, Manos, Deng, & Hipp, 2017).
Methods: We collected pollen samples from 297 individual Quercus trees across a 
4° (~450 km) latitudinal gradient and determined chemical differences using Fourier-
transform infrared spectroscopy (FTIR). We used canonical powered partial least 
squares regression (CPPLS) and discriminant analysis to describe within- and be-
tween-species chemical variability.
Results: We find clear differences in the FTIR spectra from Quercus pollen at the 
section level (Cerris: ~98%; Ilex: ~100%; Quercus: ~97%). Successful discrimination is 
based on spectral signals related to lipids and sporopollenins. However, discrimina-
tion of species within individual Quercus sections is more challenging: overall, species 
recall is ~76% and species misidentifications within sections lie between 18% and 
31% of the test set.
Main Conclusions: Our results demonstrate that subgenus level differentiation of 
Quercus pollen is possible using FTIR methods, with successful classification at the 
section level. This indicates that operator-independent FTIR approaches can surpass 
traditional morphological techniques using light microscopy. Our results have impli-
cations both for providing new insights into past colonization pathways of Quercus, 
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1  | INTRODUC TION

Subfossil pollen remains preserved in lake sediments or peat bogs 
have been important tools to reconstruct past floristic, vegetational 
and environmental changes for over 100 years. The biogeographi-
cal applications of such reconstructions are varied and wide-rang-
ing. Palaeoecological studies based on fossil pollen have made vital 
contributions to understanding the broad-scale range dynamics 
through time, the rates and directions of spread of different plant 
species, and the location of glacial-stage refugia (see Birks, 2019 for 
a review). Fossil pollen data can also be used to track relative-niche 
shifts in association with the emergence of no-analogue climates 
(Veloz et al., 2012) and forecast future range shifts as a result of 
climate change (e.g. Nogués-Bravo et al., 2016, 2018).

The basis of all such studies is reliable identifications of fossil 
pollen to the lowest taxonomic level possible. With detailed identi-
fications, reconstructions and answers to particular biogeographical 
and ecological questions can similarly be detailed. Indeed, many ad-
vances in historical plant geography (e.g. Birks, 2008; Birks, 2014; 
Godwin, 1975; Lang, 1994; Magri et al., 2006) have been made be-
cause of advances in the identification of plant fossils. However, al-
though Quaternary botany (sensu Birks, 2019) has been dominated 
for over 100 years by pollen analysis, identifications can only be 
made to the genus or family level for many taxa. This is limiting the 
biogeographical information gained from fossil pollen to relatively 
coarse taxonomic levels.

This issue is of particular relevance for understanding the 
past, present and future distributions of the genus Quercus (oak). 
Quercus contains 22 native species in two subgenera and three 
sections in Europe (Denk, Grimm, Manos, Deng, & Hipp, 2017; 
Tutin et al., 1993), several of which have striking and often dis-
tinct geographical distributions today (e.g. Iberia, Balkans, eastern 
Mediterranean, widespread Mediterranean, Apennine Peninsula, 
widespread to about 60°N; Jalas & Suominen, 1976). However, 
what is known about the history of Quercus is almost entirely 
based on pollen and is thus only at the genus level. Although three 
pollen-morphological types can, with care, be distinguished by 
conventional light microscopy (LM) (Beug, 2004) and scanning 
election microscopy (SEM) (Denk & Grimm, 2009), fossil pollen 

of Quercus is usually determined as either Quercus Deciduous or 
Quercus Evergreen types.

This situation has several implications for biogeographical re-
search. Maps of the changing distribution and abundance of oak 
pollen in the late-glacial and Holocene of Europe (Brewer et al., 
2017; Huntley & Birks, 1983) can only confidently be made using 
the two broad pollen morphotypes (i.e. Quercus Deciduous or 
Quercus Evergreen). Palaeo-biomization methods used to fore-
cast the future responses of Mediterranean ecosystems to climate 
change have used the same distinction between these two morpho-
types (Guiot & Cramer, 2016), while a recent attempt to model fu-
ture responses of Quercus in Europe using fossil pollen were based 
on Quercus pollen resolved to the genus level (Nogués-Bravo et al., 
2016). As the sensitivity and response of Quercus to recent envi-
ronmental changes is species-specific in Mediterranean ecosystems 
(Acácio, Dias, Catry, Rocha, & Moreira, 2017), and because Quercus 
macrofossils are very rarely found, any improved understanding of 
its historical and future biogeography clearly depends on consistent 
pollen identifications at levels lower than is presently available.

One potential approach lies in the chemical analysis of pollen. 
Fourier-Transform Infrared Spectroscopy (FTIR) is a non-destructive 
method which is used to infer the chemical composition of a sample 
based on the fact that different molecular-functional groups have 
different wavelength-specific absorbances of infrared radiation 
due to differences in vibrational patterns (Bağcıoğlu, Zimmermann, 
& Kohler, 2015; Gottardini, Rossi, Cristofolini, & Benedetti, 2007; 
Ivleva, Niessner, & Panne, 2005; Pappas, Tarantilis, Harizanis, & 
Polissiou, 2003; Parodi, Dickerson, & Cloud, 2013; Schulte, Lingott, 
Panne, & Kneipp, 2008; Zimmermann, 2010; Zimmermann & 
Kohler, 2014). Evidence suggests that the analysis of pollen using 
FTIR may be a useful tool for differentiating between pollen types 
extracted from sediment sequences (Jardine, Gosling, Lomax, Julier, 
& Fraser, 2019; Julier et al., 2016; Woutersen et al., 2018), because 
pollen-grain chemistry may show biogeographical patterns related 
to phylogeny and environmental conditions (Bağcıoğlu, Kohler, 
Seifert, Kneipp, & Zimmermann, 2017; Depciuch, Kasprzyk, Roga, 
& Parlinska-Wojtan, 2016; Zimmermann et al., 2017).

However, although taxonomic differentiation of pollen based on 
the chemical variations inferred by FTIR shows considerable promise, 

and likewise for forecasting future responses to climate change. However, before 
FTIR techniques can be applied more broadly across palaeoecology and biogeogra-
phy, our results also highlight a number of research challenges that still need to be 
addressed, including developing sporopollenin-specific taxonomic discriminators and 
determining a more complete understanding of the effects of environmental variation 
on pollen-chemical signatures in Quercus.

K E Y W O R D S

chemical composition, ecology and environmental sciences, Fourier-transform infrared 
spectroscopy, palynology, partial least squares regression, pollen
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widespread application of FTIR in biogeography and palaeoecology 
remains limited. One potential for this limitation is because lipids 
and proteins can be major discriminants of variation in FTIR spec-
tra (Bağcıoğlu et al., 2017; Zimmermann & Kohler, 2014), but these 
may not be preserved in sediment sequences alongside the sporo-
pollenin-based exines (Zimmermann, Tkalčec, Mešić, & Kohler, 2015). 
Therefore, the relative importance of the different chemical struc-
tures (e.g. lipids, proteins, sporopollenins) that are responsible for 
discrimination between many modern pollen types still needs to be 
established. Moreover, influence of various abiotic stressors on pollen 
chemistry can hinder taxonomic differentiation of pollen samples by 
FTIR (Depciuch et al., 2016; Lahlali et al., 2014; Zimmermann et al., 
2017), and this needs to be researched further. In addition, the ma-
jority of studies investigating pollen chemistry have used pollen from 
herbaria, botanical gardens or university campuses, with a limited 
number of replicates per location and large number of different spe-
cies and families. Although this sampling design encourages ease of 
access, reliable identification, and a broad species range, the number 
of replicates remains a limiting factor for understanding chemical vari-
ations in response to both environmental and taxonomic variations.

This study aims to address the challenges related to understand-
ing the taxonomic variations of pollen chemistry by investigating 
the relative importance of within- and between-species chemical 
differences in Quercus. Our dataset is unique because it represents 
the largest collection of closely related species sampled from pop-
ulations outside botanic gardens across a large bioclimatic and bio-
geographical gradient in Portugal. We use multivariate-discriminant 
analysis to (i) investigate the potential for FTIR as tool to differ-
entiate six taxa of Quercus based on pollen, and (ii) determine the 
main chemical-functional groups responsible for chemical variation 
observed in the dataset. Addressing these questions represents the 

first step if we are to successfully use pollen chemistry as a tool to 
improve our understanding of past biogeographical patterns and the 
history of oaks in Europe.

2  | MATERIAL S AND METHODS

2.1 | Sample collection

We collected pollen samples from 294 individual trees belong-
ing to five Quercus species across a 4° (~450 km) latitudinal gradi-
ent in Portugal (Figure 1). The Quercus taxa in this study belong to 
the sections Cerris, Ilex, and Quercus according to Denk et al. (2017) 
and have different geographical distributions (Table 1). Trees were 
sampled along gradients of temperature and precipitation to cover a 
wide range of environmental conditions. A detailed summary of the 
number of trees sampled at each location is in Table S1.

All samples were collected in spring 2018 by taking whole-tree 
composite samples of ca. 30 catkins per individual tree. Several 
branches were sampled for catkins up to 5 m in height. The catkins 
were air-dried at room temperature (23°C) for at least 24 hr and the 
pollen was separated from the anthers by light shaking. Pollen was 
also sieved through 60 µm sieves to remove excess plant material 
before analysis.

2.2 | Pollen-chemistry measurements

Reflectance-infrared spectra were recorded using a Vertex 70 FTIR 
spectrometer (Bruker Optik GmbH) with a single reflectance-atten-
uated total-reflectance (SR-ATR) accessory. The ATR IR spectra were 

F I G U R E  1   Map of Portugal displaying 
the locations where the Quercus trees 
where sampled. Colour indicates species, 
shape indicates Quercus section following 
Denk et al. (2017) and size of the symbol 
indicates number of trees sampled per 
location
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recorded with a total of 32 scans and spectral resolution of 4 cm−1 
over the range of 4000–600 cm−1, using the horizontal SR-ATR 
diamond prism with 45° angle of incidence on a High Temperature 
Golden gate ATR Mk II (Specac). Approximately 1 mg of dried pollen 
was deposited onto the ATR crystal for each measurement (three 
replicate measurements). Between each measurement a background 
(reference) spectrum was recorded using the sample-free setup. The 
OPUS software (Bruker Optik GmbH) was used for data acquisition 
and instrument control.

We pre-processed the spectra since multivariate-regression 
methods (e.g. partial least squares; PLS) have been shown to perform 
better with pre-processed spectra in other studies (Woutersen et 
al., 2018; Zimmermann & Kohler, 2013). The processing of the spec-
tra consisted of smoothing and calculation of the second derivative 
using the Savitzky‒Golay algorithm, as implemented by the extended 
multiplicative signal correction (EMSC) package (Liland, 2017). The 
settings of the Savitzky‒Golay smoothing algorithm (Edwards & 
Willson, 1974; Savitzky & Golay, 1964) were: second degree poly-
nomial and a window size of 11. The second-derivative spectra were 
constrained between 700 and 1,900 cm−1 and normalized using 
EMSC, a multiplicative signal correction model extended by a linear 
and quadratic component (Liland, 2017). For further analyses, the 
mean of the measurement replicates (three) was calculated for each 
tree (resulting in one spectrum per tree). We follow peaks of interest 
that have been attributed to chemical-functional groups according 
to Pappas et al. (2003), Gottardini et al. (2007), Schulte et al. (2008), 
Zimmermann (2010) and Zimmermann and Kohler (2014) (Table 2).

2.3 | Statistical analyses

For the exploration of within- and between-species chemical vari-
ability, we fitted a PLS model combined with canonical correlation 
analysis (CPPLS) to the processed mean spectra (second derivative) 
to predict species identity. This analysis was implemented in the ‘pls’ 
package (Mevik, Ron Wehrens, & Liland, 2019) in R version 3.6.0 (R 

Core Team, 2019). The PLS family of models has been shown to be 
powerful in multivariate analyses of FTIR-spectral data (Liland, Mevik, 
Rukke, Almøy, & Isaksson, 2009; Telaar, Nürnberg, & Repsilber, 2010; 
Wold, Sjöström, & Eriksson, 2001; Zimmermann et al., 2017). The 
CPPLS method improves the extraction of predictive information by 
estimating optimal latent variables in comparison to standard PLS re-
gression (Mehmood & Ahmed, 2016). Unlike standard PLS, CPPLS 
weights the contribution of the explanatory variables (wavenum-
bers), which weakens the contribution of non-relevant wavenumbers 
to optimize the covariance between response (species) and explana-
tory variables (wavenumbers). Indahl, Liland, and Næs (2009) show 
improved accuracy and increased explained variance of CPPLS com-
pared with conventional PLS regression using spectral data.

To assess the classification performance of the CPPLS, the 
dataset was randomly split into training and test sets using a 
60%/40% split. This split was repeated 100 times to create 100 
versions of the dataset (folds) with different training/test splits. 
A CPPLS model was fitted for each fold and the extracted com-
ponent scores were used to predict species identity using limited 
discriminant analyses. The performance of the classifier in predict-
ing the test set was averaged over the folds and summarized in a 
confusion matrix (Table 3).

3  | RESULTS

3.1 | Chemical variations in Quercus

Assessment of the mean spectra of the five Quercus species and 
one subspecies reveals clear differences in absorbance between 
the major intrageneric lineages (sections) at wavelengths associated 
with specific chemical functional groups (Figure 2). For example, 
the lipid peak absorbance at ~1,745 cm−1 is weaker in section Ilex 
compared with the other sections, while the sporopollenin and car-
bohydrate absorbance bands (at 1,516, 1,171, 833 and 985 cm−1 re-
spectively) are noticeably lower in absorbance in the taxa belonging 

TA B L E  1   Taxonomy of sampled Quercus trees and total number of trees sampled (n). Sections are according to Denk et al. (2017)

Subgenus Section Species Subspecies n Distribution notes

Cerris Ilex Q. coccifera  36 Q. coccifera and Q. rotundifolia prefer xerophytic conditions and are often 
co-occurring species. Both are indifferent towards bedrock conditions, but 
prefer soils without waterlogging, although Q. coccifera is a thermophilous 
species and is less tolerant of winter cold.

Cerris Ilex Q. rotundifolia  38

Cerris Cerris Q. suber  69 Q. suber is distributed across the Mediterranean Basin on siliceous bedrock 
but is absent from areas with winter cold (Amigo, 2017; Matías, Abdelaziz, 
Godoy, & Gómez-Aparicio, 2019).

Quercus Quercus Q. faginea  60 Q. faginea s.l. has a broad distribution in the Iberian Peninsula (Tschan & 
Denk, 2012) and is more abundant on limestone with higher summer 
precipitation, tracking the sub-Mediterranean bioclimatic belt (Sanchez, 
Benito-Garzon, & Ollero, 2009).

Quercus Quercus Q. robur  76 Q. robur has a temperate distribution and is more abundant in north-west 
Portugal (Jalas & Suominen, 1976). It occurs in regions with sufficient 
summer rain, and is absent from areas with summer drought (Amigo, 2017; 
Ülker, Tavsanoglu, & Perktas, 2018).

Quercus Quercus Q. robur estremadurensis 15
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to section Ilex. Note, however, that although clear spectral differ-
ences exist at the section level, it is more difficult to separate varia-
tions between species within different sections (Figure 2).

The observations made following assessment of the mean 
spectra are confirmed by the analysis using CPPLS (Figure 3a). 
Here, the three sections of Quercus can be clearly separated using 

Compounds Wavenumber (cm−1) Functional group

Lipids (Triglycerides and 
Phospholipids)

1,745
1,462
1,171*
721; 995*

C=O stretch
CH2 deformation
C–O–C stretch
CH2 rocking

Proteins 1,641; 1,651
1535; 1,551

Amide I: C=O stretch
Amide II: NH deformation 

and C–N stretch

Carbohydrates (Cellulose and 
Amylose)

1,200–900
1,171*; 1,107; 1,055; 1,028
1,076; 995*

C–O–C and C–OH stretch

Sporopollenins 1,605; 1,516; 1,171*; 852; 
833 and 816

Aromatic rings in 
phenylpropanoid subunits

Note: A (*) marks wavenumbers which are shared by more than one compound (Bağcıoğlu et al., 
2015). The peak at 1,171 cm−1 is an indicator for C-O-C stretching, that can be present in various 
types of lipids (triglycerides and phospholipids) and sporopollenins as well as some types of 
carbohydrates.

TA B L E  2   Wavenumber of peaks 
attributed to specific functional groups 
in spectra of fresh pollen and their 
representative compounds (Pappas et al., 
2003; Gottardini et al., 2007; Schulte et 
al., 2008; Zimmermann, 2010, p. 20109; 
Zimmermann & Kohler, 2014 compiled in 
Zimmermann, Bağcıoğlu, et al., 2015)

Pred/Ref Q. faginea Q. robur Q. r. estr. Q. coccifera Q. rotund. Q. suber

Q. faginea 64 ± 12 18 ± 8 11 ± 13 0 0 1 ± 1

Q. robur 30 ± 12 76 ± 10 81 ± 18 0 0 1 ± 2

Q. r. estr. 1 ± 2 5 ± 6 6 ± 13 0 0 0

Q. coccifera 1 ± 3 0 0 75 ± 14 25 ± 11 0

Q. rotund. 1 ± 2 0 0 25 ± 14 75 ± 11 0

Q. suber 3 ± 4 1 ± 3 2 ± 6 0 0 98 ± 2

Note: Predictions as rows and reference as columns. Values given as % of spectra that were 
predicted as species and sum to 100% column wise, for example, for Q. robur 18% of spectra were 
predicted as Q. faginea, 76% were correctly classified as Q. robur and 5% as estremadurensis. Blue 
signifies section Quercus; red is section Ilex and yellow is section Cerris.
Abbreviations; Q. r. estr, Q. robur ssp. estremadurensis; Q. rotund., Q. rotundifolia.

TA B L E  3   Confusion matrix of linear 
discriminant analysis on the test sets using 
four components of the fitted canonical 
powered partial least squares (CPPLS) 
model

F I G U R E  2   Mean absorbance 
spectra of Quercus species and notable 
peak locations. Lipids (L), protein (P), 
sporopollenin (S), and carbohydrates 
(C) using wavenumbers given in Table 
2. Spectra are offset. Shaded area 
represents the standard deviation of the 
mean spectra for each corresponding 
Quercus species or subspecies. The 
Quercus taxa are colour-coded according 
to their section: shades of blue indicate 
section Quercus; shades of red indicate 
section Ilex and section Cerris is in yellow
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the variance explained by two CPPLS components (Figure 3a). For 
example, the section Ilex scores are negative along the first com-
ponent (26% of the variation), while individuals of sections Quercus 
and Cerris have positive scores along this axis. The sections Quercus 
and Cerris can mainly be separated along the second principal com-
ponent (section Cerris with positive scores and section Quercus 
with negative scores). However, between-species level variations 
within species in the same section are harder to differentiate, be-
cause there is a large overlap between species of the sections Ilex 
and Quercus. This overlap is reduced on later components, where 
the different species separate within their respective sections. On 
components 3 and 4 Q. coccifera and Q. rotundifolia can be sep-
arated along the third component, while Q. robur and Q. faginea 
show some separation along the fourth component (Figure 3b). In 
total, the two first components explain ~37% of the variation in the 
dataset and separate the samples into the Quercus sections, while 
the next two components explain a further ~9.7% (Figure S1).

Since specific absorbance peaks in the FTIR spectra can be re-
lated to chemical functional groups (summarized in Table 2), it is pos-
sible to identify which chemical functional groups have the highest 
influence in explaining patterns of variation observed in our dataset 
(Figure 4). In general, lipids and sporopollenins have high loadings 
(i.e. greater influence) on component 1, followed by carbohydrates. 
On component 2, the 852 cm−1 sporopollenin peak shows the high-
est positive loadings in contrast to the other sporopollenin peaks 
(816, 833, 1,516 and 1,605 cm−1), followed by the 995 cm−1 peak, 

which ca be attributed to carbohydrates or phospholipids (Bağcıoğlu 
et al., 2015). Components 3 and 4 have higher loadings for carbohy-
drates and protein peaks. Taken together, these results indicate that 
sporopollenin and lipids are strong drivers of the main sources of 
variation in the dataset and congeneric discrimination is achievable 
based on FTIR at least at section level.

3.2 | Discriminant analysis

Using four components (explaining ~45% of the variance) the con-
fusion matrix of the classification CPLS model shows clear differ-
entiation between the Quercus sections, with some misidentified 
spectra (<~2 ± 3) from section Quercus and Q. suber (Table 3). 
Quercus robur ssp. estremadurensis has by far the worst accuracy in 
the model and is most often identified as its parent species Quercus 
robur, possibly due to the limited number of samples in the dataset 
(Table 1). In general, species misidentifications are contained within 
the different Quercus sections and lie between 18% and 30% of the 
test-set samples (within-section misidentifications: 18% of Q. robur 
as Q. faginea; 30% of Q. faginea as Q. robur; 25% of Q. coccifera as 
Q. rotundifolia; 25% of Q. rotundifolia as Q. coccifera). Overall spe-
cies accuracy within sections ranges from 64% to 76% in the Ilex 
and Quercus sections. Increasing the components available to the 
model to 10 (~57% explained variance) increases species accuracy 
by 5–10 percentage points in both sections (Quercus, Ilex) (Table 

F I G U R E  3   Ordination of components 
1–4 of canonical powered partial least 
squares (CPPLS) models (100-fold 
cross-validation). Each point represents 
a sampled Quercus tree. The mean 
training scores for each sample over the 
100-folds were calculated. Proportion of 
variance explained by each component 
in parentheses. Colour indicates species, 
while symbol indicates Quercus section
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S2). As demonstrated with our ordination plots (Figure 3), differen-
tiation of the three sections of Quercus is possible using 37% of the 
variance in the spectral data, but these results indicate difficulties 
in differentiation between species of the same section.

4  | DISCUSSION

4.1 | Separation of Quercus according to chemical 
variation

Recent research has shown that spectroscopic methods such as 
FTIR are effective at differentiating pollen taxa between dis-
tantly related families and/or genera using their chemical compo-
sition (Dell’Anna et al., 2009; Gottardini et al., 2007; Jardine et 
al., 2019; Julier et al., 2016; Woutersen et al., 2018; Zimmermann, 

2010; Zimmermann, Bağcıoğlu, Bağcıoğlu, Sandt, & Kohler, 
2015; Zimmermann et al., 2017; Zimmermann & Kohler, 2014; 
Zimmermann, Tafintseva, Bağcıoğlu, Berdahl, & Kohler, 2016). 
Our results build on these previous studies to reveal the potential 
for chemical variations in pollen to distinguish infrageneric varia-
tion between species in pollen samples from 297 individuals from 
Portugal, which belong to three different Quercus sections (Cerris, 
Ilex, Quercus). We identify a clear separation at the Quercus sec-
tion level (Figure 3 and Table 3) using two components of a PLS 
model and 37% of the explained variance in the spectral data. One 
component (component 1) can be used to differentiate the sec-
tions Ilex and Quercus, while component 2 can be used to separate 
section Cerris. Combined, these two components achieve the per-
formance equivalent to SEM methods, where Quercus pollen can 
be confidently identified to section level.

Despite finding that classification at the section level is possi-
ble using FTIR approaches, there is considerable overlap in variation 
between species of the same section. Furthermore, classification 
performance does not improve when using a more complex model in 
which the number of components used increases from 4 to 10. Using 
this more complex model, which explains ~57% of the variance (com-
pared with ~45% in the four-component model), classification accu-
racies remain roughly similar within Quercus sections (Table S2). For 
example, Q. coccifera and Q. rotundifolia have a recall of ~75% with 
both 4 and 10 components. Similarly, approximately one-third of Q. 
robur and Q. faginea samples (both belonging to section Quercus) are 
misclassified as the other species. Thus, while our results indicate 
that subgeneric classification of Quercus pollen is possible at the sec-
tion level using FTIR, we still find it difficult to distinguish between 
more closely related (i.e. within-section) pollen types.

These findings are approximately in line with other studies that 
have performed species classification using FTIR. For example, both 
Julier et al. (2016) and Jardine et al. (2019) report classification suc-
cesses of ~80% and ~85%, respectively, using an FTIR analysis of cryp-
tic morphospecies within the family Poaceae. Their studies are based 
on a combination of specimens of mainly non-congeneric grass spe-
cies (except two species of Oryza, Julier et al., 2016, and four species 
of Triticum, Jardine et al., 2019). In both these studies, classification 
success is lower for the samples belonging to congeneric species and 
higher for the more-distantly related pollen types (i.e. those species be-
longing to different genera). In another study, Woutersen et al. (2018) 
report ~95% recall on largely congeneric species in the Nitrariaceae 
family using single-grain FTIR, but also note that lack of environmental 
variability (pollen from one individual per species) could have led to an 
overestimation of classification success. In contrast, Zimmermann et 
al. (2017) achieve ~100% accuracy on species identification and 75% 
accuracy on identification of origin using hierarchical PLSR on pollen 
from three species of Poaceae (Festuca ovina, Anthoxanthum odoratum, 
Poa alpina) of different genera and origins (Sweden, Norway, Finland) 
grown under controlled conditions (45 individuals per species). Such 
a high classification success on taxa grown in controlled conditions 
demonstrates the strong phylogenetic signature that can be ob-
served using FTIR. Our results also demonstrate strong phylogenetic 

F I G U R E  4   Loadings plot of classification of canonical powered 
partial least squares (CPPLS) model. Lipids (L), protein (P), 
sporopollenin (S), and carbohydrates (C) using wavenumbers given 
in Table 2. High absolute loading indicates a high importance of a 
given wavenumber for the corresponding component. Loadings 
are chosen in such a way as to describe as much as possible of the 
covariance between the variables (wavenumbers) and the response 
(species). Proportion of variance explained by each component in 
parentheses
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differences in FTIR spectra (i.e. the ability to differentiate between 
Quercus-section level variability), but our study also demonstrates 
the difficulty of distinguishing between-species level variability, even 
when relatively large subsets of samples are used.

4.2 | Key chemical drivers of variation within 
Quercus spp. pollen

Given the result that identification is possible at the section level, 
a key question that follows is which of the chemical components 
of the pollen grain are mostly responsible for the difference be-
tween the three sections of Quercus under FTIR? In our study, we 
find that lipids are one of the most important functional groups 
in diagnosing samples belonging to section Ilex. The wavebands 
at 1,462 and 1,745 cm−1 are particularly important in this regard. 
Previous research has shown that these wavebands are indica-
tors for triglyceride lipids (Bağcıoğlu et al., 2017). Our results also 
confirm previous findings by Zimmermann and Kohler (2014), who 
show extreme variations in the relative content of triglycerides 
and find this waveband to be an important separator between Iris, 
Quercus, and Pinus pollen types. Indeed, our results extend the 
inferences made in that previous study by demonstrating a subge-
neric level variability of the relative lipid content. Specifically, we 
identify relatively fewer lipids in pollen sampled from individuals 
within the Ilex section (Figure 2).

In addition to the importance of triglyceride lipids as a tool for 
chemical separation, we also find that wavebands representing 
building blocks of sporopollenin (Table 3) are important for differ-
entiating taxa on the first two components of our CPPLS analysis. 
For example, the peaks at 833, 852, 1,516 and 1,605 cm−1 are asso-
ciated with building blocks of sporopollenin (Bağcıoğlu et al., 2015) 
and have relatively high loadings on component 2, which is used in 
this study to isolate Q. suber. Peaks at 833 and 852 cm−1 are related 
to different types of phenylpropanoid building blocks and our re-
sults suggest relative differences in their abundance within the spo-
ropollenin of Q. suber compared with the other species. In addition 
to lipid variation, aromatic peaks at 833, 852, 1,516 and 1,605 cm−1 
also have a high loading on component 1, which can be used to 
separate the Ilex section pollen from the other sections. Thus, both 
lipids and sporopollenins are important functional groups to differ-
ent pollen between the three sections in our dataset.

Our observations of different chemical compositions of sporo-
pollenin mirror the sequence of the development of the pollen wall 
in different Quercus sections described by Solomon (1983a, 1983b) 
and Denk and Grimm (2009). Evolutionary, pollen of section Ilex 
represent the earliest, primitive state of Quercus pollen, with a mi-
crorugulate pattern on the pollen exine surface. A set of secondary 
sporopollenins are then added to this surface during exine formation 
in pollen of sections Cerris and Quercus (Denk & Grimm, 2009). It is 
possible that these key differences in structure and formation of the 
exine between the section Ilex and other Quercus pollen grains are 
responsible for the differences in sporopollenin chemistry identified 

using FTIR. More detailed work on the composition of sporopollenin 
of different genera, and how this affects pollen grain structural ele-
ments (e.g. Li, Phyo, Jacobowitz, Hong, & Weng, 2019) is needed for 
this finding to be confirmed.

Finally, protein and carbohydrate peaks (Carbohydrates: 1,107, 
1,028, 1,076 cm−1; Proteins: 1,535, 1,641 cm−1) have the highest 
loadings on components 3 and 4 and are partly responsible for the 
partial distinction of species within the same section. These peaks 
represent amylose and cellulose as carbohydrates and amide func-
tional groups within proteins (Table 2). For example, variation along 
component 3 contributes to the separation of Q. robur from Q. fag-
inea. However, overall, protein and carbohydrate peaks have the 
least influence for explaining the variance of classification success, 
and most of the taxonomically important information we used to dis-
tinguish between the species is stored in the lipids and sporopollenin 
components of the pollen chemistry.

4.3 | Implications for understanding past and future 
Quercus dynamics

We investigated the potential for chemical separation of Quercus 
pollen because, despite the high diversity (22 species) of Quercus 
in Europe, fossil pollen of this genus is still most commonly deter-
mined as either Quercus Deciduous or Quercus Evergreen types (e.g. 
Brewer et al., 2017; Huntley & Birks, 1983). As a result, there may be 
much detail missing in our current understanding about past Quercus 
dynamics, which could be improved through methods that result in 
refined taxonomic resolution. Indeed, our results indicate the po-
tential for FTIR to surpass traditional LM methods used in palynol-
ogy, and work at a comparable level to SEM (Denk & Grimm, 2009; 
Denk & Tekleva, 2014; Grímsson, Grimm, Meller, Bouchal, & Zetter, 
2016; Grímsson et al., 2015). However, the extensive automated-
classification possibilities offered by future IR analysis (Mondol et 
al., 2019), and in the ease of sample preparation and data collection, 
may mean it will be easier to expand these technologies compared 
with the more time-consuming SEM methods in the long term.

The ability to differentiate at higher taxonomic resolution would 
enhance our understanding of past trajectories of co-occurring 
Quercus sections, in particular for understanding the expansion of 
Quercus since the Last Glacial Maximum (e.g. Brewer, Cheddadi, de 
Beaulieu, & Reille, 2002). FTIR techniques may also be useful for 
older interglacial sequences, where identification of Quercus pollen 
to section is often not possible due to degradation (Tzedakis, 1994). 
This would complement studies that use genetic methods on mod-
ern samples to reconstruct colonization pathways, which have higher 
taxonomic resolution and compliment the palynological data, but lack 
the temporal resolution that pollen records provide (Petit et al., 2002).

In addition, a number of studies have highlighted the need to 
incorporate long-term ecological information to improve biodiver-
sity forecasts of environmental change (Dawson, Jackson, House, 
Prentice, & Mace, 2011). Rates of temperature increases in the 
Mediterranean are projected to outpace the rest of the temperate 
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regions in Europe and are predicted to rapidly change the associated 
biomes in the region (Giorgi & Lionello, 2008; Guiot & Cramer, 2016; 
Guiot & Kaniewski, 2015), but the consequences of this change for 
Mediterranean oak forests remain uncertain (Acácio et al., 2017; 
Lindner et al., 2014). A number of studies have integrated pollen 
data in order to reduce uncertainties when forecasting the biotic re-
sponses of Quercus to climate change in the future (Nogués-Bravo et 
al., 2016; Guiot & Cramer, 2016). However, like the palaeoecological 
studies discussed above, the limited taxonomic resolution used may 
bias projections. For example, species distribution models based 
solely on Quercus pollen were only able to estimate niche-environ-
ment relationships at the genus level. Extensive application of FTIR 
techniques may therefore provide a bridge between long-term eco-
logical and modern biogeographical approaches.

Nevertheless, despite the potential shown in our FTIR approach, 
our findings reveal a number of challenges before vibrational methods 
can be rolled out across biogeographical and palaeoecological appli-
cations. First, our results are still unable to resolve at the species level, 
and so although taxonomic resolution would be refined using FTIR ap-
proaches, in many cases palaeoecological studies would still lack the 
taxonomic precision of other biogeographical tools (e.g. phylogenetic 
analysis). Second, our results are based on fresh pollen sampled from 
modern taxa, and lipids were some of the main functional groups used 
to differentiate between taxa in this study, in addition to by sporo-
pollenins (Figure 4). Although the preservation and stability of sporo-
pollenins in fossil sequences are well established (Fraser et al., 2012), 
the extent to which lipids are preserved in chemical sequences in sub-
fossil pollen sequences remains uncertain. Variations in sporopollenin 
functional groups were still responsible for differentiation between 
the three main Quercus sections, but the ability for these functional 
compounds to be used as taxonomic tools in isolation is yet to be es-
tablished. In the future it may be more beneficial to focus on varia-
tions of sporopollenins in pollen, perhaps through the use of Raman 
spectroscopy, which preferentially targets the vibration of non-polar 
bonds in sporopollenins and so may be able to achieve finer-scale dif-
ferentiation of sporopollenin building blocks (Merlin, 2009).

Third, in this study we used bulk pollen samples to infer dif-
ferences using FTIR, but fossil-pollen samples would require sin-
gle-grain measurements since pollen grains are difficult to separate 
from other organic material within the sediment matrix. Single-grain 
FTIR spectra are less reproducible than bulk, mostly due to spec-
tral anomalies caused by scattering and by non-radial symmetry of 
certain pollen types (Zimmermann, 2018; Zimmermann, Bağcıoğlu, 
et al., 2015). Although these issues have been addressed by adjust-
ing experimental settings and by implementing numerical correction 
methods (Zimmermann, 2018; Zimmermann et al., 2016), future 
work is needed to test whether the patterns we observe at the bulk 
level can be replicated using single-grain FTIR measurements.

Finally, our study shows the importance of using large numbers 
of replicates in the pollen samples to account for the large amounts 
of chemical variation present in the chemical spectra, even within 
replicate species. The large numbers of samples and high levels of 
replication here (i.e. 50 ± 23 tree replicates per species) are a major 

advantage over previous studies, which have featured either fewer 
replicates (<5) (Jardine et al., 2019; Julier et al., 2016; Woutersen 
et al., 2018) or fewer/no congeneric species (Julier et al., 2016; 
Zimmermann et al., 2017). Although we do find clear signals in the 
data linked to systematics (Figure 3 and Table 3), we also find that 
~60% of the total variation remains unexplained. One probable 
reason for the unexplained variation observed in our study may be 
linked to the environmental controls on pollen chemistry. Previous 
studies have suggested plasticity of pollen chemistry to climate and 
other environmental variables (Bağcıoğlu et al., 2017; Depciuch et 
al., 2016; Depciuch, Kasprzyk, Sadik, & Parlińska-Wojtan, 2017; 
Zimmermann et al., 2017; Zimmermann & Kohler, 2014). The other 
probable reason is the intra-species variation between the genotypes 
of different populations as well as within populations (Zimmermann 
et al., 2017). This suggests it will be critical to understand the other 
factors which can account for this variation if these pollen-chemistry 
techniques can be successfully applied to fossil sequences.

5  | CONCLUSIONS

We investigated the chemical variation in pollen sampled from 294 in-
dividuals of Quercus using FTIR to investigate whether this technique 
could enable taxonomic discrimination of modern Quercus pollen. Our 
results achieved excellent (~97%) recall to section level, showing that 
subgenus level differentiation of pollen samples is possible using IR 
methods. However, despite these promising results at the section level, 
more detailed, species-level differentiation was complicated by over-
lapping variation in the chemical composition of closely related species.

We also aimed to identify which specific functional groups are re-
sponsible for the taxonomic discrimination in the data. Here, we found 
lipids and sporopollenins to be key determinants between different 
Quercus sections. Although the sporopollenin functional groups are 
identified as important for discrimination between Quercus taxa, isolat-
ing the effect of these sporopollenin groups from the effects of other 
functional groups which may not be preserved in sediment sequences 
(e.g. lipids) still present a challenge. In addition, testing the application 
on single-grain Quercus samples, and developing a more complete un-
derstanding of the effects of environmental variation on pollen-chem-
ical signatures in Quercus is required. Taken together, our findings build 
on previous studies and show that, while FTIR approaches on modern 
Quercus pollen can perform at a similar level to SEM techniques, future 
work on the discrimination of sporopollenin components is required 
before FTIR can become a more widespread tool in long-term ecology 
and biogeography. Thus, our study represents a valuable step forward 
in improving our understanding of variation in pollen chemical compo-
sition and its application in long-term ecology and biogeography.
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A Appendix A

A.1 Exploring neural networks

I began my PhD in September 2016, which meant that trees were not in flower for at least

6 months in Europe. During this time, I researched and learnt about neural networks in

addition to working with the classifynder system in our pollen laboratory.

A.2 Background

Computer vision deals with identifying objects on images and their position, to make

this information accessible for computers to process images and video for a range of

applications: e.g. hand-written text recognition, self-driving cars, etc. These models

are very powerful at identifying objects and areas of interest in images, which is similar

to pollen counting, where objects of interest are randomly located among other objects

that have to be ignored. All of these approaches are based on artificial neural networks

(ANN), which were a digital recreation of neural pathways, connections, albeit simplified

(McCulloch and Pitts 1943, Rosenblatt 1959). In ANNs neurons are organized in layers

and receive inputs, which are transformed using an activation function and the result is

sent to the next layer of neurons or output. Each neuron receives every input and sends

the output to each neuron in the next layer, where each connection is weighted and the

weights are learned during training. The advantage of this model is that it can model

non-linear responses.

A big breakthrough for the application of ANNs to computer-vision was the introduction

of convolutional layers which are kernel filters that reduce the size of the image and

transform it. Kernel filters are transformation windows (3x3 pixels), which are applied

to each pixel of the input image and perform a transformation. Convolutional layers

were first implemented by LeCun et al. (1989) for recognition of handwritten digits

(e.g. zip-codes) and improved the performance of neural networks drastically. NN that

utilize convolutions would be called convolutional neural networks from now on (CNN).

It would take until the 2010s for the next evolutionary step in NN architechture. The
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advent of increasing computation performance and dedicated graphic cards that spe-

cialize on matrix multiplications used during training of NN provided the infrastructure

for deeper architectures, increasing classification performance significantly. One of the

breakthrough models is Alexnet (Krizhevsky et al. 2017), which utilized more convolu-

tional layers (8) and made improvements to activation function and pooling layers that

increased classification performance. In the wake of Alexnet, a number of new vari-

ants and improvements were made: Resnet introduced skipping layers of the network

to improve generalization (He et al. 2015), while Inception introduced the convolution

module (Szegedy et al. 2015b), which performed several size convolutions at the same

time instead of in dedicated layers. These are the more prominent examples of CNN

models, which inspired me to use them for classification of pollen images.

Several people in our group had used Classifynder to capture pollen images using the

automated microscope, which is quite reliable at taking images of pollen from ordinary

microscope slides and calculating a number of morphological parameters of the pollen.

The built-in neural network (NN) classifier of the classifynder is a single hidden layer

NN, which was a simpler architecture than the state of the art at the time of my PhD

(Szegedy et al. 2015a, Ren et al. 2015). These deeper neural networks need large

amounts of training and testing data, which would be time consuming to collect by

hand. My goal was to use the Classifynders excellent image capture capabilities to take

images of pollen from a set of Eucalyptus species relevant for the Bega Swamp record.

Further, I trained a number of models to classify this dataset:

• i. the built-in classifynder classifier,

• ii. random forest,

• iii. LeNet,

• iv. Resnet,

• v. Inception. The first two models would use the 50 morphological features

extracted by Classifynder, while the CNNs would use the images.
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A.3 Methods and Materials

The pollen was collected from the herbarium at the KEW Botanic Gardens. Eucalyptus

flowers/anthers were removed from the herbarium sheets and acetolysed, using the stan-

dard protocol (Erdtman and Praglowski 1959, Fægri and Iversen 1989), to extract the

pollen grains. I successfully extracted pollen from three species and one sub-species: E.

fraxinus, E. pauciflora, E. pauciflora ssp. niphophila and E. stellulata. The pollen was

stained, embedded in glycerol and mounted on microscope slides. Using Classifynder,

approximately 400-600 images of pollen were captured for each species/sub-species. The

set of images was split into training, validation and test set at 70%/15%/15% ratio of

the full data-set.

I used the Pollen software, that controls Classifynder, to extract the morphological pa-

rameters from the images and used a random forest model (4000 trees) to classify the

pollen based on the ~50 morphological parameters.

For training with the CNNs, I converted the images to black and white and reduced

the resolution to 28x28 pixel to save training time. For LeNet the model was trained

from scratch, while I used models for Resnet and Inception that were pre-trained and

implemented in the MXnet package in R. The architectures for Resnet and Inception

were reduced in depth to allow for the training of smaller images.

A.4 Results and Discussion

Overall, the CNNs performed better than methods based on morphological parameters,

achieving betwen ~70% recall for LeNet and 75% recall for Inception bn. The ANN of

Classifynder performed worst at 62% recall. CNNs were also capable of differentiating

between E. pauciflora and its sub-species at the same confidence level as the other

species. These results are quite promising, considering the reduced resolution of the

images used (black and white 28x28 pixel) compared to the original images (500x500).

The advanced CNNs I used (Inception and Resnet) were reduced versions, where some

of the layers were removed to allow for images of smaller sizes to be usable. The full

networks use larger images (e.g. 299x299 for Resnet) and may increase the performance of
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the models. This test with a mini Eucalyptus training set showed that there is potential

for the use of CNNs in pollen identification and I planned to use the full images and

additional Eucalyptus species to train a full-scale model at a later time in my PhD. The

successes of CNNs in other field of research demonstrated that this was a very promising

approach for pollen identification and later results by Sevillano et al. (2020) showed

precise classifications of pollen from 46 species. They used a similar approach that I had

planned. The training images were captured using a Autostage Classifynder system and

a pretrained version of Alexnet (Krizhevsky et al. 2017) was used, which is one of the

deepest CNN architectures.
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Performance of different neural network architectures in Identifying 
Pollen based on images. Feature extraction using Classifynder and 
new approaches using convolutional neural Networks are tested.

ABSTRACT
Traditional morphological methods for pollen 
identification in Quaternary palaeoecology are 
time consuming and can be limited in taxonomic 
precision. The automated Classifynder system 
(CFS; Holt et al. 2011) has the potential to use 
detailed morphological measurements and 
machine learning techniques to distinguish pollen 
types at higher levels of taxonomic resolution. In 
addition convolutional neural networks (CNNs) 
are powerful tools in classifying images. These 
approaches open new and exciting prospects for 
the classification of pollen.
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 Classifier E. frax. E. pauc.E. p. niph.E. stell. Acc. 

 Classifynder 65% 46% 73% 64% 62%

 R. Forest 63% 50% 69% 70% 63%

 h2o 75% 51% 70% 59% 64%

 LeNet 69% 70% 69% 72% 70%

 Resnet 66% 70% 64% 77% 69%

 Inception bn 76% 73% 71% 80% 75%

Classifynder E. frax. E. pauc. E. p. niph. E. stell. Recall

 E. frax. 60 10 12 11 65%

 E. pauc. 7 41 27 14 46%

 E. p. niph. 6 10 90 18 73%

 E. stell. 6 13 16 64 64%

Inception bn E. frax. E. pauc. E. p. niph. E. stell. Recall

 E. frax. 71 10 7 5 76% 

 E. pauc. 7 65 7 10 73%

 E. p. niph. 13 17 88 6 71%

 E. stell. 9 9 2 79 80%

Convolutional Neural Networks
In CNNs the feature extraction is based 
on low level image manipulations (Kernel 
Convolutions) directly on the source 
images. The source images are turned 
into abstracted lower resolution versions 
through several convolution and pooling 
rounds. Every pixel from these features 
is treated as an input into a Neural 
Network.

Feature extraction and 
Classification

Classifynder
The Classifynder extracted 50 features 
from the scanned images. Spanning 
simple geometric attributes, such as 
area, size, circumference, etc. and 
additional features aimed at capturing 
pollen surface structure and texture. 
These are fed into a Neural Network. 
During the training the data is split into 
two and trained seperately.

How Neural Networks work
The neurons in the hidden layers are 
transforming inputs using activation 
functions (i.e sigmoid). 
During training the connection weights 
() are adjusted to achieve the wanted 
result in the output layer.
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Methods & Materials
The automated CFS was used to gather 2700 images and 
morphological information of 4 Eucalyptus pollen species 
collected from the Herbarium Collection at Kew, London. I 
have tested several classification methods on the dataset, 
by comparing the performance of the CFS to random forest 
and different CNNs. LeNet (Lecun et al. 1998) was 
developed for written character recognition, while Resnet 
(He et al. 2016) and Inception bn (Ioffe et al. 2015) were 
developed for image classification.

During classification the dataset was split into a 70% training 
and a 15% validation and test set. The images were scaled 
to 28x28 pixels.

Results
Overall the CNNs performed 
better than the classifications 
based on the Classifynder 
extracted morphology data. 
Accuracy was higher when 
comparing species as well as 
total accuracy.

Classification Results
Confusion matrices Future

CNNs offer a promising 
tool in identifying pollen 
independent of predeter-
mined morphological pa-
rameters, through their 
unique feature extrac-
tion and flexibilty. 

Classifynder System.
Image Source: 
http://www.massey.ac.nz/massey/fms/Massey%20News/2016/3/images/classifynder-scope.jpg

Eucalyptus fraxinoides Eucalyptus pauciflora Eucalyptus pauciflora niphophila Eucalyptus stellulata
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