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CONTINUOUS DEPENDENCE ESTIMATES FOR VISCOSITY SOLUTIONS

OF FULLY NONLINEAR DEGENERATE ELLIPTIC EQUATIONS

ESPEN R. JAKOBSEN AND KENNETH H. KARLSEN

ABSTRACT. Using the maximum principle for semicontinuousfunctions [3, 4], we prove a general
"continuous dependence on the nonlinearities" estimate for bounded Holder continuous viscosity
solutions of fully nonlinear degenerate elliptic equations. Furthermore, we provide existence,
uniqueness. and Holder continuity results for bounded viscosity solutions of such equations.
Our results are general enough to encompass Hamilton-Jacobi-Bellman-Isaacs's equations of
zero-sum, two-player stochastic differential games. An immediate consequence of the results
obtained herein is a rate of convergence for the vanishing viscosity method for fully nonlinear
degenerate elliptic equations.

1. Introduction

We are interested in bounded continuous viscosity solutions of fully nonlinear degenerate elliptic
equations of the form

where the usual assumptions on the nonlinearity F are given in Section 2 (see also [4]). We are
here concerned with the problem of finding an upper bound on the difference between a viscosity
subsolution u of (1.1) and a viscosity supersolution u of

where F is another nonlinearity satisfying the assumptions given in Section 2. The sought upper
bound for u u should in one way or another be expressed in terms of the difference between the
nonlinearities "F F".

A continuous dependence estimate of the type sought here was obtained in [7] for first order
time-dependent Hamilton-Jacobi equations. For second order partial differential equations, a
straightforward applications of the comparison principle [4] gives a useful continuous dependence
estimate when, for example, F is of the form F F -f- / for some function / = f(x). In general,
the usefulness of the continuous estimate provided by the comparison principle [4] is somewhat
limited. For example, it cannot be used to obtain a convergence rate for the vanishing viscosity
method, i.e., an explicit estimate (in terms of v > 0) of the difference between the viscosity solution
u of (1.1) and the viscosity solution uu of the uniformly elliptic equation

Continuous dependence estimates for degenerate parabolic equations that imply, among other
things, a rate of convergence for the corresponding viscosity method have appeared recently in
[2] and [s]. In particular, the results in [s] are general enough to include, among others, the
Hamilton-Jacobi-Bellman equation associated with optimal control of a degenerate diffusion pro
cess. Continuous dependence estimates for the Hamilton-Jacobi-Bellman equation have up to now
been derive via probabilistic arguments, which are entirely avoided in [s].
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(1.1) F[x,u{x),Du(x),D2 u{x)) = 0 in ffi A',

(1.2) F[x,u{x),Du[x),D2 u{x)) = 0 in RN ,

(1.3) F{x,uu {x),Duu {x),D2 ul/ {x)) = uAuu {x) in RN .
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The main purpose of this paper is to prove a general continuous dependence estimate for fully
nonlinear degenerate elliptic equations. In addition, we establish existence, uniqueness, and Holder
continuity results for bounded viscosity solutions. Although the results presented herein cannot
be found in the existing literature, their proofs are (mild) adaptions (as are those in [2, s]) of the
standard uniqueness machinery for viscosity solutions [4], which relies in turn on the rnaximum
principle for semicontinuous functions [3, 4]. In [2, s], the results are stated for nonlinearities F, F
with a particular form, and as such the results are not entirely general. In this paper, we avoid
this and our main result (Theorem 2.1) covers general nonlinearities F, F.

We present examples of equations which are covered by our results. In particular, an explicit
continuous dependence estimate is stated for the second order Hamilton-Jacobi-Bellman-Isaacs
equations associated with zero-sum, two-player stochastic differential games (see, e.g., [B] for a
viscosity solution treatment of these equations). For these equations such a result is usually derived
via probabilistic arguments, which we avoid entirely here. Also, it is worthwhile mentioning that
a continuous dependence estimate of the type derived herein is needed for the proof in [l] of the
rate of convergence for approximation schemes for Hamilton-Jacobi-Bellman equations.

The rest of this paper is organized as follows: In Section 2 we state prove our main results.
In Section 3 we present examples of equations covered by our results. Finally, in Appendix A we
prove some Holder regularity results needed in section 2.

Notation. Let |•| be defined as follows: |x| 2 l x i| 2 f°r anY x eR m and any m£M. We

also let | • | denote the matrix norm defined by \M\ = sup eGIP where M £ E mxp is a ra x p

matrix and m,p £ N. We denote by the space of symmetric N x N matrices, and let Br and
Br denote balls of radius R centered at the origin in R N and § iV respectively. Finally, we let <
denote the natural orderings of both numbers and square matrices.

Let USC{U), C(U) and Cb{U) denote the spaces of upper semicontinuous functions, continuous
functions, and bounded continuous functions on the set U. If /: M N —> Rmxp is a function and
p, £ (o,l], then define the following (semi) norms:

|/|o- sup |/(*)|, [/]„= sup l/(.X) and |/|„ = |/lo + [/]„

x^-y

By C°' M (E N) we denote the set of functions /: W N -> R with finite norm 1/^

2. The Main Result

We consider the fully nonlinear degenerate elliptic equation in (1.1). The following assumptions
are made on the nonlinearity F :R N xR xR N xS N -+R^.

(r > For every R>o, F £ C{RN xR x l jV x § N ) is uniformly continuous
1 ' onR N x[-R,R]x BR xMR .

(C2) For every x,r,p, if X,Y £§ N ,A' <Y, then F {x, r, p, X) > F (x, r, p,Y)

lr,„. For every x,p, X, and for R> 0, there is > 0 such that
1 ' F{x,r,p,X)-F{x,s,p,X) >fß{r-s), for -R<s< r < R.

Our main result is stated in the following theorem:

Theorem 2.1 (Continuous Dependence Estimate). Let F and F be functions satisfying assump
tions (Cl) - (C3). Moreover, let the following assumption hold for some rji, 772 > 0, fj, £ (o,l],
and M, K > 0:

(2.2)

F(x, r, a(x y) + z, X) F{y, r, a(x y) + z, V")

< K\\x- y\» +77! + a (|x- y| 2 + 775) + |*| + £ (l + |æ| 2 + \y\ 2 )Y

for a, s>o,x, y, z G P- N , r€ R, |*|, |r| <M, ancf A", V G S A' satisfying

i(i -> )-(', -/)-(;:)
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Ifu,ue C%'»°{T& N), /io e (0,/i], sa^s/y zn fhe viscosity sense F[u] < 0 and F[u] >O, Jnen there
is a constant C > 0 suc/i f/iat:

Remark 2 2. For simplicity, we consider only equations without boundary conditions. However,
the techmques used herein can be applied to the classical Dirichlet and Neumann problems The
classical Dirichlet boundary condition can be handled in the same way as the initial condition is

in [5l The Neumann boundary condition can be analyzed as m [2]. On the other hand, we are
not able to treat so-called boundary conditions in the viscosity sense [4, section 7Cj.

Before giving the proof, we state and prove the following technical lemma:

Lemma 2.3. Let f G USC(R N ) be bounded and define m,m£ >O, xe GR" as follows:

Proo/. Choose any n> 0. By the definition of supremum there is an x' GRN such that /(x') >
m- n. Pick an e' so small that e'\x'\ 2 < 17. then the first part follows since

m > m£ , = f{xt .) - e'\x£l \ 2 > f (x') - e'\x'\ 2 >m - 2n.

Now define ke = s\x t \\ This quantity is bounded by the above calculations since /is bounded.
Pick a converging subsequence {*,}« and call the Hmit k (> 0). Note that /(x.) - fc £ < m - *e ,
fo gomg to tlfe hmit yields m < m - *. This means that * < 0, that is k = 0. Now we are done
since if every subsequence converges to 0, the sequence has to converge to 0 as well.

Proof of Theorem 2.1. Assume that F satisfies (Cl) - (C3) and that u is H6lder continuous as in
the statement of the theorem. Now define the following quantities

where the existence of x O , yo €RN is assured by the continuity of rf, and precompactness of sets

of the type {ø(x,y) > k) for ib close enough to tr. We shall derive a positive upper bound on a.
so we mav assume that a > 0. , 01 ,

We can now apply the maximum principle for semicontinuous functions [4, Theorem+3.2 j to

conclude that there are symmetnc matnces X,Y G§ N such that (A^(xo) y 0), A) €J ' u(x„),

(-D <t>(x 0 ,yo),Y) e J 2 '~u(yo ), where X and V satisfy mequality (2.2) for some constant A'. So
by the definition of viscosity sub- and supersolutions we get

Since a>o it follows that u(x0 ) > fitøb). We can now use (C3) (on F) and the fact that

u(xo ) _ u(y0 ) =<r + 0(z 0 , yo) ><x to introduce <x and to rewrite (2.3) in terms of u(y0 ):

(2.4) F(xo , u(x0), yo). A') - F(xo , utø,), D^(xo , yo), A) > 7(«(*o) - «(yo)) >7^

Furthermore. by Lemma 2.3 there is a continuous nondecreasing function m : [0,oo) -> [o,oo]
satisfy ing m(0) = 0 and

(2.6) MM <£ 1/2 m(5).

Q
sup(w~«) < im + rt0 )-

m£ = max{/(x) - e\x\ 2 } = /(x.) - £ | 2 , m = sup /(x).

Then as e->O, m€ -» m and e|x£ | 2 -> 0.

<f>{x,y) := |k-y|2 + |(|x| 2 +|y| 2 ),
4>{x,y) :=u{x) -u{y) - <f>{x,y),

a:= sup rp{x,y) :=ip{xo,yo),
x,yGl A"

(2.3) 0 <F(yQ ,u{yo),-Dy <f)(xo,yo),Y) - F{x o ,u(xo),Dx <j>{x 0 ,yo),X).

so that (2.3) becomes

( 2.5) 7cr <F{yo,u{yo),-Dy <i>{xo,yo),Y) - F(*o, u{y0 ). Dx ø{x o , yQ ), X)





4 E. R. JAKOBSEN AND K. H. KARLSEN

This implies that \Dx <j>(x o ,yo ) + Dy <t>{xo,y0 )\ = e\x o + yo \ < m{e). So by (Cl) we may replace
Dx 4> by Dy <j) in (2.4) such that

(2.7) F{x o ,u{yo ),DT <P(x o ,yo ),X) > F(xo ,u(yo ), -Dy <j>(x 0 , yO ),X) -uF {m{e)),

where uiF denotes the modulus of continuity of F. Hence we may replace (2.5) by

(2.8) ja <F{yo ,u{y0 ), -Dy 4>{x0 , y 0), Y) - F{xo , u{y0 ),-Dy <t>{x0 ,y0),X) + uF {m(e)).

Since -Dy <f>(xo,yQ ) = a(x o - y 0) -ey0 , we set z = -ey0 in (2.1). Then by (2.1) and (2.8), the
following estimate holds:

(2.9)

By considering the inequality 2^(x o , y 0) > ip{x0 ,x0 ) + il>(yo, y 0), and Holder continuity of u and
u, we find

which means that \x o - yo \ < Const a -i/(2-Mo) Using this estimate and (2.6), we see that (2.9)
is equivalent to

(2.10)

for some modulus w. Without loss of generality, we may assume 775 < 1. Now we choose a
such that «-"0/(2-/10) - ar?2 and observe that this implies that a > 1, which again means that
Q-n/(2-n 0 ) < a - Mo /(2-^ 0 ) Thus we can bound the the smajjer term by the jarger term By the
definition of a, u{x) - u{x) - e2\x\ 2 < a for any x<E RN , so substituting our choice of a into
(2.10), leads to the following expression

and we can conclude by sending e to 0.

Next we state results regarding existence, uniqueness, and Holder continuity of bounded vis
cosity solutions of (1.1). To this end, make the following natural assumptions:

There exist \l £ (0, I], K> 0, and -yOR , yIR , KR > 0 for any R> 0 such that

(C4) for any a, z>o,x, y G E A\ -R<r<R, X, Y € S A' satisfving (2.2)
\F(x, r, a(x -y),X)- F(y, r, a[x -y),Y)\

Theorem 2.4. Assume that (Cl) - (C5) hold and that lR = 7 i* independent of R. Then there
exists a untque bounded viscosity solution u of (1.1) satisfying "i\u\ Q < MF .

Proof. Under conditions (Cl) - (C4) we have a strong comparison principle for bounded viscosity
solutions of (1.1) (see also [4]). By assumptions (C3) and (C5) we see that MF /f and -MF /f are
classical supersolution and subsolution respectively of (1.1). Hence existence of a continuous vis

cosity solution satisfying the bound 7MO <MF followsfrom Perron's method. see [4]. Uniqueness
of viscosity solutions follows from the comparison principle.  

Remark 2.5. The condition that -j n be independent of i? and condition (C5) are not necessary
for håving strong comparison and uniqueness.

Theorem 2.6. Assume that (Cl) - (Co) hold and that -yR =~. ia independent of R. Then the
bounded viscosity solution v of (1.1) 15 Holder continuous with exponent p 0 £ (0,/z]

Proof. This theorem is consequence Lemmas A.l and A.3. which are stated and proved in the
appendix. r-i

70" < Const I |ar o - yoT0 +m + a {\x o - y 0\ 2 + rffl + m{e) +£(l + |z o | 2 + |yo| 2 ) + uF (m{e)).

a\x o - 2/o| 2 < u(x 0 ) - u{y0 ) + u(x 0 ) - u(y0 ) < Const \xo - y 0| Mo ,

7<r < Const I a + 771 + a + Qrjs\ + ui(e),

f{u{x) - u(x)} < Const (/?! u(e) + y£2\x\ 2

< 70*1* - y\" + hrq\x - y\ 2 + KRe (l + |x| 2 + |y| 2 ) .
(C5) MF :=supKW |F(x,o, 0,0)1 < 00.
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The final result in this section concerns the rate of convergence for the vanishing viscosity
method, which considers the uniformly elliptic equation (1.3). Existence, uniqueness, boundedness,
and Holder regulanty of viscosity solutions of (1.3) follows from Theorems 2.4 and 2.6 under the
same assumptions as for (1.1).

Theorem 2.7. Assume that (Cl) - (C5) hold and that -)r = 7 ta independent of R. Let u and

uu be C° ,/i0 (M N ) viscosity solutions of (1.1) and (1.3) respectwely. Then |t*-ti"|o < Const u^2 .

Proof. It is clear from Theorem 2.4, Lemma A.l, and the proof of Lemma A.3 that \uv \ tio can be
bounded independently of v. Now we use Theorem 2.1 with F[u] = F[u] - vAu. This means that

F{x,r,a(x- y),Y) - F(y,r,a(a- y),X)

with R = Mp/l- From (2.2) it follows that if e,- is a standard basis vector in M N , then e,Ye,- <
K(a + e), so -trY < NK(a + e). This means that (2.1) is satisfied with 771 = 0 and r\\ - NKv.
Now Theorem 2.1 yield u-uu < Const i^° /2 . Interchanging u, F and u" , Fin the above argument
yields the other bound. d

3. Applications

In this section, we give three typical examples of equations handled by our assumptions. It is
quite easy to verify (Cl) - (C5) for these problems. We just remark that in order to check (C4),
it is necessary to use a trick by Ishii and the matrix inequality (2.2), see [4, Example 3.6].

Example 3.1 (Quasilinear equations).

where 7> 0, for any R>o, <r and / are uniformly continuous on IR N xßr and RN x [-R, R] xßr
respectively, and for any R > 0 there are K, Kr > 0 such that the following inequalities hold:

<r{x,p) >O, \cr{x,p) - <r{y,p)\ < K\x - y\,

\f(x,t,p) - f(y,t,p)\ <Kr (\p\\x - t/| 4- \x - y\n , for |t| <R,

f{x,t,p) < f{x,s,p) when t< a, |/(x,0,0)| <K,

for any x,y,p £EN and 1,56 R.

Example 3.2 (Hamilton-Jacobi-Bellman-Isaacs equations).

where A,B are compact metric spaces, c > 7 > 0, and [ba^]u [ca '%, [/<>•% + |/Q '% are
bounded independent of a, (3.

Example 3.3 (Sup and inf of quasilinear operators).

sup inf I -tr \a Du)a Du)T D2 u] + f u, Du) + 7ul =0 in E A',
aeAPeB { )

where A, B are as above, 7 > 0, and er, f continuous satisfies the same assumptions as in Example
3.1 uniformly in a, (3.

We end this section by giving an explicit continuous dependence result for second order Hamilton
Jacobi-Bellman-Isaacs equations associated with zero-sum, two-player stochastic differential games
with controls and strategies taking values in A and B (see Example 3.2).

We refer to [B] for an overview of viscosity solution theory and its application to the partial
differential equations of deterministic and stochastic differential games.

< -utrY + 7oi?|x - y| M + -)\ Ra\x - y\ 2 + eKr (l + |x|2 + |y| 2 )

-tr[(r{x,Du)(T{x,Du)T D2 u} +f{x,u,Du) +yu = 0 in EN ,

(3.1) sup mf {-tr[aa^(x)aa^(x)T D2 u}-b + c + fa ' ('(x)\=o in R N ,
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Theorem 3.4. Let u and u be viscosity solutions to (3.1) with coefficients (a, b, c, f) and (a, b, c, f)
respectively. Moreover, assume that both sets of coefficients satisfy the assumptions stated in
Example 3.2. Then there is a/JoE (0,/i] such that u,ii 6 Cb ,fl °(M. N ) and

Appendix A. Holder Regularity

Lemma A.l. Assume that (Cl) - (C5) hold and that u is a bounded viscosity solution of (1.1).

Let R = |u|o, define 7:= -)r, and similarly define 70,71, A". 7/7 > 271 then u£ Cb and for all
x,yeRN ,

\u{x) - u(y)\ < °-—\x - y]».
7 - 271

Proof. This proof is very close to the proof of Theorem 2.1, and we will only indicate the differences.
Let a, <f>, xq, yo be defined as in Theorem 2.1 when tp{x, y) = u(x) u(y) 2<f)(x, y). Note the factor
2 multiplying <j>. We need this factor to get the right form of our estimate! A consequence of this
is that we need to change a,£ to 2a,le whenever we use (C4) and (2.2). Now we proceed as in
the proof of Theorem 2.1: We use the maximum principle and the definition of viscosity sub- and
supersolutions (u is both!), we use the uniform continuity (Cl) to get rid of unwanted terms in
the gradient slot of F, we use (C3) together with

u(x 0 ) - u(y0 ) =<t + a\x o - y 0\ 2 + e (|x o | 2 + |yo| 2 ) >a + <x\x o - y 0\ 2 ,

and finally we use (C4) and all the above to conclude that

(A.l) 70- < 7o|x o -y0 -(7 - 27i)a|x 0 - y 0\ 2 + u(e),

for some modulus u>. Here we have also used the bounds (2.6) on xq, yo. Compare with (2.9).

So let ki = 70 and ko = 7 271 (> 0 by assumption), and go to the limit £ —y 0 for a fixed in
(A.2). The result is

(A.3)

we can minimize with respect to a obtain

\u-u\o<c( sup \\aa ' 13 - a*>o\tf +|6 - 5 + sup [|c - c Q >% +|/ - /^lol),V .4x6 L J Axß L J/

/or some constant C.

Proof. With

m = sup \\c°>? - <?% + I/0 -" - r^|ol, r?,2 = sup - + \b*'<> - l°M ,

we apply Theorem 2.1 to u u and then to u u to obtain the result. D

We consider the two cases 7 > 271 and 0 < 7 < 271 separately.

Note that for any k\, k? > 0,

(A.2) max^r^-^ar2 } = c^f1 » where c 1 = - f£) 2~"

Furthermore for fixed a, Lemma 2.3 yields

lim a = sup (u(x) u(y) a\x y\~) := m.
£ -+° r,y£l N

m < -5 Cicc J < ei a 2-" <ka 2 ~» ,
7V 7~27i^

2

where k = [z^—) ' * c\. Since, in view of (A.3),

u(x) u(y) <m + a\x y\~ <ko 2 + a\r y\ 2

u(x) u(y) < min <ka 2-f + a\x —y\ > Cok - \x y\ fl
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Now we can conclude by substituting for k and observing that c-2C x 2 —l.

Remark A.2. Lemma A.l is not snarp. It is possible to get sharper results using test functions
of the type <j>(x) = L\x y\ 5 +e (\x\ 2 + \y\ 2 ) and playing with all three parameters L, å, z. However
assumption (C4) is adapted to the test functions used in this paper, so changing the test functions,
require us to change assumption (C4) too.

We will now use the previous result and an iteration technique introduced in [6] (for first order
equations) to derive Holder continuity for solutions of (1.1) for 0 < 7 < 271. Note that since
Lemma A.l is not sharp, our next result will not be sharp either. We also note that in the case
7 = 271 the Holder exponent is of course at least as good as for 7 = 271 £, e > 0 small.

Lemma A.3. Assume that (Cl) - (C5) hold and that uis a bounded viscosity solution of (1.1).

Let R = \u\o, define 7:= -)r, and similarly define 70,71, K. //0 <7 < 271 then u G Cb '^°(RN )

where /i 0 =A* 2^7-

Proof. Let A > 0 be such that 7 + A > 271 + 1 and let t) G be in the set

Then note that ±Mf/"i are respectively super- and subsolutions of the following equation:

(A.4) F{x,u{x),Du{x),D2 u{x)) + Xu{x) = \v(x) Vx G R N .

Let T denote the operator taking v to the viscosity solution u of (A.4). It is well-defined because
by Theorem 2.4 there exists a unique viscosity solution u of equation (A.4). Furthermore by
Theorem A.l and the fact that ±.Mp/l are respectively super- and subsolutions of (A.4), we see
that

For v, w e C^(MN ) HX we note that Tw -\w - w|oA/(7 +A) and Tv -\w - v| O A/(7 +A) are
both subsolutions of (A.4) but with different right hand sides, namely Xv and Att; respectively. So
by using the comparison principle Theorem 2.4 twice (comparing with Tv and Tw respectively)
we get:

Let u°(x) = MF /i and u n {x) = Tvn ~ l {x) for n = 1,2,... . Since C°b^{R N ) fl A' is a Banach
space and T a contraction mapping (A.5) on this space, Banach's fix point theorem yields u n —>

u G Cb '^(M N )P\X. By the stability result for viscosity solutions of second order PDEs, see Lemma
6.1 and Remark 6.3 in [4], u is the viscosity solution of (1.1). Since

, Ar , , n, . 1 .«+1 n, + A \", j 0 2MF ( A \»-i
(A.6) \u-u | 0 < —3-1,1 -u ]<><—( \u -u\ o <--[—) .

Furthermore by Theorem A.l we have the following estimate on the Holder seminorm of u n :

(A.l)

where the constant A" does not depend on nor A(> 1). Now let m—n—l, x, y G IF-'V - and note
that

wherec2 = ' + (2=£j 3 .

A':= {/ € C(RN ) : |/|o < MF /7 } .

T : C6°'^(E N ) n X -> C°b '»{RN) n X.

(A.5) \Tw-Tv\ 0 < -\w-v\o Vw, v € C? ttl {R N ) n X.7 + A

k
u - u n \ 0 <\u - un+k \ 0 +YI \ u'l+i - un+,_l |o!=1

using (A.5), sending k—» 00, and then using (A.5) again, we obtain

I" 1» <, + A_27l "U + A-2-.J ([" ] " +A » '

!«(*) - "tø)l < l«(*) - «*"(*)! + |«n (*) - » n (y)l + K(y) - «(y)|.
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Using (A.6) and (A.7) we get the following expression:

Now let t=|x - y\ and übe the modulus of continuity of u. Fix t € (0,1) and denne Ain the
following way:

\ m
/* iog y

Note that if mt is sufficiently large, then m > mt implies that A > 71 . Using this new notation,
we can rewhte (A.B) the following way:

Now we can conclude since this inequality must hold for any / G (0,1).
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(A.B) +( 7 + AA_ 271 ) !*-»!'} 

-W.o-{(. + +(i + tai (i)i)-"«'}.
Letting m —> 00, we obtain

u(t) < Const <|W + t^l^-H» } .
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