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Abstract

Background: With the cost of DNA sequencing decreasing, increasing amounts of RNA-Seq data are being
generated giving novel insight into gene expression and regulation. Prior to analysis of gene expression, the RNA-Seq
data has to be processed through a number of steps resulting in a quantification of expression of each
gene/transcript in each of the analyzed samples. A number of workflows are available to help researchers perform
these steps on their own data, or on public data to take advantage of novel software or reference data in data
re-analysis. However, many of the existing workflows are limited to specific types of studies. We therefore aimed to
develop a maximally general workflow, applicable to a wide range of data and analysis approaches and at the same
time support research on both model and non-model organisms. Furthermore, we aimed to make the workflow
usable also for users with limited programming skills.

Results: Utilizing the workflow management system Snakemake and the package management system Conda, we
have developed a modular, flexible and user-friendly RNA-Seq analysis workflow: RNA-Seq Analysis Snakemake
Workflow (RASflow). Utilizing Snakemake and Conda alleviates challenges with library dependencies and version
conflicts and also supports reproducibility. To be applicable for a wide variety of applications, RASflow supports the
mapping of reads to both genomic and transcriptomic assemblies. RASflow has a broad range of potential users: it
can be applied by researchers interested in any organism and since it requires no programming skills, it can be used
by researchers with different backgrounds. The source code of RASflow is available on GitHub: https://github.com/

zhxiaokang/RASflow.
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Conclusions: RASflow is a simple and reliable RNA-Seq analysis workflow covering many use cases.

Background

RNA sequencing (RNA-Seq) was introduced more than
ten years ago and has become one of the most important
tools to map and identify genes and understand their reg-
ulation and roles across species [1, 2]. A large number of
studies have been performed using RNA-Seq and resulted
in gene expression datasets available in databases such
as GEO [3] and ArrayExpress [4]. Underlying reads are
typically deposited to the Sequence Read Archive (SRA)
[5], currently containing reads for more than 1,7 million
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samples (https://www.ncbi.nlm.nih.gov/sra/?term=RNA-
Seq). One of the most popular applications of RNA-
Seq is for Differential Expression Analysis (DEA) where
one identifies genes that are expressed at different levels
between two classes of samples (e.g., healthy, disease) [6].

When RNA-Seq is used in a DEA project, the sequenc-
ing reads need to be taken through several steps of
processing and analysis. Often, the steps are organized
into a workflow that can be executed in a fully or par-
tially automated fashion. The steps include: quality con-
trol (QC) and trimming, mapping of reads to a reference
genome (or transcriptome), quantification on gene (or
transcript) level, statistical analysis of expression statis-
tics to report genes (or transcripts) being differentially
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expressed between two predefined sets of samples, along
with associated P-values or False Discovery Rate (FDR)
values. Aligning reads to the genome is the most com-
putationally intensive and time-consuming step. An alter-
native approach is to perform a pseudo alignment to a
transcriptome. This has gained more popularity recently,
due to its high speed and high accuracy [7-9]. It has
been shown that lightweight pseudo alignment improves
gene expression estimation and at the same time is com-
putationally more efficient, compared with the standard
alignment/counting methods [10]. But if the purpose
of analysis is to call genomic variants, then it is still
better to map the reads to the genome [11]. Consid-
ering this, a workflow should provide both quantifica-
tion strategies to satisfy users with different research
interests.

There is a large number of RNA-Seq analysis work-
flows and many have been published and made avail-
able to the user community. We reviewed seven work-
flows published in the past three years [12-18] (see
“Discussion” section for more details). We found that
none of these workflows cover all the needs outlined
above while also being usable for less computer fluent
users. So more complete and easy-to-use workflows are
still needed.

In this article, we present RNA-Seq Analysis Snake-
make Workflow (RASflow) that is usable for a wide range
of applications. RASflow can be applied to data from
any organism and can map reads to either a genome
or a transcriptome, allowing the user to refer to pub-
lic databases such as ENSEMBL [19] or to supply their
own genomes or transcriptomes [20, 21]. The latter
can for example be useful for projects on non-model
species for which there is no public high-quality refer-
ence genome/transcriptome. RASflow is scalable: it can
be run on either supercomputers with many cores (which
enable parallel computing) or on a personal computer
with limited computing resources; it can process data
from hundreds of samples and still consumes very little
storage space because it temporarily copies or down-
loads the FASTQ file(s) of one sample (one file for single
end and two files for pair end) to the working directory
at the time, and it stores only the necessary interme-
diate and final outputs. Using Conda [22], the whole
workflow with all dependencies (version already speci-
fied) can be installed simply with one single command
in a virtual environment. This ensures quick and smooth
installation. Using Snakemake [23], the whole analysis
is completely reproducible and highly user-friendly also
for users with limited programming skills. In the DEA
step, RASflow supports use of paired tests that can
help to strengthen the statistical power and bring out
expression differences related to the phenomenon under
study [24].
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Implementation

Figure 1 shows a schematic representation of the RAS-
flow workflow. It starts with performing QC of the raw
FASTQ files using FastQC (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). The QC report is
presented to the user along with a question of whether
the reads should be trimmed. When opted for, trimming
is performed using the tool Trim Galore (https://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/)
and subsequently, an additional QC report is generated.

When the user is satisfied with the quality of the reads,
the workflow proceeds to the next step: quantification
of read abundance or expression level for transcripts or
genes. The user decides whether to map the reads to a
transcriptome or a genome depending on the goal of the
analysis and availability of data. If the purpose of the anal-
ysis is to identify differentially expressed genes, it is sug-
gested to map the reads to a transcriptome using pseudo
alignment with Salmon [9]. A quantification table of the
transcripts is generated from this step. Alternatively, the
user can choose for the reads to be mapped to a genome.
The aligner used in RASflow is HISAT2 [25] which has
relatively modest memory requirements (~4.3GB for the
human genome) compared with for example the STAR
aligner (requiring ~27GB for the human genome) [26].
The alignment step is followed by a quality evaluation per-
formed by Qualimap2 [27] and feature counting done by
featureCounts [28] or htseq-count [29]. To be noted, after
most of the steps, a summary report is generated using
MultiQC [30].

When a quantification matrix for the genes/transcripts
has been produced, RASflow can proceed to perform a
DEA analysis using edgeR [31, 32] or DESeq2 [33]. RAS-
flow supports both single and paired statistical tests. The
user specifies which statistical test mode to be applied in
the configuration file based on their experimental design.
If the reads were mapped to a transcriptome, DEA will
be done on both transcript- and gene-level. In any case,
the outputs of DEA include three types of tables: normal-
ized quantification tables, some important statistics for
the whole gene or transcript list, and the list of signifi-
cantly differentially expressed genes or transcripts (with
default threshold of FDR < 0.05). The raw count is nor-
malized based on Trimmed Mean of M values (TMM)
[34] (if edgeR is used) or the median-of-ratios method
[35] (if DESeq2 is used) when the reads are mapped to
a genome. But if the reads are mapped to a transcrip-
tome, the normalized values are estimated Transcripts
Per Million (TPM) from Salmon scaled using the aver-
age transcript length over samples and then the library
size by "tximport" [36]. The results of DEA is also visual-
ized with a volcano plot enabling visual identification of
genes with high fold change whose differential expression
is also statistically significant, and a heatmap that not only
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Fig. 1 Overview of the steps performed by RNA-Seq Analysis Snakemake Workflow (RASflow)
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visualizes the expression pattern of the identified differen-
tially expressed genes, but also a clustering of the samples
based on those genes, so that the user can get an idea of
how well separated the groups are.

To ensure smooth installation and reproducibility of the
workflow, all the tools included are fixed to a specific ver-
sion which can be found in the environment configuration
file (env.yaml).

Results

To show users how RASflow works and to familiarize
them with RASflow, we provide some small example
datasets. They are generated as subsets of the original
real data [37]. The figures in this section were gen-
erated by RASflow using the example data as input.
RASflow was also tested on four real datasets: pair-
end RNA-seq of prostate cancer and adjacent nor-
mal tissues from 14 patients (ArrayExpress accession:
E-MTAB-567) [38], single-end RNA-Seq of mesenchy-
mal stem cells (MSCs) and cancer-associated fibroblasts
(CAFs) from EG7 tumor-bearing mice (GEO acces-
sion: GSE141199), pair-end RNA-Seq of Atlantic cod
liver slices exposed to benzola]pyrene (BaP) and 17«-
ethynylestradiol (EE2) (GEO accession: GSE106968) [39],
and a benchmarking dataset, single-end RNA-Seq of
highly purified human classical and nonclassical mono-
cyte subsets from a clinical cohort (SRA accession:
SRP082682) [40].

The output of the example dataset can be found on the
GitHub page of RASflow and an overview of the output
folder is shown in Additional file 1: Fig. S1. The output of
the four real datasets can be found here: https://git.app.
uib.no/Xiaokang.Zhang/rasflow_realdata.

Quality control of raw reads and alignments

FastQC checks the quality of the sequencing reads and
produces one report for each FASTQ file. MultiQC is used
to summarize all the reports and merge them into one
document, as shown in Fig. 2a and b. Users are asked to
check the report and decide whether trimming is needed.
If the quality of the reads is good enough, it is recom-
mended that trimming should not be performed since it
would lead to loss of information; but if the quality is low,
trimming is suggested to improve the quality. The raw
reads quality of the human prostate dataset is not good
enough and trimming was therefore performed. The QC
reports of raw reads and trimmed reads can be found in
Additional file 2: Fig. S2.

After the alignment to the genome, the intermediate
output, the BAM files, will be provided to Qualimap2
to evaluate the alignment quality. Figure 2c shows an
example report from Qualimap2.

MultiQC is used to generate a report on the mapping
ratios using the output of feature counting (Fig. 2d).
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Quantification of transcripts or genes

If a transcriptome was used as mapping reference, a file
containing the estimated relative abundance and length of
the target transcript is generated for each sample. If the
reads were aligned to a genome, the direct outputs from
alignment are genes’ raw count tables for each sample.

Differential expression analysis

In the first step, the user-specified information on sam-
ple groups is used to produce one count or abundance
file for each group. The raw count or abundance in those
files is then normalized by either edgeR or DESeq2 gen-
erating a corresponding file for each of them. When a
transcriptome is used as mapping reference, depending
on user parameters, gene-level raw and normalized abun-
dance can also be generated, and the downstream DEA
will also be done on both transcript- and gene-level.

During DEA, a statistical test is performed on the raw
abundance (both edgeR and DESeq2 prefer raw other
than normalized abundance) tables of transcripts/genes.
The result includes important statistics such as Log Fold
Change, false discovery rates (FDRs) or adjusted P-value
for each transcript/gene. With a predefined threshold of
FDR (default value is 0.05), the transcripts/genes with
a lower FDR are reported as significantly differentially
expressed, and they are included in a second table. Besides
the tables mentioned above, DEA also generates visual-
izations including a volcano plot (Fig. 3a) and a heatmap
(Fig. 3b).

Williams et al. evaluated hundreds of combinatorial
implementations of the most commonly used tools for
their impact on DEA results, and they concluded that the
method of differential expression analysis exhibited the
strongest impact compared with the choice of tools in
the other steps [40]. We have evaluated RASflow on the
benchmarking dataset they generated using both the tran-
scriptome and the genome as mapping reference, and in
both cases, DESeq2 has a higher recall and edgeR has a
higher precision, meaning that edgeR is more conservative
in reporting a gene as differentially expressed in this study
case. The differentially expressed gene list of each work-
flow and their performance, including values and ranks
for recall and precision against the evaluated workflows in
[40], can be found in Additional file 3.

Runtime

The most time-consuming part of the whole workflow is
the alignment step. As already mentioned, pseudo align-
ment to a transcriptome is much faster than alignment
to a genome. RASflow was run on four real datasets
using a 1'TB RAM 60 cores Dell PowerEdge R910 machine
and the runtime is shown in Table 1. RASflow was also
tested on the mouse dataset using Windows Subsystem
for Linux on an 8GB RAM 4 cores Intel Core 2 machine,
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Table 1 Alignment runtime of three datasets
Dataset Number of samples Size of raw data (GB) Runtime of alignment (HHMM)
Transcriptome as reference Genome as reference
Cod 47 244 05:32 69:18
Human 28 137 03:14 20:03
Benchmark 32 36 02:37 11:22
Mouse 8 9.3 00:28 03:46
Mouse_pc* 8 93 0111 19:31

"This was run on a personal computer

and the runtime is shown in Table 2. As Table 1 shows,
alignment using a genome as reference takes much longer
than using a transcriptome, especially when the dataset is
large (datasets “Cod" and “Human") or the job is run on a
personal computer (dataset “Mouse_pc").

Discussion

Virtual environment by Conda

The whole workflow is installed and run in a virtual envi-
ronment created by Conda. While creating the virtual
environment, all dependencies using the specified ver-
sions are installed at once. This ensures not only the
smooth installation and running of RASflow, but also a
reproducible analysis independent of the operating system
and machine.

Snakemake as framework

Snakemake is a scalable workflow engine that helps to
manage workflows in an easy way. It divides the whole
workflow into rules with each rule accomplishing one
step of the workflow. The input of one rule is the output
from the rule corresponding to the previous step, mak-
ing the dataflow easy to track. Thanks to this logic, the
whole workflow becomes highly modular, so users can

easily expand the workflow or replace part of it, also for
complicated workflows.

RASflow organizes the rules carrying out one big step
of the workflow in one file (with extension .rules). All the
files are then integrated into one main file (main.py). For
the users who are satisfied with RASflow’s default setting,
they can manage the workflow simply through the con-
figuration file to tell RASflow which pipeline and which
tools they want to use. Advanced users may change the
settings and parameters in the .rules files and may also
substitute tools for example to try out new methods as
they are published.

Transciptome and genome as reference
RASflow allows users to supply their own genomic or
transcriptomic reference. This enables users to study
expression in species where no public reference is avail-
able or the users have alternative references that they
wish to utilize. It should be noted that if one aims for
transcript-level analysis, a transcriptome should be used
as reference.

But some analyses other than DEA require the reads
to be mapped to a genome and gene-level DEA is more
robust and experimentally actionable, so RASflow still

Table 2 Comparison of RASflow with the other workflows published between 2017 and 2019

workflow quality ~ organism mapping reference  workflow  hardware installation programming year ref
control for DEA* requirement requirement

RASflow yes all genome GB&TB low easy low 2020 NA
transcriptome

UTAP yes 5 genome GB high easy low 2019 [12]

ARMOR yes all genome B high easy low 2019 [13]
transcriptome

VIPER yes 2 genome GB high easy low 2018 [14]

BioJupies no 2 genome GB low web application  low 2018 [15]

hppRNA yes 2 genome GB&TB low medium medium 2018 [16]
transcriptome

aRNApipe yes all genome GB high hard high 2017 [17]

RNACocktail  no all genome GB&TB low hard high 2017 (18]

transcriptome

"GB: genome based — gene/transcript quantification and DEA based on reads mapped to a genome; TB: transcriptome based
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provides the traditional workflow of genome alignment
and DEA based on gene counts.

Comparison with other tools

We compared RASflow to other existing workflows as
shown in Table 2. As we can see from the table, some
workflows do not include QC steps [15, 18]. Some of
the workflows are limited to specific organisms typi-
cally human or mouse and in some cases other model
organisms [12, 14—16]. Some of them have functional-
ity only for mapping reads to a reference genome and
do not support the use of a transcriptome reference
[12, 14, 15, 17]. ARMOR includes both genome and tran-
scriptome as mapping reference but does not support
genome-based quantification of expression and subse-
quent DEA.

Considering hardware requirement, BioJupies is marked
as “low" because it is a web application and the com-
pute capacity is offered on the server side. The work-
flows marked with “high" use STAR for genome alignment
which requires about 27GB of RAM to align reads to the
human genome. hppRNA and RNACocktail support both
STAR and other aligners which require comparably low
RAM, such as HISAT2 which is used in RASflow. Tests
performed show that RASflow can be used to run human
genome alignment smoothly on a personal computer with
only 8GB of RAM.

As for workflow installation, RASflow, UTAP, ARMOR,
and VIPER all use Conda to create a virtual environment
and to install the required software, making workflow
installation easy and robust. hppRNA provides scripts to
automatically install all the required software but as it is
not done through the use of a virtual environment, some
software may conflict with software already installed on
the machine. The aRNApipe and RNACocktail workflows
require the user to install all the software manually which
is time-consuming and can also easily lead to version
conflicts.

After installation, executing the workflow can also
present challenges. In order to use the aRNApipe and
RNACocktail workflows on their own data, the user needs
to know programming very well. The hppRNA workflow
comes with a very detailed and useful manual for the
user to follow which helps a lot. The UTAP and Bio-
Jupies workflows both provide graphical user interfaces
and can be used without any programming skills. While
the remaining workflows do not provide graphical inter-
faces, they use Snakemake to manage all the steps in the
workflow, making them easy to use also for those with
limited programming skills.

Extension of RASflow
Thanks to the high modularity of RASflow, it is very
easy to exchange the tools applied in RASflow with
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other tools if they are more appropriate for specific
research interest or they are newly developed. Thanks
to the feedback from users, we have already added the
htseq-count tool for feature counting and the DESeq2
tool for DEA as extra options since the first version
of RASflow. Advanced users can also do this by them-
selves without much effort. We welcome any feed-
back and contribution through GitHub page to improve
RASflow.

RASflow can also be extended to realize other func-
tions, such as Single Nucleotide Variant (SNV) detection,
pathway analysis, and so on.

Conclusions

RASflow is a light-weight and easy-to-manage RNA-Seq
analysis workflow. It includes the complete workflow for
RNA-Seq analysis, starting with QC of the raw FASTQ
files, going through optional trimming, alignment and fea-
ture counting (if the reads are mapped to a genome),
pseudo alignment (if transcriptome is used as mapping
reference), gene- or transcript- level DEA, and visualiza-
tion of the output from DEA.

RASflow is designed in such a way that it can be
applied by a wide range of users. It requires little pro-
gramming skills and a well-written tutorial helps users
go through the whole workflow making it very easy to
set up and run RASflow from scratch. RASflow has
low hardware requirements so that it can be run on
almost any personal computer. It can also be scaled up
to make full use of the computing power of a super-
computer or cluster. RASflow can be applied to data
of any organism and the user can choose to map the
reads to a transcriptome or a genome. It also sup-
ports the use of user-supplied transcriptome or genome
references.

RASflow is built on the basis of Conda and Snake-
make, making installation and management very easy.
All the required tools are available on the Anaconda
cloud (https://anaconda.org/) and are wrapped in a vir-
tual environment managed by Conda, making RASflow
independent of the underlying system thus avoiding pack-
age/library version conflicts. The whole workflow is
defined by rules managed by Snakemake, which makes it
highly modular. This means that the advanced users can
easily extract parts of the workflow or expand it based
on their own research needs, and replace the tools used
in RASflow with other tools to explore new pipelines for
analyzing RNA-Seq data.

Availability and requirements

Project name: RASflow.

Project home page: https://github.com/zhxiaokang/RASflow
Operating system(s): Linux, macOS and Windows.


https://anaconda.org/
https://github.com/zhxiaokang/RASflow

Zhang and Jonassen BMC Bioinformatics (2020) 21:110

Programming language: Python, R, Shell

Other requirements: Conda

License: MIT License

Any restrictions to use by non-academics: N/A.
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Additional file 1: Figure S1. An overview of output folder of example data.

Additional file 2: Figure S2. (a) The mean quality scores of raw reads from
human prostate cancer data. (b) The mean quality scores of trimmed reads
from human prostate cancer data.

Additional file 3: Tables of differentially expressed gene lists of RASflow
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