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Abstract

Motivation: Technological advances in meta-transcriptomics have enabled a deeper understanding of the structure
and function of microbial communities. ‘Total RNA’ meta-transcriptomics, sequencing of total reverse transcribed
RNA, provides a unique opportunity to investigate both the structure and function of active microbial communities
from all three domains of life simultaneously. A major step of this approach is the reconstruction of full-length taxo-
nomic marker genes such as the small subunit ribosomal RNA. However, current tools for this purpose are mainly
targeted towards analysis of amplicon and metagenomic data and thus lack the ability to handle the massive and
complex datasets typically resulting from total RNA experiments.

Results: In this work, we introduce MetaRib, a new tool for reconstructing ribosomal gene sequences from total
RNA meta-transcriptomic data. MetaRib is based on the popular rRNA assembly program EMIRGE, together with
several improvements. We address the challenge posed by large complex datasets by integrating sub-assembly,
dereplication and mapping in an iterative approach, with additional post-processing steps. We applied the method
to both simulated and real-world datasets. Our results show that MetaRib can deal with larger datasets and recover
more rRNA genes, which achieve around 60 times speedup and higher F1 score compared to EMIRGE in simulated
datasets. In the real-world dataset, it shows similar trends but recovers more contigs compared with a previous ana-
lysis based on random sub-sampling, while enabling the comparison of individual contig abundances across sam-
ples for the first time.

Availability and implementation: The source code of MetaRib is freely available at https://github.com/yxxue/
MetaRib.

Contact: yaxin.xue@uib.no or Inge.Jonassen@uib.no

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Advances in next-generation sequencing have boosted the study of
microbial communities in many ecosystems. Meta-transcriptomics,
the direct sequencing and analysis of all RNA in a microbial com-
munity, has been widely used in investing microbial universe from
various environments (Carvalhais et al., 2012; Jorth et al., 2014; Shi
et al., 2009). It provides an informative perspective about the cur-
rent state of functional output, as it can elucidate which members
and functions of a community are active in certain circumstances,
rather than only the genomic contents (Franzosa et al., 2015). Meta-
transcriptomics is considered to be more efficient in observing rapid
regulatory responses than meta-proteomics (Carvalhais et al.,
2012). Moreover, it could capture the information missing in
DNA-based metagenomics, such as RNA viruses (Culley, 2006;

Zhang et al., 2006). The whole microbial RNA pool is dominated
by rRNA and tRNA (95–99%), while only small fractions are
mRNA (1–5%) (Carvalhais et al., 2012). To date, most meta-
transcriptomic studies have focused on function (mRNA) rather
than structure, depleting rRNA both experimentally and in silico.

‘Total RNA meta-transcriptomics’ involves the isolation and
sequencing of reverse transcribed total RNA pools—including
mRNA (gene expression), rRNA (abundance), RNA viruses, tRNA
and other non-coding RNA—from samples without any PCR or
cloning step. In contrast to normal meta-transcriptomics, this ap-
proach enables us to obtain both structural and functional informa-
tion simultaneously in a microbial community (Urich et al., 2008). It
answers two fundamental questions in microbial research—‘who is
there?’ and ‘what are they doing?’—with a few advantages. In terms
of structural investigation, total RNA meta-transcriptomics assesses
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taxonomic diversity in all three domains of life, meanwhile avoiding
amplification bias, compared to PCR-based amplicon surveys.
Ribosomal RNA is also essential for protein synthesis in all organ-
isms. Thus, its relative abundance across taxa generally reflects the
overall structural activity in a community. For functional profiling,
it provides novel insights into current gene activity status with corre-
sponding structural profiling simultaneously in one experiment.

Several tools are available for meta-transcriptomics, e.g. IMP
(Narayanasamy et al., 2016), SAMSA (Westreich et al., 2016),
MetaTrans (Martinez et al., 2016), but they are geared mainly for
studying the functional profiling. Though typically disregarded in
meta-transcriptomics, rRNA and its corresponding gene is widely
used as a genetic marker to study bacterial phylogeny and tax-
onomy, as it is present in all domains and has both highly conserved
regions and regions that vary between species. Currently, most
structural rRNA profiling relies on amplicon sequencing (meta-bar-
coding) using ‘universal’ primers to target and amplify hypervariable
regions of rRNA or other taxonomic markers as broadly as possible
(Rosselli et al., 2016). Although amplicon sequencing represents a
fundamentally important method for studying microbial and other
biological communities, it is susceptible to biases depending on the
specificity/universality of the primers used and other PCR condi-
tions. Thus, it may lead to an incomplete or biased profile of the
true biodiversity present in a given sample (Lanzén et al., 2011;
Shakya et al., 2013). By using total RNA meta-transcriptomics for
structural profiling, such biases can be avoided. Furthermore, it
allows for the reconstruction of full-length rRNA sequences, ena-
bling a higher resolution for taxonomy profiling. This is typically
not feasible in meta-barcoding; using short-read sequencing technol-
ogies results in amplicons with insufficient phylogenetic signal,
while long-read sequencing allow for longer amplicons but is cur-
rently restricted by higher error rates. Existing de novo assembly
tools for shotgun sequence reads are designed primarily for genomic
or metagenomic data and do not perform well on rRNA genes
(Yuan et al., 2015). Instead, there are several tools developed specif-
ically for rRNA recovery and assembly, such as EMIRGE (Miller
et al., 2013), REAGO (Yuan et al., 2015), RAMBL (Zeng et al.,
2017) and MATAM (Pericard et al., 2018). However, these tools
were designed for analysis of smaller datasets and cannot be used
directly to analyze total RNA meta-transcriptomics studies.

Here, we present MetaRib, a novel tool for constructing full-
length ribosomal gene sequences optimized for total RNA meta-
transcriptomic data. Firstly, its dereplication process enables us to
identify both existing species and novel species, while minimizing false
positives. Furthermore, it significantly reduces the running time and
memory usage by an iterative sampling approach, making it possible
to assemble rRNA sequences from very large datasets: combining sev-
eral samples also allows for reconstructing rRNA from less abundant
species. Thus, MetaRib allows us to study the distributions of
assembled rRNA sequences across multiple samples, independent of
taxonomical classification. This is done by mapping reads to the
resulting assembled small subunit ribosomal RNA (SSU rRNA)
sequences, which we consider as operational taxonomic units (OTUs).

Our approach exploits the uneven taxon-abundance distribution
common for microbial communities, with few dominating taxa and
a long tail of rarer ones, often referred to as the ‘rare biosphere’
(Sogin et al., 2006).

In practice, this leads to high redundancy in total RNA meta-
transcriptomic data, with many sequences originating from the most
abundant species. Our assumption is that rRNA of highly abundant
species can be reconstructed from a relatively small subsample of the
sequences. Subsequently, all rRNA sequences in the whole dataset
related with the same species could be removed from further ana-
lysis, enabling reconstruction of less abundant species iteratively.
Merging reads from several samples or datasets can also help to re-
construct rarer species, below the assembly threshold in smaller
datasets. We evaluated our tool using three simulated total RNA
datasets (limited to prokaryotic rRNA with special design to access
different scenarios) and benchmarked its performance. Moreover, a
real-world dataset from a large-scale soil total RNA experiment con-
sisting of three billion SSU rRNA reads was analyzed, showing that

MetaRib could recover more information than what was possible in
the previous study of the same data.

2 Materials and methods

2.1 Metarib workflow
The MetaRib algorithm consists of three major modules: (i) initial-
ization, (ii) iterative reconstruction and (iii) post-processing, sum-
marized in Figure 1.

2.1.1 Initialization

A configuration file is needed to initiate the workflow, which first
controls the availability of data and standalone software tools
(dependencies). A case-specific workflow script is then generated
and executed. A full description of the input configuration file and
data structure is found in the GitHub repository (https://github.com/
yxxue/MetaRib).

2.1.2 Iterative reconstruction

MetaRib uses an iterative process to reconstruct rRNA contigs. The
workflow is initiated on a randomly picked subset of the total reads,
which are assembled, and used to filter remaining reads by removing
those that can be mapped perfectly to the resulting contigs. This pro-
cess (random selection, assembly and filtering) is then repeated until
a pre-defined termination criterion is reached. This module is com-
posed of five steps:

Step 1: Subsampling reads

The first step is initial subsampling of sequencing data from the
remaining unmapped reads. In each iteration, a subset of n reads
(provided in the configuration file, by default n¼100 000) is ran-
domly picked from the total unmapped reads U, of size N (initially
containing all reads). MetaRib will change the seed number auto-
matically at each iteration to avoid repetitive sampling of reads.

Step 2: Assembly of subset

The randomly picked subset of size n is used as input to EMIRGE
(Miller et al., 2013) for reference-assisted assembly into rRNA con-
tigs. The EMIRGE assembly parameters, including the reference se-
quence database used, can be specified in the configuration file.
Considering that the community structure is relative uneven, for
most natural communities, contigs corresponding to highly abun-
dant species are more likely to be assembled in the first several itera-
tions even when n�N.

Step 3: Dereplication of contigs

When the assembly is completed, contigs resulting from Step 2 of
the current iteration are compared with the existing assembled
rRNA contig set C (initially empty). New contig sequences are first
concatenated to existing ones, then sorted by sequence length and
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#set tool paths

……

Subsampling reads
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Fig. 1. Schematic overview of MetaRib workflow. Dash rectangles depict main mod-

ules, solid line rectangles represent major steps in each module and red elements de-
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renamed with unique IDs. Overlap-based clustering is then per-
formed to eliminate duplicated and keep longest contig sequences
for each cluster using a stringent threshold, considering the high
similarity of rRNA contigs.

Step 4: Mapping of remaining unmapped reads

All unmapped reads, U (i.e. all reads in the first iteration) are aligned
against the dereplicated contig set C using stringent parameters, con-
sidering the presence of highly conserved regions in the rRNA gene.
Reads that align to the contigs are removed from U, leaving only un-
mapped reads for subsequent iterations. Since sequences from highly
abundant taxa are more likely to be assembled in the first iterations,
a large proportion of raw reads are likely to be removed, which
facilitates assembly of remaining reads. This is the key approach of
MetaRib to reduce the complexity, memory and time requirement
when assembling large datasets from typical, uneven biological
communities.

Step 5: Terminating criteria

The iterative process will be terminated under three circumstances:
(i) it reaches a maximum of 11 iterations; (ii) the remaining un-
mapped reads is less than n; or (iii) the last iteration produced a suf-
ficiently small number of novel contigs (<1% of the current contig
set). The last situation may indicate that assembly from a subsample
of size n is difficult due to poor coverage of all taxa present. To
counteract this, a final extra iteration is carried out using a sub-
sample of size 2n.

2.1.3 Post-processing

Once any of the criteria for halting the iteration have been met, a
final non-redundant contig set is generated. MetaRib will then start
post-processing to filter out low-quality contigs and estimate their
relative abundance across individual samples.

Step 1: Calculating mapping statistics

Raw reads from each sample are aligned to the contig set C to gener-
ate several mapping statistics by BBMAP, including the mapping rate
(%), coverage and covered percentage of each particular contig in C.

Step 2: Filtering contigs

Low-quality contigs are filtered by parsing mapping statistics re-
port from Step 1. We consider a particular contig in C is a false posi-
tive record if either its average coverage or percent of bases covered
are below a pre-defined threshold (by default 2 and 80%,
respectively).

Step 3: Estimating abundance

The mapping rate is used to represent relative abundance of contigs
in each sample. As rRNA genes contain both conserved and variable
regions, we choose to include both ‘unambiguous’ mapping (where
a merged read is aligned to only one contig) and ‘ambiguous’ map-
ping (where a read can be aligned to more than one contig).

Finally, MetaRib will generate two files: one containing the
high-quality contig sequences (in FASTA format) and one matrix
(‘OTU table’) that summarizes the abundance information across
samples, which each row representing a contig and each column rep-
resenting a sample. These numbers are assumed to approximate the
abundances of taxa corresponding to the reconstructed contigs. An
exception is species with considerable intra-specific rRNA sequence
variation, for which total abundance instead can be obtained by
identifying and adding the relative abundances for their contigs.

2.2 Implementation
MetaRib is developed with Python2.7 and is distributed under the
GNU GPL v3.0 license. MetaRib is freely available on https://
github.com/yxxue/MetaRib. Dependencies include the Python libra-
ries Pandas (used for data analysis).

MetaRib also requires EMIRGE for rRNA assembly. EMIRGE
was chosen by default as it is one the most widely used for

reconstructing full-length rRNA genes and has shown better per-
formance than other methods.

The BBtools suit (https://jgi.doe.gov/data-and-tools/bbtools/) is
also required for MetaRib and utilized for several tasks including
read mapping and dereplication. BBtools/reformat.sh is used for for-
mat conversion and subsampling. BBtools/dedupe.sh is an overlap-
based dereplication tool allowing a specified number of substitu-
tions or edit distance, applied in MetaRib’s dereplication step.
Default dedupe.sh parameters are maximum five indels and min-
imum 99% similarity (fo ¼ t ow ¼ t c¼ t mcs¼1 e¼5 mid¼99).
BBtools/bbmap.sh is used to map (align) reads to contigs. BBMap
has a few advantages for our implementation, including output of
unmapped reads immediately (bypassing SAM/BAM format out-
put), which accelerates the iteration process. Furthermore, it per-
forms global rather than local alignment that can avoid excluding
excessive reads due to highly conserved regions of rRNA genes. In
addition, it returns detailed mapping statistics, used in post-
processing. Default parameters for BBMAP is minid¼0.96
maxindel¼1 minhits¼2 idfilter¼0.98 and users can modify those
parameters in the configuration file.

The BBtools suits and EMIRGE need to be installed before
MetaRib, and their parameters defined in the configuration file.

2.3 Evaluation with simulated datasets
2.3.1 Generation of simulated datasets

To simulate the complexity of real microbiome communities, three
in silico simulated datasets were built. As a full-length rRNA refer-
ence dataset, we used the SILVA SSU rRNA reference database
(Quast et al., 2012) (release 123). To simulate sequence reads for
dataset a, one thousand full-length sequences were randomly picked
from a version of the reference database clustered at 94% identity
using maximum linkage. These reference sequences were used to
simulate 5 million Illumina pair-end sequencing reads following a
log-normal abundance distribution, using ART (Huang et al.,
2012). For Dataset b, we randomly selected 1000 sequences from
the full non-redundant version of Silva v123 (i.e. not clustered using
94%). Only full-length sequences with a similarity between 95%
and 99% to the clustered reference database were retained and used
to generate 5 million sequence read pairs with ART following the
same distribution. Finally, Dataset c was similar with a, but all full-
length sequences used to generate them were removed from the ref-
erence database used by EMIRGE during assembly. An overview of
simulated datasets is shown in Figure 2. The intra-dataset sequence
similarity was evaluated by performing global all-against-all align-
ment for each dataset (exclude self-alignment) with minimum pair-
wise identity 90 (Supplementary Fig. S1). All simulated datasets and
corresponding EMIRGE references are deposited at NIRD research
data archive (https://archive.sigma2.no/pages/public/datasetDetail.
jsf?id¼10.11582/2019.00040).
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Fig. 2. Overview of simulated datasets. (A) The global pairwise similarity distribu-

tion of picked contigs aligning to the reference is shown. (B) Contig abundance dis-

tribution for simulated reads in the three test datasets is shown
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2.3.2 Evaluating performance

Simulated datasets were used to compare the performance of
MetaRib with EMIRGE (run non-iteratively). All programs were
tested on the same computer cluster using 40 cores (in-house com-
pute server, 80 cores, 1 TB RAM). For the running time comparison
benchmark, we used the GNU ‘time’ command to capture both real
(elapsed), system and user time.

For the simulated datasets, we could assess the correctness of the
reconstructed contigs, i.e. how similar each reconstructed contig
was to the ‘source contig’, recording for each reconstructed contig
the similarity of the closest source sequence, and vice versa; for each
source sequence, the similarity of the closest reconstructed contig.
For this analysis, we used Vsearch (Rognes et al., 2016) for perform-
ing pair-wise global alignment with 90% minimum identity.

For a range of similarity thresholds, we then counted statistical
measures of the performance of two methods. True positives (TP)
correspond to the number of ‘correctly’ reconstructed contigs (hav-
ing a reconstructed contig with similarity above the threshold) and
false positives (FP)—the number of reconstructed incorrect contigs
(below the similarity threshold). False negatives (FN) correspond to
the number of un-reconstructed sequences in the source contig.
Finally, we calculate Precision, Sensitivity and F1-score based on the
number of TP, FP and FN.

To evaluate the accuracy of abundance estimation, we then per-
formed Pearson’s correlation test between the real abundance of
source contigs with the abundance output of the closest recon-
structed contigs.

2.4 Real-world dataset
In order to evaluate the performance of MetaRib on real-world total
RNA sequence data, we utilized the data 3 billion sequence reads
generated as part of the AshBack project (Bang-Andreasen et al.,
2020). Bang-Andreasen et al. (2020) conducted a large-scale total
RNA meta-transcriptomic study to access the impact of wood ash
on agricultural and forest soil microbial communities and functional
expression simultaneously applying four doses of wood ash concen-
tration: 0, 3, 12 and 90 t ha�1 (Conc: 0, 3, 12, 90). Each dose was
applied to two soil types: agricultural and forest soil and total com-
munity RNA extracted and sequenced after 0, 10, 30 and 100 days
of incubation (D0, D3, D30, D100). The large-scale and complexity
made it an ideal case to apply MetaRib.

A total of 325 Gb rRNA sequences were collected from the
wood ash dataset (PRJNA512608). Due to the lack of bioinformatic
tools and computational constraints, previous rRNA analysis was
performed on a small subset (1.5 million randomly selected sequen-
ces) of each sample, using EMIRGE (Bang-Andreasen et al., 2020).
We reanalyzed the complete dataset using MetaRib with default
parameters, and, in a repeated analysis with n¼1 000 000 consider-
ing the larger size of the dataset. Downstream analysis was per-
formed with Phyloseq (McMurdie and Holmes, 2013) and DADA2
(Callahan et al., 2016), figures were generated using ggplot2
(Ginestet, 2011) and ComplexHeatmap (Gu et al., 2016). Since all
samples were analyzed together in MetaRib, we could also detect
the presence (here defined as a relative abundance�1e�5) of contigs
across samples.

3 Results

3.1 Run time comparison
Table 1 shows statistics of time usage when analyzing the three

simulated datasets using EMIRGE non-iteratively and with
MetaRib (otherwise using the same parameters). MetaRib could as-
semble simulated datasets (5 million sequences each) in a few

minutes while EMIRGE needs days to run, representing around 60X
speedup compared to using EMIRGE out of the box with the same
parameters.

3.2 Correctness
The relative performance of two tools is shown in terms of
Precision, Sensitivity and F1-score for all three simulated datasets

representing different scenario. MetaRib shows the best overall per-
formance in all datasets with F1-score evaluation (Fig. 3 and
Supplementary Table S1). EMIRGE recovers almost all source

sequences if they are represented in the reference (Dataset a). For b

and c, where source sequences are less similar to the reference data-

base, EMIRGE has a higher sensitivity compared to MetaRib.
However, as shown in Figure 3, EMIRGE is also producing a large
number ‘false’ contigs, which leads to a quite low precision and F1-

score even in an ideal case (Dataset a). Conversely, MetaRib is pro-
ducing far fewer such ‘false’ sequences. We also test the performance
of the ‘contig filtering’ step done as part of the post-processing.

Our results demonstrate that filtering low-quality contigs using
mapping statistics (MetaRib_F) improves the performance com-

pared with the unfiltered result (MetaRib_R; see 2.1.3 step 3). More
detailed results—like statistical metrics of contigs length in each iter-

ation (Supplementary Table S2) and comparison of contigs length
distribution between tools (Supplementary Fig. S2)–can be found in
the Supplementary Data.

3.3 Abundance estimation
Figure 4 shows the scatter plot of comparation of relative abundance
between source contigs(src_ab) with the closest reconstructed con-
tigs (est_ab). MetaRib could estimate the relative abundance accur-

ately when the nearly full-length contigs are reconstructed (sim �
97.5), even for very low-abundant records (src_ab � 1e�2). As we

expected, it has the best performance in an ideal scenario (Dataset
a); however, it comes up with over-estimation problem at low-
abundant records caused by ‘ambiguous’ mapping of conserved re-

gion in rRNA sequences which are distinct from the reference
(Dataset b).

Table 1. Comparison of programs running time

User (s) Elapsed (HH:MM:SS) Iterations

EMIRGE MetaRib EMIRGE MetaRib MetaRib

a 2224330 19278 37:02:26 0:28:27 5

b 3913996 59468 57:36:44 1:07:30 5

c 2499052 45901 37:45:27 0:47:58 7

Note: User is the amount of CPU time spent; elapsed is the time from start

to finish the program. Iteration is the iteration number in MetaRib for each

dataset.

Fig. 3. Overview evaluation of correctness. The X-axis represents different similarity

thresholds used to determine if a reconstructed contig is correct. The Y-axis repre-

sents the value of measurements (precision, sensitivity and F1-score). MetaRib_F

represents contigs filtered with low-quality records, while MetaRib_R is the original

output
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3.4 Real-world dataset
MetaRib could complete the analysis of 320 Gb (3 billion reads) in
approximately 1–2 days using default parameters with 80 cores.
However, the CPU and run time is nearly doubled when using a
larger reads sampling number (n¼1 000 000; Table 2).

The read subsampling number n also effects the performance of
MetaRib, both for the iteration process and final result resulting in
11 iterations for the default value (n¼100k) and 9 iterations for
n¼1M (see Fig. 5). As we expected, the size of U decreases signifi-
cantly in the first few iterations and thus becomes stabilized; while
smaller values of n need more iterations to converge and result in
more remaining unmapped reads after the last iteration. However,

larger n values also result in more potential false positives. For ex-
ample, the size of U ceases to decrease after five iterations, whereas
the number of C maintains a continuous increase. Particularly, near-
ly half of the C fail to pass the filter step (F) using n¼1M. We fur-
ther check the number of contigs which relative abundance is higher
than certain thresholds (0.001%: H_0001, 0.01%: H_0.01, 0.1%:
H_0.1) in at least one sample according to their estimated abun-
dance. We find that the number of ‘dominant’ (high abundance)
contigs using the default value (n¼100k) gives closer results to
n¼1M with a higher threshold, which indicates that the smaller, de-
fault value of n was sufficient to reconstruct the majority rRNA con-
tigs in a complex community. Results obtained using n¼1M were
thus excluded from further analysis.

We observe more rRNA contigs in both sites and similar trends
of richness and Shannon diversity across treatments in forest soil as
those revealed by previous analysis (Bang-Andreasen et al., 2020),
except considerably less fluctuation of diversity across treatments
and time in agricultural soil (Fig. 6).

MetaRib is able to recover more rRNA contigs across all
domains and captures more taxa than before. For example, the fun-
gal division Mucoromycota appears to be dominant in both with an
abundance of approximately 3.5% in Forest at the highest ash con-
centration, while missing in the previous analysis (Bang-Andreasen
et al., 2020) (Fig. 7). MetaRib also allowed us to carry out
taxonomy-independent statistics that were not possible when assem-
bling reads sample-by-sample. Thus, we observed several interesting
abundance patterns among the top 100 dominant contigs, illustrated
as a heatmap in Figure 7. For example, while Proteobacteria were
ubiquitous in both soils, different contigs dominated and showed
more fluctuations in the forest. Contigs affiliated to the
Acidobacteria were dominant in the forest soil and most of their
abundances were positively correlated with concentration; however,
they dropped significantly at the highest ash concentration. Besides,
one Firmicutes affiliated contig was only presented in agricultural
soil, while other Firmicutes contigs were only abundant in the high-
est dose in forest soil. Verrucomicrobia associated contigs showed
the opposite trend.

4 Discussion

Here, we present the tool MetaRib for reconstructing rRNA genes
from large scale total RNA meta-transcriptomic data. Its main ad-
vantage compared to existing methods is to quickly and reliably as-
semble rRNA contigs across multiple samples, even in very large
datasets, with a low false positive rate and a taxonomy-independent
relative abundance estimation.

Fig. 4. Evaluation of abundance estimation. Values for real abundance (src_ab) and

the closest estimated abundance (est_ab) displayed on log–log coordinates and col-

ored with the similarity score (sim). Pearson correlation is calculated between src_ab

and est_ab

Table 2. Comparison of MetaRib running time with different sam-

pling reads number

Sampling_num (n) User (s) Elapsed (HH:MM:SS)

100 000 (100 K) 7 927 023 38:00:48

1 000 000 (1 M) 12 330 130 62:16:55

Note: The program is performed with 80 cores.

Fig. 5. MetaRib performance for ASHBACK dataset per iteration with two different

read subsampling numbers n. 1–11L: iterations. F: filtered contigs. H: contigs which

relative abundance is higher than certain thresholds (0.001%: H_0001, 0.01%:

H_0.01, 0.1%: H_0.1) in at least one sample

Fig. 6. Number of contigs and Shannon diversity across the two soils at increasing

wood ash amendment and incubation times (n¼100 K). The presence of contig is

determined by the average abundance within each measure and soil (�1e�5).

Shannon diversity is estimated based on relative abundance table

Reconstructing ribosomal genes 3369

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/11/3365/5804982 by U
niversitetsbiblioteket i Bergen user on 14 June 2021



Using simulated datasets, we show that MetaRib performs simi-
larly to EMIRGE (representing the current state-of-the-art) in terms
of recovering the underlying full-length true sequences, at the same
time avoiding generating as many unreliable sequences (false posi-
tives) with a significant speedup. Besides, it provides an opportunity
to have an overview of the abundance distribution across multiple
samples, which could indicate important functions or patterns when
combined with biological information.

Still, some challenges remain. Both EMIRGE and MetaRib are
reference-based approaches, which could have issues in recovering
novel and similar contigs when there is lacking information in the
reference database (Datasets b and c): only partial sequences could
be reconstructed in such extreme scenario. The contrasting results of
simulated datasets indicate that MetaRib is able to capture most in-
formation in relatively well-characterized environments while it is
more likely to generate false positives and partial sequences for
poorly characterized environments. It also illustrates that the refer-
ence database is crucial for performance. While the most recent re-
lease of Silva includes over 9 million SSU sequences, our simulations
used a less inclusive, earlier version, clustered at 94% sequence iden-
tity. It is likely that a more recent version will result in higher simi-
larity for rRNA sequences, but it also result in longer execution
times. At any rate, a non-redundant reference database is recom-
mended, since EMIRGE is limited to reconstructing sequences with
maximum 97% similarity to each other (Miller et al., 2013). Other
recent tools for rRNA assembly such as MATAM (Pericard et al.,
2018) have been shown to perform better than EMIRGE on small
datasets, and future work could include using MATAM within the
MetaRib tool.

An advantage of total RNA meta-transcriptomics is the ability to
estimate relative abundances of rRNA sequences as proxies of mi-
crobial taxa, without PCR bias. Similarly, applications of third-
generation sequencing like Oxford nanopore also have this advan-
tage together with extreme long sequencing reads and real-time
identification, which has shown great potential in microbial research
(Jain et al., 2016; Shin et al., 2016).

However, it is important to point out that the number of rRNA
reads does not represent an unbiased estimate of neither the

metabolic activity nor the abundance (biomass or cell numbers) of
the taxa as such, since rRNA gene copy number and patterns of
ribosomal transcription and retention vary between organisms

(Blazewicz et al., 2013). In addition, so far it seems to be no com-
mercial kit from Oxford Nanopore for sequencing of prokaryotic or

total RNA, only eukaryotic, polyA-tagged mRNA sequencing.
Several parameter settings will also impact the performance of

MetaRib, especially for large scale datasets, as illustrated here using
a real-world dataset. In particular, the trade-off between execution
time and the quality of the final results needs to be considered care-

fully. For example, increasing the read subsampling number will
lead to longer execution times, but generate more low abundance
contigs from rare organisms, thus recovering more of the diversity.

However, it also leads to more false positives in terms of incorrectly
assembled contigs.

In the current implementation, MetaRib discards any remaining
unmapped reads after the iteration process is finished. However,

taxonomy-independent rRNA assembly tools like REAGO could be
considered as a further step to assemble discarded reads in order to
maximize the information recovered from total RNA datasets.

Our approach opens up several new perspectives for total RNA
meta-transcriptomics. First of all, it simplifies the analysis of the

large and redundant datasets generated, via iterative reconstruction.
In doing so, it also reduces false positives and allows for taxonomy-
independent comparisons of contig abundances across samples. In

spite of its advantages, total RNA has not been widely used com-
pared to other environmental genomics techniques We hope that

MetaRib will enable researchers to make more use of this technique
and the valuable rRNA sequence data generated, with full-length
sequences free of primer bias. Ultimately, this enables a deeper

understanding of how natural microbial communities are structured,
as well their function.
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