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Abstract 

Objective 

Circumstantial evidence links 25-hydroxyvitamin D (25[OH]D), vitamin D-Binding 

Protein (DBP), vitamin D-associated genes and type 1 diabetes (T1D), but no studies 

have jointly analyzed these. We aimed to investigate whether DBP levels during 

pregnancy or at birth were associated with offspring T1D, and whether vitamin D 

pathway genetic variants modified associations between DBP, 25(OH)D and T1D. 

Research Design and Methods 

From a cohort of >100,000 mother/child-pairs, we analyzed 189 pairs where the child 

later developed T1D, and 576 random control pairs. We measured 25(OH)D using 

LC-MS/MS, and DBP using polyclonal radioimmunoassay, in cord blood and 

maternal plasma samples collected at delivery and mid-pregnancy. We genotyped 

mother and child for variants in or near genes involved in vitamin D metabolism (GC, 

DHCR7, CYP2R1, CYP24A1, CYP27B1, VDR). Logistic regression was used to 

estimate odds ratios adjusted for potential confounders (aORs).  

Results 

Higher maternal DBP levels at delivery, but not in other samples, were associated 

with lower offspring T1D risk (OR=0.86, 95%CI: 0.74-0.98, per µM/L increase). 

Higher cord blood 25(OH)D levels were associated with lower T1D risk (OR=0.87, 

95%CI: 0.77-0.98 per 10 nmol/L increase) in children carrying the VDR rs11568820 

G/G genotype (P[interaction]=0.01 between 25(OH)D level and rs11568820). We did 

not detect other gene-environment interactions.  

Conclusions  

Higher maternal DBP level at delivery may decrease offspring T1D risk. Increased 

25(OH)D levels at birth may decrease T1D risk, depending on VDR genotype. These 

findings should be replicated in other studies. Future studies of vitamin D and T1D 

should include VDR genotype and DBP levels.  

 

  



Introduction 

Type 1 diabetes (T1D) often presents in childhood and is associated with increased 

mortality (1). Vitamin D, vitamin D receptor (VDR), vitamin D-binding protein (DBP) 

and genetic polymorphisms associated with vitamin D metabolism have separately 

been suggested to influence the risk of T1D development (2). No studies have jointly 

analyzed vitamin D, DBP and genetic polymorphisms, which is necessary to relate 

any, or all, of these factors to T1D risk.  

Vitamin D is converted in the liver to 25-hydroxyvitamin D (25(OH)D), the clinical 

biomarker of vitamin D status (2). A second hydroxylation to the biologically active 

form calcitriol (1,25(OH)2D) occurs in the kidneys, and probably in other target cells.  

The biological effects of 1,25(OH)2D are mediated by vitamin D Receptor (VDR, 

encoded by VDR) (3). A recent study reported an association between 25(OH)D in 

early childhood and later islet autoimmunity (a surrogate endpoint for T1D) which 

depended on VDR genotype (4). VDR binding sites are overrepresented near genetic 

regions associated with T1D (5), and several single nucleotide polymorphisms (SNP) 

in or near genes involved in the vitamin D pathway (CYP2R1, CYP27B1 and DHCR7) 

have been associated with T1D (6). These SNPs, and SNPs in or near genes 

encoding Vitamin D-binding protein (DBP, encoded by GC) influence circulating 25-

hydroxyvitamin D (25(OH)D) concentration (7). We recently reported no association 

between 25(OH)D status and offspring T1D risk (8). In this study, we aimed to 

investigate whether the association may be modified by vitamin D pathway and VDR 

SNPs.  

DBP is a multifunctional protein that is the major carrier of vitamin D and its 

metabolites in the circulation, and is the precursor of the macrophage activating 

factor Gc-MAF (9). The circulating DBP concentration nearly doubles during 



pregnancy (10), and DBP appears to increase plasma half-life of 25(OH)D (11). It is 

not yet established whether the free fraction of 25(OH)D is a better marker for 

25(OH)D status than the total 25(OH)D level (12). Lower DBP levels in sera from 

patients with T1D compared to controls  have been reported (13), and recent studies 

suggest that DBP is a possible autoantigen in T1D (14; 15). Only one previous study 

has investigated maternal DBP during pregnancy and offspring T1D risk, reporting 

higher maternal DBP to be associated with lower offspring T1D risk (10). 

We aimed to jointly study maternal and newborn DBP, 25(OH)D and SNPs in the 

vitamin D pathway to test the following hypotheses: 1) Higher maternal or newborn 

DBP levels predict lower risk of childhood T1D and 2) The association between 

maternal or newborn 25(OH)D (or DBP) and childhood T1D risk is modified by 

genetic variants in the vitamin D pathway (including VDR). In addition, we 

hypothesized that a higher maternal or offspring 25(OH)D relative to DBP (surrogate 

for free 25[OH]D) predicts lower risk of childhood T1D.   



Methods 

Study sample 

We designed a nested case-control study in the Norwegian Mother and Child Cohort 

Study (MoBa) (16), which recruited ~114,000 pregnant mothers (41% eligible 

mothers participated) nationwide from 1999-2008 (last birth in 2009). The current 

study uses data from repeated questionnaires (using version VIII of the MoBa 

datafiles) and biomarker analyses of maternal and cord blood samples (17). All 

participating mothers gave written informed consent. The establishment and data 

collection in MoBa was previously based on a licence from the Norwegian Data 

Inspectorate and approval from The Regional Committee for Medical Research 

Ethics. It is now based on regulations related to the Norwegian Health Registry Act. 

The Regional Committee for Medical Research Ethics approved the current study. 

Children who developed T1D by February 5, 2014 were identified with a high degree 

of ascertainment by register linkage to the Norwegian Childhood Diabetes Registry 

(18). In all, 189 mother/child-pairs were T1D cases, and 576 mother/child-pairs from 

a random sample with available blood samples of the cohort were used as controls 

(Figure 1). Characteristics of the study participants in analysis are given in Table 1. 

Baseline characteristics for those with available blood samples were largely similar to 

the whole MoBa cohort, with the exception of a lower proportion of caesarean section 

and premature birth (19).  

 

Blood sampling  

Maternal blood samples were collected in EDTA tubes at hospital laboratories at 

enrolment around pregnancy week 18 (median 18.5, interquartile range (IQR) 19.4 – 

17.9 weeks) and again soon after delivery (median 1 day, IQR 3 – 1 days; hereafter 



referred to as postpartum). Plasma was separated before overnight shipment to the 

MoBa biobank. Immediately after birth, a blood sample was taken from the umbilical 

cord vein, shipped and plasma separated upon arrival. All samples were stored at -

80C until analysis (20).  

 

Laboratory assays of DBP and 25(OH)D 

Plasma concentration of DBP was determined using a competitive 

radioimmunoassay at the Oslo University Hospital Hormone Laboratory (Oslo, 

Norway) with a polyclonal antibody (anti-Gc-globulin, Dako, Glostrup, Denmark) and 

purified Gc-globulin (Sigma Chemicals, St. Louis, MO), as described previously (19). 

Analyzes of plasma 25-hydroxyvitamin D3 and –D2 were done at the internationally 

certified Statens Serum Institut (Copenhagen, Denmark), using a liquid 

chromatography tandem mass spectrometry (LC-MS/MS) and the MSMS Vitamin D 

kit (PerkinElmer, Inc., Waltham, MA) for mass spectrometry, as described previously 

(8). The seasonally adjusted (deseasonalized using cosinor modelling as described 

in (21)) sum of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3  was used as the 

exposure variable (hereafter referred to as 25(OH)D).  

 

Genotyping assays and genetic risk scores 

To account for established T1D susceptibility markers, participants were genotyped 

for selected SNPs using a custom Illumina Golden Gate assay (Illumina, San Diego, 

CA), as described in detail in (22). Briefly, SNPs in the vitamin D pathway (see 

Supplemental Table S1) were genotyped: five SNPs in or near CYP2R1, CYP24A1, 

CYP27B1, GC and DHCR7, associated with 25-hydroxyvitamin D (7), and two SNPs 

in or near VDR (rs1544410, rs11568820). A vitamin D deficiency genotype score for 



the mother and child was calculated by summing the risk alleles across five non-VDR 

SNPs (7). Human leukocyte antigen (HLA) class II genotype was imputed using the 

HLA*IMP:02 web service and subsequently confirmed by allele specific PCR (details 

given in (22)) . HLA genotypes were categorized as shown in Table 1. A non-HLA 

T1D genetic risk score (GRS), weighted by the increased risk reported per risk allele, 

was calculated on the basis of 51 non-HLA SNPs associated with T1D (details given 

in the online supplement to (23)).  

 

Other covariates 

Information on birth weight, maternal age at delivery, and delivery mode was 

obtained from the nationwide Medical Birth Registry of Norway (24). Information 

regarding maternal pre-pregnancy body mass index (BMI) and smoking during 

pregnancy was obtained from mid-pregnancy questionnaires. The questionnaires can 

be accessed at www.fhi.no/moba. Data on maternal T1D were obtained from 

questionnaires and the Norwegian Patient Registry. The variables were categorized 

as shown in Table 1. 

 

Statistical methods 

All statistical analyses were planned a priori. We applied logistic regression with 

offspring T1D as outcome. Our main aim was to estimate the association between 

DBP levels and offspring T1D risk. Investigating the association between the 

DBP/25(OH)D ratio and T1D risk, and potential gene-environment interactions, were 

secondary aims. The main exposure was estimated average DBP (µM/L) during 

pregnancy. First, we used a linear mixed effects random intercept model, including 

DBP measurements from both maternal samples, gestational age and days since 

http://www.fhi.no/moba


delivery as predictors, to predict the average maternal DBP concentration. Secondly, 

we used this predicted average as the exposure in a logistic regression analysis with 

offspring T1D as the outcome. To account for the variance in both the predicted 

average DBP and logistic regression analysis and obtain unbiased confidence 

intervals (CI), we used bootstrapping with 10 000 replicates and calculated the 

percentiles for 95% CIs for the odds ratios. The average predicted DBP was centered 

at pregnancy week 36. This centering has little or no consequences for further 

modelling and statistical significance of our results, but was chosen to better compare 

with our earlier study (10). For more details, see our earlier publication(22)We also 

investigated DBP concentration in each sample type separately (cord blood at birth, 

and maternal samples from mid-pregnancy and postpartum), DBP quartiles to assess 

linearity, and the DBP/25(OH)D ratio (used as a proxy for free 25(OH)D) in each 

sample type as exposures. The season-adjusted 25(OH)D concentration was used in 

the analysis of 25(OH)D and the 25(OH)D/DBP ratio. We tested interactions between 

25(OH)D and selected vitamin D pathway SNPs (see Supplemental Table S1), non-

HLA GRS for T1D or offspring HLA genotype. We also tested interactions between 

DBP, the GC SNP rs2282679 and offspring T1D. These interactions were chosen a 

priori on the basis of biological plausibility. 

We used clustered sandwich estimator to account for correlation between siblings. 

SNPs were coded as additive (0, 1 or 2 alleles) variables (unless combined), and 

25(OH)D and DBP levels were analyzed as continuous variables. Offspring HLA and 

T1D non-HLA GRS were included as dichotomous variables (carrying at least one 

HLA DR3-DQ2 or DR4-DQ8 haplotype vs none, and ≤median vs >median of the T1D 

non-HLA GRS in controls, respectively) in the gene-environment interaction.  

 



Adjustment variables 

The following covariates were included in our primary adjustment model: child`s HLA 

genotype, sex, cesarean delivery, maternal ethnicity, pre-pregnancy (BMI), smoking 

in pregnancy and age at delivery (see Supplemental Figure S1 for a directed acyclic 

graph of these). As a sensitivity analysis, we also included maternal T1D, birthweight, 

birth year, sample batch, and number of 25(OH)D lowering alleles in GC 

polymorphisms rs2282679 and rs222040 as adjusting variables.  



Results 

The distribution of DBP in mid-pregnancy, postpartum and cord blood samples is 

shown in Figure 2. There were weak, but statistically significant (p<0.05) correlations 

between DBP concentration in different sample types, and between DBP and 

25(OH)D in control children (Supplemental Figure S2).  

 

DBP and T1D risk 

Higher estimated average maternal DBP concentrations at gestational week 36 were 

not significantly associated with lower risk of offspring T1D, with the 95% CI including 

one (Table 2). However, when analyzing each sample type separately, higher DBP 

level in the postpartum sample was associated with lower offspring T1D risk (aOR 

0.80, 95% CI 0.67 – 0.95, p = 0.01), while DBP mid-pregnancy or in cord blood were 

not (Table 2).  

 

The 25(OH)D/DBP ratio, as a proxy for “free” 25(OH)D was not associated with 

offspring T1D risk in any sample type, with the exception of a borderline statistically 

significant association after adjustment in the post-partum sample (Table 2). This 

suggestive association disappeared after further adjustment for DBP, suggesting that 

the association with the 25OHD/DBP ratio was spurious (data not shown). Mutually 

adjusting 25(OH)D and DBP levels for each other in the same sample, or adjusting 

maternal postpartum DBP and cord blood 25(OH)D for each other, did otherwise not 

appreciably change our estimates, but resulted in wider CIs (Supplemental Table 

S2). Likewise, including more adjusting variables as a sensitivity analysis (maternal 

T1D, birthweight, birth year, sample batch or number of risk alleles in GC 



polymorphisms) did not appreciably change the estimates, but resulted in wider CIs 

(data not shown).  

 

Interactions with genetic markers 

An overall lack of associations between 25(OH)D in pregnancy, or at birth, and 

childhood T1D have been previously presented (8) (for completeness shown in 

Supplemental Table S2). In the current study, we found that the association between 

cord blood 25(OH)D and childhood T1D differed significantly by child’s VDR 

rs11568820 genotype (p[interaction]=0.01, Supplemental Table S3). Higher 25(OH)D 

levels at birth had an inverse association on offspring T1D in children homozygous 

for the VDR rs11568820 G/G genotype (Table 2). Maternal 25(OH)D remained not 

associated with offspring T1D risk in mothers or children homozygous for the 

rs11568820 G/G genotype (data not shown). No other significant interaction was 

detected between 25(OH)D and SNPs in the vitamin D pathway, vitamin D deficiency 

score, non-HLA genetic risk score for T1D or HLA genotype (Supplemental Table 

S3). Further, no interaction was detected between DBP and GC(DBP) SNP 

rs2282679 (data not shown).  

 

  



Discussion 

In this case-control study nested within a large prospective pregnancy cohort, we 

found that higher maternal DBP levels at delivery, but not in mid-pregnancy or in 

child’s cord blood, was associated with lower risk of offspring T1D. We also found 

that in children homozygous for the VDR rs11568820 G/G genotype, higher 25(OH)D 

levels at birth predicted a lower risk of developing T1D. These findings must be 

interpreted with caution, and should be replicated in independent studies.  

 

In an independent Norwegian nested case-control study, the only previous study of 

maternal DBP in relation to childhood T1D, ,  higher DBP levels in the third trimester 

were associated with decreased offspring T1D risk (10). The current study replicates 

and extends these findings by reporting that newborn (cord blood) DBP levels were 

not associated with childhood T1D risk. The current study is larger, able to control for 

additional possible confounders such as HLA genotype and BMI, and able to 

investigate possible interactions with genetic variants.  While 25(OH)D levels in 

pregnancy or at birth overall were not associated with the risk of childhood T1D (8), 

we now report that in children homozygous for the VDR rs11568820 G/G genotype, 

higher 25(OH)D levels at birth predicted decreased risk of developing T1D. We did 

not observe interactions with other SNPs previously reported to modify the effect of 

vitamin D (25), or reported to be associated with vitamin D levels or T1D(25). While 

this gene-environment finding must be interpreted with caution, Norris et al. (4) 

reported a similar interaction between 25(OH)D in early childhood and VDR genotype 

(rs7975232) in the association with islet autoimmunity. rs11568820 is believed to 

result in lower VDR expression (26). We speculate that low levels of 1,25(OH)2D and 

VDR could increase risk of autoimmunity, as they together inhibit T-cell proliferation 



(27). Increased 25(OH)D (which is correlated with 1,25(OH)2D (28)) levels in 

pregnancy could offset lower VDR expression, as 1,25(OH)2D regulates VDR 

expression (29; 30). While our study suggests an interaction with the child’s VDR 

genotype and not maternal genotype, a Finnish study reported that the maternal VDR 

SNP rs1544410 was associated with offspring T1D risk (31). No significant 

association between maternal rs1544410 and offspring T1D risk was observed in our 

study (data not shown). There are few established environmental factors associated 

with DBP levels. Interestingly, DBP has been reported to be important in production 

of the antimicrobial peptide cathelicidin in monocytes by regulating bioavailability of 

25(OH)D (32). We hypothesize that low DBP levels towards the end of pregnancy 

could influence antimicrobial response and inflammation in the mother, which could 

predispose for offspring autoimmunity. It is also plausible that another unknown factor 

operating late in pregnancy could influence both maternal DBP and offspring T1D 

risk.  

 

The gene-environment interaction observed could explain the inconsistent results of 

25(OH)D levels and T1D risk in the few previous studies in the field (8; 33; 34). 

Several polymorphisms and haplotypes in VDR have been suspected of an 

association with T1D (see (25)); rs11568820 and other polymorphisms might be 

markers of a certain VDR genotype and not be relevant to the observed association 

by themselves. Although VDR genotype was not associated with T1D in a large 

genetic study (6), a potential association could be influenced by the participants 

25(OH)D status, as suggested by Ponsonby et al. (35). Consistent with our 

observation, interactions between rs11568820 and 25(OH)D have been reported in 

colorectal cancer (36). Similarly, winter sun exposure interacted with a Cdx-2 VDR 



polymorphism in multiple sclerosis (37). Multiple sclerosis, like T1D, has an 

overrepresentation of VDR binding sites near disease-associated genetic regions (5).  

 

The association between maternal DBP levels in late pregnancy or in postpartum and 

lower offspring T1D risk, reported in this and in an independent Norwegian study (10) 

warrants further investigation regarding possible mechanisms, and replication in non-

Norwegian populations. Our data, taken together with earlier studies linking DBP to 

T1D (13-15), suggests DBP should be more intensively studied in relation to T1D. 

The interaction between the rs11568820 G/G genotype, which is the most frequent in 

our study (68.4%), cord blood 25(OH)D levels and T1D should be investigated in 

another study. If replicated, vitamin D supplementation should probably be 

recommended to all infants and pregnant women, regardless of genotype, although a 

large scale randomized controlled trial (RCT) would be ideal as a basis for 

recommendations. However, well-powered RCTs to prevent T1D are extremely costly 

and time consuming, and should therefore be carefully planned based on the best 

available preclinical and observational data. The Norwegian national guidelines 

recommend vitamin D supplementation from four weeks of age, and recommend a 

daily intake of 10 µg vitamin D in pregnant women. In the MoBa cohort, 63% of the 

mothers did not reach the recommended vitamin D intake (38), and 17% of children 

did not use vitamin D supplementation (see Table 2 in (22)), which shows that there 

is room for improvement.  

 

The strengths of this study include its prospective design and repeated 

measurements, which allowed us to assess DBP and 25(OH)D concentrations at 



different timepoints. Our large sample size with information on HLA genotype and 

genetic variation in the vitamin D pathway allowed us to examine interactions with 

genetic markers. Limitations of the study include, as in any observational study, the 

possible presence of unknown confounding factors. The nested sample was 

generally representative for the whole cohort, but our results might not be 

generalizable to the general population or populations of non-European origin. 

Further studies are needed to replicate and expand upon these findings.   

 

Our findings indicate that children whose mothers have higher DBP levels at the end 

of pregnancy are at a decreased risk of developing T1D. DBP has not been studied 

extensively in the context of T1D and more work is required to elucidate potential 

mechanism involved. Further studies in independent cohorts are need for replication 

of this observation, and experimental studies are needed to investigate potential 

mechanisms. The decreased risk of T1D for children homozygous for VDR 

rs11568820 G/G and high 25(OH)D levels at birth support the current 

recommendations for vitamin D intake for pregnant women and infants. These 

findings must be interpreted with caution and more evidence is required to validate 

these results. Regardless, potential future vitamin D studies should consider 

including VDR genotype.  
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Table 1: Characteristics of cases with childhood type 1 diabetes and randomly 
selected controls in the Norwegian Mother and Child Cohort Study. 
 

 Controls (n = 576) Cases (n = 189) 

Median age (range) at end of follow-up* (years) 11.7 (7.7–17.1) 12.7 (8.0–16.6) † 

Female sex 285 (49.5%) 93 (49.2%) 

Maternal type 1 diabetes 0 (0.0%) 7 (3.7%) 

Preterm birth 19 (3.3%) 10 (5.3%) 

Missing data 1 (0.2%) 1 (0.5%) 

Birthweight (in grams)   

<2500 g 8 (1.4%) 7 (3.7%) 

2500-4500 g 539 (93.6%) 174 (92.1%) 

>4500 g 29 (5.0%) 8 (4.2%) 

Parity   

No previous births 248 (43.1%) 93 (49.2%) 

One 215 (37.3%) 57 (30.2%) 

Two or more 113 (19.6%) 39 (20.6%) 

Maternal age in years (median, range) 30 (17–42) 30 (19–42) 

Maternal non-Norwegian ethnicity 30 (5.2%) 10 (5.3%) 

Maternal smoking during pregnancy   

Non-smoker at end of pregnancy‡ 469 (81.4%) 161 (85.2%) 

Smoked at end of pregnancy 76 (13.2%) 20 (10.6%) 

Missing data 31 (5.4%) 8 (4.2%) 

Maternal pre-pregnancy BMI (kg/m2)   

<25 379 (65.8%) 97 (51.3%) 

25-30 109 (18.9%) 49 (25.9%) 

>30 40 (6.9%) 28 (14.8%) 

Missing data 48 (8.3%) 15 (7.9%) 

Child’s HLA§ genotype and genetic risk score   

Protective (DQ6) 168 (29.2%) 3 (1.6%) 

Neutral (any other HLA not mentioned) 111 (19.3%) 5 (2.6%) 

Increased risk (≥1 copy of either DQ8 or DQ2) 212 (36.8%) 93 (49.2%) 

High risk (DQ8/DQ2 heterozygote) 30 (5.2%) 71 (37.6%) 

Missing HLA genotype 55 (9.5%) 17 (9.0%) 

Child’s  non-HLA T1D GRS|| (median, range) 61.2 (45.7 – 76.3) 63.2 (45.4 – 78.6) 

Missing non-HLA T1D GRS score 19 (3.5%) 12 (6.8%) 

Child’s  25(OH)D GRS (median, range) 3 (0 – 8) 3 (0 – 8) 

Missing 25(OH)D GRS score 20 (3.7%) 13 (7.4%) 

Caesarean section¶ 59 (10.2%) 36 (19.0%) 

* The diagnosis date of the last case included - February 3, 2014 

† The median age at diagnosis of T1D cases was 5.7 (range 0.7 – 12.7) years  

‡ Including those that quit smoking shortly before or during pregnancy 

§ Groups defined as protective (carrying at least one copy of HLA DQA1*01:02-DQB1*06:02-
DRB1*15:01 [DQ6-DR15]), increased risk (at least one copy of HLA DQA1*03-DQB1*03:02-



DRB1*04 [DQ8-DR4] or DQA1*05:01-DQB1*02:01-DRB1*03:01 [DQ2-DR3], but not both 
haplotypes), high risk (HLA DQ2-DR3/DQ8-DR4) or neutral (any other genotype). 

|| Weighted score, calculated by multiplying the number of risk alleles in 51 non-HLA SNPs 
with their reported risk per allele. 

¶ Includes unknown (n = 1), emergency (n = 55) and elective (n = 39) caesarean section  



Table 2: Association between exposures and type 1 diabetes 

DBP, per 1 µM/L increase OR, 95% CI aOR, 95% CI* P-value 

Predicted maternal DBP† 0.74 (0.39 – 1.22) 0.49 (0.18 – 1.02) n.s ‡ 
Mid-pregnancy 1.03 (0.91 – 1.16) 0.96 (0.79 – 1.16) 0.65 
Cord blood 0.98 (0.81 – 1.20) 0.87 (0.67 – 1.14) 0.32 
Postpartum 0.86 (0.74 – 0.98) 0.80 (0.67 – 0.95) 0.01 

25(OH)D / DBP ratio    

Mid-pregnancy 1.00 (0.96 – 1.04) 1.04 (0.98 – 1.09) 0.17 
Cord blood 0.99 (0.97 – 1.01) 1.00 (0.97 – 1.04) 0.81 
Postpartum 1.01 (0.98 – 1.04) 1.05 (1.00 – 1.10) 0.049 

25(OH)D, per 10 nmol/L increase, stratified by VDR rs11568820§  

Cord blood, AA/AG 1.18 (1.00 – 1.40) 1.17 (0.95 – 1.44) 0.15 
Cord blood, GG  0.87 (0.77 – 0.98) 0.85 (0.72 – 1.00) 0.047 

 
aOR: adjusted Odds Ratio; CI: Confidence Interval. P-value shown for adjusted 

analysis.  

* adjusted for child`s HLA genotype, sex, maternal ethnicity, age, pre-pregnancy BMI, 

caesarean section and smoking. 

† using maternal (mid-pregnancy and postpartum) samples in a mixed model to 

predict maternal DBP values at gestational week 36. Due to the reduction of the 

sampling variation when predicting maternal DBP, the predicted values have a lower 

standard deviation (SD) of 0.35 (while e.g. DBP in the postpartum samples has a SD 

of 1.52).This results in a greater observed estimate, as an increase per unit is roughly 

equivalent to 3 standard deviations in this analysis. We used bootstrapping (10 000 

replications) to obtain un-biased CIs, and present bias-corrected CIs.  

‡ as these results arise from bootstrapping estimations, a p-value is not provided.  

§ there was a statistically significant interaction (p[interaction]=0.01) between 

rs11568820 and 25(OH)D (Supplemental Table S3). 

  



Figure Legends 

 

Figure 1: Formation of the analysis sample 

* : 148 had 3 blood samples, 38 had 2 blood samples and 3 had one blood sample 

available for 25(OH)D and DBP testing. There were 174 mid-pregnancy, 174 

postpartum and 175 cord blood samples. 

† : 456 had 3 blood samples, 111 had 2 blood samples and 9 had one blood sample 

available for 25(OH)D and DBP testing. There were 532 mid-pregnancy, 525 

postpartum and 542 cord blood samples. 

 

Figure 2: Distribution of vitamin D-binding protein (DBP) concentrations in 

maternal and cord blood plasma samples. 

Figure 2 shows the distribution of vitamin D-binding protein (DBP) concentrations in 

maternal and cord blood plasma samples from randomly selected controls (n=576) in 

the Norwegian Mother and Child Cohort Study. The maternal delivery (postpartum) 

sample was collected at median 1 day (interquartile range 0–3 days) after delivery. 

 

 

 

 

 

 

 

 

 

 

  



Online-only supplement to: 

Maternal and Newborn Vitamin D-Binding Protein, Vitamin D levels, Vitamin D 

Receptor genotype, and Childhood Type 1 Diabetes  

German Tapia, Ph.D 1, Karl Mårild, Ph.D 1, Sandra R. Dahl, Ph.D 2, Nicolai A. Lund-

Blix, Ph.D 1,3,4, Marte K. Viken, Ph.D 5, Benedicte A. Lie, Ph.D 5,6, Pål R. Njølstad, 

Ph.D, M.D 7,8, Geir Joner, Ph.D, M.D 4,9, Torild Skrivarhaug, Ph.D, M.D 4,9, Arieh S. 

Cohen, Ph.D 10, Ketil Størdal, Ph.D, M.D 1, 11, Lars C. Stene, Ph.D 1. 

Affiliations 

1 Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, 
Oslo, Norway 

2 Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, 
Aker, Oslo, Norway 

3 Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical 
Campus, Aurora, Colorado, USA 

4 Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, 
Norway 

5 Department of Immunology, Rikshospitalet, Oslo University Hospital, Oslo, Norway 

6 Department of Medical Genetics, University of Oslo, Oslo, Norway 

7 Department of Pediatric and Adolescent Medicine, Haukeland University Hospital, 
Bergen, Norway 

8 KG Jebsen Center for Diabetes Research, Department of Clinical Science, University 
of Bergen, Bergen, Norway 

9 Institute of Clinical Medicine, University of Oslo, Oslo, Norway 

10 Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark 

11 Pediatric Department, Østfold Hospital Trust, Grålum, Norway 

 

Corresponding author: German Tapia, Department of Chronic Diseases and Ageing, 
Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway. 
E-mail: german.tapia@fhi.no 

 

  

mailto:german.tapia@fhi.no


Table of Contents 
 

Supplemental Figure S1: Directed Acyclic Graph ......................................................................... 27 

Supplemental Figure S2: Correlation matrix .................................................................................. 28 

Supplemental Table S1: 25(OH)D metabolism SNPs .................................................................. 29 

Supplemental Table S2: Supplemental Results ............................................................................ 31 

Supplemental Table S3: Gene – Environment interactions ......................................................... 32 

References .......................................................................................................................................... 33 

 

  



Supplemental Figure S1: Directed 

Acyclic Graph 

 

 

Supplemental Figure 1 shows a hypothetical Directed Acyclic Graph to illustrate how we 

hypothesized the relationships between DBP, adjustment covariates and Type 1 diabetes.  



Supplemental Figure S2: Correlation 
matrix 

 

 

This figure shows Spearmans’ rho between 25(OH)D (deseasonalized) and DBP z-

scores in control children (as correlation estimates based on cases can be biased). 

Cord blood and postpartum 25(OH)D have high correlation (0.72), with the rest 

having weaker correlations. All correlations above 0.1 were significant (p<0.05). 

 

  



Supplemental Table S1: 25(OH)D 
metabolism SNPs  

SNP* Gene Genotype Child N(%) Maternal N(%) 

rs10741657 CYP2R1 AA 81 (14.9%) 65 (12.2%) 
  AG 252 (46.3%) 248 (46.4%) 
  GG 192 (35.3%) 198 (37.1%) 
  Missing 19 (3.5%) 23 (4.3%) 

rs703842 CYP27B1 AA 204 (37.5%) 199 (37.3%) 
  AG 257 (47.2%) 253 (47.4%) 
  GG 63 (11.6%) 58 (10.9%) 
  Missing 20 (3.7%) 24 (4.5%) 

rs6013897 CYP24A1 AA 323 (59.4%) 300 (56.2%) 
  AT 180 (33.1%) 178 (33.3%) 
  TT 22 (4.0%) 33 (6.2%) 
  Missing 19 (3.5%) 23 (4.3%) 

rs2282679† GC(DBP) AA 293 (53.9%) 282 (52.8%) 
  AC 185 (34.0%) 195 (36.5%) 
  CC 47 (8.6%) 35 (6.6%) 
  Missing 19 (3.5%) 22 (4.1%) 

rs12785878 DHCR7 AA 244 (44.9%) 228 (42.7%) 
  AC 223 (41.0%) 238 (44.6%) 
  CC 58 (10.7%) 46 (8.6%) 
  Missing 19 (3.5%) 22 (4.1%) 

rs1544410 VDR‡ AA 177 (32.5%) 172 (32.2%) 
  AG 246 (45.2%) 239 (44.8%) 
  GG 101 (18.6%) 100 (18.7%) 
  Missing 20 (3.7%) 23 (4.3%) 

rs11568820 VDR§ AA 22 (4.0%) 11 (2.1%) 
  AG 131 (24.1%) 144 (27.0%) 
  GG 372 (68.4%) 355 (66.5%) 
  Missing 19 (3.5%) 24 (4.5%) 

 

N and % calculated from control mother and child dyads. 

* In addition the following SNPs were tested, but not used for further analyses due to 

linkage disequilibrium with other SNPs for the respective loci; CYP2R1: rs2060793 

and rs12794714; CYP27B1: rs4646536; GC: rs222040 and rs1352846; DHCR7: 

rs3829251  

† rs2282679 is a near perfect proxy for the coding SNP rs4588. rs2282679 C allele is 

linked to lower serum 25(OH)D levels. 



‡ Also known as VDR-BsmI polymorphism 

§ Also known as VDR-CdX2 polymorphism  



Supplemental Table S2: Supplemental 
Results 

25(OH)D, per 1 nmol/L 
increase 

Cases/Controls† 
(N) 

OR, 95% CI aOR, 95% CI* P-value 

Mid-pregnancy 174/531 1.00 (0.99 – 1.01) 1.01 (1.00 – 1.01) 0.23 
Cord blood 175/542 1.00 (0.99 – 1.01) 0.99 (0.98 – 1.01) 0.38 
Postpartum 174/524 1.00 (0.99 – 1.01) 1.00 (0.99 – 1.01) 0.75 

25(OH)D and DBP mutually adjusted  

25(OH)D, cord blood 174/537 0.99 (0.97 – 1.00) 0.99 (0.97 – 1.00) 0.12 
DBP, cord blood 0.98 (0.73 – 1.30) 0.90 (0.63 – 1.30) 0.58 

25(OH)D, cord blood 162/494 1.00 (0.99 – 1.01) 0.99 (0.98 – 1.01) 0.42 
DBP, postpartum 0.89 (0.77 – 1.02) 0.83 (0.69 – 1.00) 0.047 

Mutually adjusted, restricted to VDR rs11568820 GG genotype† 

25(OH)D, cord blood 112/367 0.99 (0.97 – 1.00) 0.99 (0.97 – 1.00) 0.12 
DBP, cord blood 0.98 (0.73 – 1.30) 0.90 (0.63 – 1.30) 0.58 

25(OH)D, cord blood 105/335 0.99 (0.97 – 1.00) 0.98 (0.96 – 1.00) 0.08 
DBP, postpartum 0.90 (0.75 – 1.08) 0.82 (0.65 – 1.03) 0.09 

 
aOR: adjusted Odds Ratio; CI: Confidence Interval 

* adjusted for child`s HLA genotype, sex, maternal ethnicity, age, pre-pregnancy BMI, 

caesarean section and smoking. 

† the number of cases and controls included in the unadjusted analysis. 

 

  



Supplemental Table S3: Gene – 
Environment interactions 

 

Exposure SNP  Interaction estimate (95% CI) p-value 

Maternal* 25(OH)D CYP2R1 -rs10741657 1.00 (0.99 - 1.01) 0.84 
 CYP27B1 - rs703842 1.00 (0.99 - 1.02) 0.68 
 CYP24A1 - rs6013897 1.01 (0.99 - 1.02) 0.39 
 GC(DBP) - rs2282679 1.00 (0.98 - 1.01) 0.77 
 DHCR7 - rs12785878 1.01 (1.00 - 1.02) 0.13 
 VDR - rs1544410 1.00 (0.98 - 1.01) 0.44 
 VDR - rs11568820 1.00 (0.99 - 1.02) 0.84 
 25(OH)D GRS† 1.00 (0.99 -1.01) 0.74 

Offspring 25(OH)D CYP2R1 -rs10741657 1.01 (0.99 - 1.02) 0.39 
 CYP27B1 - rs703842 0.99 (0.98 - 1.01) 0.52 
 CYP24A1 - rs6013897 1.01 (0.99 - 1.03) 0.37 
 GC(DBP) - rs2282679 1.00 (0.98 - 1.02) 0.87 
 DHCR7 - rs12785878 1.00 (0.98 - 1.02) 0.90 
 VDR - rs1544410 0.99 (0.98 - 1.01) 0.50 
 VDR - rs11568820 0.98 (0.96 - 0.99) 0.01 
 25(OH)D GRS† 1.00 (0.99 -1.01) 0.74 
 Non-HLA GRS‡ 1.00 (1.00 -1.00) 0.23 
 HLA§ 1.00 (0.96 - 1.05) 0.80 

 

CI: confidence interval 

*: Tested in mid-pregnancy sample. 

†: a risk score for low vitamin D levels, calculated by summing the risk alleles in non-

VDR SNPs shown above. See [1] for detail.  

‡: non-HLA genetic risk score, calculated by multiplying the number of risk alleles 

with the OR for type 1 diabetes per each established non-HLA risk SNP (n=51), then 

summing this per child. Please see our previous publication [2] for a list of non-HLA 

risk SNPs for type 1 diabetes and their ORs. 

§: Coded as dichotomous variable: protective or baseline vs risk (carrying at least 

one HLA DR3-DQ2 or DR4-DQ8 allele) 
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