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This paper is concerned with the analysis of the quasi-static thermo-poroelastic 
model. This model is nonlinear and includes thermal effects compared to the 
classical quasi-static poroelastic model (also known as Biot’s model). It consists 
of a momentum balance equation, a mass balance equation, and an energy balance 
equation, fully coupled and nonlinear due to a convective transport term in the 
energy balance equation. The aim of this article is to investigate, in the context 
of mixed formulations, the existence and uniqueness of a weak solution to this 
model problem. The primary variables in these formulations are the fluid pressure, 
temperature and elastic displacement as well as the Darcy flux, heat flux and total 
stress. The well-posedness of a linearized formulation is addressed first through the 
use of a Galerkin method and suitable a priori estimates. This is used next to study 
the well-posedness of an iterative solution procedure for the full nonlinear problem. 
A convergence proof for this algorithm is then inferred by a contraction of successive 
difference functions of the iterates using suitable norms.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The field of poroelasticity is concerned with describing the interaction between viscous fluid flow and 
elastic solid deformation within a porous material, and goes back to the works of K. Terzhagi [32] and 
M.A. Biot [6,7]. Porous materials are by definition solid materials comprising a great number of intercon-
nected pores, typically at the order of micrometers, where the interconnectivity of the pores is sufficient 
to allow for fluid flow through the material. For this reason, porous materials are usually modeled at the 
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continuum scale, such that the complex micro-structure needs not be explicitly accounted for in the mod-
eling, but rather implicitly through so-called effective parameters such as e.g. porosity and permeability. 
Porous materials are primarily associated with objects such as rocks and clays, but biological tissue, foams 
and paper products also fall within this category. Consequently, the field of poroelasticity is of great im-
portance in a range of different engineering disciplines, such as petroleum engineering, agricultural science 
and biomedicine, among others. A number of comprehensive text books related to the field exists; see 
e.g. [13,14,36].

Mathematical modeling of fluid saturated deformable porous media on the continuum scale relies on the 
theory of linear elasticity, adapted to porous materials by using the so-called total stress tensor instead 
of the Cauchy stress in the momentum balance equation. In particular, the total stress tensor is a linear 
combination of the Cauchy stress for the empty elastic skeleton and the isotropic stress coming from the 
fluid, i.e. the pore pressure. Within the quasi-static framework inertial terms are ignored, thus giving a 
purely elliptic equation for the momentum balance. A second equation of parabolic type accounts for the 
mass balance as fluid is displaced by the deformation of the solid, and relates change in porosity to volumetric 
fluid flow, i.e. the Darcy flux. This is essentially Biot’s poroelastic model for quasi-static deformation (see 
e.g. [6,13]). There is an extensive literature on this model problem and on its numerical approximation. 
To mention a few, the well-posedness based on the canonical two-field formulation with displacement and 
pressure as variables was carried out in [30], while three and four-field formulations have also been analyzed 
(taking Darcy flux and total stress as independent variables), and can be found in several studies, e.g. [1,
26,37]. A key feature of this model, one which greatly facilitates the analysis, is the symmetric coupling 
between the equations.

In many important applications, such as geothermal energy extraction, nuclear waste disposal and carbon 
storage, temperature also plays a vital role and must therefore be included in the modeling. Using the method 
of formal two-scale expansions (see e.g. [12,18] for a detailed review of this method), a thermo-poroelastic 
model was derived in [10], which accounts for fluid pressure, elastic displacement, and temperature dis-
tribution within a fine-grained, fully saturated poroelastic material within the framework of quasi-static 
deformation. This model is similar to other thermo-poroelastic models which exists in the literature; see e.g. 
[13,16,22,31,34], although there are also some notable differences among these works, in particular from the 
modeling point of view; i.e. allowable flow rates and deformation, choice of coordinate frames etc. (see [10,34]
for a comparison of existing thermo-poroelastic models). However, from the point of view of analysis the 
important factor is the coupling structure between the equations, and the model we analyze exhibits a fully 
coupled structure.

The aim of the present work is to establish the well-posedness of the nonlinear thermo-poroelastic model 
as described in [10], where we also provide a priori energy estimates and regularity properties of the 
solutions. We restrict our attention to an isotropic material such that the elastic coefficients are given by 
the Lamé parameters, and the Biot coefficient and thermal stress coefficient are given by scalar quantities. 
Some algebraic constraints on these coefficients must be imposed in order to obtain our results. Although 
the literature on the analysis of poroelastic models is quite extensive, there is not much literature on the 
analysis of thermo-poroelastic models; in [34] a corresponding energy functional for the thermo-poroelastic 
model was derived. This functional was then shown to be monotonically decreasing in time for a small 
enough characteristic temperature difference.

We undertake our analysis with a future mixed finite-element implementation in mind, and therefore 
double the number of variables from three to six, and investigate the existence and uniqueness of a weak 
solution corresponding to this fully coupled six-field model. The primary variables in this model are; fluid 
pressure, temperature, elastic displacement, Darcy flux, heat flux, and total stress. This makes the problem 
suitable for combinations of well-known stable finite-elements, such as Raviart-Thomas(-Nédélec) [25,29]
and Arnold–Winther [2,3]. From an implementation point of view there are several advantages of a mixed 
formulation over the canonical three-field formulation; the discretization respects mass and energy conser-
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vation, produces continuous normal fluxes regardless of mesh quality, and in general a mixed formulation is 
advantageous for domain decomposition techniques. We restrict our attention to two spatial dimensions, as 
this will be the most relevant case for the subsequent work, although the results we present can be extended 
to higher dimensions in a straightforward manner. In particular, the definition of the isotropic compliance 
tensor must reflect the choice of spatial dimension.

The main difficulty we face in the following analysis is the nonlinear coupling between the equations, 
i.e. the nonlinear convective transport term in the energy balance equation, which takes the form ∇T · w, 
where w is the Darcy flux, and T is the temperature distribution. The first part of the paper is therefore 
concerned with analyzing a linearized version of the model, where we write the convective transport term 
as η · w, for some given η ∈ L∞ (the remaining coupling terms are retained). Once we have obtained the 
existence and uniqueness of a weak solution to this problem, we introduce an iterative algorithm where 
we approximate the convective transport term as ∇Tm−1 · wm, where m ≥ 1 is the iteration index. Due 
to the results we obtained for the linearized problem, and by a natural assumption that the temperature 
gradient admits L∞-regularity in space, we construct a well defined sequence of iterates as m → ∞. This 
we show to converge in adequate norms to the solution of the original nonlinear problem, thus establishing 
the existence and uniqueness of its weak solution. The convergence proof relies on the Banach Fixed Point 
Theorem, which we use to obtain local solutions in time. Here, the time interval is supposed to be small to 
ensure a contraction of the successive difference functions of the iterates. Then, using piecewise continuation 
in time, we extend these local solutions to global solutions for any finite final time. The idea is that such an 
iterative scheme can also be applied numerically to a discretized formulation, and in this sense our analysis 
sets the stage for subsequent numerical experiments. We mention also some of the literature on iterative 
schemes in poroelasticity; in [5,8,20,24] there can be found several iterative procedures for solving Biot’s 
equations, and in [23,27,28] iterative methods for solving Richards’ equation were analyzed.

We summarize the main contribution of the article as follows: under a natural hypothesis on the regularity 
of the convective term, we give a proof of existence and uniqueness of a weak solution to the fully coupled 
six-field thermo-poroelastic problem within the quasi-static framework.

The article is organized as follows: Section 2 recalls the physical model and the assumptions on the data, 
introduces the relevant function spaces and introduces the mixed weak formulations. In section 3 we define a 
linear version of the original mixed variational problem, and proceed to analyze this in the following way; we 
construct approximate solutions using a Galerkin method, the existence of which is established by the theory 
of DAEs (Differential Algebraic Equations). Suitable a priori estimates are then derived which enables us to 
pass to the limit, thanks to the weak compactness of the spaces. Section 4 is devoted to analyzing an iterative 
solution procedure for the original nonlinear problem and to establish the convergence of the algorithm in 
suitable norms. In Appendix A we propose an alternative to the hypothesis on the temperature gradient, i.e. 
we show how the required regularity can be obtained by sufficient regularity of the data. For easy reference 
of the notation used in this article we provide some tables in Appendix B.

2. Presentation of the problem

Let Ω ⊂ R
d, for d ∈ {2, 3}, be an open and bounded domain, where we denote the boundary by Γ := ∂Ω, 

which is assumed to be Lipschitz continuous. Let a time interval J = (0, Tf ) be given with Tf > 0 and 
define Q := Ω × (0, Tf ] to be the space–time domain. The thermo-poroelastic model problem we consider, 
as it is exposed in [10], is as follows: given a heat source h, a body force f , and a mass source g, find (T, u, p)
such that

∂t(a0T − b0p + β∇ · u) −∇T · (K∇p) −∇ · (Θ∇T ) = h, in Q, (2.1a)

−(λ + μ)∇(∇ · u) − μ∇2u + α∇p + β∇T = f , in Q, (2.1b)
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∂t(c0p− b0T + α∇ · u) −∇ · (K∇p) = g, in Q, (2.1c)

where a0 is the effective thermal capacity, b0 is the thermal dilation coefficient, β is the thermal stress 
coefficient, K = (Kij)di,j=1 is the permeability divided by fluid viscosity, Θ = (Θij)di,j=1 is the effective 
thermal conductivity, μ and λ are the Lamé parameters, α is the Biot–Willis constant and c0 is the specific 
storage coefficient. The primary variables are the temperature distribution T , displacement u and fluid 
pressure p. To close the system, we prescribe homogeneous Dirichlet conditions on the boundary, i.e.,

T = 0, u = 0, and p = 0, on Γ × J, (2.1d)

and we assume the following initial conditions

T (·, 0) = T0, u(·, 0) = u0, and p(·, 0) = p0, in Ω × {0}, (2.1e)

for some known functions T0, u0 and p0. In practice, we may use nonhomogeneous Dirichlet and Neumann 
boundary conditions for which the analysis remains valid. Note also that if β = b0 = 0, the above system 
decouples from the energy equation, and the well-known quasi-static Biot equations are recovered (see e.g. [1]
where both the two- and four-field formulations are presented).

2.1. Preliminaries

We now define the function spaces that will be used throughout this article, see e.g. [15,38] for more details. 
For 1 ≤ p < ∞ let Lp(Ω) = {u : Ω → R :

∫
Ω |u|pdx < ∞}, with the associated norm ‖·‖p. In particular, 

L2(Ω) is the Hilbert space of square integrable functions defined on Ω, endowed with the inner product 
(·, ·), and the norm ‖·‖ := ‖·‖2. For p = ∞, L∞(Ω) is the space of uniformly bounded measurable functions 
defined on Ω, i.e. L∞(Ω) = {u : Ω → R : ess supx∈Ω |u| < ∞}, endowed with the norm ‖u‖∞ = inf{C : |u| ≤
C a.e. on Ω}. We denote by W k,p(Ω) the Sobolev space of functions in Lp(Ω), admitting weak derivatives up 
to order k in the same space. In particular, we denote by H1(Ω) := W 1,2(Ω) = {u ∈ L2(Ω) : ∇u ∈ (L2(Ω))d}, 
and designate by H1

0 (Ω) its zero-trace subspace. Let H(div, Ω) = {v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω)} be the 
space of vector valued functions, where each component belongs to L2(Ω), along with the weak divergence. 
We endow this space with the norm ‖v‖2

H(div;Ω) := ‖v‖2 + ‖∇ · v‖2. Let Hs(div, Ω) = {τ ∈ (L2(Ω))d×d :
∇ · τ ∈ (L2(Ω))d, τ ij = τ ji for 1 ≤ i, j ≤ d} be the space of symmetric tensor valued functions defined on 
Ω, where each component belongs to L2(Ω), and admitting a weak divergence in (L2(Ω))d. We denote by 
C1(Ω) the space of continuous functions defined on Ω, admitting continuous partial derivatives. Finally, let 
X be a Banach space and let Lp(J ; X) be the Bochner space of functions in Lp defined on J with values 
in X. Let ‖·‖X be a norm on X, then for u ∈ Lp(J ; X), p < ∞, we have ‖u‖pLp(J;X) :=

∫ Tf

0 ‖u(t)‖pX dt. In 

particular, we will make use of the spaces H1(J ; L2(Ω)) = {u(t) : Ω → R :
∫ Tf

0 (‖u(t)‖2 +‖∂tu(t)‖2)dt < ∞}
and L∞(J ; L2(Ω)) = {u(t) : Ω → R : ess supt∈J ‖u(t)‖ < ∞}. Note that if u(t) ∈ (L2(Ω))d is square 
integrable in time, we shall still write u ∈ L2(J ; L2(Ω)), but this should not cause any confusion as we will 
always utilize bold fonts for vector (or tensor) valued functions.

We will also frequently apply classical inequalities, i.e. Cauchy–Schwarz (C–S), Young, and Grönwall (see 
e.g. [17]).

2.2. Assumptions on the data

Before transcribing the mixed variational formulation of the problem (2.1), we make precise the assump-
tions on the data (further generalizations are possible, bringing more technicalities):
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Assumption 1 (Data).

A.1 The source terms are such that g, h ∈ L2(J ; L2(Ω)), and f ∈ H1(J ; L2(Ω)).
A.2 The initial conditions are such that p0, T0 ∈ H1

0 (Ω), and u0 ∈ (L2(Ω))d.
A.3 The permeability and heat conductivity tensors are such that K, Θ ∈ (L∞(Ω))d×d. Furthermore, we 

assume there exists kM , km > 0 such that for a.e. x ∈ Ω there holds

km|ζ|2 ≤ ζTK−1(x)ζ and |K−1(x)ζ| ≤ kM |ζ|, ∀ζ ∈ R
d \ {0},

and there exists θM , θm > 0 such that for a.e. x ∈ Ω there holds

θm|ζ|2 ≤ ζTΘ−1(x)ζ and |Θ−1(x)ζ| ≤ θM |ζ|, ∀ζ ∈ R
d \ {0}.

A.4 The constants c0, b0, a0, α, β, μ, and λ, are strictly positive.

2.3. Mixed variational formulation

We now give the mixed variational formulation of the problem (2.1), for which we need to introduce the 
total stress tensor; σ(u, p, T ) := 2με(u) + λ∇ · uI − αpI − βT I, where I is the identity tensor and ε(u) is 
the linearized strain tensor given by ε(u) := (∇u+∇Tu)/2, the Darcy flux w := −K∇p, and the heat flux 
r := −Θ∇T . For simplicity, we now restrict our attention to the case d = 2, in which case the fourth order 
compliance tensor, A, is given by

Aτ := 1
2μ

(
τ − λ

2(μ + λ) tr(τ )I
)
, τ ∈ R

d×d, (2.2)

as seen in [37] (see also [20] for the general formula). Note that A is bounded and symmetric positive definite 
uniformly with respect to x ∈ Ω, and defines an L2-equivalent norm, i.e.

1
2(μ + λ) ‖τ‖

2 ≤ ‖τ‖2
A ≤ 1

2μ ‖τ‖2
, ∀τ ∈

(
L2(Ω)

)d×d
, (2.3)

where ‖τ‖2
A =

∫
Ω Aτ : τdx. Applying A to the total stress tensor, it is inferred that

Aσ = ε(u) − 1
2(μ + λ) (αp + βT )I, (2.4)

and by taking the trace on both sides, we get the following relationship

∇ · u = 1
2(μ + λ) tr(σ) + 1

μ + λ
(αp + βT ). (2.5)

We also introduce the following notation

cr := α2

μ + λ
, br := b0 −

αβ

μ + λ
, ar := β2

μ + λ
. (2.6)

The above definitions yields an equivalent mixed form to (2.1):

∂t(a0T − b0p + β∇ · u) + ∇T · w + ∇ · r = h, in Q, (2.7a)

Θ−1r + ∇T = 0, in Q, (2.7b)
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∂t(c0p− b0T + α∇ · u) + ∇ · w = g, in Q, (2.7c)

K−1w + ∇p = 0, in Q, (2.7d)

Aσ − ε(u) + cr
2αIp + ar

2β IT = 0, in Q, (2.7e)

−∇ · σ = f , in Q. (2.7f)

We now set

T := L2(Ω), R := H(div,Ω), P := L2(Ω), W := H(div,Ω), S := Hs(div,Ω), U := (L2(Ω))d.

The following mixed variational formulation of the problem (2.1) can be obtained by multiplying by adequate 
test functions and then integrating by parts: find (T (t), r(t), p(t), w(t), σ(t), u(t)) ∈ T ×R ×P×W×S×U , 
such that a.e. for t ∈ J there holds

(a0 + ar)(∂tT, S) − br(∂tp, S) + ar
2β (∂tσ, SI) + (Θ−1r · w, S) + (∇ · r, S) = (h, S), ∀S ∈ T , (2.8a)

(Θ−1r,y) − (T,∇ · y) = 0, ∀y ∈ R, (2.8b)

(c0 + cr)(∂tp, q) − br(∂tT, q) + cr
2α (∂tσ, qI) + (∇ · w, q) = (g, q), ∀q ∈ P, (2.8c)

(K−1w, z) − (p,∇ · z) = 0, ∀z ∈ W, (2.8d)

(Aσ, τ ) + (u,∇ · τ ) + cr
2α (Ip, τ ) + ar

2β (IT, τ ) = 0, ∀τ ∈ S, (2.8e)

−(∇ · σ,v) = (f ,v), ∀v ∈ U , (2.8f)

and such that the initial conditions (2.1e) holds true in the weak sense, i.e.

(p(0), q) = (p0, q) ∀q ∈ P, (u(0),v) = (u0,v) ∀v ∈ U , and (T (0), S) = (T0, S) ∀S ∈ T . (2.8g)

Remark 2.1. Note that a different variational formulation of the problem (2.7) is possible, using a weakly 
symmetric space for the stress tensor. This formulation will then involve a new variable acting as a Lagrange 
multiplier which is enforcing the symmetry of the stress (see e.g. [2,4,20]). For simplicity of presentation we 
shall keep the formulation (2.8) throughout. The analysis presented next can nevertheless also be extended 
to the previously mentioned formulation using the same techniques, as done in [1] for the four-field Biot 
equations.

Remark 2.2. The nonlinear coupling in the above problem makes the analysis difficult. The next section is 
therefore devoted to analyzing a linearized problem, the results from which will be helpful when analyzing 
the full nonlinear problem in the last section. We mention also that other nonlinearities can be added, e.g. 
nonlinear compressibility or nonlinear Lamé parameters.

3. Analysis of the linear problem

In this section we introduce a linear version of the problem (2.8). Precisely, we replace the convec-
tive transport term (Θ−1r · w, S) in the energy balance equation (2.8a), by −(η · w, S), for some given 
η ∈ L∞(Ω). We denote by γ := ‖η‖∞. We introduce the resulting linear problem which reads: find 
(T (t), r(t), p(t), w(t), σ(t), u(t)) ∈ T ×R × P ×W × S × U , such that for a.e. t ∈ J there holds
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(a0 + ar)(∂tT, S) − br(∂tp, S) + ar
2β (∂tσ, SI) − (η · w, S) + (∇ · r, S) = (h, S), ∀S ∈ T , (3.1a)

(Θ−1r,y) − (T,∇ · y) = 0, ∀y ∈ R, (3.1b)

(c0 + cr)(∂tp, q) − br(∂tT, q) + cr
2α (∂tσ, qI) + (∇ ·w, q) = (g, q), ∀q ∈ P, (3.1c)

(K−1w, z) − (p,∇ · z) = 0, ∀z ∈ W, (3.1d)

(Aσ, τ ) + (u,∇ · τ ) + cr
2α (Ip, τ ) + ar

2β (IT, τ ) = 0, ∀τ ∈ S, (3.1e)

−(∇ · σ,v) = (f ,v), ∀v ∈ U , (3.1f)

and such that initial conditions (2.8g) holds true. The remaining part of this section is devoted to proving 
the well-posedness of this system. In what follows, we assume the following hypothesis on the effective 
thermal capacity a0, the thermal dilation coefficient b0, the specific storage coefficient c0 and the Lamé 
parameters μ, λ;

b0 −
αβ

μ + λ
> 0, c0 −

cr
2 − b0 −

1
6(μ + λ) > 0, a0 −

ar
2 − b0 −

1
6(μ + λ) > 0. (3.2)

These constraints are typically needed in order to ensure a gradient flow structure. Similar constraints 
were used to analyze the Biot equations in mixed form in [1]. We also refer the reader to [21] for a more 
detailed discussion about the scaling of Biot’s (isothermal) equations. However, compared to these works, 
our constraints involve also the thermal coefficients. We omit any further discussion on the justification 
for these constraints, other than they are necessary to prove the results we present. The well-posedness of 
problem (3.1) is then given in the following result.

Theorem 3.1 (Well-posedness of the linear problem). Under Assumption 1, the problem (3.1), (2.8g) has a 
unique solution

(T, r) ∈ H1(J ;L2(Ω)) ×
(
L2(J ;H(div; Ω)) ∩ L∞(J ;L2(Ω))

)
, (3.3a)

(p,w) ∈ H1(J ;L2(Ω)) ×
(
L2(J ;H(div; Ω)) ∩ L∞(J ;L2(Ω))

)
, (3.3b)

(u,σ) ∈ H1(J ;L2(Ω)) ×
(
L2(J ;Hs(div; Ω)) ∩H1(J ;L2(Ω))

)
. (3.3c)

Moreover, if g, h ∈ H1(J ; L2(Ω)), f ∈ H2(J ; L2(Ω)) then

(T, r) ∈ W 1,∞(J ;L2(Ω)) ×
(
L∞(J ;H(div; Ω)) ∩H1(J ;L2(Ω))

)
, (3.4a)

(p,w) ∈ W 1,∞(J ;L2(Ω)) ×
(
L∞(J ;H(div; Ω)) ∩H1(J ;L2(Ω))

)
, (3.4b)

(u,σ) ∈ W 1,∞(J ;L2(Ω)) ×
(
L∞(J ;Hs(div; Ω)) ∩W 1,∞(J ;L2(Ω))

)
. (3.4c)

The proof will follow from a series of partial results to be done in the sequel. The analysis uses a Galerkin 
method together with the theory of differential algebraic equations (DAEs), as well as weak compactness 
arguments (cf. [1,37,26,15]).

3.1. Construction of approximate solutions

In order to employ Galerkin’s method we introduce a finite dimensional approximation of the problem 
(3.1). We need to introduce the following finite dimensional subspaces. Let (i, j, k, l, m, n) ∈ N

6 be fixed 
and strictly positive, and let Ti := span{S� ∈ T : 
 = 1, · · · , i}, Rj := span{y� ∈ R : 
 = 1, · · · , j}, 



246 M.K. Brun et al. / J. Math. Anal. Appl. 471 (2019) 239–266
Pk := span{q� ∈ P : 
 = 1, · · · , k}, Wl := span{z� ∈ W : 
 = 1, · · · , l}, Sm := span{τ � ∈ S : 
 = 1, · · · , m}
and Un := span{v� ∈ U : 
 = 1, · · · , n}, where the functions S�, y�, q�, z�, τ � and v�, for 
 ∈ N, constitute 
Hilbert bases for the spaces T , R, P, W, S and U , respectively. Let now (Ti, rj , pk, wl, σm, un) : [0, Tf ]6 →
Ti ×Rj × Pk ×Wl × Sm × Un be the solution to the following problem:

(a0 + ar)(∂tTi, S�) − br(∂tpk, S�) + ar
2β (∂tσm, S�I)

−(η · wl, S�) + (∇ · rj , S�) = (h, S�), 
 = 1, · · · , i, (3.5a)

(Θ−1rj ,y�) − (Ti,∇ · y�) = 0, 
 = 1, · · · , j, (3.5b)

(c0 + cr)(∂tpk, q�) − br(∂tTi, q�) + cr
2α (∂tσm, q�I) + (∇ · wl, q�) = (g, q�), 
 = 1, · · · , k, (3.5c)

(K−1wl, z�) − (pk,∇ · z�) = 0, 
 = 1, · · · , l, (3.5d)

(Aσm, τ �) + (un,∇ · τ �) + cr
2α (Ipk, τ �) + ar

2β (ITi, τ �) = 0, 
 = 1, · · · ,m, (3.5e)

−(∇ · σm,v�) = (f ,v�), 
 = 1, · · · , n. (3.5f)

We introduce the coefficient vectors of the solutions: let Ti(t) := [T1(t), · · · , Ti(t)]T where Ti(x, t) =∑i
�=1 T�(t)S�, Rj(t) := [r1(t), · · · , rj(t)]T where rj(x, t) =

∑j
�=1 r�(t)y�, Pk(t) := [p1(t), · · · , pk(t)]T

where pk(x, t) =
∑k

�=1 p�(t)q�, Wl(t) := [w1(t), · · · , wl(t)]T where wl(x, t) =
∑l

�=1 w�(t)z�, Σm(t) :=
[σ1(t), · · · , σm(t)]T where σm(x, t) =

∑m
�=1 σ�(t)τ � and Un(t) := [u1(t), · · ·un(t)]T where un(x, t) =∑n

�=1 u�(t)v�.
Thus, we impose the initial conditions by

T�(0) = (T0, S�), 1 ≤ 
 ≤ i, u�(0) = (u0,v�), 1 ≤ 
 ≤ n, p�(0) = (p0, q�), 1 ≤ 
 ≤ k. (3.5g)

We also define the following linear operators: (Aσσ)ıj := (Aτ ı, τ j), for 1 ≤ ı, j ≤ m, (App)ıj := (c0 +
cr)(qı, qj), for 1 ≤ ı, j ≤ k, (ATT )ıj := (a0 + ar)(Sı, Sj), for 1 ≤ ı, j ≤ i, (Aww)ıj := (K−1zı, zj), for 
1 ≤ ı, j ≤ l, (Arr)ıj := (Θ−1yı, yj), for 1 ≤ ı, j ≤ j, (Auσ)ıj := (vı, ∇ · τ j), for 1 ≤ ı ≤ n, 1 ≤ j ≤ m, 
(Apσ)ıj := cr

2α (Iqı, τ j), for 1 ≤ ı ≤ k, 1 ≤ j ≤ m, (ATσ)ıj := ar
2β (ISı, τ j), for 1 ≤ ı ≤ i, 1 ≤ j ≤ m, 

(ATp)ıj := −br(Sı, qj), for 1 ≤ ı ≤ i, 1 ≤ j ≤ k, (Awp)ıj := (∇ · zı, qj), 1 ≤ ı ≤ l, 1 ≤ j ≤ k, (ArT )ıj :=
(∇ · yı, Sj), for 1 ≤ ı ≤ l, 1 ≤ j ≤ i, and (AwT )ıj := (η · zı, Sj), for 1 ≤ ı ≤ l, 1 ≤ j ≤ i.

Finally, we define the vectors: (L1)� := (f , v�), for 1 ≤ 
 ≤ n, (L2)� := (g, q�), for 1 ≤ 
 ≤ k and 
(L3)� := (h, S�), for 1 ≤ 
 ≤ i. We rewrite using the above notation the problem (3.5) as a system of ODEs

ATT
d
dtTi + ATp

d
dtPk + ATσ

d
dtΣm − AwTWl + AT

rTRj = L3, (3.6a)

ArRj − ArTTi = 0, (3.6b)

App
d
dtPk + AT

Tp

d
dtTi + Apσ

d
dtΣm + AT

wpWl = L2, (3.6c)

AwWl − AwpPk = 0, (3.6d)

AσσΣm + AT
uσUn + AT

pσPk + AT
TσTi = 0, (3.6e)

− AuσΣm = L1. (3.6f)

After rearranging, these ODE equations can be written in the form of a DAE system

Φ d
X(t) + ΨX(t) = L(t), (3.7)
dt
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where X(t) := (Pk(t), Σm(t), Ti(t), Wl(t), Un(t), Rj(t))T , L(t) := (L2(t), 0, L3(t), 0, L1(t), 0)T and

Φ :=

⎛
⎜⎜⎜⎜⎜⎝

App Apσ AT
Tp 0 0 0

0 0 0 0 0 0
ATp ATσ ATT 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ , (3.8)

and

Ψ :=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 AT
wp 0 0

AT
pσ Aσσ AT

Tσ 0 AT
uσ 0

0 0 0 −AwT 0 AT
rT

−Awp 0 0 Aww 0 0
0 −Auσ 0 0 0 0
0 0 −ArT 0 0 Arr

⎞
⎟⎟⎟⎟⎟⎠ . (3.9)

From the theory of DAEs, equation (3.7) together with initial conditions (3.5g) has a solution if the 
matrix pencil, sΦ + Ψ, is nonsingular for some s �= 0 (see [9]). Note that we can write sΦ + Ψ as a block 
2 × 2 matrix as follows

sΦ + Ψ =
(

A B
−C D

)
,

where

A =

⎛
⎝ sApp sApσ sAT

Tp

AT
pσ Aσσ AT

Tσ
sATp sATσ sATT

⎞
⎠ , B =

⎛
⎝ AT

wp 0 0
0 AT

uσ 0
−AwT 0 AT

rT

⎞
⎠ ,

C =
(Awp 0 0

0 Auσ 0
0 ArT

)
, D =

(Aww 0 0
0 0 0
0 0 Arr

)
.

Let B = Sm × Pk × Ti and C = Un ×Wl ×Rj , such that the bilinear form associated with sΦ + Ψ can 
be decomposed into the bilinear forms associated with each block, i.e. φA : B × B → R, φB : C × B → R, 
φC : B × C → R, and φD : C × C → R, where

φA((σm, pk, Ti), (τ , q, S)) := s(c0 + cr)(pk, q) + cr
2α (Ipk, τ ) + s

cr
2α (σm, qI) − sbr(pk, S)

− sbr(Ti, q) + (Aσm, τ ) + s
ar
2β (σm, SI)

+ ar
2β (ITi, τ ) + s(a0 + ar)(Ti, S), (3.10a)

φB((τ , q, S), (un,wl, rj)) := (∇ · wl, q) + (un,∇ · τ ) − (η · wl, S) + (∇ · rj , S), (3.10b)

φC((σm, pk, Ti), (v, z,y)) := (pk,∇ · z) + (∇ · σm,v) + (Ti,∇ · y), (3.10c)

φD((un,wl, rj), (v, z,y)) := (K−1wl, z) + (Θ−1rj ,y). (3.10d)

The following Lemma will imply the invertibility of sΦ + Ψ for some s �= 0.

Lemma 3.2. For any tuple (i, j, k, l, m, n) ≥ 1, there exists an s �= 0 such that the bilinear form associated 
with sΦ + Ψ is strictly positive, i.e.
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φA + φB − φC + φD > 0,

for all nonzero (τ , q, S) ∈ B and (v, z, y) ∈ C.

Proof. Denoting by τ =
(
τ11 τ12
τ21 τ22

)
, and using the definition of the compliance tensor (2.2), together with 

the C–S, Young, and triangle inequalities yields

φA((τ , q, S), (τ , q, S)) + φB((v, z,y), (τ, q, S)) − φC((τ, q, S), (v, z,y)) + φD((v, z,y), (v, z,y))

= s(c0 + cr) ‖q‖2 + s(a0 + ar) ‖S‖2 + (1 + s) cr2α (Iq, τ ) − 2sbr(q, S) + (1 + s) ar2β (τ , SI)

+ (Aτ , τ ) − (η · z, S) + (K−1z, z) + (Θ−1y,y)

≥
(
s(c0 + cr − br) − (1 + s) cr2α

ε1
2

)
‖q‖2 +

(
s(a0 + ar − br) − (1 + s) ar2β

ε2
2 − γ

2km

)
‖S‖2

+
(

1
2(μ + λ) − (1 + s) cr2α

1
2ε1

− (1 + s) ar2β
1

2ε2

)(
‖τ 11‖2 + ‖τ 22‖2

)

+ θm ‖y‖2 + km
2 ‖z‖2 + 1

μ
‖τ 12‖2

. (3.11)

What remains is to show if there exist parameters ε1, ε2, and s such that the following six constraints are 
satisfied

0 ≤ s(c0 + cr − br) − (1 + s) cr2α
ε1
2 , (3.12a)

0 ≤ s(a0 + ar − br) − (1 + s) ar2β
ε2
2 − γ

2km
, (3.12b)

0 ≤ 1
2(μ + λ) − (1 + s) cr2α

1
2ε1

− (1 + s) ar2β
1

2ε2
, (3.12c)

0 < ε1, ε2, and s �= 0. (3.12d)

It is easily verified that the following choices are satisfactory; s = −2, ε1 = 4α
cr(1 + s)s(c0 + cr − br), and 

ε2 = 4β
ar(1 + s)

(
s(a0 + ar − br) −

γ

2km

)
. We use these choices in (3.11), and letting

ξ := 1 + 1
16(μ + λ)(c0 + cr − br)

+ 1
16(μ + λ)(a0 + ar − br + γ/(2km)) > 0, it is inferred that

φA((τ , q, S), (τ , q, S)) + φB((v, z,y), (τ, q, S)) − φC((τ, q, S), (v, z,y)) + φD((v, z,y), (v, z,y))

≥ ξ

2(μ + λ)

(
‖τ 11‖2 + ‖τ 22‖2

)
+ km

2 ‖z‖2 + θm ‖y‖2 + 1
μ
‖τ12‖2

> 0, (3.13)

for all nonzero (τ , q, S) ∈ B, (v, z, y) ∈ C. Thus, there exists an s �= 0 such that sΦ + Ψ is nonsingular, and 
the equation (3.7) has a solution. �
3.2. A priori estimates

In this section, we derive a priori estimates for the unknowns which will allow us to pass to the limit 
in problem (3.5) by weak compactness arguments [38,15]. Throughout this section we denote by C > 0 a 
generic positive constant which may change value from one line to the next, but it will always be independent 
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of the relevant parameters, i.e. of the tuple (i, j, k, l, m, n). We summarize these estimates in the following 
theorem.

Theorem 3.3 (A priori estimates). Under the Assumption 1, there exists a constant C > 0, independent of 
(i, j, k, l, m, n) ≥ 1, such that
(i)

‖pk‖2
L∞(J;L2(Ω)) + ‖Ti‖2

L∞(J;L2(Ω)) + ‖wl‖2
L2(J;L2(Ω)) + ‖rj‖2

L2(J;L2(Ω)) + ‖σ(0)‖2
A

≤ C
(
‖f‖2

H1(J;L2(Ω)) + ‖g‖2
L2(J;L2(Ω)) + ‖h‖2

L2(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
,

(ii) ‖∂tpk‖2
L2(J;L2(Ω)) + ‖∂tTi‖2

L2(J;L2(Ω)) + ‖wl‖2
L∞(J;L2(Ω)) + ‖rj‖2

L∞(J;L2(Ω))

≤ C
(
‖f‖2

H1(J;L2(Ω)) + ‖g‖2
L2(J;L2(Ω)) + ‖h‖2

L2(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
,

(iii) ‖σm‖2
L∞(J;L2(Ω)) + ‖∂tσm‖2

L2(J;L2(Ω)) + ‖un‖2
L∞(J;L2(Ω)) + ‖∂tun‖2

L2(J;L2(Ω))

≤ C
(
‖f‖2

H1(J;L2(Ω)) + ‖g‖2
L2(J;L2(Ω)) + ‖h‖2

L2(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
,

(iv) ‖wl‖2
L2(J;H(div,Ω)) + ‖rj‖2

L2(J;H(div,Ω)) + ‖σm‖2
L2(J;Hs(div,Ω))

≤ C
(
‖f‖2

H1(J;L2(Ω)) + ‖g‖2
L2(J;L2(Ω)) + ‖h‖2

L2(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
.

Proof. By Thomas’ Lemma [33] there exist σ̃ ∈ H1(J ; Sm) such that −∇ · σ̃(·, t) = un(·, t) on Ω for t ∈ J , 
and with ‖σ̃(t)‖ ≤ C ‖un(t)‖. Thus, we set τ � = σ̃(t) in (3.5e) and obtain

‖un‖2 = −(un,∇ · σ̃) = (Aσm, σ̃) + cr
2α (Ipk, σ̃) + ar

2β (ITi, σ̃)

≤
(

1
2μ ‖σm‖ + cr

2α ‖pk‖ + ar
2β ‖Ti‖

)
‖σ̃‖

≤
(

1
2μ ‖σm‖ + cr

2α ‖pk‖ + ar
2β ‖Ti‖

)
C ‖un‖ , (3.14a)

which implies

‖un‖2 ≤ C
(
‖σm‖2 + ‖pk‖2 + ‖Ti‖2

)
. (3.14b)

Next, we take τ � = σm in (3.5e) and v� = un in (3.5f), and add the resulting equations together to obtain

‖σm‖2
A = − cr

2α (Ipk,σm) − ar
2β (ITi,σm) + (f ,un). (3.15a)

Applying the C–S and Young inequalities together with the above estimate (3.14b) yields

‖σm‖2
A ≤ cr

2α

(
1

2ε1
‖pk‖2 + ε1

2 ‖σm‖2
)

+ ar
2β

(
1

2ε2
‖Ti‖2 + ε2

2 ‖σm‖2
)

+ 1
2ε3

‖f‖2 + ε3
2 ‖un‖2

≤
(
α

2 ε1 + β

2 ε2 + C(μ + λ)ε3
)
‖σm‖2

A +
(

cr
4αε1

+ C
ε3
2

)
‖pk‖2

+
(

ar
4βε2

+ C
ε3
2

)
‖Ti‖2 + 1

2ε3
‖f‖2

. (3.15b)
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Choosing suitable values for the epsilons, i.e. ε1 = 1
3α , ε2 = 1

3β and ε3 = 1
6C(μ + λ) , we obtain

‖σm‖2
A ≤

(
3
2
cr + 1

6(μ + λ)

)
‖pk‖2 +

(
3
2
ar + 1

6(μ + λ)

)
‖Ti‖2 + C ‖f‖2

. (3.15c)

It then follows immediately that

‖un‖2 ≤ C
(
‖pk‖2 + ‖Ti‖2 + ‖f‖2

)
. (3.16)

Take now σ̃ ∈ L2(J ; Sm) such that −∇ · σ̃(·, t) = ∂tun(·, t) on Ω, for t ∈ J , and with ‖σ̃(t)‖ ≤ C ‖∂tun(t)‖. 
Then, by differentiating equation (3.5e) with respect to time, and setting τ � = σ̃, we get in the same way 
as before

‖∂tun‖2 ≤ C
(
‖∂tσm‖2 + ‖∂tpk‖2 + ‖∂tTi‖2

)
. (3.17)

We continue by differentiating equations (3.5e) and (3.5f) with respect to time, and take ∂tσm and ∂tun as 
test functions, respectively, and get analogously

‖∂tσm‖2
A ≤

(
3
2cr + 1

6(μ + λ)

)
‖∂tpk‖2 +

(
3
2ar + 1

6(μ + λ)

)
‖∂tTi‖2 + C ‖∂tf‖2

, (3.18)

and

‖∂tun‖2 ≤ C
(
‖∂tpk‖2 + ‖∂tTi‖2 + ‖∂tf‖2

)
. (3.19)

Next, we take ∂tσm, pk, wl, Ti and rj as a test functions in (3.5e), (3.5c), (3.5d), (3.5a) and (3.5b), 
respectively. We differentiate then (3.5f) with respect to time, and take un as a test function. Adding 
together the resulting equations yields

(c0 + cr)(∂tpk, pk) + (a0 + ar)(∂tTi, Ti) + (K−1wl,wl) + (Θ−1rj , rj)

= (Aσm, ∂tσm) + br(∂tTi, pk) + br(∂tpk, Tj) + (η · wl, Ti)

− (∂tf ,un) + (g, pk) + (h, Ti). (3.20a)

Using the properties of K and Θ, in addition to the C–S and Young inequalities yields

(c0 + cr − br)
1
2

d
dt ‖pk‖

2 + (a0 + ar − br)
1
2

d
dt ‖Ti‖2 +

(
km − γ

1
2ε

)
‖wl‖2 + θm ‖rj‖2

≤ 1
2

(
d
dt ‖σm‖2

A + (ε + 1) ‖Ti‖2 + ‖un‖2 + ‖pk‖2 + ‖∂tf‖2 + ‖g‖2 + ‖h‖2
)
. (3.20b)

Choosing ε = γ

km
, integrating from 0 to t and substituting the inequalities (3.14b) and (3.15c), we deduce

(
c0 −

cr
2 − br −

1
6(μ + λ)

)
‖pk(t)‖2 +

(
a0 −

ar
2 − br −

1
6(μ + λ)

)
‖Ti(t)‖2

+
t∫ (

km ‖wl(τ)‖2 + θm ‖rj(τ)‖2
)

dτ

0
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≤ C

t∫
0

(
‖pk(τ)‖2 + ‖Ti(τ)‖2

)
dτ − ‖σm(0)‖2

A

+ C
(
‖f‖2

H1(J;L2(Ω)) + ‖g‖2
L2(J;L2(Ω)) + ‖h‖2

L2(J;L2(Ω)) + ‖pk(0)‖2 + ‖Ti(0)‖2
)
. (3.20c)

Since from (3.5g) we have

‖Ti(0)‖2 ≤ ‖T0‖2 and ‖pk(0)‖2 ≤ ‖p0‖2
, (3.21)

we obtain the first estimate (i) using Grönwall’s inequality, i.e.

‖pk‖2
L∞(J;L2(Ω)) + ‖Ti‖2

L∞(J;L2(Ω)) + ‖wl‖2
L2(J;L2(Ω) + ‖rj‖2

L2(J;L2(Ω) + ‖σm(0)‖2
A

≤ C
(
‖f‖2

H1(J;L2(Ω)) + ‖g‖2
L2(J;L2(Ω)) + ‖h‖2

L2(J;L2(Ω)) + ‖p0‖2 + ‖T0‖2
)
. (3.22)

For the second estimate, we differentiate (3.5e), (3.5f), (3.5d) and (3.5b) with respect to time and use 
∂tσm, ∂tun, wl and rj as test functions, respectively. In (3.5c) and (3.5a), we use ∂tpk and ∂tTi as test 
functions, respectively. Summing the resulting equations yields

(c0 + cr) ‖∂tpk‖2 + (a0 + ar) ‖∂tTi‖2 + (K−1∂twl,wl) + (Θ−1∂trj , rj)

= ‖∂tσm‖2
A + 2br(∂tTi, ∂tpk) + (η · wl, ∂tTi) − (∂tf , ∂tun) + (g, ∂tpk) + (h, ∂tTi). (3.23a)

By applying the C–S and Young inequalities, and substituting the estimates (3.17) and (3.18), we deduce

(
c0 −

cr
2 − br −

1
6(μ + λ) − ε2

2

)
‖∂tpk‖2

+
(
a0 −

ar
2 − br −

1
6(μ + λ) − ε4

2 − ε3
2

)
‖∂tTi‖2 + km

2
d
dt ‖wl‖2 + θm

2
d
dt ‖rj‖

2

≤ ε1
2 C

(
‖∂tpk‖2 + ‖∂tTi‖2 + ‖∂tf‖2

)

+ γ
1

2ε4
‖wl‖2 + 1

2ε1
‖∂tf‖2 + 1

2ε2
‖g‖2 + 1

2ε3
‖h‖2

. (3.23b)

Choosing suitable values for the epsilons, i.e. ε1 = αβ

C(μ + λ) , ε2 = αβ

μ + λ
, ε3 = αβ

2(μ + λ) , and ε4 = αβ

2(μ + λ) , 

we infer
(
c0 −

cr
2 − b0 −

1
6(μ + λ)

)
‖∂tpk‖2 +

(
a0 −

ar
2 − b0 −

1
6(μ + λ)

)
‖∂tTi‖2

+ km
2

d
dt ‖wl‖2 + θm

2
d
dt ‖rj‖

2

≤ C
(
‖wl‖2 + ‖∂tf‖2 + ‖g‖2 + ‖h‖2

)
. (3.23c)

Simplifying the above expression, integrating over (0, t) and using the initial conditions yields

‖wl(t)‖2 + ‖rj(t)‖2 +
t∫ (

‖∂tpk(τ)‖2 + ‖∂tTi(τ)‖2
)

dτ

0
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≤ C

⎛
⎝ t∫

0

‖wl(τ)‖2 dτ + ‖∂tf‖2
L2(J;L2(Ω)) + ‖g‖2

L2(J;L2(Ω)) + ‖h‖2
L2(J;L2(Ω)) + ‖wl(0)‖2 + ‖rj(0)‖2

⎞
⎠ .

(3.23d)

It remains to provide estimates for ‖wl(0)‖2 and ‖rj(0)‖2. To this end, take wl as a test function in 
equation (3.5d), and set t = 0. This gives

(K−1wl(0),wl(0)) = (pk(0),∇ · wl(0)), (3.24a)

which holds true for any k, l ≥ 1. Use now the properties of K to bound the left-hand side, tend k → ∞
and then integrate by parts in the right-hand side to obtain

km ‖wl(0)‖2 ≤ (p0,∇ ·wl(0)) = −(∇p0,wl(0)) ≤ ‖∇p0‖ ‖wl(0)‖ . (3.24b)

Thus, we have

‖wl(0)‖2 ≤ C ‖p0‖2
H1

0 (Ω) . (3.24c)

Similarly, using (3.5b), we obtain

‖rj(0)‖2 ≤ C ‖T0‖2
H1

0 (Ω) . (3.24d)

Taking now (3.24c) and (3.24d) in (3.23d), and applying Grönwall’s lemma, we obtain the second estimate 
(ii), i.e.

‖∂tpk‖2
L2(J;L2(Ω)) + ‖∂tTi‖2

L2(J;L2(Ω)) + ‖wl‖2
L∞(J;L2(Ω)) + ‖rj‖2

L∞(J;L2(Ω))

≤ C
(
‖f‖2

H1(J;L2(Ω)) + ‖g‖2
L2(J;L2(Ω)) + ‖h‖2

L2(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
. (3.25)

Now we sum the estimates (3.15c), (3.16), (3.18), and (3.19), and substitute the estimates (3.22) and (3.25), 
to obtain (iii), i.e.

‖σm‖2
L∞(J;L2(Ω)) + ‖∂tσm‖2

L2(J;L2(Ω)) + ‖un‖2
L∞(J;L2(Ω)) + ‖∂tun‖2

L2(J;L2(Ω))

≤ C
(
‖f‖2

H1(J;L2(Ω)) + ‖g‖2
L2(J;L2(Ω)) + ‖h‖2

L2(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
. (3.26)

It remains to obtain the estimate (iv), for which we need just to bound the divergences. Since ∇ ·rj(t) ∈ L2(Ω)
for t ∈ J , we can write ∇ · rj(t) =

∑∞
�=1 ξ�(t)S�, for some functions ξ�(t) ∈ R. Now, we multiply equation 

(3.5a) with ξ�, sum over 
 = 1, .., i and use the C–S and Young inequalities to obtain

(∇ · rj ,
i∑

�=1

ξ�S�)

= (h,
i∑

�=1

ξ�S�) − (a0 + ar)(∂tTi,

i∑
�=1

ξ�S�) −
ar
2β (∂tσl,

i∑
�=1

ξ�S�) + br(∂tpk,
i∑

�=1

ξ�S�) + (η · wl,

i∑
�=1

ξ�S�)

≤ 1
2

(∥∥∥∥∥
i∑

�=1

∂tξ�q�

∥∥∥∥∥
2

+ 5 ‖h‖2 + 5(a0 + ar)2 ‖∂tTi‖2 + 5a2
r

4β2 ‖∂tσm‖2 + 5b2r ‖∂tpk‖
2 + 5γ ‖wl‖2

)
. (3.27a)
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Using (3.18), integrating in time and using (3.25) we get

Tf∫
0

(∇ · rj ,
i∑

�=1

ξ�S�)dt ≤
1
2

Tf∫
0

∥∥∥∥∥
i∑

�=1

ξ�S�

∥∥∥∥∥
2

dt

+ C
(
‖f‖2

H1(J;L2(Ω)) + ‖g‖2
L2(J;L2(Ω)) + ‖h‖2

L2(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
. (3.27b)

It remains to tend i → ∞ to obtain

‖∇ · rj‖2
L2(J;L2(Ω)) ≤ C

(
‖f‖2

H1(J;L2(Ω)) + ‖g‖2
L2(J;L2(Ω)) + ‖h‖2

L2(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
.

(3.27c)

Similarly, we obtain the following from equations (3.5c) and (3.5f)

‖∇ · wl‖2
L2(J;L2(Ω)) ≤ C

(
‖f‖2

H1(J;L2(Ω)) + ‖g‖2
L2(J;L2(Ω)) + ‖h‖2

L2(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
,

(3.27d)

and

‖∇ · σm‖2
L2(J;L2(Ω)) ≤ C ‖f‖2

L2(J;L2(Ω)) . (3.27e)

Combining the estimates (3.27c)–(3.27d) with (i) and (iii), we get the estimate (iv). This ends the proof. �
The following estimates prove that the solution has improved regularity given some additional regularity 

on the data. We state the result as a lemma:

Lemma 3.4 (Estimates for improved regularity). Assume that f ∈ H2(J ; L2(Ω)) and g, h ∈ H1(J ; L2(Ω)). 
Then there exists a constant C > 0 independent of (i, j, k, l, m, n) such that
(i)

‖pk‖2
W 1,∞(J;L2(Ω)) + ‖Ti‖2

W 1,∞(J;L2(Ω)) + ‖wl‖2
H1(J;L2(Ω)) + ‖rj‖2

H1(J;L2(Ω)) + ‖∂tσm(0)‖2

≤ C
(
‖f‖2

H2(J;L2(Ω)) + ‖g‖2
H1(J;L2(Ω)) + ‖h‖2

H1(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
,

(ii) ‖σm‖2
W 1,∞(J;L2(Ω)) + ‖un‖2

W 1,∞(J;L2(Ω))

≤ C
(
‖f‖2

H2(J;L2(Ω)) + ‖g‖2
H1(J;L2(Ω)) + ‖h‖2

H1(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
,

(iii) ‖wl‖2
L∞(J;H(div,Ω)) + ‖rj‖2

L∞(J;H(div,Ω)) + ‖σm‖2
L∞(J;Hs(div,Ω))

≤ C
(
‖f‖2

H2(J;L2(Ω)) + ‖g‖2
H1(J;L2(Ω)) + ‖h‖2

H1(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
.

Proof. We begin by differentiating equations (3.5e), (3.5c), (3.5d), (3.5a) and (3.5b) with respect to time, 
and take ∂ttσm, ∂tpk, ∂twl, ∂tTi and ∂trj as a test functions respectively. Then, we differentiate (3.5f) twice 
with respect to time, and take ∂tun as a test function. Summing the resulting equations yields
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(c0 + cr)
1
2

d
dt

‖∂tpk‖2 + (a0 + ar)
1
2

d
dt

‖∂tTi‖2 + (K−1∂twl, ∂twl) + (Θ−1∂trj , ∂trj)

= 1
2

d
dt ‖∂tσm‖A + br

d
dt (∂tTi, ∂tpk) + (η · ∂twl, ∂tTi)

− (∂ttf , ∂tun) + (∂tg, ∂tpk) + (∂th, ∂tTi). (3.28a)

Using the properties of K and Θ, in addition to the C–S and Young inequalities, we get

(c0 + cr − br)
1
2

d
dt ‖∂tpk‖

2 + (a0 + ar − br)
1
2

d
dt ‖∂tTi‖2 + km

2 ‖∂twl‖2 + θm ‖∂trj‖2

≤ 1
2

(
d
dt ‖∂tσm‖2

A + γ

km
‖∂tTi‖2 + ‖∂tpk‖2 + ‖∂tun‖2 + ‖∂ttf‖2 + ‖∂tg‖2 + ‖∂th‖2

)
. (3.28b)

By integrating over (0, t), using the initial conditions and substituting the inequalities (3.18) and (3.19), it 
is inferred that

(
c0 −

cr
2 − br −

1
6(μ + λ)

)
‖∂tpk(t)‖2 +

(
a0 −

ar
2 − br −

1
6(μ + λ)

)
‖∂tTi(t)‖2

+
t∫

0

(
km ‖∂twl(τ)‖2 + θm ‖∂trj(τ)‖2

)
dτ + ‖∂tσm(0)‖2

A

≤ C

t∫
0

(
‖∂tpk(τ)‖2 + ‖∂tTi(τ)‖2

)
dτ

+C
(
‖f‖2

H2(J;L2(Ω)) + ‖g‖2
H1(J;L2(Ω)) + ‖h‖2

H1(J;L2(Ω)) + ‖∂tp(0)‖2 + ‖∂tT (0)‖2
)
. (3.28c)

We proceed to bound ‖∂tpk(0)‖ and ‖∂tTi(0)‖. To this end, we discard the terms under the time differential 
on the left-hand side of (3.23c) and set t = 0 to obtain

(
c0 −

cr
2 − b0 −

1
6(μ + λ)

)
‖∂tpk(0)‖2 +

(
a0 −

ar
2 − b0 −

1
6(μ + λ)

)
‖∂tTi(0)‖2

≤ C
(
‖wl(0)‖2 + ‖∂tf(0)‖2 + ‖g(0)‖2 + ‖h(0)‖2

)
. (3.29a)

We use (3.24c) to bound the initial value of the Darcy flux, i.e.,

‖∂tpk(0)‖2 + ‖∂tTi(0)‖2

≤ C
(
‖p0‖2

H1
0 (Ω) + ‖f‖2

H2(J;L2(Ω)) + ‖g‖2
H1(J;L2(Ω)) + ‖h‖2

H1(J;L2(Ω))

)
. (3.29b)

Now we substitute this in (3.28c), using also (i) from Theorem 3.3 and apply Grönwall’s Lemma to obtain

‖∂tpk‖2
L∞(J;L2(Ω)) + ‖∂tTi‖2

L∞(J;L2(Ω)) + ‖∂twl‖2
L2(J;L2(Ω)) + ‖∂trj‖2

L2(J;L2(Ω)) + ‖∂tσm(0)‖2
A

≤ C
(
‖f‖2

H2(J;L2(Ω)) + ‖g‖2
H1(J;L2(Ω)) + ‖h‖2

H1(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
. (3.30)

Summing with (i) from Theorem 3.3 produces the estimate (i). We continue by summing (3.18) and (3.19), 
and combine with (3.30) to obtain
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‖∂tσm‖2
L∞(J;L2(Ω)) + ‖∂tun‖2

L∞(J;L2(Ω))

≤ C
(
‖f‖2

H2(J;L2(Ω)) + ‖g‖2
H1(J;L2(Ω)) + ‖h‖2

H1(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
. (3.31)

Summing the above estimate with estimate (iii) from Theorem 3.3 produces the estimate (ii). Going back 
to the estimate (3.27a), we now substitute in the right-hand side with (3.30) and (3.31), let i → ∞ to obtain

‖∇ · rj‖2
L∞(J;L2(Ω)) ≤ C

(
‖f‖2

H2(J;L2(Ω)) + ‖g‖2
H1(J;L2(Ω)) + ‖h‖2

H1(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
.

(3.32)

From equations (3.5c) and (3.5f) we obtain using the same technique

‖∇ · wl‖2
L∞(J;L2(Ω)) ≤ C

(
‖f‖2

H2(J;L2(Ω)) + ‖g‖2
H1(J;L2(Ω)) + ‖h‖2

H1(J;L2(Ω)) + ‖p0‖2
H1

0 (Ω) + ‖T0‖2
H1

0 (Ω)

)
,

(3.33)

and

‖∇ · σm‖2
L∞(J;L2(Ω)) ≤ C ‖f‖2

L∞(J;L2(Ω)) . (3.34)

Summing the estimates (3.32)–(3.34) and combining with (ii) and (iii) from Theorem 3.3 produces the 
estimate (iii). This ends the proof. �
3.3. End of the proof of Theorem 3.1:

The proof of the first part of Theorem 3.1 follows the steps below:
• Lemma 3.3 implies that for the sequences {σm}∞0 , {un}∞0 , {pk}∞0 , {wl}∞0 , {Ti}∞0 and {rj}∞0 defined by 

(3.5): {σm}∞0 is bounded in L∞(J ; Hs(div, Ω)) ∩H1(J ; L2(Ω)), {un}∞0 is bounded in H1(J ; L2(Ω)), {pk}∞0
is bounded in H1(J ; L2(Ω)), {wl}∞0 is bounded in L2(J ; H(div, Ω)) ∩ L∞(J ; L2(Ω)), {Ti}∞0 is bounded in 
H1(J ; L2(Ω)), and {rj}∞0 is bounded in L2(J ; H(div, Ω)) ∩ L∞(J ; L2(Ω)).

By the weak compactness properties of the spaces there exist subsequences (denoted the same way 
as before) and functions σ ∈ L∞(J ; Hs(div, Ω)) ∩ H1(J ; L2(Ω)), u ∈ H1(J ; L2(Ω)), p ∈ H1(J ; L2(Ω)), 
w ∈ L2(J ; H(div, Ω)) ∩ L∞(J ; L2(Ω)), T ∈ H1(J ; L2(Ω)), and r ∈ L2(J ; H(div, Ω)) ∩ L∞(J ; L2(Ω)), such 
that

• Ti ⇀ T in H1(J ; L2(Ω)),
• rj ⇀ r in L2(J ; H(div, Ω)),
• pk ⇀ p in H1(J ; L2(Ω)),
• wl ⇀ w in L2(J ; H(div, Ω)),
• σm ⇀ σ in L2(J ; Hs(div, Ω)),
• ∂tσm ⇀ ∂tσ in L2(J ; L2(Ω)),
• un ⇀ u in H1(J ; L2(Ω)).

In order to pass to the limit in problem (3.5), we fix a tuple (i, j, k, l, m, n) ≥ 1 and take (S, y, q, z, τ , v) ∈
C1(J ; Ti×Rj×Pk×Wl×Sm×Un) as test functions, and then integrate equations (3.5a)–(3.5f) with respect 
to time to obtain

Tf∫
{(a0 + ar)(∂tTi, S) − br(∂tpk, S) + ar

2β (∂tσm, SI) + (η · wl, S) + (∇ · rj , S)}dt

0
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=
Tf∫
0

(h, S)dt, (3.35a)

Tf∫
0

{(Θ−1rj ,y) − (Ti,∇ · y)}dt = 0. (3.35b)

Tf∫
0

{(c0 + cr)(∂tpk, q) − br(∂tTi, q) + cr
2α (∂tσm, qI) + (∇ · wl, q)}dt =

Tf∫
0

(g, q)dt, (3.35c)

Tf∫
0

{(K−1wl, z) − (pk,∇ · z)}dt = 0, (3.35d)

Tf∫
0

{(Aσm, τ ) + (un,∇ · τ ) + cr
2α (Ipk, τ ) + ar

2β (ITi, τ )}dt = 0, (3.35e)

−
Tf∫
0

(∇ · σm,v)dt =
Tf∫
0

(f ,v)dt. (3.35f)

Passing to the limit yields

Tf∫
0

{(a0 + ar)(∂tT, S) − br(∂tp, S) + ar
2β (∂tσ, SI) + (η · w, S) + (∇ · r, S)}dt =

Tf∫
0

(h, S)dt, (3.36a)

Tf∫
0

{(Θ−1r,y) − (T,∇ · y)}dt = 0. (3.36b)

Tf∫
0

{(c0 + cr)(∂tp, q) − br(∂tT, q) + cr
2α (∂tσ, qI) + (∇ · w, q)}dt =

Tf∫
0

(g, q)dt, (3.36c)

Tf∫
0

{(K−1w, z) − (p,∇ · z)}dt = 0, (3.36d)

Tf∫
0

{(Aσ, τ ) + (u,∇ · τ ) + cr
2α (Ip, τ ) + ar

2β (IT, τ )}dt = 0, (3.36e)

−
Tf∫
0

(∇ · σ,v)dt =
Tf∫
0

(f ,v)dt. (3.36f)

Finally, by the density of the test function space, C1(J ; Ti ×Rj × Pk ×Wl × Sm × Un) in L2(J ; T × R ×
P ×W×S ×U) as (i, j, k, l, m, n) → ∞, the equations (3.1) hold true for a.e. t ∈ J . It remains now to show 
that the initial conditions are satisfied, i.e. T (0) = T0, u(0) = u0 and p(0) = p0, in the weak sense. To this 
end, take q ∈ C1(J ; Pk) such that q(Tf ) = 0 as a test function in (3.35c) and integrate the first term by 
parts in time
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Tf∫
0

{−(c0 + cr)(pk, ∂tq) − br(∂tTi, q) + cr
2α (∂tσm, qI) + (∇ · wl, q)}dt

=
Tf∫
0

(g, q)dt + (c0 + cr)(pk(0), q(0)). (3.37)

On the other hand, from (3.36c) we obtain

Tf∫
0

{−(c0 + cr)(p, ∂tq) − br(∂tT, q) + cr
2α (∂tσ, qI) + (∇ ·w, q)}dt

=
Tf∫
0

(g, q)dt + (c0 + cr)(p(0), q(0)). (3.38)

Since q(0) was arbitrary, and since pn(0) → p0 in L2(Ω), we get that p(0) = p0. We obtain in the same way 
that u(0) = u0, and T (0) = T0.

• To finish the proof we show the uniqueness of a weak solution to problem (3.1). To this end, we assume 
that (T1(t), r1(t), p1(t), w1(t), σ1(t), u1(t)) and (T2(t), r2(t), p2(t), w2(t), σ2(t), u2(t)) are two solution tuples 
in T ×R ×P ×W × S × U , and let (eT (t), er(t), ep(t), ew(t), eσ(t), eu(t)) be the corresponding difference. 
This then satisfies the following variational problem: find (eT (t), er(t), ep(t), ew(t), eσ(t), eu(t)) ∈ T ×R ×
P ×W × S × U such that for a.e. t ∈ J there holds

(a0 + ar)(∂teT , S) − br(∂tep, S) + ar
2β (∂teσ, SI) − (η · ew, S) + (∇ · er, S) = 0, ∀S ∈ T , (3.39a)

(Θ−1er,y) − (eT ,∇ · y) = 0, ∀y ∈ R, (3.39b)

(c0 + cr)(∂tep, q) − br(∂teT , q) + cr
2α (∂teσ, qI) + (∇ · ew, q) = 0, ∀q ∈ P, (3.39c)

(K−1ew, z) − (ep,∇ · z) = 0, ∀z ∈ W, (3.39d)

(Aeσ, τ ) + (eu,∇ · τ ) + cr
2α (Iep, τ ) + ar

2β (IeT , τ ) = 0, ∀τ ∈ S, (3.39e)

(∇ · eσ,v) = 0, ∀v ∈ U , (3.39f)

together with homogeneous initial conditions. Take now τ = ∂teσ in (3.39e), differentiate (3.39f) with 
respect to time and set v = eu, q = ep in (3.39c), z = ew in (3.39d), S = eT in (3.39a), and y = er in 
(3.39b), and add the resulting equations together

(c0 + cr)
1
2

d
dt (ep, ep) + (a0 + ar)

1
2

d
dt (eT , eT ) + (K−1ew, ew) + (Θ−1er, er)

= 1
2

d
dt (Aeσ, eσ) + br

d
dt (ep, eT ) + (η · ew, eT ). (3.40)

Integrating the above equation from 0 to t and using the properties of K and Θ, in addition to the C–S 
and Young inequalities yields

(c0 + cr)
1
2 ‖ep(t)‖2 + (a0 + ar)

1
2 ‖eT (t)‖2 +

t∫ (
km ‖ew(τ)‖2 + θm ‖er(τ)‖2

)
dτ
0
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≤ 1
2 ‖eσ(t)‖2

A + br
2 ‖ep(t)‖2 + br

2 ‖eT (t)‖2 +
t∫

0

(
γ
ε

2 ‖ew(τ)‖2 + 1
2ε ‖eT (τ)‖2

)
dτ, (3.41)

for some ε > 0. On the other hand, from (3.39e) and (3.39f) we obtain

‖eσ‖2
A = − cr

2α (Iep, eσ) + ar
2β (IeT , eσ)

≤
(
cr
2α

ε1
2 + ar

2β
ε2
2

)
2(μ + λ) ‖eσ‖2

A + cr
2α

1
2ε1

‖ep‖2 + ar
2β

1
2ε2

‖eT ‖2
. (3.42)

Choosing ε1 = 1
2α and ε2 = 1

2β , we get

1
2 ‖eσ‖2

A ≤ cr
2 ‖ep‖ + ar

2 ‖eT ‖ . (3.43)

Combining now (3.41) and (3.43), and choosing ε = km
γ

, we get

1
2

(
(c0 − br) ‖ep(t)‖2 + (a0 − br) ‖eT (t)‖2

)
+

t∫
0

(
km
2 ‖ew(τ)‖ + θm ‖er(τ)‖2

)
dτ ≤ γ

2km

t∫
0

‖eT (τ)‖2 dτ,

(3.44)

which after application of the Grönwall inequality yields

(c0 − br) ‖ep(t)‖2 + (a0 − br) ‖eT (t)‖2 +
t∫

0

(
km ‖ew(τ)‖2 + 2θm ‖er(τ)‖2

)
dτ ≤ 0. (3.45)

Then, using Thomas’ Lemma [33] we take τ = σ̃(·, t) ∈ S in (3.39e), such that for t ∈ J , −∇ · σ̃(t) = eu(t)
in Ω, with ‖σ̃(t)‖ ≤ C ‖eu(t)‖ for some constant C > 0. Thus, we obtain

‖eu‖2 = −(eu,∇ · σ̃) = (Aeσ, σ̃) + cr
2α (Iep, σ̃) + ar

2β (IeT , σ̃)

≤ ‖σ̃‖
(

1
2μ ‖eσ‖ + cr

2α ‖ep‖ + ar
2β ‖eT ‖

)
(3.46)

=⇒ ‖eu‖ ≤ C(‖eσ‖ + ‖ep‖ + ‖eT ‖). (3.47)

This implies that eT (t) = er(t) = ep(t) = ew(t) = eσ(t) = eu(t) = 0, in Ω, for a.e. t ∈ J , implying the 
uniqueness of a weak solution to problem (3.1). Finally, thanks to Lemma 3.4, we can finish the proof of 
the second part of Theorem 3.1 using similar arguments. �
4. Analysis of the non-linear problem

We now consider the analysis of the mixed variational formulation for the original nonlinear problem (2.8). 
The analysis uses the results derived previously for the linear case, in addition to the Banach Fixed Point 
Theorem (see e.g. [11]) in order to obtain a local solution to (2.8) in time. We then proceed to extend this local 
solution by small increments until a global solution is obtained for any finite final time (see e.g. [19,35] where 
similar techniques are used). Precisely, an iterative solution procedure is introduced based on linearizing 
the heat flux term in (2.8a), which is shown to be well-defined, and which converges to the weak solution of 
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the nonlinear problem in adequate norms. Note that we now must require the iterates to be continuous in 
time, hence we shall invoke Lemma 3.4. The iterative linearization algorithm we consider is then as follows: 
let m ≥ 1, and at the iteration m, we solve for (Tm, rm, pm, wm, σm, um) ∈ T ×R × P ×W × S × U such 
that for t ∈ J there holds

(a0 + ar)(∂tTm, S) − br(∂tpm, S) + ar
2β (∂tσm, SI)

+(∇ · rm, S) + (wm · Θ−1rm−1, S) = (h, S), ∀S ∈ T , (4.1a)

(Θ−1rm,y) − (Tm,∇ · y) = 0, ∀y ∈ R, (4.1b)

(c0 + cr)(∂tpm, q) − br(∂tTm, q) + cr
2α (∂tσm, qI) + (∇ · wm, q) = (g, q), ∀q ∈ P, (4.1c)

(K−1wm, z) − (pm,∇ · z) = 0, ∀z ∈ W, (4.1d)

(Aσm, τ ) + (um,∇ · τ ) + cr
2α (Ipm, τ ) + ar

2β (ITm, τ ) = 0, ∀τ ∈ S, (4.1e)

−(∇ · σm,v) = (f ,v), ∀v ∈ U , (4.1f)

together with initial conditions, (2.8g), and where the algorithm is initialized by given initial guess r0. We 
consider the following hypothesis on the heat flux:

Hypothesis 1 (The heat flux). We suppose that for all m ≥ 1, the heat flux is such that rm(t) ∈ L∞(Ω), for 
t ∈ J .

The above hypothesis is a natural one, and it is necessary for the solution to the iterative procedure (4.1)
to be well-defined for each m ≥ 1. This hypothesis is satisfied with sufficiently regular data and domain 
boundary. We provide some formal arguments in Appendix A on the specific requirements such that the 
solution to the problem (3.1) yields r ∈ C([0, Tf ], L∞(Ω)) (or alternatively w, r ∈ C([0, Tf ]; L4(Ω))), thus 
making the above hypothesis superfluous. We delegate this discussion to the Appendix in order to avoid 
overly strict assumptions on the data.

Remark 4.1. Note that if we had approximated the convective term in equation (4.1a) instead as (wm−1 ·
Θ−1rm, S), Hypothesis 1 would be on the regularity of the Darcy flux w, and the above algorithm would 
be initialized by some w0. However the analysis presented next remains true and follows exactly the same 
lines.

Based on the development of the previous sections, we now state the main result of this article.

Theorem 4.1. Assume that f is in H2(J ; L2(Ω)), g, h in H1(J ; L2(Ω)), p0, T0 in H1
0 (Ω), and u0 in (L2(Ω))d, 

then the algorithm (4.1), initialized by any r0 ∈ C([0, Tf ]; L∞(Ω)), defines a unique sequence of iterates

(Tm, rm) ∈ W 1,∞(J ;L2(Ω)) ×
(
L∞(J ;H(div; Ω)) ∩H1(J ;L2(Ω))

)
, (4.2a)

(pm,wm) ∈ W 1,∞(J ;L2(Ω)) ×
(
L∞(J ;H(div; Ω)) ∩H1(J ;L2(Ω))

)
, (4.2b)

(um,σm) ∈ W 1,∞(J ;L2(Ω)) ×
(
L∞(J ;Hs(div; Ω)) ∩W 1,∞(J ;L2(Ω))

)
, (4.2c)

that converges to the weak solution (T, r, p, w, σ, u) of (2.8), admitting the following regularity

(T, r) ∈ H1(J ;L2(Ω)) ×
(
L2(J ;H(div; Ω)) ∩ L∞(J ;L2(Ω))

)
, (4.3a)

(p,w) ∈ H1(J ;L2(Ω)) ×
(
L2(J ;H(div; Ω)) ∩ L∞(J ;L2(Ω))

)
, (4.3b)
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(u,σ) ∈ H1(J ;L2(Ω)) ×
(
L2(J ;Hs(div; Ω)) ∩H1(J ;L2(Ω))

)
. (4.3c)

Proof. According to Theorem 3.1 and recalling Hypothesis 1, the iterates (Tm, rm, pm, wm, σm, um) are 
well-defined for all m ≥ 1, admitting the improved regularity specified in Lemma 3.4. In particular, this 
guarantees continuity in time for the iterates. Keeping this in mind, we define γ1 := supt∈J ‖emw(t)‖2 and 
γ2 := supt∈J ‖emr (t)‖2. It remains to show the convergence of the iterates to the weak solution of (2.8)
using suitable norms. To this aim, let m ≥ 2, and take the difference of equations (4.1) at the iteration 
step m, with the corresponding equations at iteration step m − 1 to obtain the following problem: find 
(emT , emr , emp , emw , emσ , emu ) ∈ T ×R × P ×W × S × U such that for t ∈ J there holds

(a0 + ar)(∂temT , S) − br(∂temp , S) + ar
2β (∂temσ , SI) + (∇ · emr , S)

−(wm · Θ−1em−1
r , S) − (emw · Θ−1rm−1, S) = 0, ∀S ∈ T , (4.4a)

(Θ−1emr ,y) − (emT ,∇ · y) = 0, ∀y ∈ R (4.4b)

(c0 + cr)(∂temp , q) − br(∂temT , q) + cr
2α (∂temσ , qI) + (∇ · emw , q) = 0, ∀q ∈ P, (4.4c)

(K−1emw , z) − (emp ,∇ · z) = 0, ∀z ∈ W, (4.4d)

(Aemσ , τ ) + (emu ,∇ · τ ) + cr
2α (Iemp , τ ) + ar

2β (IemT , τ ) = 0, ∀τ ∈ S, (4.4e)

−(∇ · emσ ,v) = 0, ∀v ∈ U , (4.4f)

together with homogeneous initial conditions, i.e.

(emT (0), S) = 0, ∀ ∈ T , (emu (0),v) = 0, ∀v ∈ U , and (emp (0), q) = 0, ∀q ∈ P. (4.4g)

The solution tuple (emT , emr , emp , emw , emσ , emu ) denotes the error functions between the solution to (4.1) at the 
mth and (m − 1)th iterations, i.e. emT = Tm − Tm−1, and similarly for the other variables. We continue to 
denote by C a generic positive constant which may change value from one line to the next, but in this section 
the relevant parameter is m. First, take τ = emσ and v = emu in equations (4.4e) and (4.4f), respectively, 
and sum to obtain

‖emσ ‖2
A = − cr

2α (Iemp , emσ ) − ar
2β (IemT , emσ )

≤
(
α
ε1
2 + β

ε2
2

)
‖emσ ‖2

A + cr
2α

1
2ε1

∥∥emp ∥∥2 + ar
2β

1
2ε1

‖emT ‖2
.

(4.5a)

Setting ε1 = 1
2α and ε2 = 1

2β yields

‖emσ ‖2
A ≤ cr

∥∥emp ∥∥2 + ar ‖emT ‖2
. (4.5b)

Similarly, by differentiating equations (4.4e) and (4.4f) with respect to time and setting τ = ∂temσ and 
v = ∂temu we obtain

‖∂temσ ‖2
A ≤ cr

∥∥∂temp ∥∥2 + ar ‖∂temT ‖2
. (4.6)

Using Thomas’ lemma [33], we take τ = σ̃(·, t) in equation (4.4e) such that emu (·, t) = ∇ · σ̃(·, t) with 
‖σ̃(t)‖ ≤ C ‖emu (t)‖ for t ∈ J , and combine with (4.5b) to obtain
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‖emu ‖2 ≤ C
(∥∥emp ∥∥2 + ‖emT ‖2

)
, (4.7)

and similarly using (4.6)

‖∂temu ‖2 ≤ C
(∥∥∂temp ∥∥2 + ‖∂temT ‖2

)
. (4.8)

Now, write ∇ · emr (t) =
∑∞

�=1 ζ�(t)S� for some functions ζ�(t) ∈ R, where span{S� : 1 ≤ 
 ≤ ∞} = T . Then, 
we take S� as a test function in equation (4.4a), multiply by ζ� and sum over 
 = 1, ..., k to obtain

(∇ · emr ,
k∑

�=1

ζ�S�) = br(∂temp ,
k∑

�=1

ζ�S�) − (a0 + ar)(∂temT ,
k∑

�=1

ζ�S�) −
ar
2β (∂temσ ,

k∑
�=1

ζ�S�)

+ (wm · Θ−1em−1
r ,

k∑
�=1

ζ�S�) + (emw · Θ−1rm−1,

k∑
�=1

ζ�S�). (4.9a)

Using the C–S and Young inequalities, tending k → ∞, and using also the estimate (4.6) we get

‖∇ · emr ‖2 ≤C
(∥∥∂temp ∥∥2 + ‖∂temT ‖2 + ‖emw‖2 +

∥∥em−1
r

∥∥2
)
. (4.9b)

In the same way we get from equation (4.4c) that

‖∇ · emw‖2 ≤C
(
‖∂temT ‖2 +

∥∥∂temp ∥∥2
)
. (4.10)

From (4.4f) we also have that

‖∇ · emσ ‖2 = 0. (4.11)

We continue by setting S = emT , y = emr , q = emp , z = emw , τ = ∂temσ in equations (4.4a)–(4.4e), and 
differentiate equation (4.4f) with respect to time and set v = emu . Summing the resulting equations yields

(c0 − br)
1
2

d
dt

∥∥emp ∥∥2 + (a0 − br)
1
2

d
dt ‖e

m
T ‖2 + km ‖emw‖2 + θm ‖emr ‖2

≤ γ1
θM
2

∥∥em−1
r

∥∥2 + γ2θM
ε

2 ‖emw‖2 +
(

1
2 + 1

2ε

)
‖emT ‖2

, (4.12a)

where we also used the estimate (4.6). Integrating from 0 to t, applying the Grönwall inequality and setting 

ε = km
γ2θM

yields

(c0 − br)
∥∥emp (t)

∥∥2 + (a0 − br) ‖emT (t)‖2 +
t∫

0

(
km ‖emw(τ)‖2 + θm ‖emr (τ)‖2

)
dτ ≤ C

t∫
0

∥∥em−1
r (τ)

∥∥2 dτ.

(4.12b)

Take now S = ∂te
m
T and q = ∂te

m
p in equations (4.4a) and (4.4c), respectively. Then, differentiate equations 

(4.4e) and (4.4f) with respect to time and let τ = ∂tσ
m and v = ∂tum. Finally, we let y = ∂temr and 

z = ∂temw in equations (4.4b) and (4.4d), respectively. Summing yields
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(c0 + cr − br)
∥∥∂temp ∥∥2 + (a0 + ar − br) ‖∂temT ‖2 + km

2
d
dt ‖e

m
w‖2 + θm

2
d
dt ‖e

m
r ‖2

≤ ‖∂temσ ‖2
A + (wm · Θ−1em−1

r , ∂te
m
T ) + (emw · Θ−1rm−1, ∂te

m
T )

≤ ‖∂temσ ‖2
A +

(ε1
2 + ε2

2

)
‖∂temT ‖2 + γ1θM

1
2ε1

‖emw‖2 + γ2θM
1

2ε2
∥∥em−1

r
∥∥2

, (4.13a)

for some ε1, ε2 > 0. Combining this with the previous estimate (4.6) and setting ε1 = ε2 = αβ

μ + λ
leads to

(c0 − b0)
∥∥∂temp ∥∥2 + (a0 − b0) ‖∂temT ‖2 + km

2
d
dt ‖e

m
w‖2 + θm

2
d
dt ‖e

m
r ‖2

≤ θM
2

μ + λ

αβ

(
γ1 ‖emw‖2 + γ2

∥∥em−1
r

∥∥2
)
. (4.13b)

Integrating (4.13b) from 0 to t and applying the Grönwall inequality yields

(c0 − b0)
t∫

0

∥∥∂temp (τ)
∥∥2 dτ + (a0 − b0)

t∫
0

‖∂temT (τ)‖2 dτ + km
2 ‖emw(t)‖2 + θm

2 ‖emr (t)‖2

≤ ξγ2

2 exp
(
ξγ1

km
Tf

) t∫
0

∥∥em−1
r (τ)

∥∥2 dτ ≤ ξγ2

2 exp
(
ξγ1

km
Tf

) t1∫
0

∥∥em−1
r (τ)

∥∥2 dτ , (4.13c)

for t ≤ t1 where t1 > 0 will be fixed later, and where ξ := θM
μ + λ

αβ
. Integrating in time once more from 0

to t1 yields

t1∫
0

‖emr (τ)‖2 dτ ≤ t1L

t1∫
0

∥∥em−1
r (τ)

∥∥2 dτ, (4.13d)

where the constant L = ξγ2

2 exp
(
ξγ1

km
Tf

)
is such that 0 < L < ∞ provided Tf < ∞, and is independent of 

m and of the local final time t1. Thus, for t1 = 1
2L the above expression implies that the map em−1

r (t) �→
emw(t) is a contraction map for t ∈ (0, t1]. In particular, this implies that as m → ∞ we have from the Banach 
Fixed Point Theorem [11] and (4.5b)–(4.8), (4.9b)–(4.11), (4.12b) and (4.13c) the following convergences

• emw , emr → 0 in L2(0, t1; H(div, Ω)) ∩ L∞(0, t1; L2(Ω)),
• emp , emT → 0 in H1(0, t1; L2(Ω)),
• emσ → 0 in H1(0, t1; L2(Ω)) ∩ L2(0, t1; Hs(div, Ω)),
• emu → 0 in H1(0, t1; L2(Ω)).

Therefore, the existence of the solution to problem (2.8) is established for t ∈ (0, t1]. The question now is 
how to continue the local solution (T, r, p, w, σ, u) to the system (2.8) globally in time. To this aim, we let 
(Tm, rm, pm, wm, σm, um) be the solution of (4.1) on the time interval [tk−1, tk], k ∈ N, with tk−tk−1 = 1

2L , 
and starting with the initial data (Tm, rm, pm, wm, σm, um)(·, tk−1) = (T, r, p, w, σ, u)|[tk−2,tk−1](·, tk−1); 
thanks to the continuity in-time of the convergent solution. The iterates (Tm, rm, pm, wm, σm, um) are 
again well-defined using Theorem 3.1. The iterates also result a contraction, i.e.,
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tk∫
tk−1

‖emr (τ)‖2 dτ ≤ 1
2

tk∫
tk−1

∥∥em−1
r (τ)

∥∥2 dτ, ∀k ≥ 2. (4.14)

Therefrom, we proceed as on done in the first time interval [0, t1] to show the convergence of the succes-
sive approximations (Tm, rm, pm, wm, σm, um)|[tk−1,tk], k ∈ N, to (T, r, p, w, σ, u)|[tk−1,tk]. This solution is 
similarly extended to any time t� ≥ tk given by

t� =
�∑

k=1

tk − tk−1 =
�∑

k=1

1
2L.

Finally, since the series 
∑∞

k=1
1

2L diverges, the sequence of local solutions is extended to arbitrary finite 

final time 0 < Tf < ∞ by incrementing the values 
 (if Tf is not identically an integer multiple of 1
2L take 

instead tk − tk−1 = 1
NL

where N > 1). This concludes the proof of Theorem 4.1. �
Some remarks on the above proof are in order.

Remark 4.2. We could also define a fully explicit iterative scheme where both the Darcy and heat fluxes 
in the convective term are given at the previous iteration. If such an explicit scheme was chosen we would 
have the advantage of a symmetric linearized problem, as the convective terms in the iterative procedure 
can be viewed as part of the source term on the right hand side.

Remark 4.3. Assume that f is in H1(J ; L2(Ω)), g, h in L2(J ; L2(Ω)), p0, T0 in H1
0 (Ω), and u0 in (L2(Ω))d. 

Suppose that instead of Hypothesis 1, we have rm, wm in ∈ H1(0, T ; L∞(Ω)). Then, we can reproduce 
the proof of Theorem 4.1 to prove the convergence of the scheme given by (4.1) to a weak solution of the 
nonlinear problem (2.8).

5. Conclusions

In this article we have given mixed formulations for the fully coupled quasi-static thermo-poroelastic 
model. The model is nonlinear, with the nonlinearity appearing on a coupling term. This makes the analysis 
challenging. A linearization of the model was therefore employed as an intermediate step in analyzing the 
full nonlinear model. For the linear case, the well-posedness is established using the theory of DAEs, and 
energy estimates together with a Galerkin method. This result together with derived energy estimates are 
combined with the Banach Fixed Point Theorem to obtain local solutions in time of the nonlinear problem. 
Due to the continuity in time of the convergent (local) solutions, we can infer a (global) convergence proof of 
an iterative procedure approximating the weak solution to the original nonlinear problem. Work underway 
addresses discretization of this model problem using an appropriate mixed finite element method as well as 
a priori and a posteriori error analysis.
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Appendix A. Alternative to Hypothesis 1

We outline some formal calculations which reveal the assumptions necessary on the data in order to avoid 
the Hypothesis 1. In particular, we aim to solve the linear Problem 3.1 with sufficiently regular data such 
that r ∈ C([0, Tf ]; L∞(Ω)) (or, alternatively such that w, r ∈ C([0, Tf ]; L4(Ω)). The following arguments 
indicate that this is easily done. First, note that from Theorem 3.1 and the Sobolev Embedding Theorem 
(see e.g. [15]) it follows that the functions (T (t), r(t), p(t), w(t), σ(t), u(t)) are continuous for t ∈ [0, Tf ], if 
g, h ∈ H1(J ; L2(Ω)) and f ∈ H2(J ; L2(Ω)). Thus, going back to the problem (3.1), we can choose smooth 
test functions with compact support in Ω and find that (T, r, p, w, σ, u) solves the following initial boundary 
value problem

a0
dT
dt (t) − b0

dp
dt (t) + ar

2β
d trσ

dt (t) − η · w(t) + ∇ · r(t) = h(t), in Ω, (A.1a)

Θ−1r(t) + ∇T (t) = 0, in Ω, (A.1b)

c0
dp
dt (t) − b0

dT
dt (t) + cr

2α
d trσ

dt (t) + ∇ ·w(t) = g(t), in Ω, (A.1c)

K−1w(t) + ∇p(t) = 0, in Ω, (A.1d)

Aσ(t) − ε(u)(t) + cr
2αIp(t) + ar

2β IT (t) = 0, in Ω, (A.1e)

−∇ · σ(t) = f(t), in Ω, (A.1f)

for a.e. t ∈ J , and with boundary conditions

T = 0, u = 0, p = 0, on Γ × J, (A.1g)

and initial conditions

T (0) = T0, u(0) = u0, and p(0) = p0, in Ω × {0}. (A.1h)

Since Θ−1r, K−1w ∈ L2(J ; L2(Ω)) we have from (A.1b) and (A.1d) that T, p ∈ L2(J ; H1
0 (Ω)). Thus, we 

can write (A.1a) and (A.1c) in non-mixed form, i.e.

a0
dT
dt (t) − b0

dp
dt (t) + ar

2β
d trσ

dt (t) − η · w(t) −∇ · (Θ∇T (t)) = h(t), (A.2a)

c0
dp
dt (t) − b0

dT
dt (t) + cr

2α
d trσ

dt (t) −∇ · (K∇p(t)) = g(t), (A.2b)

and use the theory of linear parabolic equations (see [15] p. 349 for details) to get increased regularity for T (t)
and p(t), and then use (A.1b) and (A.1d) to infer increased regularity for r(t) and w(t). In particular, if the 
domain boundary Γ is of class C1, h, g ∈ C1([0, Tf ]; H1(Ω)), f ∈ C2([0, Tf ]; L2(Ω)) and T0 ∈ H1

0 (Ω) ∩H2(Ω), 
then T ∈ H1(J ; H2(Ω)) and thus r ∈ H1(J ; H1(Ω)). Due to the special case of the Sobolev embedding 
theorem for d = 2, i.e. H1(Ω) ⊂ L∞(Ω) ([15] p. 270), we get that r ∈ C([0, Tf ]; L∞(Ω)). Alternatively, 
if also p0 ∈ H1

0 (Ω) ∩ H2(Ω), then we have additionally w ∈ H1(J ; H1(Ω)), and since H1(Ω) ⊂ L4(Ω)
(independently of spatial dimension), we get r, w ∈ C([0, Tf ]; L4(Ω)).

Appendix B. Tables

For easy reference we list some of the notations used in this article (Tables 1, 2).
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Table 1
Data and parameters.

Data/Parameter Description
h heat source
f body force
g mass source
T0 initial temperature distribution
u0 initial displacement
p0 initial fluid pressure
a0 effective thermal capacity
b0 thermal dilation coefficient
β thermal stress coefficient
K matrix permeability divided by fluid viscosity
Θ effective thermal conductivity
μ, λ Lamé parameters
α Biot–Willis constant
c0 specific storage coefficient

Table 2
Variables.

Variable Description Spaces
T temperature distribution T := L2(Ω)
u solid displacement U := (L2(Ω))d
p fluid pressure P := L2(Ω)
σ total stress S := Hs(div; Ω)
w Darcy flux W := H(div; Ω)
r heat flux R := H(div; Ω)
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