DOI: 10.1111/cgf.12799

COMPUTER GRAPHICS forum
Volume 00 (2016), number 00 pp. 1-14

Output-Sensitive Filtering of Streaming Volume Data

Veronika Solteszova'2, Asmund Birkeland?, Sergej Stoppel?, Ivan Viola2? and Stefan Bruckner?

I Christian Michelsen Research, Bergen, Norway
veronika@cmr.no
2University of Bergen, Norway
{asmund.birkeland, sergej.stoppel, ivan.viola, stefan.bruckner} @uib.no
3TU Wien, Austria

Abstract

Real-time volume data acquisition poses substantial challenges for the traditional visualization pipeline where data enhancement
is typically seen as a pre-processing step. In the case of 4D ultrasound data, for instance, costly processing operations to reduce
noise and to remove artefacts need to be executed for every frame. To enable the use of high-quality filtering operations in such
scenarios, we propose an output-sensitive approach to the visualization of streaming volume data. Our method evaluates the
potential contribution of all voxels to the final image, allowing us to skip expensive processing operations that have little or no
effect on the visualization. As filtering operations modify the data values which may affect the visibility, our main contribution is a
fast scheme to predict their maximum effect on the final image. Our approach prioritizes filtering of voxels with high contribution
to the final visualization based on a maximal permissible error per pixel. With zero permissible error, the optimized filtering will
yield a result that is identical to filtering of the entire volume. We provide a thorough technical evaluation of the approach and
demonstrate it on several typical scenarios that require on-the-fly processing.

Keywords: visibility, volume data processing, object-order imaging

ACM CCS: Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics] Three-Dimensional
Graphics and Realism — Visible line/surface algorithms. 1.4.3 [Image Processing and Computer Vision] Enhancement — Filtering

1. Introduction

Rapid increases in processing power coupled with advances in
ultrasound technology have enabled the real-time capture of high-
resolution 3D volumes, hence making ultrasound a true 4D imaging
modality. 4D ultrasonography is already an important imaging
technique in obstetrics and cardiology and has an ever-increasing
range of applications. In echocardiography, 4D ultrasound is used
to diagnose the functioning of the valve and in intra-operative
guidance it is used as a navigational aid for minimally invasive valve
replacement. In obstetrics, 4D ultrasound offers many potential ben-
efits in the prenatal diagnosis of neurological problems by enabling
the assessment of grimacing, breathing movements, swallowing,
mouthing, isolated eye-blinking and revealing the orientation of
the limbs [LV11]. Similarly, 4D ultrasound provides significant
advantages in assessing fetal heart defects [lonl0]. Recent de-
velopments are even progressing toward portable 4D scanners,
such as GE’s Voluson i system, which open up new possibilities

© 2016 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.

in point-of-care medicine, e.g. for emergency medicine in crisis
zones.

Despite its advantages, the visualization of 4D ultrasound data is
plagued by several challenges. Other tomographic imaging modal-
ities such as CT or MRI have a much better signal-to-noise ratio,
but ultrasound additionally suffers from various acoustic artefacts
such as attenuation, focusing and interference [NPH*00]. In volume
visualization, these artefacts are particularly problematic, since they
can obscure relevant structures, and hence affect the clinical value of
the resulting image. A significant body of research has been devoted
to the investigation of filtering strategies for the removal of speckle
noise and other artefacts, but effective methods typically have a
considerable computational cost [SSHW*12]. For regular 3D data
or prerecorded 4D sequences, filtering is regarded as a one-time
operation, and is thus not considered as performance-critical. How-
ever, when data are streamed at 5-20 volumes per second during a
live examination, a delay in processing or the skipping of frames is

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

2 V. Solteszova et al. / Output-Sensitive Filtering

(b) Filtered all voxels
Filtering runtime: 107ms

(a) No filtering

Threshold: 0%

(c) Filtered 38% voxels
Filtering runtime: 60.2ms,
Mask generation: 14-15ms Mask generation: 14-15ms

Threshold: 25%

(e) Filtered 27.5% voxels
Filtering runtime: 50.1ms,
Mask generation: 14-15ms
Threshold: 90%

(d) Filtered 32% voxels
Filtering runtime: 55.6ms,

(f) Filtered 0% voxels
Filtering runtime: 3.5ms
Mask generation: 14-15ms
Threshold: 100%

Figure 1: Fetal ultrasound dataset Anna: (a) raw data, (b) with all voxels filtered and (c) with all voxels that contribute to the visualization
filtered (threshold 0%). (b) and (c) yield the same results. In (d), (e) and (f), we are omitting more voxels from filtering based on their
contribution to the image. In (d), the difference is not noticeable. An error threshold of 100% corresponds to no filtering and therefore there
are no differences between the images in (a) and (f). The output is mostly sensitive in thin and highly transparent regions, here marked in red.

(o]
A: NOISE o
(a) (OCCLUDER@ ©

OOO

.oo
..

B: OBJECT

A:NOISE
(b) (OCCLUDER):..

Figure 2: (a) Noise A (green) is partly visible in the original dataset
(dark green) and it completely occludes object of interest B. (b)
Data filtering removes the visible noise. Consequently, the object of
interest B is now partially visible.

clinically not acceptable. Hence, high-quality visualization of live
4D ultrasound raises a need to tackle this problem.

We propose a novel output-sensitive method to address the chal-
lenge of time-demanding filtering of 4D ultrasound data (see also
Figure 1). Key to reducing the computational load of filtering oper-
ations is to give priority to regions of the volume depending on their
contribution to the visualization. Typically, only a small fraction of
all voxels will be visible, since they are either classified as transpar-
ent or occluded by other structures. However, in contrast to widely
used culling techniques, which exploit visibility information for im-
proving rendering performance, we need to account for the fact that
filtering operations themselves, since they modify the underlying

a) RAW DATA b) FILTERED DATA (full)
2 2 2 2 2 1.33] 2.22| 2.67| 2.22| 1.33
2 6 6 6 2 2.22(3.78[4.67| 3.78| 2.22
2 6 6 6 2 267(467| 6 |4.67|267
2 6 6 6 2 2.22(3.78| 4.67| 3.78| 2.22
2 2 2 2 2 1.33] 2.22| 2.67| 2.22| 1.33
(c) FILTERED DATA (trivial visibility) %
2 2 2 2 2 g
2 |378[467(378| 2 073
2 |467| 6 |467| 2 0.25
2 |3.78|4.67(3.78| 2 0 4 6 DATAVALUE

transparent non-transparent

Figure 3: A 2D example: (a) raw data to be filtered with a sim-
ple 3 x 3 averaging kernel. (b) The ground truth, where all data
points are filtered. (c) The result if we filtered only the visible (non-
transparent) data.

data values, influence the visibility and the appearance of regions in
the volume. We give special attention to the following cases:

1. A region in the volume considered to be an occluder before the
filtering operation has been applied, but may get new values
which are mapped to an opacity of zero during the visualization
stage. This means that it no longer acts as an occluder. This case
is illustrated in Figure 2.

2. The filtering operation can also change data values in such a
manner that previously invisible regions will be non-transparent
after its application. An example of such a scenario is shown in
Figure 3.

© 2016 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.

V. Solteszova et al. / Output-Sensitive Filtering 3

3. Filtering alters data values and after application of the transfer
function, the color assigned to a voxel may change.

We solve these non-trivial problems by quickly identifying
a voxel’s impact on the visualization, taking into account its
potential change in visibility and color after undergoing the filtering
process. This paper extends our previous work on visibility-driven
filtering [SBVB14]. The original approach only considered the case
where the visual result of the pipeline was identical to applying
the filter to all voxels. In this paper, we generalize and extend the
method by quantifying the visual impact of not filtering a voxel.
This allows us to introduce a visual tolerance which can be used
to prioritize the voxels to be filtered. We propose an optimization
scheme that uses the estimated contribution of voxels to maximize
the number of voxels excluded from processing while keeping the
summed maximal possible error per pixel below a user-specified
threshold. Moreover, we extend our framework to filters that also
contain negative values in their kernels.

2. Related Work

The topic of visibility is concerned with the classification of all
objects in a scene as either being partially visible or totally in-
visible. The task of rapidly identifying entirely invisible objects is
especially important when interactive frame update rates are de-
sired. The surveys by Bittner and Wonka [BWO03] and Cohen-Or
etal. [COCSDO3] provide a good introduction into basic techniques.
Approaches include image-space methods such as hierarchical z-
buffering and hierarchical occlusion maps, spatial subdivision (e.g.
octrees, BSP trees, K-D trees), portals, and potentially visible sets.

Another related concept is deferred shading, which moves ex-
pensive shading operations to later processing stages where they are
only applied to those object and image regions that actually need
to be processed. First introduced by Deering et al. [DWS*88], a
common approach uses two rendering passes where the first pass
simply outputs the image-space depth and normals per fragment.
The second pass then uses these values to compute the final im-
age. The deferred shading pipeline allows for fast computation of
differential surface properties, e.g. curvature descriptors. Hadwiger
et al. [HSBGOS] use deferred shading on isosurfaces to realize ad-
vanced shading effects such as ridge and valley lines and curvature-
based flow advection.

In volume visualization, exploiting visibility information can lead
to massive speedups of the rendering process. Early ray termination
terminates ray traversal when the accumulated opacity reaches a cer-
tain threshold. Levoy [Lev90] proposed a hierarchical subdivision
of the volume for empty-space skipping. A very common approach
is the use of a min-max octree in combination with a summed area
table of the transfer function to quickly identify empty parts of the
volume [LL94]. Boada et al. [BNSO1] proposed a management pol-
icy, which uses a hierarchical approach in homogeneous regions and
regions of low interest instead of a one-texel-per-voxel logic on the
entire dataset. Kraus and Ertl [KEO2] introduced adaptive texture
maps and applied them in volume rendering. Mora et al. [MJCO02]
proposed the use of hierarchical occlusion maps for hidden volume
removal in an object-order volume rendering algorithm.

The elimination of occluded but non-transparent parts of the vol-
ume is particularly important in out of core techniques where costly
disk-to-main-memory or main-memory-to-GPU-memory transfers
need to be avoided. A recent state-of-the-art report [BHP14]
provides a good overview of large-scale volume visualization
techniques including those using visibility information. Most
approaches employ a form of bricking where the volume is
subdivided into smaller blocks [BHMF08, LLY06]. Gobbetti and
Marton [GMOS] introduced a hybrid space-partitioning scheme
based on triangles (leaf nodes) and voxels (inner nodes). Their multi-
resolution framework for interactive rendering of large and complex
models employed visibility culling of the nodes. They coupled visi-
bility culling, out-of-core construction and view-dependent render-
ing to achieve interactive frame rates. Later Gobbetti ef al. [GMGOS]
presented an adaptive out-of-core method for rendering large scalar
volumes, also exploiting visibility. Kniss et al. [KLF05] use the
term deferred filtering to refer to a two-pass volume rendering
approach for compressed formats. In the first pass, a local subset of
the data is reconstructed and the second pass can then exploit the
GPUs native interpolation capabilities. Crassin et al. [CNLE09]
suggested the use of information extracted from the previous
frame to guide data streaming from slower memory units. For the
visualization of petascale volume data, Hadwiger et al. [HBJP12]
presented a visibility-driven rendering method which employs a
virtual memory architecture. They use visibility information to
only fetch and reconstruct needed bricks from a multi-resolution
hierarchy. Fogal et al. [FSK13] presented a detailed analysis of
ray-guided approaches for large volume data visualization including
an evaluation of the effects of common tunable parameters such
as brick size. A common limitation of all these approaches, with
respect to our application, is that the volume is considered to be
static, i.e. its values do not change from one frame to the next.

Westenberg et al. [WRWO07] used attribute filtering, which allow
for the selective removal of connected components, and a max-
tree data representation for fast interactive filtering of static volume
data. Marton et al. [MGDG14] employed a deferred architecture for
smoothing of sharp edges that may appear between blocks during
block-based rendering of large volume data. Jeong et al. [JBH*09]
perform on-demand filtering of electron microscopy data only for
visible blocks. A local histogram-based edge metric, which is used
for the enhancement of tissue boundaries, is recalculated during
the filtering pass only for visible blocks. However, this approach
is not feasible for streaming volume data, where the entire volume
is replaced continuously. In this paper, we present a solution that
specifically addresses this scenario. Furthermore, our approach also
handles the case where invisible parts of the volume become visible
after filtering.

Progressive rendering is often either based on image- or ray
sampling distance, and on system responsiveness constraints. Frey
et al. [FSME14] introduced a space-time error metric for progres-
sive rendering where the spatial error describes the correctness of
the pixel values while the temporal error describes the lag of the ren-
dered image. Falk and Weiskopf [FW08] employed the principle of
output sensitivity, i.e. the concept that the rendering cost should be
primarily determined by the complexity of the output to the image
plane, for the on-the-fly computation of 3D line integral convolu-
tion. Our approach is based on the same ideas, but we apply them
to the filtering of time-dependent volume data.

© 2016 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.

4 V. Solteszova et al. / Output-Sensitive Filtering

Only few works have addressed the visualization of 4D streaming
ultrasound data. The poster by Bruder et al. [BJE*11] shows how
the Voreen volume rendering engine can be used to visualize real-
time 4D ultrasound data and Elnokrashy et al. [EEH*(09] present
the basic pipeline setup for GPU-based ultrasound rendering, but
neither work discusses the important issue of filtering. Bronstad
et al. [BATK12] used visibility information to locally adapt the
opacity transfer function for 4D ultrasound data. Most related to
our approach is later work by Elnokrashy et al. [EHH*12], where
they restrict themselves to single isosurfaces and apply a smoothing
filter to the z-buffer. In contrast, our method enables true filtering of
the scalar field in an integrated volume rendering pipeline for live
streamed 4D ultrasound.

3. Output-Sensitive Volume Filtering

In the standard visualization pipeline, data enhancement (e.g. fil-
tering) directly follows the acquisition stage. The visual mapping
and rendering steps then operate on the enhanced data. The prob-
lem arises when in situ visualization of streamed data is required.
In this case, for every rendered frame the data need to undergo an
expensive processing operation which may be significantly more
costly than the mapping/rendering stages themselves. Examples
of such costly common data enhancement algorithms are itera-
tive anisotropic diffusion filtering [PM87], iterative bilateral fil-
tering [TM99], lowest-variance filtering [SSHW*12] and vessel-
enhancing filtering [FNVVO9S].

The term output-sensitive algorithm refers to an algorithm whose
running time is dominated by the size of its output. In our context,
the output of our pipeline are visible color contributions to pixels
on a screen, and we aim to exploit the fact that these contributions
are not uniform across the voxels of the input volume to reduce the
running time of the filtering stage. We observe that in most volume
visualization applications, only a fraction of the data is displayed ata
time. Transfer functions limit the range of displayed data values and
large portions of the volume may be occluded by other structures.
Additionally, particularly for ultrasound data, clipping planes or
more advanced clipping geometries are commonly used to remove
unwanted parts of the data [BBBV12]. Furthermore, when zooming
in to investigate small details, large parts of the volume may simply
lie outside of the viewing frustum.

Our output-sensitive filtering scheme utilizes the visibility and
color-variation information in order to quantify the maximal pos-
sible contribution of a voxel to the image. Depending on a user-
defined threshold, voxels with zero and small contribution to the
image will be excluded from processing. An overview of our ap-
proach is depicted in Figure 4. Our pipeline receives one volume
of the ultrasound stream at a time. This volume can then undergo
multiple sequential processing operations and the result of these
operations is then displayed by a volume rendering algorithm. Our
strategy to enable on-the-fly processing of live streamed volume
data is to prioritize processing of those regions that affect the fi-
nal displayed image the most, while not exceeding a predefined
maximal permissible color error per pixel.

In order to determine the final impact at every position in the
volume, we would have to perform the full processing and volume

4

Output-sensitive
processing operations

HE-@

Figure 4: The pipeline for output-sensitive data filtering: 4D data
are streamed directly from the ultrasound scanner. In the first stage,
a subset of voxels is tagged for processing based on their impact on
the visualization. The neighborhood information is then evaluated
and the set of tagged voxels is passed to the next stage. If the
data do not fit into the GPU memory, we can optimize memory
consumption by performing a visibility-driven data packing before
processing (filtering) the data [SBVB14]. Finally, the processed data
are rendered.

rendering steps. However, by making certain assumptions about the
nature of the processing operation to be performed (see Section 3.1),
we can develop methods to conservatively predict the impact of
voxels on the visualization prior to the application of the filtering
operation. In Section 3.2, we explain the concept of the impact
of a voxel on visualization as the potential error € that would be
introduced if this voxel would not be filtered. We also provide a
conservative estimate for this error that can be quickly evaluated
using a set of simple lookup tables, described in Section 3.3. Then
we apply a greedy approach, described in Section 3.4, that aims at
maximizing the set of voxels to be excluded from processing, so
that the sum of the error € over all voxels that contribute to a pixel
is below a user-set threshold. Lastly, in Section 3.5 we discuss how
the final working set of voxels is determined and filtered.

3.1. Basic assumptions

To predict the visual impact of a filtering operation, we need to

make certain assumptions about its nature. Our input volume is a

scalar-valued volumetric function f : R? — R. In general, a filter-

ing operation g(p) replaces the original value at a voxel position p

with a new value. For any such operation, we require that the filtered

function value g(p)

1. is only dependent on values of f in a finite neighborhood €2,
around a position p, i.e. that it has compact support, and

2. that g(p) € [min2,, max ,], i.e. the new value falls within
the minimum and maximum values in that neighborhood.

Both requirements are trivially true for any convolution with
normalized non-negative weights (mean, truncated Gaussian, etc.),
but also hold for a wide range of other smoothing or denois-
ing operations including nonlinear filters such as the median or

© 2016 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.

V. Solteszova et al. / Output-Sensitive Filtering 5

bilateral filters. In the case of an edge-detector that contains nega-
tive values in the operator mask, and that does not conform with this
requirement, we can amend the estimated range of g(p) € [a;, ax]
to the following:

a, = Zw,- max 2, + Zw,- min 2, €8

w; <0 w; >0
a, = E w; | min 2, + E w; | max 2, 2)
w; <0 w; >0

where Zwi<0 w; is the sum of all negative weights w; < 0 of the
filter kernel and }_, ., w; is the sum of all non-negative weights
w; > 0. Without the above requirements a processing operation
could, in principle, be a random number generator and there would
be no way to predict the resulting impact on the final image.

3.2. Potential impact of voxels

The idea behind output-sensitive processing is to maximize the set
of voxels excluded from processing to decrease the computational
workload. The impact of a voxel at position p to the final image is
equivalent to the maximal potential color error per pixel €(p) that
would be induced by skipping the processing of this voxel. For each
pixel, the accumulated error € of voxels that contribute to that pixel
should stay below a user-specified threshold 7':

/ e®ds <T, 3)
R

where R is the set of voxels that contribute to a pixel. If 7 = 0 then
only voxels that have no contribution to the pixel can be skipped
(because they are completely transparent or fully occluded). If 7 =
1, then any change is permissible, i.e. a pixel can change from black
to white or vice versa. Our goal is to minimize the set of voxels that
will be processed and at the same time conform to this condition.
We start the derivation of €(p) from the emission-absorption volume
rendering integral, which defines the light transport from the source
at sy to the viewpoint s, [EHK*06]:

1(s) = I(sp)e” 700w +/ g(s)e T ds. 4)

S0

The term 7(a, b) denotes the extinction between points a and b,
and e " is the respective transmittance factor. The term g(a) is the
emission factor at point a. For simplicity, the following explanation
will assume a background intensity of 1(sy) = 0. We also use short
names for the emission and extinction in the original volume (g
and 7, respectively), and in the filtered volume (g, and 7,). The set
of voxels that contribute to a pixel is referred to as R, and P is the
set of processed voxels. Hence, the set of skipped voxels is R\ P.
We can then write the accumulated error per pixel as:

/ e(s)ds = [| Ge(s)e™) = g (5)e™ T | s, (5)
R R\P

i.e. the absolute difference between the filtered and unfiltered con-
tributions to the pixel for all skipped voxels. Evaluating g,(s) and
e %) would defy our goal of skipping processing operations.
Therefore, we instead estimate the upper bound of the error. The
estimation is based on the prediction of the maximal possible trans-
mittance between s and a viewpoint s, in the filtered volume, i.e.
e~™min(:%) - and a prediction of the maximal emission difference
Agmax(s) between the original and filtered volumes:

/e@wsg/ 2AGmax(s) (e7) ds. (6)
R R\P

The proof of the inequality in Equation (6) is discussed in
Appendix A. To arrive at a discrete representation of the error term,
we use the standard numerical approximation of the transmittance
term in the volume rendering integral [EHK*06]:

N

e—r(a,b) ~ l_[(ef,((,‘m))m- _
i=0

N
[Ta—en™ = (7)
i=0

1 — A[0, N,

where N = (b — a)/As, As is the sampling distance, « is the ab-
sorption function and « is the opacity. We use the notation Ala, b]
for the accumulated opacity between two points a and b along a
viewing ray which can be recursively defined as:

A[0,0] =)
A[0,i] = A[0,i — 11+ (1 — A[0,i — 1])a, (8)

where o] =1 — (1 —a;)® is the corrected opacity according
to the sampling distance As. For readability, we will use
VIi] =1 — A[O, i] to denote the visibility of a point from the view-
point. V[i] = 0 means that this point is invisible. We can then write
our error term as:

€[p] < 2AChax[p1Vimax[P], ®

where AC,. is the maximal possible color difference, which is the
discrete approximation of the maximal difference in emission Agpax
and V.., denotes the denotes maximum visibility after filtering. Our
approach for obtaining AC,,,.x and V,,,, is detailed in the subsequent
sections.

3.3. Tables of potential impact

Our error determination method requires the minimal and maximal
opacity and a maximal color change that a voxel can obtain after
filtering. Based on our assumptions, we know that the voxel value
after processing will be g(p) € [min 2,,, max €2,,] for the neighbor-
hood 2, of a voxel at position p. Unlike other approaches, which
do not consider dynamically changing data, we cannot rely on any
preprocessing. Hence, in order to obtain information about the voxel
neighborhood, it needs to be recomputed for every new volume. We

© 2016 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.

6 V. Solteszova et al. / Output-Sensitive Filtering

128 192 255
DATA VALUE

MIN-OPACITY MAX-OPACITY

a . 000.2505 0751.0 [

0002505 0.751.0

255

Figure 5: An opacity transfer function and its corresponding oy,
and oy tables. For example, oy (64, 192) = 0, because 0 is the
minimal value of the opacity transfer function TF, in the range
[64, 192]. o (64, 192) = 0.75, because 0.75 is the maximum of
TF, in the range [64, 192].

compute, for each position p in the volume, the minimum min €2,
and maximum value max 2, with a given neighborhood €2, deter-
mined by the support of the processing operation (i.e. the size of
the kernel for convolution operations). We use an OpenCL kernel
in a multi-pass approach which exploits the fact that the min and
max filters are separable. While this is not a cheap operation, it is
still significantly less costly than the types of filtering operations we
want to support.

To quickly determine the relevant opacity contributions for a
voxel with a particular neighborhood, we precompute two 2D look-
up tables &y, and o« for all combinations of possible data values

f:
amin(iv]) = mln TFa(f)s (10)
Selijl

omax(i, j) = max TF(f), (11
felijl

where i, j are in the value range of the volumetric dataset. For
example, i, j € [0, 255] for a dataset with 8 bits per voxel. «,,;, and
gy are the minimum and maximum opacity values in the opacity
transfer function TF,(f) for all values in the interval f € [i, j].
Consequently, the opacity of a processed voxel will be in the range
[0tmin(min 2, max), &ma(min 2, max €2,,)]. An example of an
opacity transfer function and its corresponding o, and o,y is
shown in Figure 5.

The quantification of the possible color change of a voxel is done
in a similar fashion. We generate a third lookup table AC,.x(i, j)
where i and j correspond to data values in the volume, and the
elements store the maximum color difference C(7,) between any
two colors TFrgp. (f;) and TFrgg (f7):

AChu(i, j) = max

ieli,jl,jeli,jl

ACG, {). (12)

1‘ .

T [[[[T

0 15
fi=3 fi=14
RGB = (255,113,113) RGB = (92,189,255)

a=0.5
aRGB = (128,56,56)

a=1.0
aRGB = (92,189,255)

To=(0,0,0)
Ti =(92,189,255) / 255
T; =(128,56,56) / 255

sChp= 75 322

Figure 6: Explanation of the calculation of AC(1}), the color dif-
ference between colors TFgp.(f;) and TFrgp.(f;) on an example
of a simplified color-opacity function TFrp,. AC(1]) is the length
of the longest edge of the triangle TyT;T; normalized by V3.

The calculation of AC(7, j) is explained in Figure 6. We define a
triangle 7 7; T; embedded in 3D. Its vertices are defined as the black
color and opacity-premultiplied normalized RGB colors TFrgg, (f7)
and TFrgBa (f i)

Ty = (0,0,0),
T; = (o R, ; Gy, o By),
Tj = (O{jRj,Olij,(Xij).

AC(1, J) is then the length of the longest edge of this triangle,
normalized by a factor of +/3. The normalization factor corresponds
to the distance between the black and the white color in the RGB
color space. The length of an edge is defined as the Euclidean norm
|.] of a vector in 3D space. In the proof that is given in Appendix A,
we also use the fact that AC(Z, j) = max(|T;|, |T;|, |T; — T;]).

All three look-up tables ((min, @max, and ACy,c) can be com-
puted simultaneously. The computation is straightforward and only
consumes a negligible amount of time when the transfer function
is modified. This is conceptually similar to pre-integrated volume
rendering which employs a lookup table for accumulated colors
and opacities along a viewing ray [EKEO1]. The tables can be
stored as three channels of a single 2D texture. Then, during the
determination of R\ P, values of omin[pl, @max[p] and ACuux[p]
can be quickly determined for a voxel at position p via a single
table-lookup with min €, and max ,. The value of op,[p] can
then be directly used in the accumulation of the maximum visibil-
ity Viax[p]l = 1 — AninlO, p], as detailed in the next section. The
value of o [p] gives us information whether the voxel is com-
pletely transparent after filtering, i.e. om.[p] = 0, and hence can be
skipped without affecting the per-pixel error.

© 2016 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.

V. Solteszova et al. / Output-Sensitive Filtering 7

(a) Opacity profile a[i]
01 |02 | 02 | 0.6 I 0.4 | 0.3 I 0.5 | 0.8 I 0.9 I 0.2 I

2éyi:o =N
traversal direction

(b) Front-to-back acc. opacity A[0,i] traversal direction,
| 0.1 | 0.28 | 0.424| 0.76%' 0.86nl 0.903;.[0.9516.| 0.9903] 0.9990.{ 0.999: l

0 M s s i e e e A

(c)eli]= (1-Al0,i])ACmax[i] such that Vi, ACmax[i]=1

| 0.9 | 0.72 I 0.57s 0.23o4|041352 0.9676.| 0.04s3.| 0.0096.| 0.0005.| 0.0007. | j
i=0 i=N

o>
gL (d) Front-to-back accumulation €[0, i], T=0.9 traversal direction,
SEH |o.9 | 1.0 I 10 | 10 | 1.0 I 10 | 1.0 | 1.0 I 1.0 I 1.0 Ii
L) =0 =N
2%
8 g% (e) Back-to-front accumulation €[i, N], T=0.9 _<lraversal direction
é ég | 1.0 I 1.0 I 1.0 |0.5251 |0.2943 0.156s |0.0593 0.01a. 0.00|7|0.0007 i
238 =0 =N

Figure 7: (a) Opacity profile of an example of a voxel ray «; and
(b) the corresponding front-to-back accumulated opacity Al0, i]. (c)
The corresponding error factor €[i]. (d) Front-to-back accumulation
and (e) back-to-front accumulation of € their corresponding working
set of voxels marked in grey. To explain the situation on a simple
example, we assumed here that Vi, ACn[i] =1 and unaltered
visibility after processing. The error is then defined as €[i] =1 —
A[0, i].

3.4. Greedy accumulation

Being able to evaluate the minimum and maximum opacity and the
maximum color difference for any voxel, we can now proceed to
identify a set of voxels that complies with Equation (3). As our
aim is to reduce overall processing time, we use a greedy approach
inspired by object-order volume rendering algorithms such as shear-
warp factorization [LL94]. We traverse the volume in a slice-by-
slice manner along the principle axis that is most aligned with the
viewing direction and store per-ray information in a view-aligned
intermediate image. Similar approaches have also been used in the
precalculation of illumination information [RDR10].

For the computation of visibility, it would be natural to perform a
front-to-back pass through the volume, i.e. starting with the slice that
is closest to the viewpoint. However, we would like to accumulate
the error € during the same pass. In the example in Figure 7, we
see that the front-to-back accumulation of € reaches the threshold
T significantly faster than back-to-front accumulation, i.e. i} <
N —i,, where i, and i, are defined as:

ilzmax{ieR | e[O,i]:Ze[i]AssT}

i=0

N.
[S]
Il

N
min{ie]R | e[i,N]:Ze[i]Ang}. (13)

i=iy

From Equation (4), we see that with decreasing transmittance,
we have decreasing visibility. If we disregard the factor ACp

(a) Back-to-front acc. opacity ALi, N] tgaversal direction
0.9992] 0.9991.| 0.9980.f 0.99s7.) 0.99ss. 0.9944| 0.99| 0.98:| 0.92 | 0.2 |

AL B

i=N i

(b) Front-to-back acc. opacity A[0,i] = (A[O,N] - A[i+1,N])/(1 - Afi+1,N])
| 0.1 | 0.28| 0.424| 0.769% 0.86\7| 0.903zl 0.9516 0.9903’ 0.999ov| 0.9992.

&L)/,L/_‘L’/ i=|N i

Figure 8: Calculation of front-to-back accumulated opacity for
a ray with an opacity profile same as in Figure 7(a). (a) Corre-
sponding back-to-front accumulated opacities Ali, N]. (b) Using
Equation 14, we obtain the same results as in Figure 7(b), but
with a parallelized transformation and not with a new sequential
traversal. The last accumulated value from back-to-front accumu-
lation A[0, N] = 0.9992.. is used together with the results of the
back-to-front traversal to obtain front-to-back accumulated opac-
ities A[O, i]. The supplementary material also contains MATLAB
code for this example.

(Equation (9)) as in Figure 7, we observe that smaller errors are
expected farther away from the viewpoint. In this respect, it pays
off to accumulate errors back-to-front—in this way, a significantly
smaller portion of voxels will be tagged for processing.

Since Vi depends on the front-to-back accumulated opacities,
the challenge is to combine the computation of these terms and the
back-to-front accumulation of € in a single pass through the volume.
Our solution is to express the front-to-back accumulated opacity
A[0, i] as a function of the back-to-front accumulated opacity A[i +
1, N] and the total accumulated opacity along the ray A[0, N]:

A[0, N] = A[0,i] 4+ (1 — A[0, iDA[i + 1, N]

AL,] = A[0, N1 — A[i +1, N] (14)
T 1—A[i+1,N]

where A[i + 1, N] is recursively defined using corrected opacities
o) as:

Ali + 1, N] = o 4+ (1 — a)A[i +2, N]. (15)

We illustrate this procedure in Figure 8. A problem of division
by zero will occur when A[i + 1, N] = 1. This happens when the
ray hits a sample with &/ = 1 or due to numerical imprecision. We
refer to Appendix B and the MATLAB-script in the supplementary
material for details on how the division by zero can be circumvented.
Using Equations (9) and 14, € can be written as:

16)

eli] =2Acmax[i]< L= Annl0. N1)

1- Amin[i + 17 N]

© 2016 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.

8 V. Solteszova et al. / Output-Sensitive Filtering

Figure 9: Back-to-front accumulation of p and A, employs the
object-order rendering concept via axis-aligned slicing and ping-
pong accumulation buffers. The slicing axis is chosen to be closest
to the view direction. The sampling distance As depends on the view
direction and the voxel size. We store A, and p in an intermediate
volume. During the working-set assignment, p is multiplied by the
factor (1 — Aninl0, N1). Both are retrieved from the intermediate
volume. For a voxel at position p;, p is fetched from same position
pi, but A, from position py, because it represents Aminl po, Pyl

As the term A, [0, N]is only known once the back-to-front pass
through the volume has been completed, we can instead express this
as:

P

N .
€li, NT = (1= A0, N) Y 220 g)
=i

Amin[j + 1, N] '

We illustrate the accumulation in Figure 9: p and A,[i, N] can
be computed recursively on-the-fly in a single back-to-front pass,
because they only depend on data already traversed (the grey corri-
dor). Both p and A,;,[i, N] are stored in an intermediate volume.
Since the accumulated error term depends also on positions which
were not traversed yet (the blue corridor), we multiply p with a
correction term (1 — Apiy[0, N]) in the next step, i.e. during the
working-set assignment. Ap;,[0, N] is fetched from the interme-
diate volume, as explained in Figure 9. The greedy-accumulation
algorithm is written in pseudo-code in Appendix C.

3.5. Working set assignment and filtering

While the €[i, N] gives us information about which voxel has suf-
ficiently small summed impact on the final image, we also need to
make sure that the results of the processing operation are correct.
Many data enhancement techniques require information about the
neighborhood and many approaches are carried out in an iterative
fashion, e.g. when filters are separable. If we rely only on process-
ing set M defined by €[i, N] > T, iterations can obtain incorrect
information from the neighborhood in later passes. This problem is
sketched in Figure 10.

2iterations

1 iteration

Figure 10: If data enhancement consists of one operation only,
expansion of the original mask (M) is not necessary. If it runs in
two iterations, values within the band of influence (BOI) must have
been processed in the Ist iteration since the 2nd iteration relies on
its results. If the enhancement runs in three iterations, the radius of
the BOI is larger accordingly.

Our solution to this problem is to dilate the binary mask M
defined by €[i, N] > T to obtain a working set of voxels (WSV).
Then we define a band of influence (BOI) as WSV\M and BOI N
M= . For example, if a filtering operation has m iterations and in
each iteration, the operation requires a neighborhood of radius n,
then the visibility mask must be dilated by a radius of m - n. Using
the WSV for filtering calculations will ensure that the values of all
voxels € M will be correct after the final iteration of the filter. In
Figure 11, we compare WSVs for different thresholds and different
transfer functions of a synthetic dataset (a box composed of a single
scalar value). The WSVs were rotated to show that with increasing
threshold, the WSV shrinks primarily from behind.

4. Results

Our system was implemented in C++ using OpenCL for the real-
ization of our processing pipeline. The volume rendering itself is
performed in OpenGL. Our approach is not tied to any specific vol-
ume rendering algorithm, and in fact the current implementation of
our pipeline flexibly integrates several different renderers including
standard GPU-based ray casting and slice-based multidirectional
occlusion volume rendering [SPBV10]. The benchmarks in this pa-
per were performed on a PC with a 3.07 GHz CPU with an NVIDIA
Quadro K6000 GPU with 12 GB of dedicated graphics memory
running Windows 7, except if explicitly mentioned otherwise.

In Figure 12, we compare the performance of different output-
sensitivity thresholds. As can be seen, the number of voxels in the
WSV indeed decreases with growing threshold and consequently,
the runtime of the filtering operations decreases as well. The most
significant improvement of performance compared to processing the
entire volume was achieved by excluding voxels with zero impact
from processing (T=0). In the case of the cardiac and gallbladder
ultrasound in Figure 12, the computation time decreased by 35%
(from 30.7 ms to 20.0 ms) and 55% (from 277 ms to 126 ms), re-
spectively. By increasing the sensitivity threshold, we can further
improve the performance while still maintaining the main desired
properties of the filtering operation. Increasing the sensitivity thresh-
old has a more pronounced effect on highly translucent structures,

© 2016 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.

V. Solteszova et al. / Output-Sensitive Filtering 9

Figure 11: Comparison of the working set of voxels (WSV) for different thresholds and different transfer function setup. BOI has radius 5
voxels. We used a synthetic dataset—a box composed of a unique scalar value. The transfer function is therefore only one color and opacity
a = 0.025, 0.08 and 0.12. Corresponding WSVs (binary masks) are compared for different thresholds T = 0%, 25% and 50% and shown
from the view as the original object and from the back. We also give how the relative number of voxels that are contained in WSV as compared

to the original volume.

e.g. the surrounding tissue of the gallbladder, than for more opaque
objects such as in the cardiac ultrasound example.

The performance gain is linearly dependent on the percentage of
voxels in the WSV relative to the entire volume. The dependency
is also influenced by the size of the dataset and the type of the fil-
ter. In Figure 13, we profile the performance of the lowest-variance
filter [SSHW*12] as a function of the relative size of the WSV for
ultrasound datasets with different sizes. This measurement was con-
ducted on a NVIDIA GTX680 GPU with 2 GB dedicated memory.
The horizontal lines show the constant time that is needed to pro-
cess the full volume. Only if more than 80% of the data is visible,
which is very uncommon for real-world ultrasound data, our output-
sensitive approach would no longer pay off. The gallbladder dataset
was intentionally upsampled to a grid of 2567 to show the perfor-
mance on larger datasets, even though ultrasound datasets rarely
have this size. In this case, the breaking point is around 60%. We
also measured performance using other filters, e.g. Perona-Malik
anisotropic diffusion and bilateral filtering, and they showed a very
similar trend as lowest-variance filtering. The extra overhead of cal-
culating the accumulated impact of voxels compared to calculating
only visibility as described in our previous work [SBVB14] amounts
to approximately 1%. Therefore, we can conclude that computation
of the working set of voxels for output-sensitive processing does
not pose a significant performance overhead in the entire pipeline
as compared to visibility-driven processing.

We investigated that our approach for culling invisible regions,
i.e. output sensitivity threshold = 0, is correct in the sense that it

cannot affect the final image. We showed that if we solve the prob-
lems of reduced occlusion and increased opacity, the visualizations
will be identical by making difference images and by providing a
formal proof [SBVB14]. We also calculated the image difference of
Figure 1(b) (the ground truth) and 1(c) (T = 25%). The maximal
color difference was in fact 5.88%. For the difference between Fig-
ures 1(b) and 1(d) (T = 90%), we calculated 10.85%. In addition,
we verified the error in visualizations displayed in Figure 12 and
plotitin Figure 14. In all cases, the measured error is much less than
the maximal permissible error, so our estimator is very conservative.

On modern ultrasound scanners with a 4D cardiac probe, ultra-
sound volumes are acquired at rates of 10-15 volumes per sec-
ond [PVMd12], depending on the spatial extent of the acquired
volume (sector). The larger the sector, the bigger is the volume
and the lower is the acquisition rate. According to our experience,
larger sectors are acquired at approximately 15 volumes per second.
Figure 12 shows that we allow for higher frame rates which is a rel-
evant step toward in situ high-quality processing and visualization
for current 3D ultrasound acquisition capabilities.

5. Discussion and Limitations

The presented approach was designed to support complex filtering
operations for live streaming volume data. Clearly, for very simple
filters (such as, trivially, the min and max filters themselves), the
overhead of minimum/maximum computation does not pay off, but
in those cases filtering the whole volume is easily possible in real

© 2016 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.

10 V. Solteszova et al. / Output-Sensitive Filtering

Cardiac ultrasound (128 x 100 x 128)

(processing of the entire dataset: 30.7ms)

(@) no filtering (b) T=0% (c) T=20%
Amount of processed voxels: 14.4% 11.7%
Runtime of processing: 5.4ms 5.1ms
Total time incl. overhead: 20.0ms 19.7ms

Gallbladder ultrasound (256x 256 x 256)

(d) T=40% (e) T=60% (f) T=80%
11.0% 10.4% 9.6%
5.0ms 4.8ms 4.8ms
20.5ms 19.3ms 19.2ms

(processing of the entire dataset: 277ms)

(9) no filtering (h) T=0% (i) T=20%
Amount of processed voxels: 36.9% 35.9%
Runtime of processing: 109.7ms 106.9ms
Total time incl. overhead: 126ms 123ms

(J) T=40% (k) T =60% () T=80%
34.8% 34.0% 33.0%
103.9ms 101.9ms 99.5ms
121ms 118ms 116ms

Figure 12: Demonstration of filtering runtime and the relative size of the WSV compared to the volume size on two datasets: cardiac
ultrasound (upper row) and gallbladder ultrasound (bottom row). In (a) and (g), we show snapshots of unprocessed streams. For the rest, the
data are processing using the bilateral filter (heart) and lowest-variance filtering (gallbladder) of kernel size 7. We compare performance for
different output-sensitivity thresholds: 0%, 20%, 40%, 60%, 80%. We show the time that was needed for processing the WSV and also the

total time that includes the overhead, i.e. generation of the WSV.

time. Our goal was to enable the application of filters that normally
would be too expensive in such a scenario.

Furthermore, naturally our approach becomes less effective if a
high percentage of the voxels is tagged for processing. In this case,
processing of the full volume might even be faster. However, if we
detect a high percentage of tagged voxels in one frame (e.g. due to a
highly transparent transfer function and a low sensitivity threshold),
we can simply disable our pipeline until the transfer function is
modified again. This means that in most practical scenarios, the
overall performance will always be as fast as processing of the
entire volume.

Currently, there are some limitations in our implementation which
we aim to address in the future:

® We start from an already reconstructed regular grid which we re-
ceive from the ultrasound scanner’s software. However, it would
also be possible to integrate our pipeline earlier to potentially
eliminate or at least reduce some of the overhead. For instance, it
would be easy to compute the minimum/maximum information

during the resampling step from the beam space (polar grid) to
the regular grid.

Using minimum/maximum neighborhood information to deter-
mine the set of potentially visible voxels is general enough to en-
able a wide range of practically useful filters. However, it is also
quite conservative and can, in some cases, lead to considerable
overestimation. For this, a closer analysis of the mathematical
properties of individual filters may enable us to determine tighter
bounds for special cases.

We quantify the color differences in the RGB color space, even
though it may be more appropriate to use a perceptually uniform
color space, such as CIELAB. However, our upper bound de-
pends on the linearity of the RGB color interpolation. To provide
a correct maximal distance in CIELAB space, we would have to
transform the triangle 7, 7;T; to CIELAB space first. The result
would be a possibly concave set, for which we would have to de-
termine the maximal distance of two points that belong to it—we
consider this an interesting challenge for future work.

Despite these limitations we have shown that our approach al-

ready achieves a considerable reduction in processing times for

© 2016 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.

V. Solteszova et al. / Output-Sensitive Filtering 11

~— Heart WSV

— Heart full

0.l | " FEUSWSVa 5350062114
— Fetus full

~— Gallbladder WSV
 Gallbladder full } 236x256x256

}128x100x128

0.3F

Time

02} / .

I
e

0 20 40 60 80 100
% working set

0.0

Figure 13: Performance boost of visibility-driven processing com-
pared to full processing with the lowest-variance filtering with ra-
dius 5 on a stream of 3D cardiac ultrasound datasets—a snapshot
of which is shown in Figure 12, streamed 3D ultrasound of a foetus
shown in Figure 1 and streamed 3D ultrasound of a gallbladder as
shown in Figure 12.

realistic percentages of visible voxels and hence enables real-time
filtering and, consequently, high-quality visualization of streaming
volume data in cases where this was previously impossible. An
interesting direction for future research is to investigate extended
schemes for adjusting the processing time. Currently, the decision
whether to apply a filtering operation or not is still binary. However,
we believe that a more fine-grained approach where the filter quality
could be adjusted based on the expected visual impact could also
prove useful.

6. Conclusions

In this paper, we presented a novel approach for integrated filtering
and visualization of streaming volume data. Our method conserva-
tively estimates visibility information to limit processing operations
to regions in the volume which can potentially contribute to the
final image and hence can result in a considerable reduction of the
processing load. We have demonstrated that the resulting pipeline is
an important step toward high-performance integrated filtering and
visualization of steaming volume data such as 4D ultrasound.

Acknowledgements

This work has been supported by the MedViz lighthouse project
IllustraSound and the ISADAF project (In-Situ Adaptive Filtering,
#229352/070) co-funded by the VERDIKT program of the Norwe-
gian Research Council. The research was also partially supported by
the Vienna Science and Technology Fund (WWTF) project VRG11-
010 and by the EC Marie Curie Career Integration Grant project
PCIG13-GA-2013-618680. Parts of this work have been made pos-
sible by the University of Bergen, the Bergen University Hospital,
and Christian Michelsen Research AS through their strategic support
of the MedViz program. The authors also thank GE Vingmed Ultra-
sound for the support and Matej Mlejnek for providing the dataset
Anna. We also acknowledge the usage of Colorbrewer [BH15] for
the color map in Figure 14.

Wo
015]
15,311
(3147)
(47,631
L6379
B (79,951
W o511
a2

Figure 14: Difference images for the results shown in Figure 12
scaled to the [0,255] range, where 255 corresponds to the maximal
error = 1.0. (a) shows the error of visualization 12(d) as compared
to the ground truth visualization 12(b). (b) shows the error in 12(f)
as compared to 12(b). (c) shows the error of visualization 12(i)
as compared to the ground truth visualization 12(h). (b) shows the
error in 12(1) as compared to 12(h).

Appendix A

Here we provide the proof of Equation (6). We first recall the literals:
qr and g, represent the emission factors of the original and processed
voxel, respectively. They are 3D vectors if we work with RGB emis-
sion. The scalar e %) is the transmittance between the viewpoint
s, and s (visibility of point s) in the original volume. The scalar
e~%5) s the visibility of s in a fully processed volume. We will
refer to these quantities as e™*/ and e~ ™. Aquax(s) is the maximal
difference of the emission (color) at point s in the processed and orig-
inal volume, which satisfies max(|g |, |g.l, 1g; — q7]) < AGmax-

Proving Equation (6) is equivalent to proving:
lgge™™ —qre™| < 2e7™" Agma. (A1)
Using the triangle inequality, it follows
lgge™™ —qre 7| < lgee | +Igre” "] (A2)
Since e™ ™ < e™in and 7/ < e min:
lgee "+ lgre”" [< lgge ™|+ lgre ™. (A3)
Using gr < A@max and g, < Agpag, We obtain

|qge*fmin| + |qfe*7min| < |Aqmax e*'fminl + |Aqmax e*'fmin |, (A'4)

= 2|AGmac e ™. (A.5)

This concludes the proof.

© 2016 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.

12 V. Solteszova et al. / Output-Sensitive Filtering

Appendix B

In Section 3.2, we introduced Equation 14 that expresses the front-
to-back accumulated opacity A[O, i] via the back-to-front accumu-
lated opacity. It is possible that the denominator in this equation
becomes zero. In this case, A[0, i] cannot be computed using this
equation. To circumvent this problem, we can in addition track
slabs that have an accumulated opacity A[i, j] > 1. We accumulate
A[i,N] normally until > 1. Then we store i; < i and i, <— N, reset
the accumulation buffer to zero and start accumulating again. After
the traversal, when doing the correction of a voxel at position p,
we first check if p is farther from the viewer than i,. If yes, then
Alpo, pi] = 1 and V[p] = 0O for this voxel. If p is further from the
viewer than i, but closer than i,, we must tag this voxel for process-
ing, unless its corresponding o, = 0. If p is closer to the viewer

than 7;, we proceed with the correction as described in Section 4.

In the supplementary material, there is an example of a back-to-
front ray traversal, in which the front-to-back accumulated opacities
are calculated. The example uses an arbitrary opacity profile, and is
implemented as a Matlab script.

Appendix C

Here we give pseudocode for the greedy accumulation algorithm
(Algorithm 1) and its integration into the output-sensitive filtering
pipeline (Algorithm 2).

Algorithm 1: Greedy Error Accumulation

Data: Input volume F, view direction v, color/opacity
transfer function, sampling distance As
Result: Volume Vol

1 a « determineSlicingAxis(v)

2 X,y « determineSliceSize(F.size, a)

3 Vol «init3Channel Volume(F.size)

4 Buff[2] « init2ChannelSwappingBuffers(x,y)

s foreach slice i do

6 Buffy,. « getSrcBuffer(Buff)

7 Buff,,, < getDstBuffer(Buff)

8 foreach voxel v €slice i do

9 Jfimins fmax < getMinMaxInNeighborhood(v)
10 @min, ¥max < getMinMaxOpacity(fiin, fmax)
11 ACmax «— getMaxColorVariation(fiin, fmax)
12 al’mn, @hax < opacityCorrection(@min, @max)
13 Amin < getPreviousA(Buffy,.)

14 p « getPrevPartial AccumErrors(Buff,)

s || pepr B

16 Amin < o, + (1 =a];)Amin

17 updateBuffer(Buff s, Amin,)

18 store(Vol, v.pos, Amins 0> @max)

19 end

20 swapBufters()

21 end

Algorithm 2: Output-Sensitive Filtering

Data: F, v, Vol, binary mask volume WSV
Result: Partially processed volume G
1 foreach voxel veF do
Amins @max» o < getData(Vol, v.pos)
po < findRayEntryPoint(F.size, v.pos, v)
Anin < getTotalAccumOpacity(Vol, po)
€ace — (1 =Apin)p
if €4cc > T and amax > 0 then
| tagAndDilate(WSV,v.pos)
end

(8]

e ® N U R W

end
10 foreach voxel veF do
1 if v e WSV then

12 g « doFiltering(v)
13 store(G,v.pos,g)

14 end

15 else

16 | store(G,v.pos,v)

17 end

18 end

References

[BATK12] Bronstab E., Asen J., Tore H., Kiss G.: Visibility driven
visualization of 3D cardiac ultrasound data on the GPU. In [EEE
International Ultrasonics Symposium (IUS) (2012), pp. 2651-
2654.

[BBBV12] BIRKELAND A., BruckNER S., BRamBILLA A., VioLA L.:
Illustrative membrane clipping. Computer Graphics Forum 31,3
(2012), 905-914.

[BH15] BrRewer C. A., HarrowER M.: Colorbrewer - a web tool
for selecting colors for maps. http://colorbrewer2.org/, October
2015.

[BHMFO08] BEYER J., HADWIGER M., MOLLER T., Fritz L.: Smooth
mixed-resolution GPU volume rendering. In Proceedings of
Point-Based Graphics 2008 (2008), pp. 163-170.

[BHP14] BEYER J., HADWIGER M., PrisTER H.: A Survey of GPU-
Based Large-Scale Volume Visualization. In EuroVis - STARs
(2014), pp. 105-123.

[BJE*11] BRUDER R., JAUER P., ERNST F., RICHTER L., SCHWEIKARD
A.: Real-time 4D ultrasound visualization with the voreen frame-
work. In Proceedings of ACM SIGGRAPH 2011 Posters (2011),
pp. 74:1-74:1.

[BNSO1] Boapa 1., Navazo 1., Scorigno R.: Multiresolution volume
visualization with a texture-based octree. The Visual Computer
17,3 (2001), 185-197.

© 2016 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.

V. Solteszova et al. / Output-Sensitive Filtering 13

[BWO3] Birtner J., Wonka P.: Visibility in computer graphics.
Journal of Environment and Planning B: Planning and Design
5,30 (2003), 729-756.

[CNLEO9] CrassiN C., NEYRET F., LEFEBVRE S., EisEeMANN E.: Gi-
gavoxels: Ray-guided streaming for efficient and detailed voxel
rendering. In Proceedings of Symposium on Interactive 3D
Graphics and Games (2009), ACM, pp. 15-22.

[COCSDO03] CoHEN-OR D., CurysantHOU Y. L., Siva C. T., Du-
RAND F.: A survey of visibility for walkthrough applications.
IEEE Transactions on Visualization and Computer Graphics 9,
3(2003), 412-431.

[DWS*88] DEERING M., WINNER S., ScHEDIWY B., Durry C., HUNT
N.: The triangle processor and normal vector shader: A vlsi sys-
tem for high performance graphics. ACM SIGGRAPH Computer
Graphics 22, 4 (1988), 21-30.

[EEH*09] ELNokrASHY A., ELMALKY A., Hosny T., ELLAH M.,
MEGAWER A., ELsEBAT A., YOUSSEF A.-B., Kapan Y.: GPU-based
reconstruction and display for 4D ultrasound data. In Proceedings
of the IEEE International Ultrasonics Symposium 2009 (2009),
pp. 189-192.

[EHH*12] ELNOKRASHY A., HAssaN M., Hosny T., ALt A., MEGAWER
A.,KapaHn Y.: Multipass GPU surface rendering in 4D ultrasound.
In Proceedings of the Cairo International Biomedical Engineer-
ing Conference 2012 (2012), pp. 39-43.

[EHK*06] EnceL K., HADWIGER M., Kniss J., REzk-Sarama C.,
WEiskopr D.: Real-Time Volume Graphics. AK Peters, 2006.

[EKEO1] EncGeL K., Kraus M., ErTL T.: High-quality pre-integrated
volume rendering using hardware accelerated pixel shading. In
Proceedings of the ACM SIGGRAPH/EG Workshop on Graphics
Hardware 2001 (2001), pp. 9-16.

[FNVV98] Franat A. F., NiesseN W. J., VINCKEN K. L., VIERGEVER
M. A.: Multiscale vessel enhancement filtering. In Proceedings of
Medical Image Computing and Computer—Assisted Intervention
(1998), pp. 130-137.

[FSK13] FogaL T., ScHIEWE A., KRUGER J.: An analysis of scalable
GPU-based ray-guided volume rendering. In IEEE Symposium
on Large Data Analysis and Visualization (2013), pp. 43-51.

[FSME14] Frey S., Sapro E.,, Ma K.-L., ErTL T.: Interactive pro-
gressive visualization with space-time error control. /[EEE Trans-
actions on Visualization and Computer Graphics 20, 12 (2014),
2397-2406.

[FWO08] FaLk M., WEiskopr D.: Output-sensitive 3d line integral
convolution. I[EEE Transactions of Visualization and Computer
Graphics 14, 4 (2008), 820-834.

[GMOS5] Gossertl E., MaRrTON F.: Far Voxels — a multiresolution
framework for interactive rendering of huge complex 3D models
on commodity graphics platforms. ACM Transactions on Graph-
ics 24, 3 (2005), 878-885.

[GMGO08] GosserTi E., MarTON F., GUITIAN J. A. L.: A single-pass
GPU ray casting framework for interactive out-of-core rendering
of massive volumetric datasets. The Visual Computer 24, 7-9
(2008), 797-806.

[HBJP12] HADWIGER M., BEYER J., JEONG W.-K ., PrisTER H.: Interac-
tive volume exploration of petascale microscopy data streams us-
ing a visualization-driven virtual memory approach. /[EEE Trans-
actions of Visualization and Computer Graphics 18, 2 (2012),
2285-2294.

[HSBGO05] HapwiGEr M., ScuarsacH H., BUHLER K., Gross M.:
Real-time ray-casting and advanced shading of discrete isosur-
faces. Computer Graphics Forum 24, 3 (2005), 303-312.

[Ton10] Ionescu C.: The benefits of 3D-4D fetal echocardiography.
Maedica (Buchar) 5, 1 (2010), 45-50.

[JBH*09] JEoNG W.-K., BEYER J., HADWIGER M., VAZQUEZ A., PFISTER
H., WHitaker R. T.: Scalable and interactive segmentation and
visualization of neural processes in EM datasets. I[EEE Trans-
actions on Visualization and Computer Graphics 15, 6 (2009),
1505-1514.

[KEO2] Kraus M., ErtL T.: Adaptive texture maps. In Proceed-
ings of ACM SIGGRAPH/EG Conference on Graphics Hardware
(2002), pp. 7-15.

[KLFO5] Kniss J., LEFonN A., Fout N.: Deferred Filtering: Render-
ing from Difficult Data Formats. Addison Wesley, 2005, ch. 41,
pp. 669-677.

[Lev90] LeEvoy M.: Efficient ray tracing of volume data. ACM Trans-
actions on Graphics 9, 3 (1990), 245-261.

[LL94] Lacroutk P., LEvoy M.: Fast volume rendering using a shear-
warp factorization of the viewing transformation. In Proceedings
of ACM SIGGRAPH (1994), pp. 451-458.

[LLY06] LiunG P., LunpsTROM C., YNNERMAN A..: Multiresolution in-
terblock interpolation in direct volume rendering. In Proceedings
of EuroVis 2006 (2006), pp. 259-266.

[LV11] Lesit E.-D., VLaDAREANU R.: The role of 4D ultrasound in
the assessment of fetal behaviour. Maedica (Buchar) 6,2 (2011),
120-127.

[MGDG14] MartoN E., GuiTiAN J. A. 1., Diaz J., GosBertI E.: Real-
time deblocked GPU rendering of compressed volumes. In Pro-
ceedings of Vision, Modeling and Visualization (2014), pp. 167—
174.

[MJCO02] Mora B., JessEL J.-P., CAUBET R.: A new object-order ray-
casting algorithm. In Proceedings of IEEE Visualization 2002
(2002), pp. 203-210.

[NPH*00] NeLsoN T., PreTor1us D., HULL A., RiccABoNA M., SKLAN-
skY M., JamEs G.: Sources and impact of artifacts on clinical
three-dimensional ultrasound imaging. Ultrasound in Obstetrics
& Gynecology 16, 4 (2000), 374-383.

© 2016 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.

14 V. Solteszova et al. / Output-Sensitive Filtering

[PM87] Perona P., MaLik J.: Scale-space and edge detection
using anisotropic diffusion. In Proceedings of IEEE Com-
puter Society Workshop on Computer Vision (1987), pp. 16—
22.

[PVMd12] PerriN D.P., VasiLyEv N.V., Marx G.R., peL Nipo PJ.:
Temporal enhancement of 3D echocardiography by frame re-
ordering. JACC Cardiovascular Imaging 5, 3 (2012), 300-304.

[RDR10] Ropinski T., DORING C., REzk-SaLama C.: Interactive volu-
metric lighting simulating scattering and shadowing. In Proceed-
ings of IEEE Pacific Visualization (2010), pp. 169-176.

[SBVB14] SortEszovA V., BIRKELAND A., VioLA 1., BRUCKNER S.:
Visibility-driven processing of streaming volume data. In Pro-
ceedings of EG Workshop on Visual Computing for Biomedicine
(2014), pp. 127-136.

[SPBV10] SoLrEszovA V., PATEL D., BRUCKNER S., VioLa L.: A multi-
directional occlusion shading model for direct volume rendering.
Computer Graphics Forum 29, 3 (2010), 883-891.

[SSHW*12] SorLtEszovA V., S&viL-HELLIESEN L. E., WEIN W., GILIA
0. H., VioLa L.: Lowest-variance streamlines for filtering of 3D

ultrasound. In Proceedings of EG Workshop on Visual Computing
for Biomedicine (2012), pp. 41-48.

[TM99] Tomast C., Manpuchr R.: Bilateral filtering for gray and
color images. In Proceedings of International Conference on
Computer Vision (1999), pp. 839-846.

[WRWO7] WESTENBERG M., ROERDINK J., WILKINSON M.: Volumetric
attribute filtering and interactive visualization using the max-tree
representation. [EEE Transactions of Visualization and Computer
Graphics (2007), 2943-2952.

Supporting Information

Additional Supporting Information may be found in the online ver-
sion of this article at the publisher’s web site:

Supplementary material Video S1

Matlab script related to Figure 8

Matlab example for circumventing zero divisions in Equation
14

© 2016 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.

