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Solute transport in aquifers with evolving scale
heterogeneity
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Abstract

Transport processes in groundwater systems with spatially heteroge-
neous properties often exhibit anomalous behavior. Using first-order ap-
proximations in velocity fluctuations we show that anomalous superdif-
fusive behavior may result if velocity fields are modeled as superpositions
of random space functions with correlation structures consisting of linear
combinations of short-range correlations. In particular, this corresponds
to the superposition of independent random velocity fields with increas-
ing integral scales proposed as model for evolving scale heterogeneity of
natural porous media [Gelhar, L. W. Water Resour. Res. 22 (1986),
135S-145S]. Monte Carlo simulations of transport in such multi-scale
fields support the theoretical results and demonstrate the approach to
superdiffusive behavior as the number of superposed scales increases.

1 Lagrangian and Eulerian representations of diffusion
in random velocity fields

Let {Xi,t = Xi(t), i = 1, 2, 3, t ≥ 0} be the advection-dispersion process with
a space variable drift V(x), sample of a statistically homogeneous random
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velocity field, and a local diffusion coefficient D, assumed constant, described
by the Itô equation

Xi,t = xi,0 +

∫ t

0

Vi(Xt′)dt
′ +Wi,t, (1)

where xi,0 is a deterministic initial position and Wi are the components of a
Wiener process of mean zero and variance 〈W 2

i,t〉 = 2Dt.
The solution g of the Fokker-Planck equation

∂tg + u∇g = D∇2g, (2)

which corresponds to Green’s function in Eulerian approaches to dispersion
in random fields, is the density of the transition probability P (dx, t,x0) =
g(x, t|x0)dx of the Itô process (1). Equation (2) is the starting point in Eule-
rian perturbation approaches [1, 7, 8].

The following three centered processes are useful to describe the effective
and ensemble dispersion and the fluctuations of the center of mass: Xeff

i,t =
Xi,t − 〈Xi,t〉, the process centered about the mean 〈Xi,t〉 of Xi,t in single

realizations of the random velocity field, 〈Xeff
i,t 〉 = 0, the process Xens

i,t =

Xi,t − 〈Xi,t〉 centered about the average 〈Xi,t〉 of 〈Xi,t〉 over the ensemble of

realizations, 〈Xens
i,t 〉 = 0, and the fluctuation of the center of mass Xcm

i,t =

〈Xi,t〉 − 〈Xi,t〉, with Xcm
i,t = 0. The half derivative of the variance of these

tree processes defines, respectively, the effective and ensemble dispersion
coefficients [1], and the center of mass coefficient [24],

Deff
ii (t) =

1

2

dS(t)

dt
, Sii(t) = 〈(Xeff

t )2〉,

Dens
ii (t) =

1

2

dΣ(t)

dt
, Σii(t) = 〈(Xens

t )2〉,

Dcm
ii (t) =

1

2

dR(t)

dt
, Rii(t) = 〈(Xcm

t )2〉, (3)

related by Dcm
ii (t) = Dens(t)−Deff (t).

According to (1), the process Xens
i,t starting from xi,0 = 0 verifies

Xens
i,t =

∫ t

0

ui(Xt′)dt
′ +Wi,t, (4)

where ui = Vi − 〈Vi〉. The variance of the process (4) is obtained as follows,

Σii(t) =

∫ t

0

∫ t

0

〈ui(Xt′)ui(Xt′′)〉dt′dt′′ + 2

∫ t

0

〈ui(Xt′)Wi,t〉dt′ +
〈
W 2
i,t

〉
= 2Dt+ 2

∫ t

0

dt′
∫ t′

0

〈ui(Xt′)ui(Xt′′)〉dt′′,
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where we used the statistical homogeneity of the velocity field, 〈ui〉 = 0, and
the independence of the Wiener process on velocity statistics, which, together,
cancel the cross-correlation term. The process Xcm

i,t verifies (4) with ui =

〈Vi〉 − 〈Vi〉 and the second term set to zero and has the variance

Rii(t) = 2

∫ t

0

∫ t

0

〈ui(Xt′)〉〈ui(Xt′′)〉dt′dt′′.

Further, the definitions (3) yield

Dens
ii (t) = D +

∫ t

0

〈ui(Xt)ui(Xt′)〉dt′, (5)

Dcm
ii (t) =

∫ t

0

〈ui(Xt)〉〈ui(Xt′)〉dt′, (6)

Deff
ii (t) = Dens

i,i (t)−Dcm
i,i (t). (7)

The first iteration of (4) about the un-perturbed problem consisting of
diffusion with constant coefficient D in the mean flow field U = 〈Vi〉, with

trajectory X
(0)
i,t = δj,1Ut + Wi,t, leads to replacing Xt by X

(o)
t in (5) and

(6). Then, (5) gives the following first-order approximation of the ensemble
dispersion coefficient

Dens
ii (t)−D =

∫ t

0

〈ui(X(0)
t )ui(X

(0)
t′ )〉dt′

=

∫ t

0

dt′
∫ ∫

ui(x)ui(x′)p(x, t; x
′, t′)dxdx′, (8)

where p(x, t; x′, t′) = 〈δ(x−X
(0)
t )δ(x′−X

(0)
t′ )〉 is the Gaussian joint probability

density of the process X
(0)
i,t expressed with the aid of the Dirac δ-function [23].

Similarly, with p(x, t) = 〈δ(x−X
(0)
t )〉, (6) gives the first-order approximation

of the center of mass coefficient

Dcm
ii =

∫ t

0

dt′
∫ ∫

ui(x)ui(x′)p(x, t)p(x
′, t′)dxdx′. (9)

Finally, Deff
ii (t) is obtained from (7). Together, (7-9) give the (stochastic)

Lagrangian formulation of the first-order approximation equivalent to that
obtained in the Eulerian perturbation approach [1, 7, 8].

Remark 1. As follows from (8-9), for a superposition ui(x) = u1
i (x) +

· · ·+uni (x) of statistically independent velocity fields the dispersion coefficients
estimated to the first-order are given by the sum of terms determined by the
corresponding correlations u1

i (x)u1
i (x
′), · · · , uni (x)uni (x′).
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2 Quantifying anomalous diffusion by memory terms

In the following, by Xt we denote one of the processes Xi,t, X
eff
i,t , Xens

i,t , or
Xcm
i,t . Further, we consider the uniform time partition 0 < ∆ < · · · < k∆ <
· · · < (K − 1)∆ < K∆ and for k > 0 we define the increments Xk,k−1 =
Xtk − Xtk−1

and sk,k−1 = (Xk,k−1)2. For a sum of two increments Xk,0 =
Xk−1,0 +Xk,k−1 we have

sk,0 = sk−1,0 + sk,k−1 +mk,k−1,0 (10)

where mk,k−1,0 = 2Xk−1,0Xk,k−1. By iterating the binomial formula (10) one
obtains:

s1,0 = s1,0

s2,0 = s1,0 + s2,1 +m2,1,0

· · · · · · · · · · · · · · · · · · · · ·
sk,0 = sk−1,0 + sk,k−1 +mk,k−1,0

· · · · · · · · · · · · · · · · · · · · ·
sK−1,0 = sK−2,0 + sK−1,K−2 +mK−1,K−2,0

sK,0 = sK−1,0 + sK,K−1 +mK,K−1,0

Summing up these relations we get

sK,0 =

K∑
k=1

sk,k−1 +

K∑
k=1

mk,k−1,0, (11)

which, using the relation

mk,k−1,0 = 2Xk−1,0Xk,k−1 = 2Xk,k−1

k−1∑
l=1

Xl,l−1

can be further expressed as

sK,0 =

K∑
k=1

sk,k−1 + 2

K∑
k=1

k−1∑
l=1

Xk,k−1Xl,l−1. (12)

For Xt = Xens
t , the expectation Σk,0 = 〈sk,0〉 of (10) verifies

Σk,0 = Σk−1,0 + Σk,k−1 +Mk,k−1,0, (13)

where Mk,k−1,0 = 〈mk,k−1,0〉. For continuous time t = k∆, (13) becomes

Σt,0 = Σt−∆,0 + Σt,t−∆ +Mt,t−∆,0. (14)
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According to the definition of the ensemble coefficient in (3), the half time
derive of (14) yields

Dens
t,0 = Dens

t,t−∆ +MDens
t,t−∆,0. (15)

The last term of (14), Mt,t−∆,0 is a memory term quantifying the depar-
ture from normal-diffusion behavior of the process Xens

t [25, 22] and its half
derivative MDens

t,t−∆,0 = (1/2)dMt,t−∆,0/dt is a memory dispersion coef-

ficient. Relations similar to (14-15) also hold for S, Deff , and for R, Dcm.
The expectation of the second term of Eq. (11),

CMt =

t/∆∑
k=1

〈mk∆,(k−1)∆,0〉, (16)

is a cumulative memory term which, according to Eq. (12), contains a hierar-
chy of correlations between increments along paths of the transport process.
Estimations of such cumulative memory terms by simulations of transport in
single realizations of the random velocity field are presented in Ref. [29].

According to (15) and (5), the memory dispersion coefficient corresponding
to the increment of the process Xt over the time interval τ has the following
Lagrangian expression

MDens
ii (t, τ, 0) = Dens

ii (t, 0)−Dens
ii (t, τ)

=

∫ τ

0

〈ui(Xt)ui(Xt′)〉dt′. (17)

With (8), the first order approximation of (17) is given by

MDens
ii (t, τ, 0) =

∫ τ

0

dt′
∫ ∫

ui(x)ui(x′)p(x, t; x
′, t′)dxdx′. (18)

Memory coefficients (18) as well as their time integrals (i.e. memory terms)
were computed in [25] for short range correlations of the velocity field as well as
for diffusion in perfectly stratified fields (model of Matheron and de Marsily).
In [22], the time behavior of the memory terms for fractional Gaussian noise
has been also analyzed. Jeon and Metzler [16] used correlations of increments
to quantify the memory of two special anomalous diffusion processes (fractional
Brownian motion and processes governed by fractional Langevin equation).
Their correlations are in fact memory terms related to the variance of the
process by Eq. (13). For instance, in case of fractional Brownian motion
with variance Σt2,t1 = (t2 − t1)2H and Hurst coefficient 0 < H < 1, for two
successive time intervals ∆, from (14) one obtains

M∆ = 2〈X∆,0X2∆,∆〉 = Σ2∆,0 − Σ∆,0 − Σ2∆,∆ = (22H − 2)∆2H , (19)

which is just Eq. (4.4) of Jeon and Metzler [16].
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3 Explicit first-order results for transport in aquifers

Approximations of the flow and transport equations for small variance of the
logarithm of the hydraulic conductivity K of the aquifer system lead to explicit
functional dependencies of the dispersion coefficients on the covariance CY of
the random field Y = lnK [14].

With the common convention for the Fourier transform

ûj(k) =

∫
uj(x) exp(−ik · x)dx, (20)

uj(x) =
1

(2π)d

∫
ûj(k) exp(ik · x)dk, j = 1 · · · d, d = 2, 3, (21)

the first-order approximation in σ2
Y yields (e.g., [14, 21, 7, 8])

ûj(k)ûj(k′) = (2π)dU2δ(k + k′)p2
j (k)ĈY (k), (22)

where pj(k) = (δj,1 − k1kj/k
2) are projectors which ensure the incompress-

ibility of the flow.
Remark 2. The Dirac function δ(k + k′) which ensures the statistical

homogeneity in (22) has to be changed into δ(k − k′) to obtain a similar
first-order relation for ûj(k)û∗j (k

′), where û∗j denotes the complex conjugate
[5, 6, 21]. Even though it leads to the same results, this relation render the
computation more complicated.

Using the inverse Fourier transform (21) and (22), the Eulerian velocity
correlation from (8) and (18) can be computed as follows

uj(x)uj(x′) =
1

(2π)2d

∫ ∫
ûj(k)ûj(k′) exp(ik · x) exp(ik′ · x′)dkdk′

=
U2

(2π)d

∫
p2
j (k)ĈY (k) exp(ik · x)dk

∫
δ(k + k′) exp(ik′ · x′)dk′

=
U2

(2π)d

∫
p2
j (k)ĈY (k) exp[ik · (x− x′)]dk. (23)

With (23), the integrand of the time integral in (8) and (18) becomes∫ ∫
uj(x)uj(x′)p(x, t; x

′, t′)dxdx′ =

=
U2

(2π)d

∫
p2
j (k)ĈY (k)dk

∫ ∫
exp[ik · (x− x′)p(x, t; x′, t′)]dxdx′

=
U2

(2π)d

∫
p2
j (k)ĈY (k) exp[ik1U(t− t′)− k2D(t− t′)]dk. (24)
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The passage to the last line in (24) was achieved by using the expression∫ ∫
exp[ik · (x− x′)]p(x, t; x′, t′)dxdx′ = exp[ik1U(t− t′)− k2D(t− t′)]

of the characteristic function of the Gaussian increment (X
(0)
t −X

(0)
t′ ) of the

un-perturbed process X
(0)
j,t = δj,1Ut+Wj,t, j = 1 · · · d (see e.g. [18]).

Remark 3. Changing the sign convention of the Fourier transform,

ûj(k) =

∫
uj(x) exp(ik · x)dx,

changes the sign of the first term of the characteristic function without alter-
ing the sign of the second term, exp[−ik1U(t− t′)− k2D(t− t′)] (see detailed
computation of characteristic function for Gaussian random variables of Pa-
poulis and Pillai [18], Example 5-28, p. 153]. However, changing the sign of
the imaginary exponent is equivalent to changing U into −U (this also changes
the sign of pj (see Gelhar and Axness [14], Eq. (28a)), but (24) depends only
on p2

j ). Since second moments and dispersion coefficients do not depend on
the sign of the mean flow, the expression (26) gives the same result irrespective
of the sign of the imaginary exponent.

Inserting (24) into (8) one obtains the explicit expression of the advective
contribution to the ensemble dispersion coefficient,

δ{Dens
ii (t)} = Dens

ii (t)−D

=
U2

(2π)d

∫ t

0

dt′
∫
p2
j (k)ĈY (k) exp[ik1U(t− t′)− k2D(t− t′)]dk. (25)

With the change of variable t′′ = t− t′, (25) becomes

δ{Dens
ii (t)} = − U2

(2π)d

∫ 0

t

dt′′
∫
p2
j (k)ĈY (k) exp[ik1Ut

′′ − k2Dt′′]dk

=
U2

(2π)d

∫ t

0

dt′′
∫
p2
j (k)ĈY (k) exp[ik1Ut

′′ − k2Dt′′]dk. (26)

Remark 4.1. The time derivative of (26) is identical with the result of
Dagan ([5], Eq. (3.14); [6], Eq. (17)), and Schwarze et al. ([21], Eq. (13)).
Dagan [6] derived the result by using the changed sign in the homogeneity
condition (Remark 2) and opposite Fourier transform convention (Remark 3).

Remark 4.2. The opposite Fourier transform convention and the same
homogeneity condition as in (22) change ik1Ut

′′ into −ik1Ut
′′ and let −k2Dt′′

unchanged (see Remark 3). This is the case in the derivation of the variance
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Σjj by Fiori and Dagan [12] (Eq. (14)), which is exactly the integral of (25)
from above, with ik1Ut

′′ replaced by −ik1Ut
′′. Dentz et al. [7] used the same

conventions as Fiori and Dagan [12], (i.e. Eqs. (16) and (25) in [7]) and
obtained the same result. The result given by their Eq. (40) with g̃0 replaced
by the characteristic function of the un-perturbed problem ([7], Eq. (25)), is
just the relation (26) from above, with exponent ik1Ut

′′ replaced by −ik1Ut
′′.

The corresponding memory coefficient is similarly obtained by inserting
(24) into (18),

MDens
ii (t, τ, 0) =

U2

(2π)d

∫ τ

0

dt′
∫
p2
j (k)ĈY (k) exp[ik1U(t−t′)−k2D(t−t′)]dk.

(27)
Making the change of variable t′′ = t − t′ in (27), we see that the ensemble
memory coefficients can be computed, after a simple change of the integration
limits in the time integral, with the explicit expression (26) of the advective
contributions δ{Dens

ii } to the ensemble coefficients:

MDens
ii (t, τ, 0) =

U2

(2π)d

∫ t

t−τ
dt′′
∫
p2
j (k)ĈY (k) exp[ik1Ut

′′ − k2Dt′′]dk. (28)

Remark 5. The memory coefficient (27) can also be obtained within the
Eulerian approach of Dentz et al. [7] if in Eq. (18) from [8] the initial con-
centration ρ̂ is replaced by the perturbation solution for point source at time
τ given in Eq. (26) from [7], i.e. ρ̂(k, τ) = g(k, τ). Then Eq. (18) from [8]
gives ĝ(k, t − τ). Further, inserting ĝ(k, t − τ) in Eq. (14) from [8] and “ex-
panding the logarithm consistently up to second order in the fluctuations” (as
described at the beginning of Sect. 3.2 of [8]), should reproduce the expression
(27) of the memory coefficient MDens(t, τ, 0).

To derive the explicit form of the effective coefficients (7) we first have to
compute the center of mass coefficients (9). Similarly to (24), we obtain∫ ∫

uj(x)uj(x′)p(x, t)p(x
′, t′)dxdx′

=
U2

(2π)d

∫
p2
j (k)ĈY (k)dk

∫ ∫
exp[ik · (x− x′)p(x, t)p(x′, t′)]dxdx′

=
U2

(2π)d

∫
p2
j (k)ĈY (k) exp[ik1U(t− t′)− k2D(t+ t′)]dk (29)

The passage to the last line in (29) is now achieved through the expressions∫ ∫
exp(ik · x)p(x, t)dx = exp[ik1Ut− k2Dt] and
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∫ ∫
exp(−ik · x′)p(x′, t′)dx′ = exp[−ik1Ut

′ − k2Dt′]

of the characteristic functions of the Gaussian un-perturbed process X
(0)
j,t =

δj,1Ut + Wj,t, j = 1 · · · d [18], where we used the property pointed out in
Remark 3. Inserting (29) into (9), we obtain the center of mass coefficient

Dcm
ii (t) =

U2

(2π)d

∫ t

0

dt′
∫
p2
j (k)ĈY (k) exp[ik1U(t− t′)− k2D(t+ t′)]dk. (30)

With the change of variable t′′ = t − t′ (which implies t + t′ = 2t − t′′) the
expression (30) of the center of mass coefficients becomes

Dcm
ii (t)

= − U2

(2π)d

∫ 0

t

dt′′
∫

exp(−2k2Dt)p2
j (k)ĈY (k) exp[ik1Ut

′′ + k2Dt′′]dk

=
U2

(2π)d

∫ t

0

dt′′
∫

exp(−2k2Dt)p2
j (k)ĈY (k) exp[ik1Ut

′′ + k2Dt′′]dk. (31)

The center of mass coefficients (30) and the advective contribution (26) to the
ensemble dispersion coefficients determine the advective contributions to the
effective coefficients according to (7):

δ{Deff
ii (t)} = Dens

ii (t)−Dcm
i,i (t)−D = δ{Dens

ii (t)} −Dcm
i,i (t). (32)

Remark 6. The ensemble contribution (26) and the center of mass co-
efficient (30) particularize to isotropic local diffusion coefficient the general
relations M− and M+, respectively, derived by Dentz et al. ([7] Eq. (47)).
We also note that (30) is the time derivative of the relation (15) of Fiori and
Dagan [12], which, together with Remarks 4.1 and 4.2, proves the equivalence
of Eulerian expressions for the ensemble and effective dispersion coefficients
of Dentz et al. [7, 8] and the Lagragian expressions derived by Fiori and Da-
gan [12] and by Vanderborght [31] for the corresponding variances. We note
here that the Eulerian approach has the important advantage of providing
first-order approximations of the concentration fields (e.g., Eq. (26) in [7], on
which the derivation of the dispersion coefficients is actually based).

The memory coefficient of the center of mass is readily obtained, similarly
to (28), by a change of the integration limits in the expression (31) of the
center of mass dispersion coefficients:

MDcm
ii (t, τ, 0)

=
U2

(2π)d

∫ t

t−τ
dt′′
∫

exp(−2k2Dt)p2
j (k)ĈY (k) exp[ik1Ut

′′ + k2Dt′′]dk. (33)



TRANSPORT IN AQUIFERS WITH EVOLVING SCALE HETEROGENEITY 176

Finally, the memory coefficient of the effective dispersion is obtained from the
relations (32), (31), and (28),

MDeff
ii (t) = MDens

ii (t)−MDcm
i,i (t). (34)

Remark 7. The memory coefficients (28), (33), and (34) can be computed
with the explicit expressions of the advective contribution to the ensemble dis-
persion coefficients (25) and of the center of mass coefficients (31) by changing
the lower limit of the time integrals from 0 to t− τ .

4 Explicit first-order results for power-law correlated log-
K fields

The first-order results for log-K fields with finite correlation lengths can be
further used to develop approaches for a superposition of scales [9, 20]. To
proceed, let us consider the particular case of an isotropic power-law covariance
of Y = lnK,

CPLY (x) = σ2
Y z
−β , where z =

(
1 +
|x|2

L2

) 1
2

, |x|2 =

d∑
j=1

x2
j , 0 ≤ β ≤ 2, (35)

where L is some length scale associated with the spatial extension of the
system. Power-law covariances can be constructed by integrating covariances
with continuously increasing finite integral scales λ ([15], p. 370, expression
3.478 (1.)) by the relation

∞∫
0

λβ−1 exp (−µλp) dλ =
1

p
µ−

β
p Γ

(
β

p

)
, (36)

where µ > 0 and β > 0. For µ = z2 and p = 2, (36) yields a superposition of
Gaussian covariances:

CPLY (x)/σ2
Y = z−β =

2

Γ(β2 )

∞∫
0

λβ−1 exp(−z2λ2)dλ

=
2

Γ(β2 )

∞∫
0

λβ−1 exp

[
−
(

1 +
|x|2

L2

)
λ2

]
dλ

=

∞∫
0

dΛ(λ) exp

(
−1

2

|x|2

l(λ)2

)
, (37)
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where

dΛ(λ) =
2

Γ(β2 )
λβ−1 exp(−λ2)dλ and l(λ) =

L

λ
√

2
. (38)

The integrand in (37) has the from of the Gaussian CY considered by Dentz
et al. [7, 8].

Redefining z in (35) as z = (1 + |x|/L) and choosing µ = z and p = 1, one
constructs a power-law covariance via (36) as a superposition of exponential
covariances:

CPLY (x)/σ2
Y = z−β =

1

Γ(β)

∞∫
0

λβ−1 exp(−zλ)dλ

=
1

Γ(β)

∞∫
0

λβ−1 exp

[
−
(

1 +
|x|
L

)
λ

]
dλ

=

∞∫
0

dΛ(λ) exp

(
− |x|
l(λ)

)
, (39)

where

dΛ(λ) =
1

Γ(β)
λβ−1 exp(−λ)dλ and l(λ) =

L

λ
. (40)

The integrand in (39) is the isotropic version of the exponential CY considered
by Fiori [10] and Vanderborght [31].

Remark 8. For β = 1 in either (37) or (39) one obtains the covariance
of the “1/z noise” as an integral of Gaussian or exponential covariances with
continuous scale parameter λ. Further, by defining z = |x|/L the covariance
σ2
Y z
−1 is simply given by integrating Gaussian covariances with respect to

we get dΛ(λ) = 2√
π
dλ in (37) or exponential covariances with respect to

dΛ(λ) = dλ in (39).This corresponds to the limit of infinite superposition
of log-K fields with finite correlation scales.

By the linearity of the superposition relations (37), respectively (39), we
have the general relations

CPLY (x) =

∞∫
0

dΛ(λ)CY (x, λ), ĈPLY (k) =

∞∫
0

dΛ(λ)ĈY (k, λ) (41)

By inserting (41) in (25), (30), and (7), we finally obtain the superposition
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relations

δ{DPL,ens
ii }(t) =

∞∫
0

dΛ(λ){Dens
ii }(t, λ)

δ{DPL,eff
ii }(t) =

∞∫
0

dΛ(λ){Deff
ii }(t, λ). (42)

According to (42), the memory coefficients (28), (33), and (34) are given by
integrals with respect to dΛ(λ) of the coefficients for given λ derived in the
previous section.

5 Numerical simulations of transport in aquifers with
multiscale hydraulic conductivity

To investigate the behavior of several transport observables we conducted 256
global random walk (GRW) simulations of a two-dimensional isotropic diffu-
sion, with coefficientD = 0.01 m2/d which is a typical value for local dispersion
coefficient in aquifers, in multiscale velocity fields. The latter, generated with
the Kraichnan method, are first-order approximations of the flow equations
for a lnK field consisting of a superposition of statistically independent lnK
fields with isotropic exponential correlation and constant variance σ2

Y = 0.1.
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Figure 1: Longitudinal ensem-
ble dispersion coefficients for log-
K fields with increasing integral
scales.
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Figure 2: Transverse ensemble dis-
persion coefficients for log-K fields
with increasing integral scales.

The integral scales (defined as integrals of the correlation function, not
divided by the variance) of the lnK fields were increased with a constant step
λ = 1 m, so that at the n-the step λn = λn−1 + n, which results in λn =
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(n+1)n/2. For instance, the superposition of 2 fields has the variance 0.2 and
the integral scale λ2 = 3 m and that of seven fields (the largest one investigated
here) has the variance 0.7 and λ7 = 28 m.
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Figure 3: Longitudinal ensemble
memory coefficients for log-K fields
with increasing integral scales.
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Figure 5: Cumulative longitudinal
memory coefficients compared with
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Figure 6: Cumulative transverse
memory coefficients compared with
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tive and center of mass dispersion
coefficients (λ7 = 28 m).

The GRW algorithm has been developed by Vamoş et al. [30]. Imple-
mentation details and applications for transport in saturated aquifers can be
found in [24, 19, 27, 23, 28]. In our GRW numerical simulations we estimate
dispersion coefficients for processes starting from instantaneous point injec-
tions by the mean half-slope of the variances defined in (3). The ensemble
dispersion coefficients Σii(t)/(2t) and the one-step memory dispersion coef-
ficients Mii(t)/(2t), where Mii(t) = Mii(t, t − ∆, 0) (15), normalized by the
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local dispersion coefficient, are presented in Figs. 1-4. (See Ref. [26] for results
on effective and center of mass coefficients.) The extinction of the memory
coefficients (Figs. 3-4) coincides with the approach to a normal diffusive be-
havior with constant ensemble dispersion coefficients, shown in Figs. 1-2, in
agreement with (15) and (17).
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Figure 7: Solute plume at t = 1000
days (λ7 = 28 m).
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Figure 8: Breakthrough curve
c(t) ± σc(t) at x =300, 500, 1000,
and 1500 m (λ7 = 28 m).

Figures 5 and 6 show the cumulative memory coefficients CM(t)/(2t),
with CM given by (16), compared with the corresponding ensemble, effec-
tive and center of mass coefficients, in case of the seven-scales velocity field.
The cumulative memory coefficients are close to the corresponding dispersion
coefficients, the small difference between the two coefficients being just the
half slope of the average of the first term in (11). The latter is a dispersion
coefficient describing the displacement of solute particles over one step ∆ (in
our case, the simulation time step). In case of ensemble dispersion Σii, we can
see that the average of (11) is a discrete Taylor formula approximating the en-
semble coefficient (5). Thus, ensemble coefficients are mainly determined by
correlations of increments of the process Xens

i , corresponding to correlations
of the Lagrangian velocity. This makes the difference from genuine diffusion
processes (Brownian motions) where the increments are uncorrelated and the
one-step dispersion defines the constant diffusion coefficient.

Figures 1 and 5 show that both the ensemble and the effective coefficients
behave anomalous in a time windows which increase with the number of super-
posed scales. Anomalous diffusive behavior is also indicated by the asymmetry
of the solute plume at 1000 days, presented in Fig. 7, and by the breakthrough
curve c(t) of the concentration spatially averaged over the vertical section of
the simulation domain, recorded at increasing distances along the mean flow
direction, shown in Fig. 8. (See Ref. [26] for other simulation results which
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indicate anomalous behavior).
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Figure 9: Power-law fit between
10 and 500 days of longitudinal
ensemble and effective coefficients;
standard fit-errors for power-law
exponents of 0.58% and 0.46%, re-
spectively (λ7 = 28 m).
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To further investigate the anomalous behavior induced by the multiscale
structure of the velocity field, we fitted dispersion coefficients with power-law
functions. Figures 9 and 10 indicate a power law behavior of the coefficients.
We remark that ensemble and effective coefficients and variances have different
time behavior, with a larger slope for the effective quantities. This seems to be
at variance with the theoretical result for power-law correlated fields obtained
by Fiori [11]. Therefore, we consider that the current numerical results do not
allow us to draw a definite conclusion about the power law behavior of the
dispersion coefficients.

As we have seen in the previous section, power-law covariances can be
constructed by integrating covariances with continuously increasing integral
scales. An infinite sum of equal-weight exponential correlations results in
an 1/x-type correlation (Remark 8; see also expression 3.478 (1.) in [15, p.
370]) Such a correlation leads to a ∼ (t ln t − t) behavior of the ensemble
variance Σii [22]. Since this would be the theoretical infinite limit of our
simulations, we also fitted the dispersion coefficients Σii/(2t) with ln t and the
variances Σii with t ln t − t (Figs. 11 and 12). At a first sight these fitting
results are also acceptable. Nevertheless, a more detailed analysis is required
to decide which time-behavior, the power-law one from Figs. 9-10 or the ln t-
type behavior from Figs. 11-12 provides the better fit with the results of
our numerical experiment. An independent selection criterium would be the
numerical evaluation of dispersion and memory terms derived in Section 3 for
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an 1/x-correlated log-K field, using the integral representation (39-40) derived
in Section 4.

There is a long standing attempt to introduce power law correlations and
anomalous dispersion in modeling groundwater transport by a rather abstract
mathematical approach [4, 2, 9, 11, 3, 25, 22]. Nevertheless, a superposition of
a finite number of scales seems to be a more natural assumption in many con-
tamination scenarios for evolving scale groundwater systems [13, 17]. Numer-
ical simulations of transport in multiscale velocity fields provide a predictive
tool for such scenarios and may support the development of adequate models.
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