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Abstract

Medical images play an essential role in the process of diagnostics and detection
of a variety of diseases. Whether it being anatomical features or molecular cells,
medical imaging help visualize and gain insight into the human body. These
images are a crucial aid in the process of diagnosing patients. While these images
are informative, they can also be quite difficult to interpret, necessitating highly
trained medical professionals to read the images. The amount of medical images
produced is enormous compared to the amount of professionals whose task it is
to interpret them. The diagnosis can also vary based on the medical professional
who inspects the image.

The recent rise of a new generation of Computer Aided Detection (CAD)
systems based on machine learning has become more and more important to
battle this problem. These systems aids the medical professional in the diag-
nostic process. This can lead to a more consistent and accurate interpretations
of medical images by removing some human bias. In addition, such systems
can be used to decrease the workload by either filtering out images deemed as
belonging to healthy subjects, to be otherwise not of interest, or marking images
as indicating a risk.

When creating CAD systems utilizing machine learning you are very de-
pendent on data. Since the systems will typically be placed in very delicate,
high-risk situations, the quality of the data is always a priority. A common
problem in medical imaging research is not getting sufficient data. Not that
there is a shortage of images, but to be used in research, they typically have
to be de-identified or anonymized. This process has to be verified manually
and is therefore time-consuming. With the impressive advancement of machine
learning in recent decades, it seems natural to attempt de-identification using
machine learning, especially because several powerful models are being applied
to similar tasks in other fields. One key reason for the success of machine learn-
ing is its ability to detect and generate patterns. Currently, there are several
applications that perform de-identification by placing black-boxes on top of in-
formation detected as being sensitive [1, 2]. However, the black boxes can end
up hiding also other parts of the image, but ideally all non-sensitive features in
the image should be preserved. In this thesis we investigate the effect of using
image-to-image deep learning to automate 2D medical image de-identification
by detecting the sensitive information, and removing it without the use of black
boxes. Our results indicate that de-identification models based on machine
learning can result in viable and powerful solutions. The deep learning models
manage to accurately detect and remove text, without large negative impact on
the original image. Fig. 1 illustrates the results of this thesis.
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Figure 1: Complete system overview of our work. A medical image is passed
through two stages based on two different deep learning models, indicated with
the blue boxes. The first model (top row) detects the text and the second model
(bottom row) removes the text.
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Chapter 1

Introduction

Machine Learning is becoming more and more important in all sectors of our
world, whether it be in research, or for grocery shopping [10], the possibilities
are endless as long as the amount of data is sufficient. This especially applies in
medicine, a field where machine learning combined with expertise in medicine
can create solutions that outperform what either can do alone [11] and the
amount of generated data is substantial. The data volume is also rapidly grow-
ing, with it being estimated that 153 exabytes of health data were produced
worldwide in 2013, compared to the projection of 2.314 exabytes in 2020 [12].
Data engineering is already being used more and more in medicine, with exam-
ples being drug discovery [13], cognitive science, as well as many other related
practices, and will only continue to become more important in the future. One
of the issues with data within the field of medicine is that large parts of it
contain sensitive information. If this data is going to be used for research it
has to be anonymized or de-identified. This is a very time-consuming task
and is often done manually, increasing the already large workload of healthcare
workers. There have been several studies on how the intensity of healthcare
workers’ workload is negatively impacting their performance and mental health
[14]. Creating good solutions and tools that lessen the burden of healthcare
workers’ workload is, therefore, very important and relevant. De-identifying
medical records and images is a costly process as well, where professionals often
charge hourly rates. If the dataset is large enough the cost of such a process
would be substantial. When done manually you also have the issue of human
bias and what that person considers to be sensitive information. Neamatullah
et. al [15] reported that the recall score of human annotators ranged from 63 to
94 % when de-identifying medical records.

Data anonymization has become more and more important, whether it is
within medicine or data gathered by private corporations. This is especially
true after the introduction of the General Data Protection Regulation (GDPR)
in July 2018 [16]. Our aim for this thesis is to create a system of deep learning
models that will be able to detect and remove burnt in text in medical images
at a level that complies with GDPR. An ideal solution would work well enough
to replace the existing de-identification software at MMIV. This will help ease
the workflow of the de-identification process if done successfully. We hope that
such a system will contribute to generating richer datasets so the images can be
used in powerful models and further medical research without breaking any laws
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surrounding privacy and patient confidentiality. We also hope that by creating
this system, we can reduce the amount of manual work by healthcare workers,
as the results of the current solution have to be verified manually.

In this work, we have explored different image-to-image and object detection
models. By taking this approach we have been through different theories and
technologies within the field of machine and deep learning. Another aspect of
this thesis will be the generation of realistic training data for such models. Since
our models can not use real medical data, we have to generate synthetic data,
which mirrors that of real life data.

This thesis will be split into three parts. Part I, Background, will provide
the reader with the theoretical background in regards to machine learning, deep
learning, and medical imaging. Chapter 2 starts with a quick overview of ma-
chine learning, explaining the fundamental theory. Then we move on to looking
more specifically at deep learning, computer vision, neural network architec-
tures and medical imaging. The goal of Chapter 2 is to provide the necessary
knowledge required to understand the work we present in part 2, Experiments.
In chapter 3, we state the research questions our work aims to solve, as well as
hypotheses for how we will attempt to solve the task of de-identification.

In part II, Experiments, we will present our experiments in de-identification.
First off, in chapter 4 we will give an introduction to the experiments conducted.
Chapter 5 will go over our approach to detect burnt-in text using RetinaNet,
discuss the methods and material used, as well as the results obtained from
the experiment. In chapter 6, we present a proof-of-concept experiment re-
garding text-removal using Generative Adversarial Networks(GAN) and Unet
with feature loss as the loss function. The following chapter 7 will continue the
work in the previous experiment, introducing an improved version of the proof-
of-concept work. Chapter 8 goes through how we created a de-identification
prototype application, by combining the text-detection and text-removal mod-
els.

Lastly, we have part III Discussion and further work, where we will discuss
and evaluate different aspects of the experiments and thesis as a whole.
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Part I

Background
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Chapter 2

Theoretical background

2.1 A quick overview of machine learning
In this chapter, we will go over some basic concepts, techniques and ideas in
machine learning (ML), as it is necessary to understand the fundamentals before
we cover the more specific theory used in our thesis.

2.1.1 What is machine learning?
Machine learning (ML) is a branch of artificial intelligence (AI), the study of al-
gorithms that automatically improve with experience. This is achieved through
a combination of computer science, mathematics and statistics, creating ways
for computers to learn. The history of machine learning stretches back to the
1950s, but it is currently experiencing a tremendous amount of interest.

In machine learning, there are three main categories of learning: supervised
learning, unsupervised learning and reinforcement learning, distinguished by
how the systems consume data.

In supervised learning, we provide the model with labelled data
with the goal of being able to make predictions on unseen examples
based on the labelled data. Supervised learning is used in many fields
such as economics and marketing where a large amount of labelled data is
available. Moreover, there are two categories within supervised learning:
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regression and classification problems. In classification, the goal is to
predict the label/category of the input such as whether an animal is a
cat or a dog. In regression, the goal is to predict continuous values,
examples being house pricing based on size, location, age, etc, as well as
predicting stock prices. In supervised learning, common algorithms used
include linear regression, decision trees, k-nearest neighbor and neural
networks.

As for unsupervised learning, instead of learning from labelled data,
the algorithms are given unlabeled data with the hopes that the ma-
chine recognizes patterns and discovers information not previously de-
tected. Common tasks within unsupervised learning include clustering
and anomaly detection [17]. Due to being able to use unlabeled data, un-
supervised learning allows for larger datasets with less data engineering,
thus saving both time and resources. However, unsupervised learning
will not be optimal for every type of task. The reason for this is that the
algorithms used are supposed to find their own connections and struc-
tures, meaning that there are no right or wrong answers due to the fact
that while results might make no sense to humans, it does for the ma-
chine. In unsupervised learning, algorithms such as K-means, Principal
Component Analysis (PCA) and K-nearest neighbors (K-NN) are often
used.

The goal of reinforcement learning is to train intelligent agents
to take actions in order to maximize reward. Simply put, if the agent
performs the right action, it’s rewarded. Optionally you could also pe-
nalize the agent for taking the wrong action. Reinforcement learning can
be used for tasks such as self-driving cars, automated drones and video
game AI.

There are also hybrid learners such as self-supervised learning and
semi-supervised learning where the data contains less or no labelled data.

Strengths and limitations
One of the nice things about machine learning is that it is viable in a wide area
of applications, from self-driving cars to recommending movies to watch. Using
ML to handle and analyze complex data is very useful as well, a task that could
potentially be extremely time-consuming if done manually by humans. One of
the examples as previously mentioned is unsupervised learning, often used to
notice patterns that are hard for humans to find, giving us a new perspective
over what we are trying to solve. While this all sounds great, ML is not without
its limitations. First of all, to be able to do anything, you would need a suffi-
cient amount of data. ML is also restricted by the computing power it needs.
One of the reasons that ML has become relevant in recent times is due to the
breakthroughs and improvements relating to computing power, but depending
on how complex you make the model, there might not be sufficient resources to
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complete the task. There is also the ethical side that we will briefly touch on.
Using machine learning is great, but it is not perfect and can make mistakes. If
these mistakes have consequences, who is to blame? It is also important that
models are fair, meaning that the results should be independent of sensitive
variables that should not impact the outcome( i.e ethnicity, gender, etc.). Hu-
man bias is related to that. If the data that the model uses is impacted by
our own bias, then the results will be affected by said bias, so reducing bias
in general is important in ML. Lastly, there is the "no free lunch theorem". A
simplified summary is that no single machine learning algorithm is universally
the best-performing algorithm for all problems, meaning that you need to create
new models depending on what task you are performing [18].

2.1.2 Datasets and features: The models’ inputs
Arguably one of the most important aspects of ML is the data. A model’s ac-
curacy and performance are defined by the dataset used, as if the data is poorly
put together, the model will likely not produce the expected results. Insufficient
high-quality data is a common problem, and according to a 2018 data-science
report published by Figure Eight, 55% of the questioned data-scientists cited
“quality/quantity of training data as being their biggest challenge" [19]. Some
of the most common hurdles in data-engineering include missing values, insuf-
ficient data, noise, errors. For missing values, there are several methods to fix
this. First, if you have a large amount of data, you could drop the instances
with missing values. If you don’t have this luxury, there are ways of using the
existing values to create values that are inserted where there were none before.
This can come at the cost of performance.

As for lack of data, in the case where it is impossible or too difficult to gather
more, data augmentation comes into play. This is where you use the data you
already have acquired to create more. For image-related problems, common
techniques include flipping, cropping, rotation and translation, making new ones
that are slightly different from the original images. Another, more advanced
technique, is to use a Generative Adversarial Network(GAN) [20, 21, 22], where
a neural network creates artificial instances of the original dataset. A famous
example can be found in Fig. 2.1, where the faces pictured are in fact not of
real people, but synthetic faces created by a generative adversarial network.

Figure 2.1: Synthetically generated faces from NVIDIA’s StyleGAN2 [3]. The
figure is released under Nvidia Source Code License-NC. See https://github.
com/NVlabs/stylegan2/blob/master/LICENSE.txt for more information
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2.1.3 Evaluation: How to tell if your model is good
Now that all the data has been prepared, and the model has been trained, it
would be nice to know how well the model is performing. Depending on the
model, and the task it is performing, one would usually decide what metrics are
appropriate for evaluating the model performance. For classification problems,
a simple one is accuracy:

Accuracy =
Number of correct predictions

Total number of predictions

There are other metrics commonly used in classification, focusing more on model
precision and recall.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

For example, the F1 score, where:

F1 = 2 ∗ 1
1

precision
+

1

recall

The goal of F1 score is to find the right balance between precision and recall, as
high precision but low recall gives you accurate predictions(less false positives)
but it struggles to predict difficult instances. For regression tasks there is an-
other set of metrics used to measure the performance of the model. The most
common one is the mean squared error (MSE):

L(y, ŷ) =

∑N
i=1(y − ŷi)2

N

or root mean squared error (RMSE):

L(y, ŷ) =
√
MSE

where ŷi is the predicted value.

2.1.4 Errors: Overfitting, underfitting and how it’s com-
bated

When you first get the results from the model, you might wonder why it didn’t
perform to your expectations. Most likely, the model has either overfit, or
underfit your data. What this means is that the model has either become too
tuned to specific patterns in the training data, or that other factors such as
lack of data, wrong model and parameters might be the issue. Overfitting can
occur when a model is over-trained. It can perform really well on your training
data, but when shown new never-before-seen examples, its performance drops
drastically. In other words, the model fails to generalize to new data.

There are different ways to combat this. First off, if possible you can add
more data that your model has to work with. Adding more data usually helps
improve results in machine learning, as long as the data is of sufficient quality.
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Secondly, a technique called cross-validation where you split your initial training
data into multiple train-test splits and train your model on these helps greatly in
detecting overfitting, as basically, the model gets new examples multiple times
and has to generalize in order to improve. One could also create an ensemble of
models, where you train each model separately, and combine them into a more
powerful model that is better at generalizing and predicting on never-before-
seen examples. Basically, the way to combat overfitting is to train models in a
way that leads to models that aren’t too simple, but also not overly complex.
The graphs in Fig. 2.2 show examples of how a model underfits, overfits, or
generalizes well. In the underfitting example, we see that the prediction line
does not fit with the data points at all, meaning that the model not only does
not generalize well on new examples, but does not even fit the training data well.
Some ways to combat underfitting are to add more data, use a more complex
model, add more parameters, or increase training time.

Figure 2.2: An underfitting, overfitting and a more correct model. How well the
line fits the dotted datapoints dictates how well the model generalizes.

As for the overfitting example, we see that the predictions hit the datapoints
well, but one can observe that if you were to insert a new datapoint at a value
around the average of the other data points, the line would miss it completely.
Thus, focusing on the generalization of your model is more important than
training accuracy.

2.2 Computer vision
Computer vision (CV) is the field of study focusing on giving computers the
ability to “see". According to Prince [23], “at an abstract level, the goal of
computer vision problems is to use the observed image data to infer something
about the world". While it is considered to be a field of artificial intelligence,
there are many other fields involved in computer vision, such as physics, robotics
and neurobiology.

2.2.1 Deep learning for computer vision
In the last decade, deep learning models have emerged as a very strong approach
to machine learning, outperforming previous state-of-art machine learning tech-
niques. Especially deep convolutional neural networks (CNN) have proven to
be effective inside the fields of both computer vision and language processing.
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2.2.2 Introduction to Convolutional Neural Networks
Building blocks. When constructing and using a Convolutional Neural Net-
work (CNN) there are some key building blocks that are often used: convolu-
tional layers, activation layers and pooling layers. These building blocks are
layers with different “tasks".

• Convolutional layer: Convolutional layers play a vital role in a CNN.
They perform an operation called a "convolution". A convolution is a
linear operation involving the multiplication of a given set of weights and
the input. The set of weights that the input is multiplied with is often
called a kernel. The input data comes in the form of an array and the
kernel is a multidimensional array, e.g 3×3. These two arrays are combined
using dot product and result in a single value. The kernel slides across all
of the input data and the weights are constant. This leads to a reduction
in weights needed to be learned. By running the kernel over all of the
input locations the convolutional layer produces a feature map.

• Activation layer: The feature map from convolutional layers are then
fed through an activation function. This is a non-linear function, usually
a rectified linear unit, or ReLU. The ReLU function is defined as: F (x) =
max(0, x). It gives an output of x if x is positive, and 0 otherwise. This
function allows the neural network to approximate almost any non-linear
function. In addition to ReLU you can find information on other activation
functions in [24].

• Pooling layer: All of the feature maps that have been fed through a con-
volutional layer often end up in a pooling layer. The main idea of a pooling
layer is to down-sample the feature map to reduce the complexity for fur-
ther layers. In earlier days, max-pooling was frequently used to achieve
this, but now strided convolutions are used more and more. Max-pooling
divides the feature map into sub-regions and only returns the maximum
value inside of the grid. The filter, or sub-region, most commonly used is
2× 2 [25]. Another common method used for down-sampling the feature
map is to use convolutions with stride lengths greater than 1. These two
methods are often combined in the pooling layer shown in Fig. 2.3

Other techniques regularly used in modern CNNs are:

• Dropout: Dropout is a regularization technique used to battle the prob-
lem of overfitting in CNNs. Deep neural networks tend to have a large
number of parameters. Dropout addresses the problem with overfitting
by randomly dropping units and their connections during training. This
prevents units to adapt too much during training of the network [26].

• Batch normalization: Batch normalization is a technique introduced by
Ioffe et. al [27] in 2015. This allowed for a drastic decrease in training for
CNNs. By subtracting the mean and dividing by the standard deviation
you will be able to produce normalized feature maps for each training
batch. These layers are often placed after the activation layer, which
results in sparser activations. This technique allows for a much higher
learning rate and also to not be as careful about parameter initialization,
while still achieving satisfactory results [27].
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Figure 2.3: Max pooling with 2× 2 filter and stride 2

2.2.3 Some illustrative examples of CNN architectures
Alexnet Alexnet is a deep neural network that revolutionized the field of com-
puter vision and the machine learning world. This network won the Imagenet
2012 competition with a large margin by using techniques such as ReLU, max
pooling, and convolutional layers [28], when other competitors relied on what
turned out to be much less powerful non-deep learning approaches.

VGG VGG16 is a network architecture that was born out of the Oxford Vi-
sual Geometry Group, more specifically by Simonyan et. al. This network was
created because of the need to reduce the number of parameters in the convolu-
tional layers, and then again reduce the training time. There are some different
versions of this network, but the main difference between them is the total num-
ber of layers (VGG16, VGG19, etc). This network was an improvement to the
Alexnet mentioned above. The main difference between the two is that VGG
has a fixed kernel size of 3x3. Simonyan et. al [4] discovered that by reduc-
ing the kernel size to a fixed 3x3 size and increasing the network depth, they
achieved a much higher score than the competitors. This helped them to secure
four of the top spots in ILSVRC2014 [29].

Figure 2.4: VGG16 architecture as proposed in [4]. The figure is from [5]
and is released under Creative Commons Attributions 4.0 International li-
cense (see https://creativecommons.org/licenses/by/4.0/ for more infor-
mation).
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ResNet Residual neural network, also known as ResNet, is a deep neural net-
work architecture that won the ImageNet detection and localization competition
in 2015 [6]. This architecture was proposed by He et. al [6] to solve the problem
where CNNs became deeper and more complex. The solution they proposed is
a network architecture containing skip connections, or shortcut connections, in
each layer. A skip connection allows the user to skip one or more layers, without
adding more parameters or complexity to the network. What this means is that
a network with 50 layers should perform at least as well as a 20 layer network
since the last 30 layers can be skipped. By using a ResNet-152 He et. al won
the Imagenet classification competition in 2015. Variants of ResNets continues
to be one of the best architectures for computer vision problems to this day.

Figure 2.5: ResNet block proposed by He et. al. Figure inspired by [6].

2.2.4 Deep learning for computer vision
Some of the most common computer vision problems are image classification,
object detection, and optical character recognition. These problems fall under
the category “Object recognition", an area that historically deep learning models
have excelled at. In deep learning, images are often represented as a tensor, so
that they can be manipulated and read. Loosely speaking, a tensor is a container
of data that helps store different dimensions of data in neural networks. Images
and videos are 4D and 5D tensors (samples, frames(for video) height, width,
channels). Converting them to tensors makes it easier for neural networks to
take in the images as input.

2.2.5 Object detection
Object detection deals with the use of computer vision to detect objects of dif-
ferent classes in images and videos. Object detection is one of the fundamental
problems of computer vision, with many other computer vision problems de-
riving from it, e.g. instance segmentation and image captioning. An object
detection model’s goal is to produce an output of what object is where.

Deep learning for object detection

After Alexnet was introduced in 2012 deep learning models really started to
excel in computer vision tasks, and object detection was no exception. The
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introduction of deep convolutional networks allowed people to concentrate on
developing better algorithms and models instead of focusing on designing new
ways to do feature representation. Two different methods of doing object de-
tection quickly emerged: one-stage detectors and two-stage detectors

Two-stage detectors: These types of object detection models are best de-
scribed as “coarse to fine" models. The models that can be categorized under
two-stage detectors tend to be slow, but more precise than one-stage detectors.
This is due to the architecture of two-stage detectors. Such an architecture
consists of two parts or stages. The first stage is where the models generate
proposals of regions where there might be an object of interest. All of the
proposed regions are then sent through a CNN where feature extractions are
exerted. Then each region is classified based on the feature extraction. Fig. 2.6
presents the architecture of a two-stage detector named Region Based Convo-
lutional Neural Network (R-CNN).

Figure 2.6: Two-stage detector architecture , more specifically R-CNN

One-stage detectors: Both the “Single Shot Detector" (SSD) [30] and “You
Only Look Once" (YOLO) [31] presented a new approach to do object detec-
tion. These models focus more on speed which means that their accuracy does
not quite reach the level of two-stage detectors. This is especially true for
YOLO, which uses Darknet [32] to increase the speed of the model. By using
this framework YOLO is able to run object detection in real-time, at 78 FPS
using Darknet-53 [33]. The way a one-stage detector works can be compared
to how a human eye scans a scene and identifies the objects in question. One-
stage detectors do this with the help of anchor boxes during training. This is
achieved by populating the image with a given quantity of possible matches to
the bounding box surrounding the object. As we can see in Fig. 2.7 there is no
annotated object in the picture without an anchor box.

RetinaNet with Focal Loss RetinaNet is another model which also had an
impact on the field of object detection. The network used a feature pyramid
network which allowed for feature extraction on each level. RetinaNet bridged
the gap between one-stage and two-stage detectors. The most exciting part of
RetinaNet was the loss function, the so-called Focal Loss. This loss function
solved the problem of the foreground-background class imbalance which occurs
during training [8]. This model will be discussed further in Chapter 5.4.
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Figure 2.7: a) Showing all of the possible anchor boxes for the objects in the
picture. b) Showing objects with no matching anchor boxes, in this case none

ImageNet data set ImageNet is a large-scale hierarchical database intro-
duced in 2009. At its inception, it contained 3.2 million images divided into
5247 categories. The dataset has later grown to contain over 14 million im-
ages, aiming to contain upwards of 50 million images by its completion. This
database was also used in the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC). This challenge served as a benchmark for various computer
vision problems such as object detection and object recognition [34, 35].

PASCAL VOC In order to drive the field of object detection onward the
Pascal Visual Object Classes (VOC) Challenge was created in 2005. In the
beginning, this dataset contained only 4 different classes and 1578 pictures.
The challenge contained two different competitions: classification and detection.
Over the years from 2005 up until 2012 this challenge ran yearly and both
the dataset and different tasks expanded. The final year the challenge ran
the dataset contained 20 classes, 11530 images and the different competitions
now contained classification, detection, segmentation to name some [36]. This
dataset became a benchmark to measure the performance of object detection
models.
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Figure 2.8: (a) An image from det MS COCO dataset. (b) An image from the
PASCAL VOC dataset

Microsoft COCO In 2015, Tsung-Yi et al. presented a new and more exten-
sive dataset for object detection called Microsoft Common Object in Context
(COCO). The dataset contained 91 different classes, 328k images with 2.5 mil-
lion labeled instances [37], which was a massive improvement from PASCAL
VOC. As with PASCAL, this dataset is connected to a competition that runs
yearly and has become a benchmark for object detection. COCO also introduced
another aspect to object detection, the context of the object in the image. In
older datasets, i.e PASCAL, the objects are usually in focus whereas in COCO
the objects might be smaller, bunched together, or seen in a larger context. This
is shown in Fig. 2.8 where we can see that there are 9 objects of varying sizes in
the image from COCO, but only two relatively large objects in PASCAL. We
can see that the top scores are far greater on the PASCAL VOC dataset [38, 39].
The metrics used in the competitions are not quite the same, but they are based
on the same principle, mean average precision (MaP). The COCO dataset has
become such an important part of object detection and other CV tasks that
they have developed a, API that helps to read and parse the annotations. The
API works for Python, MATLAB, and Lua [40].

2.2.6 Image-to-image deep learning models
UNet The traditional use for neural networks and imaging has been classi-
fication of the whole image. However, in the field of medical imaging, there
is another task where neural networks could prove to be useful and that is in
image segmentation. This is the task of dividing a picture into different regions
and classifying the region to a given label as shown in Fig. 2.9. A network
architecture that has proven useful for this task is UNet. UNet can be divided
into two different parts, a contracting part (left) and an expansive part (right)
as shown in Fig. 2.10. Each layer on the contracting part is connected with
a layer on the expansive part with concatenated skip connections. These skip
connection works by allowing reuse of features by concatenating them to new
layers, therefore allowing more information to be retained from previous layers
of the network [41]. These skip connections are similar to the ones used in
ResNet. Even though this architecture was introduced in 2015, it still produces
state-of-the-art results.
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Figure 2.9: Example of image segmentation. The left image is the input and
the right image is the output where each pixel has been given a class.

Figure 2.10: UNet architecture. Figure from [7]. This figured is released under
a Creative Commons Licence (see https://creativecommons.org/licenses/
by/4.0/ for more info).

GAN General Adversarial Networks, or GANs, is a class of machine learning
algorithms, proposed by Goodfellow et. al in 2014 [20]. A GAN model consists
of two neural networks, one generator G which will generate fake data based on
a data set, and a discriminator D which will try and distinguish the generated
from the real data. When training the G network the goal is to maximize the
probability of D not detecting the generated image as a fake. This can be seen
as a two-player game. Both networks will improve their method of beating their
counterpart until the generated data is indistinguishable from the real. Fig. 2.11
shows an overview of a traditional GAN architecture. In later years a variety of
GAN models have emerged, i.e cycleGAN [42], Conditional GAN(cGAN) [43]
and Wasserstein GAN [44]. It is worth noting that these GAN models would
have a different architecture than the simple model shown in Fig. 2.11.

15

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Figure 2.11: An illustration of a simple GAN architecture consisting of a gen-
erator and a discriminator each trying to win over the other.

2.3 Medical imaging and imaging diagnostic
Medical imaging is a set of processes and techniques that can be used to gain
insight into the human body. By providing a visual representation of the in-
terior parts of the body, such as bones or soft tissue, techniques from medical
imaging aid medical professionals in their diagnosis, prognosis, and treatment
decisions for many diseases and injuries. Images can serve as a confirmation
or reassurance that the correct diagnosis was given. Radiology is a subfield of
medical imaging and imaging diagnostics that is of particular relevance for our
work. Patient treatment is however not the only use for medical images: they
can also form databases that can be used to increase our understanding of nor-
mal and abnormal anatomy and physiology. There are many different ways to
capture an image of the inside of the human body. Some common techniques
are X-ray, Magnetic Resonance Imaging (MRI), Computed Tomography (CT),
and ultrasound. All of the different techniques have different areas of use and
produces different types of picture. For example, an X-ray image will produce
an image where observing the skeleton or pathological changes in the lung is
relatively easy. MRI and CT on the other hand are a better alternative when
a medical professional might expect damage to soft tissue. X-ray and CT use
ionizing radiation to produce images. MRI on the other hand uses powerful
magnets which emit radiofrequency. This radio frequency pulse forces the pro-
tons to align with the magnetic field. When the magnetic field is shut off, the
sensors in the MRI machine can detect the energy released by the protons [45].
Both CT and MRI produce-cross sectional images which can be stacked on top
of each other to create 3D images. X-ray on the other hand produces 2D images.
See Fig. 2.12 for a comparison of the two.
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Figure 2.12: An illustration of the difference between a) a CT image and b) a
X-ray image of the lungs.

Since there are many different techniques and equipment used to capture
biomedical images, there is a need for a common standard for how to store and
exchange information between imaging equipment and other systems. The stan-
dard used today is Digital Imaging and Communication in Medicine, also called
DICOM. It dates back to 1983 when the American College of Radiology (ACR)
and the National Electrical Manufacturers Association (NEMA) proposed a
standardized method of exchanging information between devices from differ-
ent manufacturers. It would later be known as the DICOM standard [46, 47].
The need for such a standard became particularly acute when more and more
computers were integrated into medical equipment. By creating a common set
of rules for how the information was stored and sent, the DICOM committee
aimed to enable more seamless communication between systems. A DICOM file
consists of an image and a DICOM header file. This header file contains all
of the additional information needed for both storing the image correctly and
analyze it at a later time. The use of the DICOM standard has enabled the
use of Picture Archiving and Communication Systems (PACS), which will be
discussed in Section 2.3.1 below.

Another use for medical imaging is within research, and in later years, espe-
cially within computer vision research. There have been many recent striking
results in this field, for example, predictive models that can be used to classify
whether a patient has breast cancer or not at the time of the screening [48],
and much more [49, 50]. Large parts of the research within this field are done
on real, anonymized images. By de-identifying or anonymizing medical images,
there is potentially a huge amount of data available for researchers, as the num-
ber of imaging examinations conducted is immense. In later years there have
been several high-profile competitions based on anonymized image data, for
example on the Kaggle platform, typically won by teams using deep learning
techniques1. When large, well-characterized data sets are made publicly avail-
able, the threshold for creating new and innovative solutions is substantially

1See https://grand-challenge.org/ for an overview of such challenges
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lowered.

2.3.1 Medical imaging diagnostic workflow
A Picture Archiving and Communication System, or PACS, is a technology
widely used in the field of medical imaging. This system deals with the storage,
presentation, retrieval, and distribution of medical images, using the DICOM
standard. By using a PACS system the users eliminate the need for manually
handling storage and retrieval of physical images. This allows the hospital to
share images and records both internally and externally. Fig. 2.13 shows a
simplified model of how a PACS system is configured. There will typically be
multiple PACS nodes listening to the modalities on an image server. These nodes
store the images in the PACS archive and inform the PACS database about
changes. The analytic workstations work as PACS viewing stations. These
workstations ask the database about the content, and the database retrieves the
images from the storage backend. As shown in Fig. 2.13, all of the arrows are
bidirectional. This means that any part of the system can perform operations
on each other, i.e., the workstations can tell the PACS system to send operations
to the modalities to perform certain operations (store, find and move) [51].

Figure 2.13: A simplified model of a PACS system. In reality the PACS archive
is part of the PACS system node, but is split apart for explainability in this
figure.

2.3.2 Research PACS systems
Of the different use cases for a PACS system, the one that is most relevant for
our task is using PACS systems for research (research PACS ) in radiology, as
opposed to clinical use (clinical PACS ). A research PACS is a modified version
of the one shown in Fig. 2.13. It contains a copy of the PACS archive and
the viewing stations. The archive in this system is a pure copy of the one on
a regular PACS, which means copies of the DICOM files. As the purpose of
the images stored in such a system is research, not clinical, de-identification is
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important. The system presented in this thesis is thought to fit between the
PACS system node and the PACS archive node so all of the images on the
research PACS are de-identified.

2.3.3 Workflow-integrated machine learning in imaging di-
agnostics

In 2013, McKinsey Global Institute estimated that by applying big data and
machine learning strategies to improve decision making, the US health care sys-
tem could generate upwards of $100 billion in value annually [52]. Within the
field of medical imaging and radiology, the potential of streamlining the diag-
nostic process using machine learning has a huge potential. Machine learning
has the potential to fit in every part of the diagnostic workflow pipeline (see
Fig. 2.14). As an example, an application that has proven to work well is a
system called Automated Radiologist Assistant (AURA). This system is an ex-
tension and modification of a system called Man and Machine Mammography
Oracle (MAMMO) [53]. AURA aims to filter out the negative patients in the
mammography process, and therefore reduce the negative patient workload for
the radiologists [54]. Kyono et al developed a system that uses a machine learn-
ing classifier, which has proven to work well on patients showing negative signs
of breast cancer, without affecting the diagnostic accuracy. In Fig. 2.14, this
process is mentioned in the box between ”Medical image is taken" and ”Analysis
by radiologist". Another really promising machine learning system within the
field of imaging diagnostic is Contextflow. Contextflow is a system that can be
integrated into the analytical section of image diagnostic, typically between the
PACS system node and the PACS archive node in Fig. 2.13. This system will
try and match a specific image to other visually similar decease patterns in a
database to further improve diagnose. They also have an algorithm to identify
and prioritize patients in their database [55]. These are just two examples of
many. See e..g. Table 2 in [50] for an extended list of applications.
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Figure 2.14: A simple overview over some of the areas where machine learning
can fit in the medical imaging workflow. Note that this is a rough sketch, and
there are several other processes where machine learning can be used.

2.3.4 Privacy in medical image analysis
In medical image analysis, unless the rare cases where synthetic, generated im-
ages are used, one tends to use images recorded from real patients or volunteers,
whether that be X-rays, CT scans, or regular optical photos of areas of impor-
tance. In order to protect the patients’ privacy, one would have to make sure
that the identity of the patient cannot be extracted from the image- or meta-
data. This is where image de-identification comes into play.

2.3.5 De-identification of medical images
The privacy concern is due to identifiers in the image that could be used to iden-
tify groups or individuals. The process of removing these identifiers is called
de-identification. The U.S. Department of Health and Human Services (HHS)
states two methods of de-identification of personal health information (PHI): A
formal decision made by a qualified expert, or removal of identifiers, and data
that could lead to identifiers being identified [56]. The Norwegian “Regionale
komiteer for medisinsk og helsefaglig forskningsetikk" (REK, committee regard-
ing research ethics) have their own guidelines, however, the principle remains
the same. One could either go about encrypting the PHI, perform other manip-
ulations in a way that would make it impossible for non-key holders to identify
individuals from the data given, or simply just remove all PHI information al-
together.
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2.3.6 Related work: Some current de-identification solu-
tions

With more and more publicly available medical image dataset emerging, the
need for de-identification tools follows. This has lead to a sea of different so-
lutions emerging [57, 58]. Even the big tech giants such as Google [2] and
Amazon [1] have developed solutions to cope with this demand. We will take a
closer look at the existing solution used at Mohn Medical Imaging and Visual-
ization Centre (MMIV) in Helse Vest, since this is what we aim to improve. We
will also take a look at the solution created by Amazon to give a perspective on
how a big tech company solves this issue.

Current solution in Helse Vest RHF - RewritePixel Hauke Bartsch
has created a solution that is currently running on the research PACS at the
MMIV. This solution is using the Tessaract 4.0 OCR engine to identify text
that is burned into DICOM images. For each text fragment, a black square is
written into the DICOM pixel information [59]. This solution has some issues
where text might not be detected, see Fig. 2.15. This problem occurs when the
contrast between the background and the text is not bright enough i.e yellow
text on gray background. This results in the need to manually check the output
of the program. This also means that the produced image gets deleted if it does
not fulfill the requirements for de-identification. It is worth noting that this
solution ignores single characters. This is due to the fact that “L" and “R" are
often used to highlight which direction a person is facing in images.

Amazon Comprehend Medical and Amazon Recognition AmazonWeb
Services offer a solution to identify and de-identify text in medical images. These
services are called Medical Comprehend and Recognition. Amazon Recognition
offers the user the ability to identify objects and text in images and video,
while Amazon Comprehend Medical allows the user to extract the text from
the images. By combining these two services the user can integrate the ability
to identify, extract and de-identify personal health information in images into
applications. The output image has red boxes over the information the services
deem sensitive [1].
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Figure 2.15: Example from the current solution running on the research PACS
in Helse Vest. The image on the left is the result of the current de-identification
process. As we can see, the text boxes down in the left-hand corner have not
been detected. There are also parts of the image that have erroneously been
marked as containing text. The image on the right is the input image before
de-identification.
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Chapter 3

Research questions and
hypotheses

To get a clearer picture of how to complete the task of image de-identification,
we have come up with a few research questions:

1. “How can we use machine learning to automate 2D medical image de-
identification while preserving image features?"

2. "How do we make sure these images are properly de-identified?" When
the pipeline gives an output image, we have to make sure that it’s not
possible to identify an individual given the image.

From these research questions, we can start to create hypotheses for our
solution. We can already conclude that it is natural to construct multiple ma-
chine learning models, as two separate tasks that need to be done with machine
learning, namely text-detection and image generation. Thus, dividing the first
research question into two different parts seems natural:

1.1 “Can we design an object detection model to successfully detect burnt-in
text in the images?"

1.2 “Can we remove the sensitive information using image-to-image deep-
learning, while still preserving the image integrity?"

We can divide the field of text detection into two different subfields: identi-
fying text in scanned printed documents (Optical Character Recognition) and
text captured in daily scenes (Scene Text Detection). Since the current solution
already uses OCR and the performance is lacking in certain areas we discard this
option. Based on Table 1 in [60], we decided to use RetinaNet with Focal Loss.
RetinaNet utilizes a Feature Pyramid Network (FPN) with a Resnet Backbone,
as this is a very powerful approach that has seen a lot of success. Among other
things, this model performs well on the difficult COCO-Text dataset. Since our
task is likely less complex than COCO-Text, we expect that this model can
produce satisfactory results.

As for the second model, since we are going to essentially remove text, we
need to do some form of image generation, aiming to train a model to create
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medical images as they would look without the burnt-in text. One option is to
create a neural network and give it a dataset that consists of medical images
without text, as well as the same images with text. Then, we use the images
containing text as input, with the goal of generating the images without text,
experimenting with different models and loss functions to see what yields the
best results.
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Part II

Experiments
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Chapter 4

Introduction to the
experiments

4.1 Introduction
An important aspect of machine learning is data. Without good and structured
data machine learning models will in most cases not be useful. Therefore, it is
important to spend a sufficient amount of time gathering and preparing data.
For supervised learning, the data instances need labels, i.e. ground truths. A
problem one usually has to face in a medical context is that the datasets are
imbalanced in terms of their class labels. This is caused by there being a lot more
data on healthy patients than sick patients. Another obstacle with medical data
is the fact that most of the images and records contain personal information,
which for legal and ethical reasons will have to be de-identified if used outside
the diagnostic workflow.

For this thesis, the idea is to create a two-part pipeline that can de-identify
routinely collected clinical medical images. The pipeline will be split up so
that the first part will detect the text in the image using RetinaNet with Focal
Loss, and the second part will focus on removing the text using both GANs and
feature loss. Since we can not use real medical images, there will also be a focus
on the generation of synthetic training data.

4.2 Methods and Materials

4.2.1 Data
Datasets

For these experiments, we used two different datasets. First, we used the “Chest
X-Ray Images (Pneumonia)" dataset from Kaggle [61], containing 5.863 x-ray
images in JPEG format. Secondly, we used the publicly available “RSNA Pneu-
monia Detection" dataset, also available from Kaggle [62], containing 29.684
DICOM images. Both of these datasets were originally intended to classify
pneumonia, however, the data works fine for our purpose as we only need chest
X-rays regardless of whatever illness it might show.
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Synthetic Data

As previously mentioned, there is not a huge amount of data that represent
realistic training data for our models. This leads us to another part of this
thesis, which is that we have to generate our own synthetic training data. For
this experiment, we used two different solutions, one that we created by ourselves
and one developed by Hauke Bartsch.

A simple way to “crappify" images through text-insertion The first
thing we did was to create our own solution for this problem. This solution
put text in the top right and top left corner of every image, “crappifying" them
by inserting unwanted elements. To calculate the bounding boxes of each text
instance, we created a simple function with some helper functions from OpenCV
which takes in the desired font and string and calculates the height and width of
the string. The coordinates of the text ware hard coded which made it relatively
easy to construct the bounding boxes for each image. This solution is by no
means perfect since the text instances are statically placed in each image. On
the other hand, this solution allowed us to test both of our models and gave us
a benchmark so we could continue building the full pipeline. Fig. 4.1 displays
the result of the process.

Figure 4.1: An example of our first “crappification" solution, where text is
inserted into a an existing image to provide training data for our text-removal
models. Note that in this case the position and font size of the text does not vary.
Later, we will introduce a more powerful and flexible text insertion method.

Render text: a more flexible text-insertion solution This solution is
far more powerful than the one introduced above. The render text program
is written in C++ and uses the freetype library and gdcm to render text onto
pixels in a series of DICOM images. The output generates two folders, where
one folder is a copy of the input images and the other folder is the same images
with randomly placed text in them [63]. The format of both of the new images is
changed from DICOM to PNG. The program stores all of the text values in a file
called boundingBoxes.json, which easily can be converted to a CSV file with
the help of a jq command. If desired, the program can produce annotations in
PASCAL VOC as well, since this format is common within the field of object
detection. This solution solved the problem where the text was placed statically
in each image. The program controls where the text is placed by using a JSON
control file. This file mimics some of the usual positions where text is usually
found in medical images. This includes the four corners and in the middle.
The frequency of where the text is placed is decided by a random factor. To
ensure that the program works on all computers, it can be built with a docker
container that downloads all of the necessary libraries and dependencies. It is
also possible to convert PNG images to DICOM. By having such an option in
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the program, it is possible to create a new and even more diverse dataset by
feeding these DICOM images through the render text program.

Figure 4.2: The pipeline of the render text approach. The input is a DICOM
image and the output is two PNG images, one with text and one without text.
The text is inserted at different locations with different font sizes that can be
selected by the user.

4.2.2 Deep Learning Frameworks and Libraries
In this thesis, we use several Python based frameworks and libraries. In partic-
ular PyTorch and the PyTorch-based library fastai.

PyTorch

PyTorch is an open source framework for Python deep learning, built by Face-
book’s AI Research lab (FAIR) [64]. The framework was based on the earlier
machine learning library Torch [65] and provides among other things Tensor
computing via GPU and CPU. This library is used as a replacement for NumPy
to allow for computations to be done on the GPU. PyTorch is built to be deeply
integrated into Python [66]. They also state that their framework is fast and
flexible, so the user can move relatively fast from theory to prototype to deploy-
ment.
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Fastai

Fastai is a Python based, open source deep learning library that is built on top
of PyTorch, developed by Jeremy Howard et. al. [67]. This framework is built as
a layered API such that it is easy to build state-of-the-art deep learning models.
Fastai provides an API that allows the user to create state-of-the-art PyTorch
machine learning models with minimal lines of code. This, combined with the
fact that the library is highly customizable, makes fastai really powerful. The
most recent version is version 2, released in August 2020 [67], which was a
complete rewrite of fastai v.1. Our work was based on fastai v.1.

4.2.3 Google Cloud resources
For the experiments, virtual machines from Google Cloud Platform (GCP) were
used. GCP is a computing service that runs on Google’s infrastructure. They
provide a series of services which include compute engines, machine learning
frameworks, and data storage to name a few [68]. The scalability and cus-
tomization options for these machines are almost endless. This allowed us to
access the resources we needed at any time.

4.3 Objective
The objective of this thesis is to create a pipeline that automatically detects and
removes text. In the first experiment, we explore the possibilities of detecting
text using RetinaNet and focal loss. In the second experiment, we explore the
different approaches of removing text from images using GAN and Unet with
feature loss as the loss function.
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Chapter 5

Identifying and extracting
sensitive information from
images

5.1 Introduction
In this chapter, we investigate the effects of using RetinaNet and focal loss for
text detection in images. Our goal for this experiment is to train a model that
will identify all text in images. The identified text will either be black-boxed or
extracted and sent onward to the text removal model. We will also experiment
with different ways to create synthetic data for training as well.

5.2 Methods and materials

Data
For the proof of concept, we used the publicly available Chest X-ray (Pneumo-
nia) dataset [61] from Kaggle. The final model used 10000 images for training
and 3000 images for testing from RSNA Pneumonia Detection Challenge [62].

The model: RetinaNet with Focal Loss
RetinaNet is a one-stage detector that Lin et. al developed in 2017 [8]. At this
point in time, the models that performed best in the field of object detection
were two-stage detectors. Two-stage detectors performed well on this task but
were slow. Lin et al proposed a new loss function that would help to bridge the
gap between one- and two-stage detectors. With the introduction of the loss
function Focal Loss, they were able to match the speed of previous one-stage
detectors while surpassing the accuracy of two-stage detectors [8]. This model
became part of Facebook AI Research’s (FAIR) object detection framework
Detectron [69]. This framework has later been renewed to include state-of-the-
art detection and segmentation algorithms and is now called Detectron2 [70].

30



The RetinaNet architecture can be split into two main parts, the feature
pyramid network and two subnetworks for classification and regression. The
feature pyramid network used in RetinaNet is adopted from [71]. By using such
an architecture you are able to create feature maps for each level as shown in
Fig. 5.2. This also gives us the ability to detect objects at each layer. The
FPN is built on top of a ResNet architecture. By doing this we are able to use
the feature maps already produced by ResNet. For an image with dimensions
256× 256 pixels, ResNet produces feature maps of sizes:

• C1 128× 128

• C2 64× 64

• C3 32× 32

• C4 16× 16

• C5 8× 8

by using stride 2 convolutions. In addition to this, we create two more fea-
ture maps, C6 and C7, with sizes 4 × 4 and 2 × 2 respectively, using stride
2 convolutions. Then we set C7 = P7 and goes down to P2 by upsampling
the previous pyramid-layer. In addition, we also add lateral connections. This
is done so we are able to run the subnetworks on each layer in the pyramid
network. Then each feature map from the pyramid layers goes through two
subnetworks, one for classification and one for bounding box regression. These
subnetworks consist of four convolutional layers. As previously stated in 2.3.6,
one-stage detectors heavily rely on the concept of anchor boxes. Each feature
map is then assigned a certain number of anchor boxes. The classifier will end
up with number of anchors × number of classes channels and the bounding
box regressor will have number of anchors × 4 channels. We then define an
intersection-over-union (IoU) threshold of 0.5. The formula for IOU is shown in
Fig. 5.1. All anchor boxes with an IoU value of 0.5 and above will be assigned
to ground truth boxes, and to the background if the value is between 0 and 0.4.
IoU values in the range of [0.4,0.5] will be ignored during training. Each anchor
box is only assigned to one ground truth object.

Figure 5.1: Formula for intersection over union. Simply put, the area of overlap
between the two bounding boxes divided by the total area of both bounding
boxes.
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Classification Subnetwork: The task of the classification subnetwork is to
predict the probability of an object inside each of the anchor boxes. This small
fully convolutional network (FCN) is connected to each layer of the FPN and
shares parameters across all layers. The loss function used for this network is
Focal Loss, which will be explained in detail later. This network is relatively
small and contains four 3×3 convolutional layers followed by a ReLU activation.
Then another 3× 3 convolutional layer and lastly a sigmoid activation [8]. This
will produce an output of one object class per anchor box.

Bounding Box Regression Subnetwork: The task of the bounding box
regression subnetwork is to regress the offset of each anchor box to the nearest
ground truth bounding box. The architecture of this subnetwork is identical to
the classification subnetwork, but these two network does not share parameters.
The output of this network is also different. The regressor will produce a linear
output of four points which form an anchor box. This output describes the
relative offset between the anchor box and the ground truth box [8]. Since this
is a regression task, a sigma L1 smooth loss function is used.

Figure 5.2: Overview of the RetinaNet architecture. Fig. from [8] Copyright ©
2020, IEEE. Here we see all of the components of RetinaNet linked togheter. a)
The resnet backbone which creates rich feature maps. b) The feature pyramide
network with lateral skip connections. On each level of the FPN we attach c) a
classification subnet and d) a bounding box regression subnet.

Focal Loss was designed to handle the class imbalance problem in object
detection. This can occur when large parts of the picture contain one class, i. e
one small object in a large picture. In most object detection problems, the object
you want to find will be small compared to the background in the picture. By
not handling this problem correctly, the model will get a high accuracy by just
identifying the background correctly. Here is where Focal Loss differs from other
loss functions. Focal Loss addresses class imbalance by down-weighting inliers
(easy objects to detect) instead of outliers (hard objects to detect) [8]. This
leads to a small contribution in the total loss for easy examples, even though
there might be many of them. Focal Loss is inspired by the binary cross-entropy
(CE) loss function. CE is a loss function often used in classification problems
and can be written as follows:

CE(p, y) =

{
− log(p), if y = 1
− log(1− p), otherwise
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The CE formula can be simplified:

pt =

{
p, if y = 1
1− p, otherwise

CE(p, y) = CE(pt) = − log(pt)

Fig. 5.3 shows this function as the blue curve. The large class imbalance a
model encounter during training will most likely be too much for cross-entropy
loss. This is caused by too many easily classified negatives. Lin et al decided
to reshape the CE loss by adding a parameter γ ≥ 0 and a modulating factor
(1− pt)γ [8]. We now have Focal Loss defined as:

FL(pt) = −(1− pt)γ log(pt)

Figure 5.3: Visualization of cross entropy loss vs. Focal Loss with different γ
values.

5.3 Experimental results

5.3.1 Proof of concept
We started by running our RetinaNet model on the synthetic data we created
using a “crappify" method which placed the text statically in the pictures, shown
in Fig. 5.4. this was done on the smaller Chest X-ray (Pneumonia) dataset [61].
Now the data had to be prepared and arranged. We store all of the necessary
data for our bounding boxes from the crappify method in a CSV file and read it
into a Pandas dataframe, as shown in Fig. 5.1. We then transform the dataframe
into a Python dictionary where the filename is the key. This was done because
the ObjectItemList from fastai demands that the input labels is a tuple and this
was the easiest way to ensure that the data was presented as such. We can then
load our data.
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Table 5.1: Snippet of the data used in the proof of concept experiment. We de-
cided to give all of the text an empty string as category since it is not important
what class the text is given as long as it is not background.

Figure 5.4: An illustration of the first data set we used. Here the ”crappified"
bounding boxes is plotted on top of the corresponding image.

RetinaNet We then initialize our RetinaNet model. First of all, we need
to define our anchor boxes, and corresponding scales and ratios. We decided
to test with the scales and ratios for the anchor boxes used in [8]. This gives
us a total of 9 anchors for each level. As a backbone for our RetinaNet, we
used a pre-trained Resnet-50 and Focal Loss as our loss function. We trained
for 5 epochs on the last layers and 10 epochs unfreezed. The results from this
experiment are shown in Fig. 5.5. The results were varying in quality as shown.
The detected boxes are too large, compared to the area where the text occupies
the image. Still, this gave us an indication that it might be possible to perform
text detection using this model and approach.
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Figure 5.5: Results using the ”crappified" training data where the text is placed
statically. The model finds some text instances, but the areas located are too
large compared to the ground truth labels.

There are two reasons why the result shown in Fig. 5.5 is of varying quality.
The first, and perhaps most dominant reason is the sizes of the anchor boxes.
The ratios and scales used in [8] to create the anchor boxes will not work very
well for a text detection task, since these configurations will create boxes similar
to the ones shown in Fig. 2.7. These will always be too large for a line of text.
The other reason for the varying result is the size of the image during training.
When the image is crappified it is done in the original size of the image, i. e
1024 × 1024 pixels. When the data is loaded into a data loader, the image is
resized to 256× 256 pixels. This leads to two things happening:

1. The resolution of the images is lower, which makes the text in the image
harder to locate. This especially applies if there is some texture under-
neath the text.

2. The already small text instances get even smaller and blurry.

The combination of the two reasons given above and the sizes of the anchor
boxes will result in the model struggling with unseen data. One other weakness
would be the placement of the text. Since the text instances are in the same
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place in every image, the model can just guess that there is text in the same
region every time. There is a need for more generalized data.

5.3.2 Final model
Augmenting the input data For the final experiment, we decided to split
up the original images into smaller images with dimensions 256 × 256. We
decided to do this for two reasons. For one, this will most likely increase our
detection percentage since all of the text in the images becomes larger relative
to the input image and therefore easier to detect. The other reason is that the
implementation of RetinaNet we use is built for 256× 256 images. By splitting
up the images we also increase the amount of training and test data. We take
our original 1024× 1024 images and divide them into 16 new 256× 256 images.
By doing so, we also have to change the annotations so that the bounding box
coordinates match the new images. The operations required to split the images
and annotations are done using a python library called “Image Bbox Slicer" [72].

The results from our first experiment using RetinaNet were promising, but
there was room for improvement. First of all, there was a need for more gen-
eralized data. This was solved using "render_char_to_28x28". We produce a
new dataset for training containing 10.000 images with text instances. We also
produce a test set with 3.000 images for evaluating the model on unseen data.
We decided to divide the images into 256× 256 tiles. By doing so, we increase
our training data size by × 16. This gives us a lot more data to both train and
test our model on. Fastai has no way of handling empty bounding boxes, which
leads us to have to filter out all of the images without a text instance in them.
This gives us a total of 56.528 images in our training set which is roughly ×5
the size of the original training set. As mentioned in the previous experiment,
the sizes of the anchor boxes were one of the reasons why the model did not
perform at an optimal level. For this experiment, we introduce our own scales
and ratios shown in Fig. 5.2.

Model: RetinaNet
Backbone: Resnet50 pretrained on ImageNet
Loss function: Focal Loss
Anchor box sizes: [(32, 32), (16, 16), (8, 8), (4, 4)]
Anchor box ratios: [0.05, 0.25, 0.4, 0.75]
Anchor box scales: [0.35, 0.5, 0.6, 0.8, 1, 1.25, 1.6]
Training: 5 epochs on final layers, then 5 epochs unfreezed

Table 5.2: Experimental settings for our RetinaNet model tasked with text
detection.

As we see in Fig. 5.6 the sizes and shape of these anchor boxes mimics a
text line in a far better way. The number of anchors per level is calculated by
num_ratios× num_scales. For our model, this means that we get 28 anchors
on each level of the FPN. Since we want the model to work with discriminative
learning rates we split the model into a head and a body. Now we train the
model for 5 epochs on the final layers, and then 5 more on all layers.
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Figure 5.6: New and improved anchor boxes. As we can see these anchor boxes
matches the shape of a text line.

By looking at our metrics in Fig. 5.7, this looks very promising. If we just
look blindly at the train and validation loss we might suspect that the model
starts to overfit due to the gap between them. On the other hand, the metric
that is most important for our experiment is the bounding box loss (BBloss in
Fig. 5.7). The BBloss still improves, which leads us to believe the model does not
overfit. Before we can have a look at our results, we have to process the output
of our model. As previously mentioned, RetinaNet produces a huge amount of
anchor boxes, so we have to filter out every box except the one which fits the text
instances best. This is done by using non-maximum suppression (NMS). NMS
works by filtering out proposed anchor boxes that are below a given threshold
which we define our self. NMS takes the proposal with the highest confidence
score and adds it to a list of final proposals. Now we compare this proposal
with every other proposal by calculating the IoU value. If the value is greater
than the given threshold, we keep the proposal as a final result. We repeat this
process until there are no more proposals left to compare with. To produce the
final result we used:

• Detection threshold = 0.4

• NMS threshold = 0.4

• IoU threshold = 0.5
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Figure 5.7: Metrics computed on the validation data set during training. Note
the monotonic reduction in the bounding box loss (BBloss) during the training
epochs.

5.3.3 Results
Fig. 5.8 shows the results on a subset of the test set. Compared to the results in
Section 5.3.1, we can clearly see that the model performs on a much higher level
than before. This is mainly due to the changes in the anchor boxes and splitting
the image up into smaller tiles. By taking this approach there is also a need to
reassemble the image back to its original form. The same issue applies to the
bounding box coordinates that the model predicts. Since all of the predicted
bounding boxes will be in the range of [1,...,256] we also needed a method to
convert them back to coordinates that match the original input size. The model
predicts bounding boxes in the format of [x_min, y_min,width, height]. We
decided to change this format to [x_min, y_min, x_max, y_max] since this is
the format fastai expects by default. This will also lead to less work in handling
the data in the text removal pipeline. Fig. 5.9 displays the final result after a
picture has gone through the RetinaNet. As we see, the model has detected all
of the text instances except for one. This is most likely due to the settings used
for creating the anchor boxes. More on this in part III.

Figure 5.8: A selection of predictions from the test set. This is the raw output
of the RetinaNet model
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Figure 5.9: The Final result of the text detection pipeline. The image is stitched
back together and the predicted bounding boxes are converted to fit the original
resolution of the input image.

5.4 Discussion
The combination of reducing the size of the training data and changing the sizes
of the anchor boxes turned out to work very well. By tuning the aspect ratios
of the anchor boxes to better fit the shape of a text line, the detection rate and
accuracy were much more precise. There are still cases where the text instances
in the pictures are not detected i.e, Fig. 5.10.
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Figure 5.10: Example of where the model has failed to detect text, similar to
Fig 5.9.

Another problem that might occur is when the model detects text where
there is none. This might be caused by pareidolia where textures in the pictures
have a resemblance to text. This is displayed in Fig. 5.11. After inspecting a
selection of the validation images there has only been one case of this happening.
It is somewhat expected that the model will fail to identify some of these cases.
This is due to the fact that most of these cases are single free-standing characters,
which leads to an anchor box that is narrow and tall. This is also shown in
Fig. 5.9 where we can see that the number “4" is not detected in the middle
of the picture. If we compare this to the “rewritepixel" solution, we will see
that this program skips single characters. The reason behind this is that some
images come from modalities that are still very film-centric. An example of this
would be an upright CT scan where the radiologist would add a “L" or “R" to
know which way the person was facing during the scan.

Figure 5.11: An example of an instance where the model predicts text where
there is none.
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Chapter 6

Generating new images
without sensitive information:
a first attempt

6.1 Introduction
In this chapter, we will investigate the effects of using both GANs and neural
networks using the feature loss function in order to remove text from chest X-
Rays. As of now, the de-identification services provided by Amazon and Google,
as well as the existing solution at MMIV, redacts the sensitive information,
leaving a rectangular box over the text. Our goal is to train a model that
performs well enough to not need manual review, as well as allowing for complete
removal of the text.

6.2 Methods and materials

Dataset
For the proof-of-concept experiment we used the publicly available Chest X-Ray
dataset from Kaggle [61], containing 5.863 X-ray images originally intended to
classify pneumonia, however, the data works fine for our purpose as we only
need chest X-rays regardless of whatever illness it might show.

Additional methods
Progressive resizing

Progressive resizing is a technique that not only decreases training time, but
also improves the model’s ability to generalize. Its general idea is to start
with decreased resolution on the images and in the early epochs, and then
progressively increase the resolution up to the original resolution. This technique
was first proposed in the paper “Enhanced Deep Residual Networks for Single
Image Super-Resolution" by Lim, et al [73], where they proposed a training
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method “which can reconstruct high-resolution images of different upscaling
factors in a single model".

Generative adversarial network

A generative adversarial network (GAN) is a class of machine learning, where
two neural networks compete against each other, where one agent’s gain is the
other’s loss. The way this works in our project is that we have one network
generating cleaned images, while another network tries to predict whether the
input is generated or real. This technique was designed by Ian Goodfellow [20]
and colleagues in 2014, and is widely used in image related machine learning.

Feature Loss

Feature loss is a loss function first proposed in the paper “Perceptual Losses for
Real-Time Style Transfer and Super-Resolution" by Johnson, et al (2016) [9].
The idea was that instead of having a loss function that focuses on per-pixel dif-
ference, a loss function that focuses on higher-level differences could potentially
be better when generating images. This means that when generating an image
of a cat, instead of having the model correct itself based on pixel differences,
it should rather focus on getting the high-level features such as ears and eyes
right.

Figure 6.1: A simplified illustration of the feature loss system in [9]. The input
image is transformed into output, and then a loss network pre-trained for image
classification (here VGG-16) defines the features, and measures the differences in
content. The original feature loss function included target style as well, however
since we do not perform style-transfer, this is omitted. The figure was inspired
by Fig.2 in [9].

This is done by taking a pre-trained network, and using it as the “loss
network" essentially defining what a feature is. Then, as previously men-
tioned instead of looking at per-pixel loss, the average pixel difference over
an area(feature) is calculated, so that the model’s loss is equal to the difference
in features, and not per-pixel. This is useful in image generation, where the
features matter, rather than the image as a whole.
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6.3 Experimental results

6.3.1 Proof of concept
To start, we did a proof of concept experiment, where we took the Chest X-ray
dataset from Kaggle and used the previously mentioned “crappify" solution, that
inserted text to the X-rays. That way we have generated training data to feed
the GAN and feature loss model, where the goal is to generate the “crappified"
images without text. The images are then resized using the squish method (as
they are larger than the size they are being resized to), normalized, and put
into a databunch. Now that the data has been prepared, we can move on to the
models.

6.3.2 GAN
Creating a GAN primarily requires three steps: a learner, a critic, and a “switch"
that combines the learner and critic, creating the generative adversarial network.
The process starts with creating a learner. This model learns how to generate
images without text. Then, after training, we define a critic. The critic’s goal is
to identify whether an image is a real image or one that the learner predicted.
Then, after the critic has been trained. We define a switch, that swaps between
the learner and the critic when the loss goes below each respective model’s
set thresholds. The learner will try to “outsmart" the critic, updating itself
after receiving a verdict from the critic. Here is the experiment configuration,
highlighting key aspects of the model’s parameters:

Learner
Model: Unet
Archetype: ResNet34
Loss function: Flattened MSELoss
Training: 2 epochs on final layers, 3 epochs unfreezed
Critic
Model: Fastai’s GAN critic
Loss function: AdaptiveLoss using BCEWithLogitsLoss
Training: 6 epochs
GAN
Switcher: AdaptiveGanSwitcher
Additional techniques: progressive resizing 256-512-1024
Training: fitted 40 epochs

Table 6.1: Experimental settings for our GAN model
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Figure 6.2: The original image, the prediction, and the actual image. The GAN
has generated an image that is close to the real image visually, however, this may
not be the case when looking at the subtraction or histogram normalization.

Looking at the results it seems good. Most of the features are kept intact,
and no text is visible. It does seem like the model removed a bit of the letter
“R" in the top left corner, so to get a better picture, we represent the difference
by subtracting the prediction from the original image, as well as a histogram
normalization of the image. Looking at the subtraction, if the removed text is
easily readable, we can say that the model has completely removed the text.

Figure 6.3: Subtraction of GAN prediction and the histogram normalization
of the subtraction. This is done to highlight differences due to the dark pixel-
values in the image, making it a lot easier to detect differences visually. Looking
at the normalization, it is easier to see that the model changed the details of
the image as well, rather than just the outline.

We see here that the GAN missed some pixels of text, as well as removing
some of the outlines in the image. While the result looked good, this image
shows that the results were not as good as initially thought, considering that
the existing solution completely blocks out text while keeping the rest of the
image intact. The text is also not readable, meaning that the text is still present
in the prediction, albeit not readable. We will now perform the same experiment
using a regular Unet with feature loss as the loss function.
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6.3.3 Feature loss
The first steps are identical to the GAN experiment, where we “crappify" the
chest X-Rays, transform and normalize them to the same size, and put them
into a databunch. To create the feature loss function, we imported a pre-trained
VGG16 [4] network, that is trained on the ImageNet challenge dataset [34]
containing more than 1.4 million labeled high-resolution images to train our
loss network. Then we define our experiment configuration as follows:

Model: Unet
Archetype: ResNet34
Loss function: feature loss
Additional techniques: progressive resizing 256-512-1024
training: 10 epochs on final layers, 10 epochs unfreezed

Table 6.2: Experimental settings for our model using feature loss

Figure 6.4: The original image, prediction, and actual image using Unet with
feature loss instead of GAN. The results are similar to the ones in Fig.6.2, with
a bit more detail in the left armpit. Looking at the difference and histogram
normalization will tell us more about the results.

While not much difference visually, we can still see that the feature loss
model performed better when it comes to preserving the letter ‘R‘ in the image,
and this could indicate that it also performs better by not removing pixels where
it shouldn’t. To check that we again create a subtraction of the original image
(Fig. 6.5).
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Figure 6.5: Subtraction of prediction with feature loss as the loss function, as
well as the histogram normalization. We see now that the model has changed
pixel-values everywhere, something that would be hard to tell by only looking
at the subtraction

As this image tells us, our initial thoughts were correct. While not a huge
upgrade in regards to the text removal, we see that the rest of the image is intact,
with no changes to the actual detail, only small changes to the pixel-values

Lastly, to see if this solution is viable, both models are trained on real
images from the render-text program. The same steps were applied, with the
only difference being the data used. However, the results were not that great,
as shown in Fig. 6.6

Figure 6.6: Results of using full images as data. The left image is the input, the
middle is the prediction and the left is the actual image the model is trying to
generate. Overall the GAN has struggled to create an image good enough for
the critic to accept, and thus most likely struggled to find out what it needed
to do. The Unet with feature loss produced similar results.

6.4 Discussion
As this was meant as a feasibility study, we see this experiment as successful.
The experiment proved that it is possible to generate cleaned images using
image-to-image models. Both models managed to produce good results on the
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“crappified" data, but struggled with the real-life data. This is most likely due
to the complexity of the data, as the images have text with different properties
such as color, size, and positioning as shown in Fig. 6.7

Figure 6.7: Difference in training data. Our own “crappified" images had larger
text with a fixed position and color. The render-text program generated more
complex data with differentiating position, text-color and background depending
on where it was placed.

In the feature loss model’s case, this could be due to the loss network not
properly recognizing text as a feature, thus not penalizing the incorrect removal
of it. Knowing that good results were possible, we moved on to using generated
data from the render-text program.
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Chapter 7

Generating new images
without sensitive information:
an improved approach

7.1 Introduction
In the first experiment, we explored the feasibility of generating medical images
from the same images with text. Our initial results were good, however, due to
the simplicity of our ‘crappified‘ images, the model performed poorly on real-
life data. We also noted that the images removed irrelevant pixels, also in parts
of the image with no text (Figs. 6.3 and 6.5), which could potentially create
problems in the future.

7.2 Methods and materials
Given that this is a continuation and improvement of the experiments in the
previous chapter, we will continue using the same libraries and methods, but an
improved way of generating training data and a better way to treat irrelevant
parts of the images.

Dataset
With the goal of this experiment being a viable solution to de-identifying medical
images, we need to use data that represent real-life data used at MMIV. By using
the render-text program mentioned in the introduction of the experiment part,
we now have images that closely resemble real-life data. Our dataset contains
10,000 DICOM images converted to PNG format with the size of 1024x1024
pixels.

Pillow
Our improved solution will perform image manipulation to prepare the training
dataset, and the Python library Pillow offers a wide array of manipulation
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functions such as pad, crop, and resize. Pillow is a successor project that forked
the python imaging library (PIL), an open source library that adds support
for opening and manipulating images given that the file-type is supported[74].
Created in 2011 after the discontinuation of PIL, Pillow is, by many considered
a replacement for PIL with the support of Python 3.x versions.

7.3 Extracting image parts containing text
In order to work around the issue with complex training data, we decided to
take a different approach by only passing the parts of the image where text is
present, rather than using the whole image. Using this technique, we will also
minimize irrelevant pixels being removed., as well as a dataset much larger than
the original 10,000. This results in a different data preparation step, where we
create a function where we pass the full images with text, without text, and a
DataFrame containing info about the bounding boxes. That way we can extract
images of where the text is, and use that as training data. Fig. 7.1 illustrates
the extraction.

Figure 7.1: The extract function is passed a whole image and gets the coordi-
nates of the bounding boxes from the DataFrame. Then, using PIL, the boxes
are cropped out, resulting in a new dataset of bounding boxes, rather than whole
images.

You might notice that the cropped images often contain more than one text
box. This is due to the fact that we included 20 pixels on each side so that
the feature loss function receives more context, rather than just the text-box,
and nothing around it. After the image extraction, we pass them to a function
that consistently resizes and then pads the image to 128x128. The padding
method used by fastai proved hard to reverse, so by using our own padding and
resizing functions, we can easily reverse this when the images are being stitched
together. With the extracted and transformed images, we prepare the images
by creating a databunch, this time omitting the resizing with padding. With
the data prepared, we can start training. This is our experiment configuration:

After training, a separate set of images generated by the pixel render program
were used for testing, being pre-processed the same way as the training data.
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Model: Unet
Archetype: ResNet34
Loss function: feature loss(VGG_16bn)
training: 10 epochs on final layers, 10 epochs unfreezed

Figure 7.2: Experimental settings for our RetinaNet model tasked with text
detection.

Figure 7.3: Predictions of bounding-boxes without text. The model is passed
the cropped bounding-boxes, and predicts the images without the text. The
predictions gives us an indication that the model has performed well.

The images in Fig. 7.3 look promising. We see that the text is gone, and
the model has managed to generate pixels that make sense in the surrounding
context. This is especially apparent in the areas where the text covers detailed
parts of the X-ray, such as in the bottom images. Using an identical but reverse
version of the extract function, the predictions are placed onto the original
image using the same coordinates from the bounding box DataFrame. After the
images have been stitched back together, we end up with this result, shown in
Fig. 7.4
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Figure 7.4: On the left we have the original image, and the right image is
essentially the original image, but with the predictions placed on top. With the
images stitched back together, they can now be saved to create subtractions and
histogram normalizations.

Visually the results look great, with the text being completely gone, and
the filled-in pixels make sense. This is more noticeable in the areas where the
text covers part of the x-ray such as on the chin, bottom left corner, and the
small text on the middle-right side. To be sure of our results, we created the
subtraction image, as well as performing histogram normalization on the image
to highlight the darker areas, shown in Fig. 7.5.

Figure 7.5: Subtraction image and histogram normalization of the image. The
subtraction contains clear text, and the normalization shows that some changes
has been made to surrounding pixels.

Looking at the difference image, the level of removal is greatly improved. As
previously mentioned, clearer text means a greater level of removal, and from
what Fig. 7.5 shows, the text is almost completely removed. The normalization
shows that there are some changes made to the surrounding pixels, but this was
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within expectation, and comparing it to the end-product in Fig. 7.4, tells us that
the predictions fit nicely into the original image. It is also useful to compare
the subtraction image to the original image, illustrated in Fig. 7.6 where we see
the level of text removal.

Figure 7.6: Subtraction image and original image. The text in the left image
looks almost identical to the ones in the original, meaning that there are almost
no residual pixels in our prediction.

7.4 Discussion
With the change in training data, the model produced great results. The ex-
periment configuration used was initially intended as a test to see if cropping
the images would improve performance, however, due to the greatly increased
performance and good results, we decided on sticking with it to stay on sched-
ule. Progressive resizing was also omitted due to the importance of detail in
our data, as well as the consistent sizing of the images. The results shown were
good, however, in a few cases, the model made small errors(Fig. 7.7).
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Figure 7.7: Errors highlighted with a red circle. Light-blue background due to
colors in the image itself. In some cases the models error is related to color, and
others it fails to generate details.

We believe the main reason for the errors lies in the dataset the model trained
on. Most of the images the model was trained on had dark borders around the
image, so when the model generated the right image in Fig. 7.7, it probably
expected the area to be dark. Evening out the amount of different "types" of
images with and without dark borders, as well as the average color distribution
in the image could potentially fix this issue, although simply increasing the
amount of training data seems like a good step in the right direction. Another
issue we faced was that in some cases, the bounding boxes were quite large,
meaning we would have to resize them down to 128x128 and then resize the
prediction back to the original size, leading to decreased image quality. The
text generated by the render-text program is usually shorter than 128 pixels
so at the time resizing to 128x128 was the ideal solution, however for future
training, increasing the resolution could fix that issue.
In conclusion, by looking at the results visually, as well as producing versions
of the predictions such as subtraction and histogram normalization, we believe
that the experiment was successful. The model does as previously mentioned in
a few cases predict poorly, however, we have taken this into account, and will
explain our planned solutions in the future work section.
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Chapter 8

De-identification application

8.1 Introduction
In this chapter we will combine the two models from our previous experiment,
to create an application that will also serve as a prototype for a future pipeline.
Our goal is to be able to upload a medical image, detect the bounding boxes,
removing the text within the boxes, and then finally produce a de-identified
image.

8.2 Methods and materials

Ipywidgets
Ipywidgets is a python library for interactive HTML widgets that can be used
in Jupyter notebooks [75]. This sort of turns a notebook into a web page by
introducing buttons and other interactive widgets that can be used without
manipulating code.

Voilà
Voilà is an application and Jupyter extension that converts a Jupyter notebook
into an interactive dashboard that allows users to share their work with others,
while giving the user control of what readers experience [76].

8.3 Results
Before creating the application, a function that prepares the data from the
object detector is made to comply with the data requirements from the text
remover. This is done by generating new coordinates based on what quadrant
the text is in, and creating a DataFrame containing the new coordinates.

We then create two notebooks, one for the text-detection and one for the re-
moval. The goal of these notebooks is to be as simple as possible, only importing
necessary libraries, and defining important functions relating to the task. In the
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case of the text-detector, we import fastai, as well as PIL for image manipula-
tion, and ipywidgets for the buttons. We then simply define two buttons, one
for upload, and one for prediction. The user then uploads an image of their
choice. The image is then split into 16 parts, and fed one by one to the model.
After the prediction is done, we convert the bounding box coordinates so that
the text removal model accepts them. With the conversion done, we download
the Dataframe containing the coordinates, ready for use by the text-remover.

The text-removal application works similarly to the text-detector where we
define upload and predict buttons, where the user uploads their image, and press
the predict button. The relevant areas of the image are then cropped using the
coordinates from the text-detector, and fed one-by-one into the model. After
prediction, each crop is placed back on top of the original image, creating a
de-identified image.

With the applications done, we use Voilà to turn the notebooks into an
interactive dashboard, meaning that only the buttons remain, essentially acting
as the front-end to our application (Fig. 8.1). Finally, the applications are
pushed to GitHub, where they can be accessed using Binder, a web service
where notebooks can be opened in an executable environment [77], hosting the
notebook for a short amount of time. As we are aiming for a quick prototype
form demo purposes, Binder serves us well. However, if the application were to
be improved, a more permanent solution for hosting and serving the application,
based on e.g. Google Cloud or Heroku [78], would be recommended.
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Figure 8.1: De-identification applications. The application illustrated on the
left detects the text and returns a DataFrame containing the coordinates. The
one on the right uses the coordinates to remove text present in the area.

8.4 Discussion
The reason this application was made was to show a prototype of a potential
pipeline. Except for the widgets, the two applications are essentially run-files,
containing all necessary functions to perform de-identification. There were some
versioning issues in our fastai models, leading us to create two separate appli-
cations rather than combine text detection and removal in a single application.
A way around the issue would be to rebuild the text-detector using Python
version 3.7.10, which was deemed unnecessarily time-consuming for the present
purposes. A possible next step for our application would be a system linked to
a relevant data storage, see Fig. 8.2. This and other possible future extensions
are discussed further in Section III.
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Figure 8.2: An overview of a simple de-identification pipeline. The user uploads
a dataset of medical images to a data storage, triggering the de-identification
process. The final images are then stored on the research PACS.
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Part III

Discussion and further work
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Chapter 9

Evaluation and conclusion

In this chapter, we will discuss the results from the three experiments above, and
present areas of improvement for future work. Our experiments resulted in two
deep learning models, one for text-detection, and one for text-removal. We also
made a simple application, tying the two models together as a prototype of how
a potential pipeline could function. To recap, we created Fig. 9.1, illustrating a
full overview of our work.

Figure 9.1: Complete system overview. A medical image is split into 16 parts
before the text-detection model detects the bounding boxes. The image is then
combined again in case the image is needed for other research purposes. Then,
by using the coordinates of the bounding boxes, we can crop the original image
to extract the relevant areas. Those images are then passed to the text-removal
model. After the text has been removed, we place the predictions from this
model on top of the original image using the original coordinates, resulting in a
de-identified image.
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9.1 Discussion of research questions
Early on in the process, we defined research questions to guide us through our
work. To properly evaluate our experiments, let us take a look at each one:

1. ”How can we use machine learning to automate 2D medical image de-
identification while preserving image features?"

• ”How do we make sure these images are properly de-identified?"

To verify that the images are properly de-identified we created the image sub-
tractions and found that the text was completely removed (Fig. 7.6). Since
the text was very readable in the difference image, it was an indication that the
model successfully removed the text, but to be sure, we showed the results to an
expert on medical imaging. After running it through a PNG-enhancer program
meant to highlight pixel-values, we noticed that there are changes made to the
image beyond just removing the text. However, it seems impossible to extract
any information from it, except for maybe the length of the bounding box (Fig.
9.2)

Figure 9.2: Prediction on the left and original image on the right. We notice
the areas where the model has done changes, however it is not possible to read
characters.

An idea we recommend pursuing in any future work is to attempt to recreate
the text from the de-identified images. By training a “reverse" model that
predicts images with text given the de-identified image as input. We did make a
small attempt at this when when working with the proof-of-concept experiment
for the text remover, but the immediate results were not useful in any way and
the idea was quickly abandoned. We do still believe that with enough time
and resources, implementing such a model could be a valuable step to verify
de-identification in a potential pipeline.

• “Can we design an object detection model to successfully detect burnt-in
text in the images?"

When we worked with the RetinaNet model, we spent a fair bit of time with
the generation and preparation of the data as there were no available, existing
dataset that would fit our task. We ran a proof-of-concept experiment with
the synthetic data we generated using the ”crappification" method. The results
turned out to be varying (see Fig. 5.5, but it did show us that it could be
possible to detect text using RetinaNet with Focal Loss. For the final version
of our RetinaNet, we saw the need for better data. This problem was handled
with the text render solution developed by Hauke Bartsch [63]. We decided
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to divide the images into tiles with dimensions 256 × 256 pixels to hopefully
increase the detection rate. We also tuned our anchor boxes to better mimic
the shape of a text line. The combination of the data augmentation and new
anchor boxes turned out to work really well, as shown in Fig. 5.9. There are
still some instances of text which is not detected, but these are often single
letters. As previously mentioned, the existing solution in use in the research
PACS system of MMIV/Helse Vest ignores single characters. The reason is that
there is next to no chance of any personal information being represented in a
single character or number. We were also able to stitch the tiles back together
so the output of this pipeline is an image with the original resolution, and a
CSV file containing the filename and detected bounding boxes. If we compare
the result from the existing solution and our proposed RetinaNet in Fig. 9.3, we
can see that we have successfully utilized an object detection model to detect
text in images.

Figure 9.3: A comparison of the ”rewritepixel" solution used at MMIV on the
left and our text detection model on the right. By looking at the two pictures
we can observe that our model has a higher detection rate in this example.

1. “Can we remove the sensitive information using image-to-image deep-
learning, while still preserving the image integrity?"

When working on the proof-of-concept experiment, we quickly noticed that
the image integrity was compromised after looking at the histogram normaliza-
tion in Fig. 9.4
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Figure 9.4: Histogram normalization of the “crappified" images in our first,
proof-of-concept text removal experiment. We clearly see that the model has
changed pixels in irrelevant areas, potentially compromising the integrity of the
features in the image.

This problem as well as the issue where our model struggled to remove
the text was fixed when moving over to the improved solution where we only
applied the removal models in the areas where text was detected. Thereby
limiting the areas in which the model could potentially harm the features of
the image. After presenting and discussing our solution with a local medical
imaging expert (Hauke Bartsch), we conclude that while our solution is likely
not a suitable replacement for black-boxing in its present form, it could still be
useful for other purposes, e.g. teaching. Its main drawback is that whatever the
model has replaced the text with is still not real, but computer generated, and
could in the worst case be misinterpreted as something else such as a tumor.
And while more pleasing and less distracting to look at than black-boxed images,
it would still pose an ethical dilemma to include computer generated pixels in an
otherwise real image in diagnostics. One may speculate that a clear indication
that a specific region of the image has been changed could somewhat alleviate the
issue, as the person reading the image can be instructed to not trust whatever
is inside the highlighted regions.

9.1.1 Challenges and known limitations
When working with machine learning in general, often you come up against
certain limitations that either blocks progress, or needs to be worked around.
Some limitations we faced in our work were due to limited computing power,
both locally and in the cloud. When doing computer vision with advanced neural
network architectures, sometimes you end up running out of GPU memory, an
issue we faced repeatedly throughout our work (Fig. 9.5)

Figure 9.5: CUDA out of memory error. Appeared when trying to use
1024x1024 images as training data in the GAN
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Using cloud-based solutions outside of one’s control can also lead to various
challenges, e.g. Fig. 9.6.

Figure 9.6: Lack of computational resources allocated to the MMIV organization
by Google repeatedly led us to not being able to run our virtual machines on the
cloud. Due to the work being performed during the COVID-19 pandemic, we
had to work on machines hosted in the cloud to be able to work consistently, and
at random times this error would force us to wait for resources to be available.

Text detection

A major limitation with this part of the pipeline is the limited input sizes
used by our model. As of now, the RetinaNet model will only accept images
where the dimensions are divisible by 256, as this is assumed by some hard-
coded components of the model. We attempted to design a more flexible model,
but quickly realized that it was easier to slice the image rather than changing
an already working and relatively complex model. We also tried with larger
resolution on the images, both 1024 and 512, but the results were not as good
as the final solution. This was mainly due to our failure to find good ratios
for the anchor boxes. Another possible limitation, or at least an unnecessary
component, is the use of a Focal Loss. There is no real classification task
to be done other than foreground-background, which means this loss function,
designed to make good use of object classification during object detection, might
be a bit overkill.

Text removal

The text-removal model also has a limitation in regards to resolution. As men-
tioned in the experiment, using 128x128 as the standard size for cropped images,
we could potentially lose some image quality when the bounding box is larger
than this size, as the images are then both down- and upsampled. However, in
future work this can be fixed by increasing the standard size.
On a more fundamental level, there is the problem of explainability. This is a
known limitation with using deep learning models. Many deep learning algo-
rithms are considered to be a ”black box": you feed the system with data, and
a result is produced, with no real way of knowing how the model came to that
conclusion. There are many attempts at alleviating this issue, with an entire
field called “Explainable AI" [79, 80, 81] dedicated to coming up with new tools
and methods. However, this is at the forefront of research in machine learning,
and we are not aware of any powerful and flexible techniques that can easily

63



be used in our case. The need for explainability is especially important with a
system like this which handles personal health information. This is a weakness
concerning both of the models in this thesis.

9.2 Conclusion and future work
The potential pipeline has the ability to be extended to work with several dif-
ferent medical image formats. The current models are only trained on X-rays of
the chest. It is possible to create different datasets with different image modal-
ities, i. e CT, MRI, ultrasound, relatively easy using [63]. We could then create
a classifier that predicts what type of modality the image has and then run the
correct text detection and text removal model.

One interesting feature which would be possible to implement is a text clas-
sifier. Our model already detects text, so implementing text extraction should
be possible. One could then train a classifier to decide if the text in question is
sensitive or not and then only de-identify the text classified as sensitive. This
was an idea we had early on, and actually led us to our choice of using Focal
Loss. By implementing such a solution we could make full use of the potential
of the Focal Loss function by classifying, as well as detecting text.

In regards to the text removal model, one could try a different approach.
When we were planning on how to go about the task of removing text, we
decided on using image-to-image models and techniques we were familiar with.
This resulted in us focusing fully on using GAN and Unet with feature loss to
perform the text-removal. As previously mentioned, the results were good, but
not a replacement to black-boxing yet, due to the residual pixels. The first step
to fix this would probably be to use more data for training. One could also
experiment with transformations so that the residual pixels are not relevant to
the identity of the person. One could even go about training on black-boxed
images rather than original images. We did experiment with this, however, due
to time constraints it was trained with fewer images for a shorter period of time.
Some very preliminary results can be found in Fig. 9.7.

64



Figure 9.7: Original image, prediction and actual image. We quickly made a
function that black-boxes the text (text box in the middle is the one to be
removed, rest is context). The model is worse at generating detail compared to
the one that did not use black-boxes, but it could be a viable, more privacy-
preserving alternative.

There are of course many other ways to go about text-removal instead of
the methods we focused on, and many choices within the framework we set
up. Given enough time and computing power, one could perform an ablation
study to identify the components of the system that were most impactful for the
performance and spend resources optimizing these. One could also use other
image-to-image models such as cycleGAN [42], Conditional GAN (cGAN) [43]
or replace Unet with another architecture.

Another area of improvement is using the newest version of the fastai library,
v.2. Both the models are using the first version of fastai. This was decided
early on in the project because when we started working on this thesis the new
version of fastai had just been released. Its newness led to a lack of support
for the models we wanted to use. There is still not much support for object
detection in fastai 2, but according to [82] it is planned to be supported in the
future. At some point, it would be recommended to update the code to use the
newer version of fastai as it is a complete rewrite of fastai v.1 with a significantly
improved software design.

Lastly regarding future work, one would like to implement a comprehensive
pipeline. By creating a pipeline, one could automate certain processes such
as training and prediction. This would make the process more future-proof,
considering you could train on new data if the model’s performance starts to
decline. We gave an example of how a potential prototype could look like in
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Fig.8.2. However, an improved complete pipeline could perhaps look something
like the one in Fig.9.8.

Figure 9.8: An overview of a proposed, more comprehensive pipeline for de-
identification. The de-identification trigger sends a request for images to the
clinical PACS. The PACS then passes the images to the text detection model.
There we can decide whether we want black-boxed images, or use the text-
removal model to de-identify them. After de-identification, the images are eval-
uated. This could be done by running the PNG-enhancer program, and if the
image passes set thresholds, we can move on to a deep learning solution, trying
to recreate the text. If the image passes evaluation, it is sent to the research
PACS for storage, and if not we send a message to a controller. This controller
would then request images from the research PACS to train the models again
using new data. To verify if the model’s performance improves after training,
we added a model evaluation step, where the model would use a fixed validation
set and see if it improves. One could also daily add the de-identified images to
the new training set, so that the models follow the data, and keeps it’s good
performance.

With the increasing importance of GDPR, developing good tools for de-
identification is helpful to protect the patients’ privacy, as well as providing
researchers with more data. Further developing our de-identification solution
into a complete application or pipeline could therefore provide researchers and
healthcare workers with a useful tool that could lessen the amount of manual
labor needed when dealing with de-identification, leading to more data being
available. This could in turn help them achieve better results, as having more
data is likely to have a positive effect on their work.
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