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Exploring lithium’s transcriptional mechanisms of action in
bipolar disorder: a multi-step study
Ibrahim A. Akkouh 1,2, Silje Skrede3,4, Asbjørn Holmgren 1,2, Kari M. Ersland3,4, Lars Hansson1,2, Shahram Bahrami1,5,
Ole A. Andreassen1,5, Vidar M. Steen3,4, Srdjan Djurovic 3,5 and Timothy Hughes 1,2

Lithium has been the first-line treatment for bipolar disorder (BD) for more than six decades. Although the molecular effects of
lithium have been studied extensively and gene expression changes are generally believed to be involved, the specific mechanisms
of action that mediate mood regulation are still not known. In this study, a multi-step approach was used to explore the
transcriptional changes that may underlie lithium’s therapeutic efficacy. First, we identified genes that are associated both with
lithium exposure and with BD, and second, we performed differential expression analysis of these genes in brain tissue samples
from BD patients (n= 42) and healthy controls (n= 42). To identify genes that are regulated by lithium exposure, we used high-
sensitivity RNA-sequencing of corpus callosum (CC) tissue samples from lithium-treated (n= 8) and non-treated (n= 9) rats. We
found that lithium exposure significantly affected 1108 genes (FDR < 0.05), 702 up-regulated and 406 down-regulated. These genes
were mostly enriched for molecular functions related to signal transduction, including well-established lithium-related pathways
such as mTOR and Wnt signaling. To identify genes with differential expression in BD, we performed expression quantitative trait
loci (eQTL) analysis on BD-associated genetic variants from the most recent genome-wide association study (GWAS) using three
different gene expression databases. We found 307 unique eQTL genes regulated by BD-associated variants, of which 12 were also
significantly modulated by lithium treatment in rats. Two of these showed differential expression in the CC of BD cases: RPS23 was
significantly down-regulated (p= 0.0036, fc= 0.80), while GRIN2A showed suggestive evidence of down-regulation in BD (p=
0.056, fc= 0.65). Crucially, GRIN2A was also significantly up-regulated by lithium in the rat brains (p= 2.2e-5, fc= 1.6), which
suggests that modulation of GRIN2A expression may be a part of the therapeutic effect of the drug. These results indicate that the
recent upsurge in research on this central component of the glutamatergic system, as a target of novel therapeutic agents for
affective disorders, is warranted and should be intensified.
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INTRODUCTION
Lithium has been the treatment of choice for bipolar disorder (BD)
for more than six decades [1, 2]. It is effective both as a long-term
prophylactic and as an acute treatment for manic and depressive
episodes, and approximately one-third of lithium-treated BD
patients show excellent response [2, 3]. Although the biological
basis of lithium response has been studied extensively, the
specific molecular mechanisms mediating its therapeutic effect in
BD remain elusive [4]. However, since lithium’s clinical effects
typically require several weeks to develop, it is generally assumed
that transcriptional changes are involved [5].
The advent of high-throughput gene expression techniques has

provided a feasible and bias-free method to screen the whole
transcriptome for potential mediators of lithium’s beneficial
effects at the molecular level. Since Bosetti et al. published their
seminal paper on lithium’s genome-wide transcriptional effects in
2001 [6], numerous studies have examined the gene expression
changes produced by lithium, employing different tissues and
various model organisms [7]. Despite the low-reproducibility rate
exhibited by these transcriptome studies [7], they all point in the

same direction: the molecular effects of lithium are highly
complex and variegated, involving a multitude of genes and
proteins, some with bigger effect sizes than others.
Most of these studies screened the transcriptome using

microarray technology, which is known to have several drawbacks,
such as a high level of background noise and a narrow dynamic
range [8]. RNA-sequencing avoids the technical issues inherent in
microarrays because it relies on direct sequencing of transcripts
rather than probe hybridization. The superior specificity and
broader dynamic range of RNA-sequencing allow for the detection
of low-abundance transcripts and more differentially expressed
genes with higher fold changes [8]. In addition, RNA-sequencing
makes it possible to quantify gene expression at the level of
individual transcripts, increasing the resolution and thereby the
power to discover distinct isoforms that are differentially
regulated. Thus, the full set of lithium’s transcriptional effects
can be captured, including subtle gene expression changes.
Given that the clinical effects of lithium are rather specific while

its molecular effects are highly heterogenous, it is expected that
only a fraction of these molecular effects are responsible for
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lithium’s mood stabilizing properties [9]. One way to identify the
genetic mediators of therapeutic efficacy is to relate the
expressional effects of lithium to transcriptional changes of BD-
associated genes in human brain samples. The recent publication
of the largest BD genome-wide association study (GWAS) [10]
provides us with the most extensive list to date of genomic loci
that are statistically associated with the disorder. Thus, there is a
unique opportunity to further elucidate the intricate relationships
between lithium’s molecular and therapeutic effects in BD.
In this study, we used a multi-step approach to search for the

transcriptional changes that may underly lithium’s therapeutic
efficacy. We first identified genes that are associated both with
lithium treatment and with BD, and then we performed differential
expression (DE) analysis of these genes in brain tissue samples from
BD patients (n= 42) and healthy controls (n= 42). To identify genes
that are regulated by lithium exposure, we used high-sensitivity
RNA-sequencing of corpus callosum (CC) tissue samples from
lithium-treated (n= 8) and non-treated (n= 9) rats. To identify
genes with DE in BD, we performed expression quantitative trait loci
(eQTL) analysis on BD-associated genetic variants from the most
recent GWAS using three different gene expression databases. Our
main objective was to explore the gene expression changes that
potentially mediate the clinical effects of lithium in BD.

MATERIALS AND METHODS
Animal handling, lithium treatment, and tissue dissection
All experiments were approved by and carried out in accordance
with the guidelines of the Norwegian Committee for Experiments
on Animals (Forsøksdyrutvalget, FDU: ID 2015-7661). Female
outbred Sprague-Dawley rats (Mollegaard) were kept under
standard conditions with an artificial 12:12-hour light/dark cycle
(lights on: 08:00) and constant 48% humidity. Animals were
housed 5 per cage and allowed access to tap water and free
(ad libitum) access to standard laboratory chow (Special Diets
Services) during the whole experimental period. Care was taken to
ensure minimal suffering of the animals at all stages of the
experiment. The rats were anesthetized with 2.5% isoflurane gas
(Isoba vet; Schering-Plough, Denmark) and Alzet osmotic mini-
pumps (model 2ML4; DURECT Corporation) were implanted
according to the manufacturer’s instructions. Rats received either
vehicle (n= 9) or 2 mmol/kg/day (84.8 mg/kg/day) of lithium
chloride (n= 8) for 4 days. After deep anesthetization and sacrifice
by decapitation, truncal blood was collected in EDTA tubes, and
brains were rapidly removed from the skull, briefly washed in ice-
cold phosphate buffered saline (PBS), and placed on ice. The
whole CC was carefully dissected. Plasma concentrations of
lithium were photometrically measured on a Cobas 8000 C702
module (Roche Diagnostics).

RNA extraction and sequencing
Total RNA was extracted from the rat CC samples with the RNeasy
Plus Mini Kit (QIAGEN) according to manufacturer’s protocol. RNA
yield was quantified using a NanoDrop 8000 Spectrophotometer
(NanoDrop Technologies, Inc.) and RNA integrity was assessed
with Bioanalyzer 2100 RNA 6000 Nano Kit (Agilent Technologies,
Inc.). Paired-end RNA-seq libraries were prepared with the TruSeq
Stranded mRNA kit from Illumina which involves Poly-A purifica-
tion to capture coding as well as several non-coding RNAs. The
prepared samples were sequenced on an Illumina HiSeq 4000
platform (Illumina, Inc.) at an average depth of 50 million
fragments per sample using a read length of 150 base pairs and
an insert size of 350 base pairs.

Data processing
Raw sequencing reads were first quality assessed with FastQC
(Babraham Institute, Cambridge, UK) and further processed by
cutting individual low-quality bases and removing adapter and

other Illumina-specific sequences with Trimmomatic V0.32 [11]
using default parameters. For the differential gene expression
(DGE) analysis, HISAT2 [12] was used to first build a transcriptome
index based on ENSEMBL annotations and then to map the
trimmed reads to the rat reference transcriptome (Rnor_6.0). To
quantify gene expression levels, mapped reads were summarized
at the gene level using featureCounts [13] guided by ENSEMBL
annotations. For the differential transcript expression (DTE)
analysis, RSEM [14] and Salmon [15] were used to estimate
transcript expression abundances. The R package tximport [16]
was used to integrate the transcript-level abundance estimates
from both tools into count-based DE analyses engines.

Estimation of cell type abundances
Cell type abundances were estimated with CIBERSORT v1.06 [17].
On the web interface, 500 permutations were chosen and the
quantile normalization option was disabled. The cell types that
were considered relevant for CC were astrocytes, endothelial cells,
microglia, neurons, and oligodendrocytes. Each of the marker
genes was assigned a cell-type specific expression value based on
three transcriptome-wide RNA expression murine data sets [18].
Differences in cell type proportions between lithium-treated rats
and control rats were assessed with two-sample t-tests.

DE analysis
We applied a pre-filtering step in which genes with less than eight
read counts in more than half of the samples were filtered out. The
statistical R package DESeq2 was used for DE analysis [19] using
default parameters. DESeq2 performs an independent filtering
step using the means of normalized counts as a filter statistic. A
threshold for the filter statistic is found which optimizes the
number of adjusted p-values below a user-specified significance
level [19]. Using an FDR-adjusted p-value cutoff of 0.05, 14,981
genes were retained in the DGE analysis, and 14854 and 16414
transcripts were retained in the DTE analyses based on transcript
quantification with RSEM and Salmon, respectively.

Pathway enrichment analysis
We performed pathway analysis on the 1051 significant DGE
genes with pathfindR [20] using a customized pathway reference
set for Rattus norvegicus based on the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database [21]. The R package
clusterProfiler [22] was used to perform over-representation test
on the 57 genes exclusively identified in the DTE analysis and the
112 genes that overlapped with previous transcriptomic reports.
The parameters used were: subontology= “BP”, p-value cutoff=
0.05, and q-value cutoff= 0.05. This over-representation analysis
was based on Gene Ontology [23] terms rather than KEGG
pathways.

eQTL analysis of lead SNPs from the PGC bipolar disorder GWAS
eQTL functionality for the 30 BD-associated lead SNPs from the
Psychiatric Genomics Consortium’s (PGC) most recent GWAS [10]
was examined using publicly available data from the Genotye-
Tissue Expression (GTEx) dataset v7 [24], the Brain eQTL Almanac
(Braineac) dataset [25], and the CommonMind Consortium (CMC)
release 3.0 dataset [26]. Only brain tissues were included in the
analyses, and an eQTL association was defined as significant if the
FDR value was <0.05. See Supplementary Materials and Methods
for a detailed description of the eQTL procedures.

DGE analysis in human brain samples
Human CC samples from 42 BD patients and 42 healthy controls
(Table S16) were obtained through the NIH NeuroBioBank from
the Harvard Brain Tissue Resource Center and the University of
Pittsburgh Brain Tissue Donation program. The tissues were post-
mortem and fully de-identified, and are therefore classified as
exempt from Human Subject Research regulations. Total RNA was
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purified from the samples using TRIzol RNA Isolation reagent
according to the manufacturer’s protocol (Thermo Fisher Scien-
tific). cDNA synthesis was performed on 1000 ng of each sample
with the High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Thermo Fisher Scientific), using 20 μL reaction volume.
Gene expression of 12 eQTL genes overlapping with lithium-
associated DE genes were investigated using a custom designed
TaqMan® Low Density Array with a total of 16 assays (Table S17).
Relative expression levels were calculated using the ΔΔCt method
[27], normalizing each gene of interest against the mean cycle
threshold (Ct) of four endogenous control genes (Table S17). For
each of the 12 lithium-associated genes, a DE analysis between BD
and CTRL subjects was performed using a simple logistic
regression model in R adjusting for sex and age differences. p-
values were not corrected for multiple testing.

RESULTS
Pre-analysis assessments
To ensure a controlled administration of lithium, subcutaneous
minipumps were used to continuously administer lithium chloride
into 8 female rats at a total dose of 2 mmol/kg/day. After 4 days of
treatment, serum lithium levels in all treated rats were between
0.6 and 1.0 mmol/L (mean= 0.725, sd= 0.175) (Fig. 1a). These
levels are close to the optimal lithium concentration in humans,
and well within therapeutically relevant levels for the treatment of
BD [28, 29].
Since the CC primarily consists of myelinated axons, we

expected that the majority of mRNAs would come from
oligodendrocytes. Using the computational cell type deconvolu-
tion tool CIBERSORT [17], we estimated the abundances of five
relevant cell types. We found that the two most predominant cell
types were oligodendrocytes and astrocytes, with estimated

proportions of ~55% and ~25%, respectively (Fig. 1b). Differences
in cell type proportions are a major source of variation in gene
expression studies, potentially accounting for up to 13% of the
observed expression discrepancy between conditions [30]. Using
two-sample t-tests to examine the cell type proportions in treated
and untreated rats, we found no significant differences in any of
the assessed cell types (Fig. 1b). Coupled with the fact that all rats
were consistently kept under equal experimental settings, this
finding suggests that most of the observed gene expression
variation can be attributed to lithium’s molecular effects rather
than other confounding factors.
Principal component analysis (PCA) of the full set of expressed

genes revealed a clear but incomplete clustering by condition
along the two first principal components, explaining 46% of the
total variance (Fig. 1c). The PCA analysis also revealed that one of
the treated rats, RatLi4d_16, had a distinct expression profile
separating it from the rest of the samples (Fig. 1c). This sample
was thus considered an outlier and excluded before conducting
the DE analyses.

DGE analysis
To identify genes with expression levels significantly altered by
exposure to lithium, we first performed a genome-wide differ-
ential expression analysis on the gene-level (DGE) by counting
aligned RNA-sequencing reads that overlap with gene regions.
Quality control and alignment metrics of the sequencing reads
can be found in the supplementary materials (Figs. S1–S4). The
DGE analysis resulted in 1051 significant differentially expressed
genes, 669 up-regulated and 382 down-regulated (Fig. 2a, b,
Table S1–S2). The majority of identified genes were protein coding
(93%), but there were also a number of non-coding RNA genes
(Fig. 2c and Fig. S5). Effect sizes (fold changes) ranged from 0.31 to
3.27, with the most down-regulated protein coding gene being

Fig. 1 Initial assessments of lithium treatment and sequencing results. a All lithium-treated rats had plasma concentrations of lithium chloride
between 0.6–1.0 mmol/L, which is well within therapeutically relevant concentrations in humans as indicated by the two dotted lines. b Bar
graphs showing the estimated cell type abundances (in percentage) for five relevant cell types as determined by cell type deconvolution
analysis. Each bar represents a single rat sample. c PCA plot showing good separation on condition over the first two principal components,
explaining 46% of the variation in total. The plot also revealed an outlier sample, which was excluded from the analysis. The PCA analysis was
based on expression data from all the ~15000 genes that survived the pre-filtering steps
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ATP14 (fc= 0.40, p= 7.07e-4) and the most up-regulated gene
being GPR101 (fc= 3.27, p= 3.66e-4).

Assessing the role of CC and oligodendrocytes
Since the CC in general and oligodendrocyte dysfunction in
particular have been implicated in the pathophysiology of BD
[31–33], a partial aim of the current study was to investigate
whether the molecular effects of lithium are mediated by
mechanisms underlying myelination and other oligodendrocyte-
specific functions. We examined whether our list of 1051 DGE
genes overlapped with curated sets of myelin-related [34] and
oligodendrocyte-specific genes [35], and found that lithium
significantly modulated 7 and 6 genes, respectively (Table S4).
One of these genes, MBP (Myelin basic protein) is especially
relevant as the encoded product is the second most abundant
myelin-related protein constituting around 30% of total myelin
protein [32]. However, none of the gene sets were significantly

over-represented in our samples (Fisher’s exact test: p(myelin)=
0.84, p(oligo)= 0.48).

Pathway analysis of DGE genes
A common way to reduce complexity of analysis in high-
throughput experiments is to perform pathway analysis, which
aims to increase explanatory power by grouping long lists of
genes into smaller sets of genes or proteins that function in the
same cellular pathways. By conducting pathway analysis on our
list of 1051 DGE genes, we identified 26 pathways that were
significantly enriched by lithium exposure in the rat CC (Fig. S6,
Table S5–S6). Utilizing the subcategory arrangement of the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database to group
the enriched pathways into broader cellular processes, we found
that the primary effects of lithium were related to signal
transduction and immunological functions, but there were also
clear effects on nervous system and cellular community processes

Fig. 2 Differential gene expression (DGE) analysis of CC samples from lithium-treated and untreated rats. a MA-plot showing the relationship
between mean expression values and fold changes for all analyzed genes. Each dot represents a gene. Significantly associated genes (FDR <
0.05) are colored in red, and the 10 most significant genes (lowest FDR value) are labeled. As the plot shows, the effect size variance is
dependent on the mean expression value. Genes with lower average expression tend to have bigger fold changes between conditions,
indicating the increased uncertainty in effect size estimates of low-abundance genes and the need for pre-filtering. b Volcano plot showing
the fold change and p-value for each gene. Genes with significant up-regulation (FDR < 0.05) in lithium-treated rats are colored in red, and
genes with significant down-regulation are colored in blue. The 10 genes with the lowest p-values are labeled. c Biotypes of lithium-associated
DGE genes. The majority of genes were protein coding. Small RNAs include miRNAs and snoRNAs. “Other” include pseudogenes and
processed pseudogenes. lncRNA: Long non-coding RNA. d Grouping of significantly enriched DGE pathways according to the KEGG
subcategory arrangement. Most of the enriched pathways were involved in signal transduction processes (n= 7) and immune system
functions (n= 4). KEGG: The Kyoto Encyclopedia of Genes and Genomes
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Fig. 3 Differential transcript expression (DTE) analysis of CC samples from lithium-treated and untreated rats. The volcano plots depict the
fold changes and p-values for all analyzed transcripts based on expression quantification with a RSEM and b Salmon. Significant differentially
expressed transcripts (FDR < 0.05) are colored in red. c Venn diagram of significant DE transcripts as determined with RSEM and Salmon
quantification, respectively. The intersection represents the number of transcripts (n= 487) that were identified as DE with both tools. d The
487 DE transcripts commonly identified with RSEM and Salmon quantification had highly correlated fold changes (r= 0.987) in terms of both
the magnitude and direction of effect. RSEM: RNA-seq by expectation maximization

Fig. 4 Expression of lithium-associated eQTL genes in human brain samples. a Venn diagram showing the number of BD-associated eQTL
genes identified using each of the three gene expression databases Braineac, GTEx, and CMC. Intersections show the number of eQTL genes
shared between databases. No single eQTL gene was identified by all three databases. 11 of the 12 genes that were both lithium-associated
DE genes (Lit-DEG) and BD-associated eQTL genes were identified only by Braineac, while one gene was identified by both Braineac and CMC.
b Bar plots depicting the expression levels of RPS23 and GRIN2A in human CC samples (left) and rat CC samples (right). The error bars show the
standard errors for the mean relative expressions. eQTL: expression quantitative trait locus, Braineac: the brain eQTL Almanac, GTEx: genotype-
tissue expression, CMC: The CommonMind Consortium, Lit: lithium, DEG: differentially expressed gene, CTRL: healthy human control subjects,
BD: bipolar disorder, CC: Corpus callosum
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(Fig. 2d). Moreover, most of the significantly enriched pathways
were activated (up-regulated) by lithium (Fig. S7).

DTE analysis
Although gene-level DE analysis can be more robust than its
transcript-level counterpart, it can also mask transcript-level
dynamics [36]. Moreover, transcript-level analysis provides
higher resolution than gene count-based approaches [16].
For these reasons, we performed a DTE analysis to discover
additional lithium-associated genes that were not identified in
the DGE analysis. DTE analysis based on expression levels
estimated with RSEM and Salmon resulted in 792 and 684
differentially expressed genes, respectively (Fig. 3a, b,
Tables S7–S8). We found a high degree of overlap (487 DTE
genes) between the two tools (Fig. 3c, Table S9), and the
overlapping genes were in almost complete concordance with
respect to both the magnitude and direction of the effect sizes
(Fig. 3d). Of these 487 significant DTE genes, 430 (88.3%) were
also identified in the DGE analysis with similar p-values and
fold changes (Fig. S8). This similarity is most probably due to
the fact that the majority of the 430 shared genes have only
one transcript, yielding highly similar results with both gene-
level and transcript-level methods. The DTE analysis also
identified 57 DTE genes, 33 up-regulated and 24 down-
regulated, that were not detected in the DGE analysis (Fig. S8A,
Table S10). These DTE-only genes were enriched for GO terms
related to neuronal processes (Fig. S9, Table S11).

Comparison between identified genes and previous findings
To relate our results to previous lithium findings, we compared
the full set of DGE and DTE-only genes (n= 1108) with a set of
genes associated with lithium in 18 previous transcriptomic
reports [37–54] identified through a systematic literature search
(Supplementary Materials and Methods). We found overlap with
112 genes (10.1%), many of them having similar direction and
magnitude of effect (Table S3). These genes were enriched for
biological processes related to cytoplasmic protein translation
(p= 1.29e-5, fc= 9.00).

DE analysis of BD-associated lithium genes in human brain
samples
To elucidate the relationship between lithium’s molecular and
therapeutic effects in BD, the disease-associated lead SNPs from
the largest and most recent BD GWAS [10] were screened for
expression quantitative trait (eQTL) effects in brain tissue gene
expression data from three publicly available gene expression
databases: Braineac, gTEX, and CMC (Supplementary Materials and
Methods). Separate eQTL analyses resulted in the identification of
272, 18, and 48 eQTL genes in the three databases, respectively
(Tables S12–S14). No eQTL gene was identified by all three
databases, but 18 genes were shared between Braineac and CMC,
six genes were shared between Braineac and gTEX, and seven
genes were shared between gTEX and CMC (Fig. 4a). Of the 307
unique eQTL genes identified in total, 12 overlapped with the
lithium-associated genes (Fig. 4a, Table S16). Expression levels of
these 12 genes, which were associated with both lithium exposure
in the rat CC and with BD, were assessed in human post-mortem
CC samples from 42 BD patients and 42 healthy controls. The
RPS23 gene was significantly downr-egulated in BD cases (p=
0.0036), with 20% reduced expression relative to controls (Fig. 4b,
Table S16). The direction of gene expression regulation in BD was
the same as in lithium exposure. In addition, a suggestive
association with BD was found for GRIN2A (p= 0.056), which
had a 35% reduction in expression levels compared to healthy
controls (Fig. 4b, Table S16). Importantly, this effect was in the
opposite direction of what we found in the rat CC, where
expression of GRIN2A was significantly up-regulated by lithium
exposure (p= 2.2e-5, fc= 1.6; Fig. 4b).

DISCUSSION
In the present study, we employed deep RNA-sequencing at both
gene and transcript levels to perform a high-sensitivity character-
ization of the gene expression changes induced by lithium
exposure in the rat CC, which is a brain structure consisting almost
exclusively of myelinated axons and is responsible for commu-
nication between the two hemispheres. The CC in general and
myelinating oligodendrocytes in particular have been implicated
in the etiology of BD and in lithium’s mechanisms of action
[31–33, 55–59]. The main objective of the study was to explore the
transcriptional effects that may mediate lithium’s therapeutic
efficacy by relating lithium findings to BD-associated genes and
measuring their expression levels in post-mortem CC samples
from BD patients and healthy controls. A partial aim was to
investigate whether the CC and oligodendrocytes play a central
role in the drug’s mechanisms of action. The DGE analysis resulted
in 1051 significant DE genes, 669 up-regulated and 382 down-
regulated. Most of these genes were related to signal transduction
and immunological functions. In addition, 57 genes were
identified exclusively in the DTE analysis. These genes were
enriched for neuronal processes. Of the total set of 1108 lithium-
associated genes, 12 were also associated with BD based on eQTL
analyses of BD-associated lead SNPs from the most recent GWAS.
Of these 12 BD and lithium-related genes, RPS23 was significantly
down-regulated in brain samples from BD patients, while GRIN2A
had a near to significant down-regulation in BD.
The full set of lithium-associated genes identified in the present

study is relatively large compared to other transcriptional studies,
most of which measured gene expression using microarray
technology. The extensive number of hits can to a large extent
be attributed to the fact that expression levels were assessed with
high-coverage RNA-sequencing which widens the dynamic range
and thereby increases both sensitivity and specificity. The
sensitivity was further improved by performing a transcript-level
analysis which allowed us to identify 57 additional DE genes,
demonstrating one of the benefits of analyzing individual
transcripts as a complementary strategy to the gene-level
approach. Approximately 10% of the genes identified here have
been linked to lithium exposure in previous studies (Table S3).
Although this is a relatively poor replication rate, it is not
unexpected given the general lack of replicated genetic findings
in lithium studies [7, 60]. One reason for the observed discrepancy
between studies may be that different tissues and organisms are
deployed, and that different methodological and statistical
approaches are followed. Nevertheless, it is interesting to note
that one of the genes, RRAGC, was implicated in 3 other studies,
two of which analyzed human lymphoblastoid cell lines and one
that analyzed mouse brain. Moreover, the effect size of RRAGC was
comparable in all studies, including our own (Table S3). The
protein encoded by RRAGC (Ras-related GTP binding C) promotes
intracellular localization of the mammalian target of rapamycin
(mTOR) complex, which plays a central role in cellular growth and
metabolism [61].
The picture emerging from pharmacological and genetic

studies is that signal transduction pathways play a central role
in the mechanisms of action of lithium [9]. In addition to the long-
standing and widely discussed inositol depletion hypothesis [62],
lithium has been shown to modulate glycogen synthase kinase 3
(GSK-3), protein kinase C (PKC), mTOR, and Wnt signaling among
others [4]. Our finding that signal transduction pathways were the
most affected by lithium exposure is in line with the convergent
evidence. These findings included already established associations
like mTOR and Wnt signaling, but also interesting candidates such
as the ErbB, MAPK, and VEGF pathways [63]. The potential
immunoregulatory effects of lithium were proposed two decades
ago [64], and recent evidence has shed new light on this
relationship [37]. This aspect of lithium pharmacogenetics seems
especially relevant given the strong implication of immune system
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dysfunction in BD [65, 66]. We found that lithium regulated several
immune-related pathways, including B-cell receptor, T-cell recep-
tor, and chemokine signaling pathways, providing further support
for lithium’s effect on components of the immune system.
A partial aim of the current study was to investigate whether

lithium specifically targets the CC and oligodendrocytes, as these
have been implicated in both BD and lithium action. Comparing
our set of lithium-associated genes with curated lists of myelin-
related and oligodendrocyte-specific genes, we found no sig-
nificant enrichment. The way we interpret these results is (a) that
myelination is probably not a central target of lithium’s mechan-
isms of action in the brain, and (b) that the molecular effects of
lithium in the CC and oligodendrocytes are not different from its
effects in other brain regions and cell types. Indeed, as most
molecular studies have found that lithium has widespread effects
on gene expression regardless of the tissue or cell type
investigated, it seems likely that the molecular effects of lithium
are systemic rather than targeted to specific cell types or
brain areas.
Although the molecular effects of lithium appear to be highly

variegated and complex, it is expected that only a subset of these
are directly involved in the drug’s therapeutic properties. Linking
lithium-affected genes in the rat brain to genetic variants
associated with BD may help to elucidate the intricate relationship
between BD and lithium’s therapeutic efficacy. We found that the
expression levels of 12 genes were modulated by both lithium
exposure and functional variants associated with BD (Fig. 4a,
Table S15). Only RPS23 was significantly differentially expressed in
brain samples from BD subjects, but the effect was in the same
direction as the effect of lithium, which is inconsistent with what
one would expect if this gene was a mediating factor in lithium’s
therapeutic effects. RPS23, ribosomal protein S23, encodes a
protein component of the small subunit of the ribosomal complex,
and has been implicated in several developmental disorders [67].
DE analysis in human brain samples also revealed a suggestive
finding in the GRIN2A gene, which had reduced expression in BD
patients (Fig. 4b). GRIN2A was strongly up-regulated by lithium
exposure in rats and may thus provide an interesting link between
the molecular and therapeutic effects of lithium. The protein
encoded by GRIN2A, GluN2A, forms a modulatory subunit of a
subset of N-Methyl-D-aspartate (NMDA) receptors, which are
calcium channels gated by the major excitatory neurotransmitter
glutamate.
The present study has several strengths, such as the imple-

mentation of a robust methodological and analytical approach
that combines animal experiments, RNA-sequencing, eQTL
analysis, and gene expression assessments in human post-
mortem brain samples. On the other hand, it also has some
important limitations. First, rats were exposed to lithium for four
days, which is sufficient to reach equivalent concentrations in
blood and brain [68], but the results cannot be extrapolated to a
long-term clinical context where consequences of primary
molecular effects cannot be distinguished from subsequent
feedback responses. Our aim was to explore the immediate
transcriptional effects of lithium, but since these initial changes
may eventually lead to secondary homeostatic adjustments if
given longer time, future experiments should include rats exposed
to long-term treatment with lithium. Second, information on
pharmacological treatment and clinical response for the brain
donors was not available, and these factors could therefore not be
taken into account in the DE analysis. Furthermore, an underlying
assumption of the study design is that the susceptibility genes for
BD are also those that are most likely involved in lithium’s mood
stabilizing properties. Although the validity of this assumption
remains unproven, we believe it is a plausible and justified
assumption, as it seems unlikely that none of the molecular effects
of lithium are related to the variants associated with BD. Further,
the increasing sample sizes of BD GWASs, culminating in the most

recent study by the PGC [10], mean that they are sufficiently
powered to robustly identify variants that are involved in the
etiology of the disease. It should be noted, however, that even if
BD-associated genes were shown to be involved, the implemen-
ted approach still lacks the ability to separate lithium’s molecular
effects from its therapeutic effects. This can only be achieved by
comparing well-characterized lithium responders and non-
responders. Thus, although the present study identifies two genes
with potential therapeutic relevance, these findings should be
corroborated by findings from well-powered lithium
response GWASs.
With these considerations in mind, the suggestive association

with GRIN2A is particularly interesting. Signaling through NMDA
receptors is critical for normal development, learning, memory,
and other cognitive functions [69]. More than 60 different
mutations of GRIN2A have been found in patients presenting
with epilepsy-aphasia spectrum disorders, intellectual disability,
and Parkinson’s disease [69]. Disturbance of the glutamatergic
system has also been consistently implicated in affective disorders
like major depression and BD, and has recently received increasing
attention as a potential target of new therapeutic agents for mood
disorders [70, 71]. Given the documented effects of lithium on
intracellular calcium modulation in general, the association with
GRIN2A may point to a potential role for this gene in lithium’s
positive effects in BD. Our results indicate that the recent upsurge
in research on this central component of the glutamatergic system
as a potential therapeutic target is warranted and should be
intensified.
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