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Abstraet.

The first two equations of the BBGKY-hierarchy are dis

cussed and solved in order to derlve a kinetic equation for an

electron gas (non-neutral plasma) where strong electric and

magnetic fields as well as inhomogenities are taken into account

on scales relevant for collisions between particles. The gyro

tropic assurnption is not made. The magnetic field and the in

homogenities are shown to have special effects on the collision

terms. A strong magnetic field approximation is then made in

order to simplify the collision term, and a new, proper colli

sion term has been found when a strong magnetic field is present.
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I. Introductlon.

It is possible to generate a pure electron gas on a neutral

background of He , say, in a cylindrlcal tube with an axial mag

netic field and reflecting ends, Malmberg & de Grassie (1975)

and in particular measure the diffusion of the electrons across

the magnetic field towards the walls, de Grassie, Malmberg &

Douglas (1976). Taking into account classical collisions between

electrons and neutrals a theoretical interpretatlon of the diffu

sion that fits well with some measurements has been obtained,

Douglas & o'Ne i 1 (1976), though other processes may be important,

de Grassie et al. and de Grassie and Malmberg (1977).

This paper is a study of how the electron - electron col

lisions may be taken into account. In the parameter range used

till nov; such collisions can be shown to be less important than

electron - neutral collisions. However, lowerlng the neutral

gas pressure (density) by several orders of magnitude may dras

tically alter this picture and the effects of electron - electron

collisions are of interest. The question then is if these colli-

can be described by ordinary collision terms, for instance

by Boltzmann or Landau collision terms. Table I shows how some

typical plasma parameters vary with electron temperature from

leV and downwards for two values of the magnetic field holding

the electron density flxed. We note that this fixed electron
6 3

density 2-10 /cm , the temperature leV and a magnetic field

strength of order 100 G are typical in the works of Malmberg

& de Grassie, de Grassie et al. and Douglas & o'Nell. The lowerlng
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o* the electron temperature so that eventually the electron gas may

liquefy and crystallize is ofinterest. Malmberg and 0 »Nei 1 {1977).

Down to temperatures as low as the electron gas be

havøs classically , i.e. < n < . Since screenlng

effects for a pure electron gas are much the same as for a neu-

Uial plasma, Davidson (1971 ) y typical collisions occur over the

range between and , and the table shows that quantum

mechanical efiects are negllglble in this process even down to
-4

i 0 ef . A striking feature from the table is that the Larmor rad

ius rg always is much less than the Debye length. Consequently

ordinary Boltzmann or Landau collision terms are inadeauate to

describe the collisions since they do not include the effect of

the gyration of electrons in collisions. Indeed, the table shows

that for a very cool electron gas all interactions are influenced

by gyrations. This motivates a study of the effects of a magne

tic field on the collision integral for a gas of charged par

ticles. We are interested in deriving a collision integral that

holds for every strength of the magnetic field or every value of

re relative to and 7p .If possible we should like to sim

plify the collision integral so to be - tempting for further

studies. This might be obtained starting with exlsting collision

integrals, for instance Hostoker (1960) Haggerty & de Sobrino

(1964), Schram (1969). Montgomery, Turner & Joyce (1974) and

Montgomery, Joyce & Turner (1974). However for different rea

sons we make our own derivation from the beginning: We do not

want to make the usual gyrotroplc assumption and we want to

conslder from the beginning the effects of electric flelds as

well as inhomogenities on the collision scales. For the non

neutral plasma these effects may be important.
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We start to derive from the BBGKY-equations an equatlon

fields as well as a dass of strong inhomogenltles. The equa

tion xs denved so to be valid In both the "initial" and "kine

tlc" stages of Bogollubov (1962). Brom this equation we derlve

in section 111 a correspondlng equatlon maklng the (usual)

assumptlon about weak interactions. The colllslon integral con

slsts of two Parts: One "velocity spaoe colllslon integral" and

one gradient driven colllslon integral”. The first is a gene

ralization of the colllslon term of Montgomery et al. and reduces

oo Landau 1 s colllslon integral in appropriate limits. The lat

ter represents an effect that may correspond to terms derlved for

other models by Wu and others (see ¥u 1966) by a method different

from curs. Both parts simplify somewhat when in "first order"

we may neglect all inhomogenltles in the distrlbutlon function

over zhe colllslon range. Assuming this we study the velocity

space colllslon integral further In section IV. Emphasis is

rhere lald on the strong magnetlc field effects. Finally we pro

pose a (new) velocity space colllslon Integral that is simpler

than the derived form in section 111. lt has all the properties

of a "proper" colllslon integral.

The gradient driven colllslon integral is studled a bit

further in Appendix C for the zero magnetlc field case.

whioh Is a "generallzed" Boltzmann equatlon. This equatlon

takes into account the effects of strong electric and magnetlc





li. Derivatlon of a kinetic equation.

The start ing equations for the one component gas are taken

as the first two equations of the BBGKY-hierarchy for the one

, i r j - 1,2,... . When terms arising from "thlrd"

particles are ignored except contributions that can be absorbed

in the electric field terms, we have

(D

Because of this restriction these equations may lead to genera

lizations of the usual Boltzmann- and Landau equations, not to a

generalization of the Balescu-Lenard equation. The subscripts

on E and B indicate the coordinates they are evaluated at.

e designates the charge on the particles that takes on a negative

va.lue xor the electrons. 9-jq (I Bq “Bpi ) is (Coulomb) inter

net ion potential between (like) particles 1 and 2 .

particle distribution function f(r. = f(i i fc) , i =

and the two particle conrelation functlon g(r.,c 4 ,r ~c 3 t)

at + + å (E l+o 1 xB 1 )-||~ = -Jåc2år2 gll(|r rr2 l)-å|_(l,2,t)

at + + + |(S1 +£ 1 XB 1 )-||- + -(E2+=2X52 )-ff^

1 _ , , x/4 -V
m dr, I—l 1

= drrr2 |)/å_ _ yf(i, t )f(2,t) (2)
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To circumvent the great difficulties in attacking the

equations in general we first observe the following:

(i) For space and time coordinates that are relevant for a col-

lision the right hand side of Eq. (l) is small (compared to

teims with E 1 and B 1 and inhomogenities that may be large).

(ii)Only a g from Eq.(2) describing the evolution of gin

a collision is necessary on the right hand side of Eq.(l).

Therefore we may proceed as follows to derive a kinetic

equation that takes collisions into account: First we solve

(3)

ana substitute this result for f into the right hand side of

£q.(2). We then solve Eq.(2) for g and substitute that re

su-° into the right hand side of Eq.(i), which then constltutes

>-ne desired (kinetic) equation. Following this procedure it is

clear that we do not make expllcitly the Bogollubov functional

as sumptlon but rather derive that relationship for this spe

cial case. However, following this prescription we meet serlous

Giiiicultles ac the lirst step: to solve Eq. (3) which is the

J lasov equation. E and B are given from the Maxwell equations

 =_: G Lnerefore are functlonals of f by space charges and currents.

10 circumvent this difficulty we here assume space charges and

currents are nearly uniform and stationary over scales for a col-

lision, i.e. over distances less then and times less then l/o)p

wnere Wp is the plasma frequency. Assuming this we may solve

“'A* 13) witn E and B uniform and stationary. Formally we may

~-f c • R=— -f —f e _u o xR) • df - n
åt -1 ar 1 +m —1 '-1 x 'ac ~ 0i —i
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put the solution of Eq. (3) in the form

M

where S_t (i) Is a "streamlng" operator slmllar to those intro

duced by Bogoliubov: It has the property to transform partlole

l's position and velocity coordinates backward a time -t ac

cording to the equations of motion

dr,
-L. c 1dt

(5)
dcm e

" m x ?)

(Since we here operate on scales relevant for a collisi on }

we leave out the subscripts on E and B). Substituting then

Eq,(4) into Eq,(2) and solving for g , assuming that g = 0

at time t = 0 3 then gives, cf. Appendix A,

(6)

Here S_ t (1,2) is another streamlng operator that transforms

particle 1 and 2*s position and velocity coordinates backward

a time ~t accordlng to the equations of motion in a collision:

dr.• —1
dt c.—1

(7)
p -) dm. .

-5 s—fE + c vB) - - ii | rdt m-i x

f (r t . = ~t) = S_t (l )f (r 1 J c l ,t =0)

g(1,2,t) = S_t (l,2)f(l,t=o)f(2,t=o) - S_ t (l)S_t (2)f(l,t=o)f(2,t=o)

| ) , 1 4J , i, J = 1,2
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Thus the two particle correlatlon bullds up from t = 0 accor

ding to the departure of particle motion in a collision from

particle motion due to "external” fields only. Substituting

now Eq.(6) back into Eq.(i) gives the following equatlon

(8

Here and E, may be non-uniform and non-stationary on

scales longer than the collision scales. The right hand side,,

whose form was deduced on the assumption that f obeys Eq.(3),

takes care of the collision effects on the evolution of f . In

Eq.(B) the time runs from t = 0 , and for 0 g t < t , where0

T c a time for a collision, the equation describes

the building up of what may be a (collisional) kinetic equation,

i.e. for t» t the collisional effects on the right hand

side of Eq.(B) may approach an almost time constant level and

we are in the kinetic stage. This would be the case, for

instance, when neglecting the effects of external fields and

inhomogenities on the collision scales. Thus Eq.(B) is more

general than a traditional kinetic equation. The effect of a

g(t=o) 0 could easily be added, too.

111. Weak internetion aporoximation.

We now make the usual assumption that weak internetions

fe + -l'tr7 + i^l+c l xB)-|J- = -Jdr2dc 2 | r, -r2 | )(i,2)-* * 1 1 > 

S_ t (l)S_t (2))f(l,t=o)f (2,t=o)
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bstween charged particles are the dominant ones. We find an

approximate solution of Eq.(7) in the following way: The po

siti on coordinates in the interaction force term are taken as

given by the operator S_ t (i) , i.e., instead of Eq.(7) we solve:

dr.—1
dt %

(7'

Therefore we must solve Eq.(s) first: Locally, let the z-axis

(9)

(10)

i , 1 dcp. •

dt~ = m —+—l'’*'—) " in 5F71 - rj(0)|)

mereiore we must solve hq.(sj first: Locally, let the z-axis

De directea along the magnetic fleld and x- and y-axes per

pendicular to it. We then get

/ Ev\ / E \ E
{ C lx ~ bJcos nt + ( c iy + -#/ ln 0t +-#

st (i)% =| - (° lx - -#)sln fit + (c iy + fit - J

c. + - tEiz m zi_

Here Q = eB/m and we have ci (t=o) - c_ . Integrating Eq. (9)
gives

"1/E\ 1/ E \ E
q\c lx " "B"y sin Qr " Qlv C iy + ~§j( COQ Qt-1) + t

St (l)n =£l + | c ix--#)(=os Qt-1) + l(oiy + -Øsln fit -

112 e 1
1 C. t 2| iz m zV.

We here have r. (t=o) = r. .—l x ' —1
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(n)

(12)

(V)

(15)

1 , J—2)

From Eq. (10) we then derive

We are now ready to solve Eq, (j' ). For snorthand we

and then have from the last part of Eq. (7* ) (with i

Integrating Eq. (13) we solve the first part of Eq. (f 5

ri

10. , x sin ot - i c, Jy (cos nt-1)

S t (i)S t (J) =r x -rj + [ 1 o, jx (cc*s Qt-l) + i c. Jy sln Q t

C ijz t
L.

where c. . - c. - c. is the relative veloclty.-ij “i -J J
hl f* nhm r>psn\r tn qa! \tp> F.n fT ' "i TT'nir> coorsf-honH -uro oof-

SCD 1 q
co 12 (t) = S t (l)S fc (2) (|r 1 (0) - r 2 ( 0 ) | )

S t (1,2)0, = S t (l )c 1 + Ac, (t)

where

Q(t-t ) sin Q(t—t ) o\

t / \r \

(t) =J dT * ~ sin Q(t-T) - cos Q (t-T) 0
° \ /

\ 0 0 - 1 /

s t (l,2)r 1 - S t (l)r 1 + Ar 1 (t)





11

where

coS Q (t-t ! )

sin q(t-t')

0

Letting 1  2 in Eqs. (13) and (15) we get the solution for

particle "2 n . Substituting these results back into Ea. (6)Substituting these results back into Eq.(6)

we have

Due to the weak interaction may be considered small

for every t . on the other hand may grow with t .

Assuming for a moment that t is finite, we formally make a

series expansion in the small retaining only first order

terms. The result is

(17)

Use has been made of the property

Ar l (t) = - Arv, (t)

Ac l (t) = - Ac 2 (t)

t T

=J dT j dT 1 o) i2 (t’)*
o o

5(1,2,t) = f (s_ t (1 )r 1 + Ar., (-t), S_ fc (l )c, + Ao, (-t), t = x

x f (s_t (2)r 2 + Arv, (-t), S_ fc (2)c 2 + Ac2 (-t) ; t = -

- f(s_ fc (l)r l , S_ t (l)c t) t = (/) /s_t (2)£2 ,S_t (2)c2 ,t=o')

g(1,2,t) - |A c 1 (-t)-^-—pr^-T - +

+ A£i ( ~t) -(sns:~Ti )£i ) - sTr^2l^y)}s . t ( i )s.t (2)f(i3t=o)f(2 J t=°)



,
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Eq.(l7) may be transformed further, cf. Appendix B, so that

(explisit ly) time growing terms cancel out. The result is then

substituted into Eq. (1) giving the new equatlon

(18)

where

i p f ,
— i TtS (1dx i -t vee m Bc_.j o

1
- sin Qt ~(cos Qt-1) (19)

o o

C ee = ile / J S_ t (1)S. t {2)(l ))o y

Here x - - . and S _ _(2) operate only on the

uerms inside the parenoheses immødiately following them.

Eq.(18) is a weak interaction approximation to Eq.(B). It shows

more explisitly how the collisional effects build up from t = 0

|r- +c • +-(S+ c x B 1 )• =C V +C P°° 1 m —1 —1 —1 ee ee

)s -t (2) us^|x|))
C V =1 |

—(cos Qx-1) - sin Qt
(ferfc) f(l,t)f(2st)

1 1 \
q sin Qt Qt-1) o\ (20)

i(oosOT-l) - sin qt 0 l - (i,t )f (2, t)

I
00 T /
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This buildup is given by the m-integrals as t -> oo in the

upper inuegration limits. , a velocity space collision

describes the diffuslon of particles in velocity space

due to collisions. It corresponds to traditional collision terms

Xii addltion co cnis* j & gradient driven collision

shows that Inhomogenlties may have a collisional effeot too.

in f . (Such Inhomogenlties must be limited to be consistent

ivith tne assumption of (nearly) uniform and stationary fields

on the collision scales). When « 1 we may slmplify
V p

d ee a_rib b ee somewhat. Making a series expanslon of f (2)

where the terms after the first are relatlvely small on collision

scales.we can do the approxlmations

and

Vve observe that C^ e is roughly of order t c as compared
V . 1

t 0 C ee ' This may be of oPder one for strong inhomogenities

f(r 2 ,c 2 ,t) = f(r r x,o 2 ,t) = f(r 1 ,c 2 ,t)-x-||-(r r c 2 ,t) + f +

( åc 1 - ao 2 ) fo>t)f(2,t) « ( ) f(r r o 1 ,t)f(r 1 ,o 2 ,t)

(  fc ) f(l ’ t)f(2 ' t} - f(^r^t)2 fe: )



B
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Then in Eqs.(l9) and (20) we can decouple the terms fcllowing

the matrixes from the X“ lnte g p ation. It should be noted that

even this simplification applies to situations which may be far

out side the range of the usual classical assumption of v/eak in

homogenities, i.e. L» W m , where denotes the "effectiwe"

mean free path of partlcles.

Assuming T c c m /L « 1 we shall consider two cases: When B-> 0

xe expect that C^" e gives the collision term of Landau . In

Appendix C we giscuss botn and in this limit case

In the next section we consider a simplification of C V whenee
the magnetic field effects are important.

IV. Magnetic field effects on the collision term.

In this section we study when t c/L « 1 and thee e cm
decoupling of terms applies as noted at the end of section 111.

First let us substitute the Maxwellian

m f n 2
2kT

into Eq.(l9) and see if C^ e then vanishes. We get

m 2 sc.i’J d - d -2 S_WIW 1 )S_ t ( 2 )cp 12 (|x| )( kh f lA 1 ) f tA 2 )

/ m \5/2

f M ~ n v'27rkT ) exp

c v =ee

= -/ d - d -2 5r £ /lr[ S -T( 1 > S -T M (Df M C2)o

1 ri ' lp/ \ m

= 7 si: j d^ 2 dx-(s. t { i ) s -t( 2 )<p l2 n*i)-«Pi 2 nsi))(-^)%(i)f M (2)
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In the last transformation we used the above mentioned decouo

ling. We observe from this that C^ e -> 0 as t-» « . This

again reflects that only when t co in the upper T-integral li

mit does Eq.(l9) correspond to a traditional collislon term.
V

We nov; write C ee as follows when t -> » in the upper limit

of the T-integral :

c v ee
1 a

2 dc.m —1

(24)

J do 2 2 {c r c 2) - | I -)f(r l ,c l .t)f(r r o 2 ,t)

<p(*) = (^r) 3 /dx cp l2 (|x| ) e" I —= —|LJ 2tt k
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is the transform of the Coulomb-potential and s-> (B r in the k

integration. _c.pi is the yector component of c transverse B.j cl. *

(l 2p / has a rather complicauød form. as wi 11 bs

collisions whsre the magnetic field effects are important may bs

mors easily tractable. We proceed as follows. First we make

an expansion of the exponential function in Eq.(23) retaining

only the flrst few terms:

(25)

This expansion we multiply with the matrix of Eq.(2p). Howeyer,,

in this product we are not keeping all terms:

0 0

f-- i 1 f Q) \1 -N
ØX -H ’j—l 2z “ Q S^n —l2l " B I*“COS Qt )j - stl

i i-‘.2.1 2z t ~ £t f 1 / c p xB N

e |^ 1 + q Qt c l2± (1 - cos Qt ) j +

/ £ lPi xß \x2
i(p Qt c l2l (1 - cos nt) JJ

exp|ik- c l2zt +^(sinQ-rc l2i - (1-cosQt

cos Qt -sin Qt 0

sin Qt cos Qt 0
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(26)

Cc 1 2z

(27)

i -’-12z T “ ET ik £1 pi v
o l2i B - cos fiT ))

e 1 + .fsinQx

The calculation of $ using this approximate form is rather

long and we only state the procedure: First all the T-inte

g-i.als are evaluated. Then the k-integration is performed in

cylindrical coordinates, k = (k cos cp, k sin k ). We set_L 2

0

1

C c c 2
12x _ C I 2y c 1 2_L

C l2z c 12z c^ Q1 2z

_ ° l2 y c i2x
\ C l2z C l2z

/
/ cos Qt -sin Ot 0

I .
j sin qt cos Qt 0

\
\0 0 1

\

C l2x\ /

CI2Z \ /

L 3o I 1
C l2z

? I i
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(28)

(29)

Here P means the Principal value of the integral. Before dis

cussing the k -integration in Eq.(2?) we show that fromf ee

Eq. (21 ) with $ from Eqs. (27)-(29) consert/es particle number.

momentum and kinetic energy and also, when acting alone, drives

any distribution to a Maxwellian. To show this we first ob

serve that o from Eqs.(27)-(29) has the following properties:

 " ) Q (f. -j 3 ) ~ (f. q

C) V-0 , c_2) £ 0 where the sign of equallty holds

if and only if Vll 5.12 • h t

Properties A) and B) are easlly derlved. Indeed, the proper

ties hold for each of the two matrix-parts of $ separately.

Property c) follows from

Observe that the second matrix part of o does not contribute

here at all.

Now, particle conservation

where

00 dir
_ f ~ v 2 aÆ z

P 2 = P / tp(k; qr?T
'J K 2 c l2z “00

3) -j 'j p ~~ (c *} jc g y 0

co

y-g-y = (2tt) "V /dk p [ (v - v) 2 +(v - v ) 2 1 =s o
J x  * ‘L x c 12z z y C 1 Z J

f P V ni c ac, = 0J ee -1





19

follows when using property A above. Klnetic energy conservation

ymc 2 C L dc„ - 01 ee —1

xollows using property B . The Maxwellization property follows

by an H-theorem showing that

wnicn readily follows using property C

Thus C le from Ec *-( 21 ) with £ from Eqs.(27)-(29) formally is

a proper (velocity space) collision integral.

We now discuss the remaining k -integration in Eq.(27). Set

txng lor the moment ~ and ~ as lower and upper integration

limits, direct integration gives

(30)

and

(31)

where

fculor/s direct from ohe form of . Momentum conservation

ti° n r
/mc C dc, = 0J —1 ee —1

J( 1 + lo ) C ee 1- 0

1
/^ k ' p , - & i^bL

1

J -V?-2-
L

r 2 2 n

: 1+ r 2 r 2
i / c 2 c 2 (32)

r'» r-i_ i ln ! * 1 i 12z f L 2
K, - 2 in ; g —2  2 —2 2 —2 22 —

i 1 +2=L 2>2z c i / , r e C l2zV, . r e C l2z N
-2 2 ; V ~2 A 1 2—F )

L c j_ J c 2 A L o 2 /
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(33)

C 2
Here r g = is the Larmor radius = (—pP is a charac

tøristic relative particle speed transverse the magnetic field).

sgn e is the slgn of the electric charge. We observe that k^

is convergent when L æ and divergent when £_> 0 . Thus

a lower cut-off in the k -integration is not necessary for con

vergence. k 2 on the other hand is finlte in both limits L-> oo

and £-> 0 . However, the choice we do of the k interval
1 1 ’

L 3 j | should be consistent with the approxlmation Eq.(25)

which seems to be valid only when

(34)

This part of the band takes into account the

collisions which are (strongly gyrating) not-winded and only
4

part ly the winded collisions (characterized by k >—) . Our
e

k-j & n d may nevertheless show what happens in the transitlon

regime from not-winded to winded collisions. We consider this

point first: Setting L - in Sqs. (32) and (33), there

by taking account of the screening effect, dsspite that

this is not necessary for convergence, we study and

K p as functions of £ . When the magnetic field is

. w. - i
1 o >r-fX'*r~f)

+ sgn e (^Arctg{—  ,)_ sJ

kf C , I i A
< 1 , i.e. k < =

N 1 c ± r e
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r
2 ~c 2

i 12z Z
2 2I- P r*

, / n 1 e 12z
K \£ J ~ 2 l n + —2" p

L i c: X
(35)2 2 2 2

c, / r c. n \
1 M + -liiZA

i 2 .»;

w hen £ varies so that t q «£(< L = y p ) k-j U) Is small.

Then only not-winded collisions are taken in to account in the

k ± -integration. As £ •-> ry (while « 1) grows

strongly. This shows that when collisions becorae winded they

are much more effective than the not-winded ones. Due to the

conditio n Eq. (34) £ should not pass be lov; in Eq. (35).

However, it is likely that Eq. (35) shows some of the features

of the actual behaviour when £ < : We get from Eq. (35)

/ r i C 1 2z I \
that k* (i) -> In ( ——e 2 ) when £ decreases be lov; r

1 V * C 1 J e

If we have «r g « and set £ equal to this loga

ritmic term may correspond to the logaritm in the collision term

set up by Schram (1969) and by Montgomery, Joyce and Turner (1974).

We shall later represent the winded collisions with the collision

integral they derived for this strong magnetic field case, i.e.

a modified Landau collision term with cut-offs in k at ——
1 e

1
and - taking account of the collision range w heie the partlcles

a L

are almost straight-lined.

Returning to the not-winded collisions which our expansion

procedure are best sulted for the condition Eq.(34) must be con

sidered together with k,-values consistent with the weak inter-

strong so that k. j (i) in partlcular simplifies to
2
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action approxiraatlon. We take such collisions to be represented

by

4 s s 4 (36)
This choice is in accordance with the k-values used in tradl

tional kinetic theory of weakly Coulomb-interacting particles.

The conditlons Sqs.(34) and (36) now determine L and i . Dis

cussing this we separate between the followlng three regirnes of

the magnetic field strength (expressed through r )

k < k

k s r e s k (37)

r e > k

A
In the flrst case lt is consistent to use and as lower

and upper limlts, i.e. all (weak) interactlon is taken into ac

count. All this interactlon is of the not-winded type. In the
1 1

second case we take and as lower and upper integration
k r e ', 1

limlts. The left out interactlon k.-band from to
1 r e *L

then corresponds to the wlnded collisions discussed above whose

collision integral contribution we represent as stated there.

In the third case there is no overlap of conditlons Eqs. (34) and

(3o). In this case Eqs.(27) ~ (29) are inadequate. The gyration

motion is so small that the whole collision integral raay be

represented by an ordlnary Landau collision Integral. With this

in mind we get from Eqs.(32) and (33)
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In table li and 111 we estimate and || from Eqs.(3B)

and (39/ numerically as functions of the magnetic fleid strength
4

through r . For definiteness we have put = 10 y T , we havee uh
2 2

set r g = and keep c i2z^ C| in. three steps: As 10,

1 and 1/10 . Commenting mainly on the values for k< j we observ

the sensibility on the ratio 0 ! * w hen \°]2z'^

increases grows. Indeed we have

c 1 2z
—> coc

(40)x

and also
c 12z

—> 00c
I

This behaviour may be attributed to the fewer gyrations during

the interactions, which make the collisions more effective.

However. the collisions occur over shorter times when \c^ 7 \

increases tendlng to lower their effect. This we see from the

further that for each value of \ c^ v \

teristic variation with x : When x decreases from x = 1 ,

Kj drops qulte abruptly. Since Eqs.(3B)-(39) then describe

the whole weak interactlon this shows how destructive the effect

of an extremely strong magnetic field is on the collision fre-

quency, say. When x increases from x = 1 , has a plateau

over a wlde range (indeed, this plateau would continue infinitely

if we did not cut off the k -integratlon at the lower llmit.

r
ln F" ’ *L < P e <*De

*1 {

ln , r e - \ ab

Krp— > 0 3. S

factor -i ———f- of Eqs,(3o) and (31). Table II shows
1 c 12z'
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1
- * e* we let -r— -> 0 . ) This plateau me ans the fol

lowing: Slnce the cut-offs in this case are at and
r e

increasing x means that a more narrow k,-band is taken into

account at the remote collislon-slde of the band. However,

this narrowing of the k -band is exactly counterbalanced by

the less gyratlon motion of partlcles and gives the plateau in

the Kj-values. This plateau finally falls off slowly towards

zero as r -> d .e j j

\t is sensitive to the partlcular cholce of the cut-off .
A L

n'or such values of k-j and include all (weak) inter

actions. The effect of stronger interactions taking account

of the departure of particle trajectorles from them given by

Eq.(10) may better estimate the collisional contribution in this

regime. For Coulomb-interacting partlcles in traditional klnetic

theory, using the Boltzmann collision term, Chapman and Cowling

(1970), the effect of dose encounters (i.e. when the impact

parameter is less than the Landau length) falls off rapldly wlth

decreaslng Impact parameter. Strongly gyratlng partlcles along

field lines a distance apart less than and håving r ø l s

less than d may have an effect on the collision term much

less than this: Bound to the magnetic field lines as the par

tlcles are, all such colllsionsmay be almost one-dimensional.

Tnus with neatly chosen and from Eqs.(3B) and

(39) may adequately describe the whole collisional contribution

when r < de L

On the basis of the foregoing derivations and discussion

we propose the followlng (velocity space) collision integral:

We notice that the drop of when r o becomes less than
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where, in tensor form.

(41)

and #<2 in ii- e appropriate ranges are given from Eqs. (38)

and (39) (c,, 2 Z = c^p) * P denotes that the principal value
P denotes that the principal value

should bø taken in the c. 2 jj -integration: We easily derive from

Eqs. (38) and (39) that K] - °( c i2|p and K 2 = °^ c when

c.pj| is small. For the part involving in Eq. (41 ) this may

G ee m 2 sc l 'J d -2 £’ 50, 5c 2 ' f -1 5 fc ' f 1 -2‘^

o - 12 ~ -12-12
_?r eln ( ) 3 > r e >X D

L C l 2

0 4 U / r e\ ~ °l2 ' -12-12
= s Iln1 ln ( *7> 73 +

- Li C l 2

| t,2 2 T , —, / 2 % -j-, /„ \
i f 1 C 1 2|j~ 2l~ u l2|j j " 13(3 1 21! -12l + -1 21- ; \

I * 1 ! C l 2 ||~iv c^ 2l| /! C- jj

j i /* -2 B B c, q. B
*= < +«2 ir-r ( (c, p,x-) - - - (£. 2 ,x=))

| d ! 12(| IV II B c l2j! c^ 2i Bc 12(j c^ 2| 1 " X B /J

i X L < r e

o .4r 1 z 8 C l2|[J + -~^ c 12l“ C 12(! Bc l2[! + -121-K

 i- 1 i',2iiv a? 2| n

i *"= -^>- (p -^ )fe -a4>)}
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introduce a divergence in the c 1 0 ,| -integration of the collision

integral. Taklng the prlncipal value eliminates such a divergence

The effect is nearly the same as introducing a cut-off for small

I c 12 j| I for this part of the collision term. On the other hand

the interesting relaxation part of the collision term involving

x- j is sufficiently regular for small c, j2 j| that a similar cut
off is unnecessary.

We observe that the collision integral varles continuously

with r : When r > y„ we havse s JJ

term. When r dscreases belowe

sion term continuously transforms

representing the winded collision

the usual Landau collision

A-p. the ordinary Landau colli

into the modlfied Landau term.

and in addltlon a new colli-

sion term shows up when r gA n taking care of the not-windede JJ u

collisions (we observe that both k. and 0 as r -> y^i d e D

in appropriate ranges). As r -> y T the winded collision inte

gral dies away. When r decreases below y the collisionS Xj

integral stems from not-winded (weak) collisions and ultlmately

dies away as r -> 0 . We note when y « r « y the accore L e JJ

dance with the result of Schram and Montgomery, Joyce and Turner:

From the numerical values of table II and 111 lt then follows

that the modified Landau part dominates over the not-winded colli

sion part of the collision integral.

We end with pointing at a feature the collision term ex

pressions in each interval of r has in common: As |c lp n| -> ooe i L jj
we get that O in each of the three ranges tends to the same

asymptotic expression:
BB

4 yS ~
% ~ 2rre4 ln T~ T~ c — B -,- for large |c lpjl

Å L ' C l2|j ' ]^ii

Use has been made of Eq. (40) in the last two ranges of Eq. (41 ),
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Appendix A.

From Eqs.(2) and (4) we get

where g(t=o) -4 0 (suffiolently fast) as |r 1 - r \-4 » , other

wise quite arbitrary. We now show that the x-integrand can be

wrltten as a derivatlve wifch respecfc to x ; We have

(A 2)

Since

i— S r,qx -x—l S c.-x—l

we further get

g(1,2,t) = S f(1,2)g(1,2, t=o) +

t (Al)

+ / dT S -T (l ' 2) [i sff'(fe7 -o \ d' J

r n /ås v.
h /(',2)fo.t-,lf( 2 ,t- T )J . r(s_ T2| ,s. i£| ,t-T

+ 'å(S_ T c 1 ) f(S -x£l' S -T^r t " T ) + aT f ( s - T £r s - T c r t-T)jf (S_ T r 2

S - T -2* t “ T ) + ( 1 <—> 2 )

It (s-å) = - S -A = S - T (s -1 te + % * i>)
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(AJ)

Here use has been made of Eq.(3) at time t - t . The last ex

pression is the integrand of Eq. (A 1) and we then get

Transforming Eq.(l7) we first observe thafc

| 7 [s_ T (l,2)f(l,t-T)f(2.t-T)] = S_ r -

I f( r r c rt-T) - sT | rT y +

1 2 * dc.j f l -r-l T ) f +

 *-< (*%*•( kr fe)

g(1,2,t) = S_ t (1,2)g(1,2,t=0) + S_ t (l,2)f(l,t=o)f(2,t=o)

- S_ t (l)S_ t (2)f(l,t=o)f(2 J t=o)

ÅDDendix B.

t c l ) s -t-r s -t-r t " - s ~t ac 1 f fe|*c-p t=:o )

A , /dS.r,

s -t d£[ f ( s t ir 3 t£,- t > = s ‘ +

dS.,_c_ >, \

+ ' STW /(S t ri,S t c r t)
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From Eqs.(9) and (10) we have

cos Qt sin Qt

sin Qt cos Qt (Bl)

0

(B 2)

0

Thus we have

We also get

(B 4)

Then g(1,2,t) from Eq.(l7) may be wrltten as

(B 5)

Transforming further we observe from Eqs.(li) and (B 1) that

~ sin Qt ~(cos Qt-1 )

1 i
-(cos Qt-1 ) - sin Qt

) = °) = (s (t) ' 577 + å( t )'|^-) f (E 1 -£ I . t ) (B 3

a(sJTF~y - o) -

g(1,2,t) = Ao l - yf(r, ) c ] .t)f(r 21 c 2l t) +

+ ( A^(’t) + AC 1 (-t )-B(fc )).(!_ -
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t

Ac 1 (-t )*A(t) dT w lp (-t). (Bo)
o

Also, Eq.{ l6) may be transformed as follows
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T hen

(B 9)

We note that the time growing parts in Eqs.(B7) and (b 8) ex

actly cancelled out setting up Eq.(B9).

Substituting Eqs.(b6) and (B 9) back into Eq. (Bp) give with an

obvious transformation the form of g(l,2 s t) used in Eqs.(l9)

and (20).

Aooendix C.

Lett ing B-> 0 when also tc/L « 1 and t co in thep m

upper T-integration limit we have from Eqs.(l9) and (20):

Cci )

and

p
Cf ee

1 8
m 2

(C 2)

/1 -] \
/- sirx Qt "(cos Qt- 1 ) CM

t /

A — l (“t) + (-t)-g(t) =J dx w l2 (-t)-| -1(cos Qt- 1) ~ sin Qt 0
° \

\ o 0 T /

V 1 S f dtp . p r^9,o
517 'J d ~2 dT -- [x- = x - c^].

(bc_ 1 “ 2 ) f 1 ’-2 3

f f
J d - d£ 2 Sx-J dT T [ -' = * - = l2 t]-

f( r c t) 2 å / f •—1 1\
(r r c 2 ,t ) j
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V
Using in Cøø the Coulomb potential and taking Fourier-trans

forms of functions of x we get the usual logarithmic-divergent

integral in k which is made finite by cut-offs at and
1 / ' Kd

(lower and upper limits in k-integration). Following the
L . P

same procedure with C reveals a divergent integral in k

due to the lower k-integration limit. This divergens is stronger

than logarithmic and making a cut-off gives a result that varies

quite strongly with variations in the cut-off. Thereby it seems
P V

that C is more sensible than C from the assumption weee ø g

did at the outset to limit the discussion of collisions to two

particle collisions. Therefore "collective” collisions with the

screening mechanism should be included from the beginning. We

may artificially circumvent this if we substitute for the Coulomb

potential between two particles a potential that partly incor

porates the effect of other particles. We here substitute for

the Coulomb potential the following potential:

(C 3)

For- r« * cp(r) tends to e 2- —) , for > T «r «
u e 2 *L *0 L D

cp(r) behaves as and for r » we have cp(r) ~
r

e • To get a measure of hov; M good M such a substitution is

(C 4)

r _ r_

q> =|r(e' D - e * L )

we evaluate at first C^ e . We have from Eq. (CJ>)

<p(k) = (k? - —s—p5 —p~ —o-
-2t L D (k Z +kp (k 2 +k^)
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where - 1 and = 1 . After some algebra we get

(without doing any cut-offs)

Thus when » k L , which is the case for classical plasmas,

we only have a small lowering of the collision frequency as

comparecl to the one from Landau ! s equation., Making the same sub

stitution for the Coulomb potential in Eq.(C2) we get (without

cut-offs)

inhomogenitiesj for instance when L is much larger than the

(effective) mean free path, as in classical kinetic-transport

theorles,, is vanishing small to all (usual) relevant0 0

orders of approximations. However, for stronger inhomogenities
p

C x must also be counted for.ee

c ~- ?*•*(!

fe  fe) f(l,t)f(2>t) (C 5)

„p _ j (W 2 a r, a 2 ~ ,

C ee -JT 27r - 517 ' ln l°i “ <= 2 | )

f / r „ t) 2 h (f( -r-i jt )\

We observe that C r ~ ln ) . For very weak0 0 00 J J jJ Li
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mperature leV

"1/3n ' 8* 10 3

Table I : Variatlon with temperatur© of the plasma parameter,

classical distance of closest approach (Landau length) (* ),

Debye length electron gyroradius (r ), electron de Broglie

wavelength (7), klnetic energy and the Fermi level for electrons

for n = 2*lo /cm 3 and magnetlc field B = 10 2 Gauss and s*l0 2

Gauss. All lengths in cm. kT and Fermi level in erg.

i
10 'eV I 10 2 eV ! 10~ 3 eV i 10~ 4 eV

l ' i

- 4 j~ - j "
>9- io 4 | i,2-io 3 | 3,5-io i 1,2

1 * j
—4* - , i  

44-10'° i 1,44-10~ 5 | 1,44-10~ 4 i 1,44.10 -3I ii
I I

8-10 J I 8* j 8-10 ! B*lo
i ! ji i i

I•p" j ~ ~ ~

5,3' 10" 1 | 1,7-iQ' 1 j 5,3-10‘ 2 { 1,7- 1CT 2» l fj J f
I J __

 i 8- j 2- irrp/ iB

-~ 3 5-10“ 4 LpT,5-io
| - ~~~™‘ ' " |

2,8* 10~ 8 | 8,7-10“ 8 i 2,8- 1(T 7 8,7.1 o” 7l  
! i ____ __

s

1,6-10" 12 1,6-icT 17 1,6*10“ 14 1,6-10~ 1

9,2-10“ 9,2.10 _27 j 9,2- 10~ 9,2“ 10“ 2 -





-Z p- -

Table II : Some numerical values for for dlfferent mag

netic field strengths through x and for three dlfferent values
/ 2 å.

of c l2z/cl * xis Slven from rg = >.Lx and = 10^L *
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Table 111 : Some numerical values of |* 2 | for the same parameter
values as in table 11.
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