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ABSTRACT
BACKGROUND: Schizophrenia (SZ) and bipolar disorder (BD) share substantial neurodevelopmental components
affecting brain maturation and architecture. This necessitates a dynamic lifespan perspective in which brain aber-
rations are inferred from deviations from expected lifespan trajectories. We applied machine learning to diffusion
tensor imaging (DTI) indices of white matter structure and organization to estimate and compare brain age between
patients with SZ, patients with BD, and healthy control (HC) subjects across 10 cohorts.
METHODS: We trained 6 cross-validated models using different combinations of DTI data from 927 HC subjects
(18–94 years of age) and applied the models to the test sets including 648 patients with SZ (18–66 years of age),
185 patients with BD (18–64 years of age), and 990 HC subjects (17–68 years of age), estimating the brain age for
each participant. Group differences were assessed using linear models, accounting for age, sex, and scanner. A
meta-analytic framework was applied to assess the heterogeneity and generalizability of the results.
RESULTS: Tenfold cross-validation revealed high accuracy for all models. Compared with HC subjects, the model
including all feature sets significantly overestimated the age of patients with SZ (Cohen’s d = 20.29) and patients
with BD (Cohen’s d = 0.18), with similar effects for the other models. The meta-analysis converged on the same
findings. Fractional anisotropy–based models showed larger group differences than the models based on other
DTI-derived metrics.
CONCLUSIONS: Brain age prediction based on DTI provides informative and robust proxies for brain white matter
integrity. Our results further suggest that white matter aberrations in SZ and BD primarily consist of anatomically
distributed deviations from expected lifespan trajectories that generalize across cohorts and scanners.
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Schizophrenia (SZ) and bipolar spectrum disorders are severe
mental disorders with partly overlapping clinical characteristics
and pathophysiology. Both are highly heritable (1), with a
substantial neurodevelopmental etiology (2,3). Along with evi-
dence of accelerated age-related brain changes in adult pa-
tients with SZ (4–6), the neurodevelopmental origin supports a
dynamic lifespan perspective in which genetic and biological
factors interact with age-related environmental and physio-
logical processes.
ª 2020 Society of Biological Psychiatry. Pu
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Aberrant myelination and brain wiring during adolescence
has been included among the neurobiological features of se-
vere mental disorders, and white matter (WM) aberrations have
been documented prior to disease onset (7–11). Brain imaging
has shown that normative WM development follows a char-
acteristic nonlinear trajectory, with peak maturation around the
third or fourth decade (12–14). Compared with healthy control
(HC) subjects, adult patients with SZ or patients with bipolar
disorder (BD) exhibit anatomically distributed group-level
blished by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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differences in various diffusion-based indices of WM structure
(15,16).

Supporting a neurodevelopmental origin, it has been
demonstrated that patients with adolescent-onset SZ show
WM aberrations (17) and that their developmental trajectory is
altered and delayed (18) compared with age-matched, nor-
mally developing peers. Further, children and adolescents with
increased symptom burden, albeit presumably at subclinical
levels, were found to exhibit altered diffusion-based WM
properties compared with peers with low or no symptoms of
mental distress (19), highlighting a critical role of WM devel-
opment in mental health in youths. To which degree group
differences observed between adult patients and HC subjects
accelerate during the course of the adult lifespan is unclear.
The neurodegenerative account of SZ and severe mental
illness is debated (20) and lacks unequivocal support from
imaging studies (16,21), but some studies have suggested
stronger age-related deterioration of the brain in patients
compared with HC subjects (22,23).

Despite converging evidence of case-control differences
both preceding and following disease onset, recent brain im-
aging studies have documented substantial heterogeneity
within patient groups (24,25). In contrast to conventional
group-level analyses, brain age prediction using machine
learning on imaging features allows for brain-based pheno-
typing at the individual level and enables an efficient dimen-
sionality reduction of the neuroimaging data into one or more
biologically informative summary measures (26,27). The
discrepancy between an individual’s chronological age and
predicted brain age, referred to as the brain age gap (BAG), has
been found to be higher in patients with SZ (5,28,29) and in
several other brain disorders (29). However, these previous
studies have exclusively used brain gray matter features for
brain age prediction. Thus, given the well-documented role of
WM aberrations in patients with mental illness (15,30–32), brain
age prediction based on diffusion imaging is clearly warranted.

In order to fill this current gap in the literature, here we
compared individual BAGs between patients diagnosed with
SZ or BD and HC subjects using 4 conventional metrics
(fractional anisotropy [FA], mean diffusivity [MD], radial diffu-
sivity [RD], and axial diffusivity [AD]) obtained from diffusion
tensor imaging (DTI). We used an independent training set
comprising 927 HC subjects 18 to 94 years of age and applied
the resulting model to our test sample including patients with
SZ (n = 648), patients with BD (n = 185), and HC subjects (n =
990) from 10 independent cohorts (see Methods and Materials
for details). In order to specifically assess the robustness and
quantify the heterogeneity of effects across cohorts, we
adopted a meta-analytic statistical framework in addition to a
mega-analysis across cohorts.

We trained 6 different models based on various combina-
tions of the DTI metrics, which allowed us to compare pre-
diction accuracy and subsequent group differences for each
model. Based on converging evidence of widespread WM
aberrations in patients with severe mental disorders (15), we
hypothesized higher BAG in patients with SZ and patients with
BD compared with HC subjects, with stronger effects in SZ
compared with BD. To test the relevance of the varying spatial
resolution of the feature sets, which is important to inform the
discussion regarding the anatomical specificity of brain WM
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aberrations, we compared models including various atlas-
based tracts of interest with models including only global
features. Based on previous studies comparing the age pre-
diction accuracy and clinical sensitivity between metrics
(16,27,33), we hypothesized high age prediction accuracy and
sensitivity to group differences but remained agnostic con-
cerning the relative ranking of the various features.

METHODS AND MATERIALS

We combined diffusion magnetic resonance imaging (MRI)
data from 2750 individuals from 11 sites/studies across 10
different scanners. Figure 1A, Figures S1 and S2, and
Tables S1 and S2 summarize key demographics for each
cohort. Table S3 summarizes the MRI systems and diffusion
acquisition protocols.

The dataset was split into a training set and a test set.
Figure S2 shows the age distribution within each of the 2 co-
horts in the training set. Briefly, the training set consisted of
927 HC subjects covering the full adult lifespan (mean age
53.81 6 18.38 years; range, 18–94 years of age). The test set
comprised 990 HC subjects (mean age = 34.70 6 11.24 years;
range, 17–68 years of age), 185 patients with BD (mean age
33.12 6 10.53 years; range, 18–64 years of age), and 648
patients with SZ (mean age 34.49 6 11.40 years; range, 18–66
years of age).

MRI Acquisition and Processing

A summary of MRI acquisition protocol for each cohort is
presented in Table S3. Imaging analyses were performed using
FSL (FMRIB Software Library) (34–36). To correct for signal
loss, motion, and eddy currents, all cohorts were processed
using eddy (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy) (37,38).
Two cohorts (TOP1 and TOP2) had collected blip-up/blip-
down sequences and were additionally processed using
topup (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup) (34,39) prior to
eddy. Using an integrated framework along with correction for
susceptibility-induced distortions, eddy currents, and motion,
eddy detects and replaces slices affected by signal loss owing
to bulk motion during diffusion encoding (38).

Fitting of the diffusion tensor was done using dtifit in FSL,
yielding conventional DTI metrics, including FA, MD, RD, and
AD. FA, MD, RD, and AD maps were further processed using
tract-based spatial statistics (40). FA volumes were skull-
stripped and aligned to the FMRIB58_FA template supplied
by FSL using nonlinear registration (FNIRT) (41). Next, mean FA
was derived and thinned to create a mean FA skeleton, rep-
resenting the center of all tracts common across subjects. We
thresholded and binarized the mean FA skeleton at FA . 0.2.
The procedure was repeated for MD, AD, and RD. For each
individual, we calculated the mean skeleton value for each
metric, as well as the mean values within 23 tracts of interest
(Table S4) based on 2 probabilistic WM atlases [CBM-DTI-81
WM labels atlas and the Johns Hopkins University WM trac-
tography atlas (42–44)]. In total, we derived 96 DTI features per
individual including the mean skeleton values.

Quality Assessment

Subjects with poor image quality due to subject motion or
other visible image artifacts (e.g., due to metal) were removed
(n = 160; 59 HC subjects, 39 patients with SZ, 28 patients with
020; -:-–- www.sobp.org/BPCNNI
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Figure 1. (A) Raincloud plot depicting the age distribution for each diagnostic group in the test sets. Density plots are shown on top with data points and
boxplot underneath. (B) Predicted age (corrected for age and scanner) based on the all-features model plotted as function of chronological age. The fit lines
represent the best linear fit within each group. (C) Boxplots plots showing the distribution of fitted corrected brain age gap (BAG) in each group. BD, bipolar
disorder; HC, healthy control; SZ, schizophrenia.
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BD, and 34 individuals with missing information). De-
mographics of the excluded participants are presented in
Table S5. Additionally, we employed a multistep quality
assessment (QA) procedure (16) that included maximum voxel
intensity outlier count (MAXVOX) and temporal signal-to-noise-
ratio (45) prior to statistical analyses. Briefly, we ran the QA
iteratively, excluding participants with a QA score of 2.5 SD
below the mean. In order to compute the QA score, we
inverted the MAXVOX score, z-normalized both scores inde-
pendently (MAXVOX and temporal signal-to-noise-ratio), and
computed a summary score combing the two scores. In short,
manual inspection of the flagged datasets after QA suggested
adequate quality. Thus, we present results on the full dataset
with supplemental results from a stringent QA [see (16) for
additional information].

Brain Age Prediction

We trained 6 age prediction models. Our main model included
all 96 features across all DTI metrics. To assess sensitivity for
each metric separately, we trained 4 additional models based
on all tracts of interest for each metric (FA, RD, MD, or AD). To
test the value of including regionally specific information, we
trained an additional model with only the global mean skeleton
feature from all 4 metrics included.

The following pipeline for brain age prediction was identical
for all 6 models: we used the xgboost framework in R version
3.3.3 (2017-03-06) (R Foundation for Statistical Computing,
Vienna, Austria) (46) to build the prediction model. The number
of rounds (nround), maximum depth (max_depth), and sub-
sample were tuned and optimized using a fivefold cross-
validation of the training data, with early stopping if the pre-
diction errors did not improve for 20 rounds. Based on
Biological Psychiatry: Cognitive Neuroscien
previous experience, the learning rate (h) was set to h = 0.01 in
order to increase transparency in the parameter selection
stage. Besides the default setting, the following parameters
were used in the model: nround = 1400, max_depth = 14.

Prior to implementing the model, we regressed out the main
effect of scanner from the DTI features in the entire dataset
while accounting for age, age2, and sex using linear models in
R. To estimate the reliability of our age prediction model, we
used a 10-fold cross-validation procedure within the training
sample and repeated the cross-validation step 100 times to
provide a robust estimate of model prediction. Within the same
procedure, we tested the performance of our trained model by
predicting age in unseen subjects in the test sample. By
applying the model to the test sample 100 times, we obtain
both a mean estimate and an estimate of uncertainty. For each
iteration, we calculated the BAG, defined as the difference
between chronological and predicted age. For each individual
in the test set we computed the average BAG across the 100
folds and corrected these values for main effects of scanner
and a well-documented age-related bias using linear models,
per previous recommendations (47). Next, based on the age-
and scanner-corrected BAG, we computed a corrected brain
age for each individual, and then computed the mean absolute
error (MAE), root mean square error (RMSE), and correlation
between corrected predicted age and chronological age as
measures of model performance.

Statistical Analyses

Statistical analyses were performed using R. We tested for
main effects of diagnosis using linear models with corrected
BAG as dependent variable and group, sex, age, and scanner
site as independent variables, and performed pairwise group
ce and Neuroimaging - 2020; -:-–- www.sobp.org/BPCNNI 3
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comparisons as appropriate. Using the metafor package (48)
in R, we adopted a meta-analytic framework in order to
assess the heterogeneity and generalizability of the results. A
random-effects model was used to weigh the primary studies
prior to aggregating the effect size. Effect sizes were aggre-
gated using the estimated marginal means of the BAG from
each group contrast (HC/SZ, HC/BD, and BD/SZ), accounting
for age, age2, and sex. For effect size estimates, we used
Hedges’ g. Cochran’s heterogeneity statistic (Q) was used to
test the homogeneity of effect sizes. A c2 test with k21 de-
grees of freedom was used to examine the significance of
Cochran’s Q. The heterogeneity was quantified using the I2

statistic, which is sensitive to the degree of inconsistency in
results between cohorts.

RESULTS

Brain Age Predictions

Age prediction in the training set using 10-fold cross-
validation revealed high correlations between chronological
and predicted age for the main model including all features
(r = .924; 95% confidence interval, .912–.935; MAE = 6.49;
RMSE = 8.08) (Figure S3).

Figure 1B shows predicted age plotted as a function of
chronological age for the unseen test set when using the full
feature set, and Table 1 summarizes the prediction accuracy
for all 6 models. The age prediction models generalized to HC
subjects (r = .806; MAE = 6.92; RMSE = 8.46), patients with
BD (r = .808; MAE = 6.85; RMSE = 8.50), and patients with SZ
(r = .798; MAE = 7.11; RMSE = 8.79). While all models per-
formed relatively well, prediction accuracy was highest for the
full model, and the global mean skeleton model outperformed
the region of interest–based single-metric models. Figure S4
shows the correlation matrix between all models, indicating a
strong correlation between all models, with the exception of
FA and AD.

Group Differences in BAG

Table 1 and Figure S5 summarize the results from the group
comparisons from the 6 models, and Figure 1C shows the
distributions of fitted corrected BAG within each group for the
all-features model. Briefly, all models revealed significant
main effects of group, with higher corrected BAG in patients
with SZ and BD compared with HC subjects, with effect sizes
(Cohen’s d) ranging between 20.10 and 0.33. The model
based on FA yielded the strongest effect size for the main
group effect, although the models including MD and RD in
addition to FA revealed similar patterns. The model based on
AD revealed less consistent results and was the only model
not showing significant group differences between patients
with SZ and HC subjects.

Meta-analysis and Heterogeneity in Effects
Between Cohorts

Figure 2 shows a forest plot summarizing the results from the
meta-analysis for BAG computed using the full feature model.
Figures S6 to S10 show the results from the other models. In
short, in line with the mega-analysis, the results revealed
significantly higher BAG in patients with SZ and BD
4 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2020; -:-–- www.sobp.org/BPCNNI
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effect size. BD, bipolar disorder; CCNMD, Conte Center for the Neuroscience of Mental Disorders; CI, confidence interval; CNP, Consortium for Neuropsy-
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compared with HC subjects, with moderate effect sizes. The
analysis did not support a group difference in BAG between
BD and SZ. Whereas the effect sizes varied slightly between
cohorts for the full model, the Q and I2 statistics indicated low
and nonsignificant heterogeneity. Figure S11 shows each co-
hort’s contribution to the heterogeneity and influence on the
result from the meta-analysis.

Quality Control

Figure S12 summarizes the results from multistep QA. Briefly,
higher corrected BAG was observed in patients with SZ and
BD compared with HC subjects across all levels of QA, with
highly similar effect sizes.

DISCUSSION

The etiology of severe mental disorders has a substantial
neurodevelopmental component, which is among other
characteristics reflected in altered brain maturational tra-
jectories during the formative years of childhood and
adolescence, and as group-level differences in adult patient
populations. Along with evidence of genetic and clinical
overlap with several aging-related conditions, including
Biological Psychiatry: Cognitive Neuroscien
cardiovascular risk factors and increased mortality, the
neurodevelopmental account supports the need for a dy-
namic lifespan perspective in the search for disease
mechanisms. Here, in 10 different cohorts comprising HC
subjects and patients with SZ and BD, we used machine
learning to estimate brain age using DTI indices of WM
structure and organization. This novel approach yielded 5
main results. First, in a large independent training set, we
found high accuracy of brain age prediction across the adult
lifespan using DTI features, which largely generalized to the
independent test set, supporting the feasibility and sensi-
tivity of the approach. Second, applying the model to an
independent test set revealed significantly higher BAG in
patients with SZ and BD compared with HC subjects. Third,
follow-up meta-analysis and tests of heterogeneity sug-
gested high consistency across independent cohorts and
scanners. Fourth, brain age models based on FA showed
higher sensitivity than models based on the other metrics,
both alone and combined. Fifth, the reduced set of global
mean skeleton features compared with a number of regional
atlas-based features revealed highly converging results. We
next discuss the implications of these findings in more
detail.
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Brain age prediction provides an informative summary
measure that may serve as a proxy for brain integrity and
health across normative and clinical populations.
Neuroimaging-derived WM and gray matter phenotypes carry
distinct biological information of brain integrity, and tissue-
specific brain age models may provide higher sensitivity and
specificity to relevant biological processes compared with
conventional models based on gray matter features alone (27).
DTI has been broadly applied in clinical neuroscience owing to
its proposed sensitivity to microstructural properties of brain
tissue. However, whereas previous studies have documented
higher brain age in patients with severe mental disorders, these
were based on gray matter models only (5,28,29). In order to
test if previous findings suggesting clinical deviations from
normative gray matter trajectories generalize to WM, we per-
formed brain age prediction using different combinations of
DTI metrics. In line with previous brain age prediction studies
using diffusion MRI (27,49) we obtained high age prediction
accuracy across most models. In accordance with previous
evidence suggesting that regional DTI-based indices of brain
aging reflect relatively low-dimensional and global processes
(12,50), we found similar prediction accuracy for the reduced
models comprising global mean skeleton values and the
models including extended sets of regional features. Although
brain WM aging shows some regional heterogeneity (12), these
findings demonstrate that the most relevant information
required for brain age prediction is captured at a global level.
This conjecture is also supported by a recent twin study
demonstrating that a large proportion of the estimated herita-
bility of specific tracts is accounted for by a general factor (51).

Likewise, we found that the sensitivity to group differences
was not strongly dependent on the inclusion of the full feature
set. Indeed, the effect size obtained when comparing patients
with SZ and HC subjects was slightly higher for the global
mean skeleton model compared with the full model. These
findings are in line with recent evidence of anatomically widely
distributed group differences between healthy control subjects
and patients with SZ (15). Interestingly, the largest effect when
comparing patients with SZ and HC subjects was obtained for
the FA-only model, supporting the sensitivity of FA to clinical
differences in WM properties (15,16). Higher predicted brain
age gap in the patient groups compared with HC subjects may
indicate altered rate of brain maturation or accelerated brain
aging in patients with severe mental disorders. However, our
cross-sectional design does not permit us to make inference
about brain development or aging per se, and previous reports
of relatively age-invariant group differences in brain volumetry
(21) and DTI indices (16) suggest that the reported group dif-
ferences in brain age may reflect differences accumulating
early in life. Unfortunately, owing to the current study design
with adults only, we cannot address the maturational trajec-
tories in the formative years. Further, the data in the training
and test sets were collected using different scanners, and the
absolute brain age estimates and corresponding deviance
from the chronological age should be interpreted with caution
and not without reference to an appropriate comparison
sample. Although the application of diffusion MRI as the basis
for age prediction is novel, higher gray matter brain age has
been shown in several brain and mental disorders (29,52). We
expand these previous findings by documenting higher DTI-
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based WM brain age in both SZ and BD, and although with
moderate effect sizes, we show that the effects generalize
relatively well across cohorts and scanners, with only minor
heterogeneity in effect sizes between cohorts.

We found no significant difference in DTI-based brain age
between BD and SZ, supporting previous evidence of partly
overlapping clinical and biological characteristics between
these 2 diagnostic categories (16,53,54). While the current
results support the existence of a common set of mechanisms
across disorders, future studies utilizing a broader range of
imaging modalities in combination with specific genetic, clin-
ical, cognitive, sociodemographic, and biological phenotypes
may allow for the identification of specific diagnostic signa-
tures and subgroups. However, inherent limitations associated
with the classical case-control design in mental health
research have recently been emphasized using neuroimaging
data (24,25). In particular, the current lack of biologically
informed diagnostic criteria should motivate future studies to
consider alternative approaches to promote a novel clinical
nosology based on both symptomatology and data-driven
clustering (55), as well as brain-based and biological pheno-
types cutting across diagnostic boundaries.

Our results document robust group-level deviances in WM
structure manifesting as older-appearing brains in patients
with severe mental disorders compared with their healthy
peers. Whereas DTI-based markers are sensitive to different
biological and anatomical characteristics, the current speci-
ficity does not allow for inference on the distinct neurobio-
logical mechanisms involved. Myelin integrity and myelin
packing density are among the proposed candidate mecha-
nisms for observed changes in DTI metrics (56–58), but the
specificity is low, and the current results probably reflect a
combination of neurobiological processes and macro-
anatomical differences. Previous evidence implicated myelin-
related abnormalities and neuroinflammation both in the
pathophysiology of severe mental disorders and in brain aging
(59–62). Future studies may benefit from the inclusion of
advanced multishell diffusion MRI, allowing for stronger infer-
ence on the microstructural milieu of the brain tissue, including
microstructural indices based on different diffusion scalar
metrics [e.g., neurite orientation dispersion and density imag-
ing (63,64), diffusion kurtosis imaging (65), WM tract integrity
(66), and restriction spectrum imaging (67)].

In line with previous findings of widely distributed effects in
well-powered studies of brain aging (12) and SZ (15), we found
similar age prediction accuracy and subsequent group differ-
ences in brain age for the model including only global mean
skeleton values and the model including a range of regionally
informative values extracted from various atlas-based tracts
and regions of interest. Although specific symptoms and
clinical traits may map preferentially onto specific neuroana-
tomical subsystems [see, e.g., (19)], these novel results sug-
gest that a large proportion of the variance associated with age
and corresponding deviations in the patient groups is captured
by primarily global brain processes, with relevance for our
understanding of the anatomical heterogeneity and dimen-
sionality of brain aging and severe mental illness.

In addition to the anatomical distribution of effects, the
spatiotemporal dynamics of brain development and aging and
their deviations in patients with mental disorders remain unclear.
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The individual-level onset and rate of the group-level deviations
from the normative WM trajectory is unknown and can only be
inferred using longitudinal designs covering sensitive periods of
neurodevelopment. Previous studies have shown both delayed
neurodevelopment during adolescence (18) and accelerated
aging in adulthood (5) in patients with severe mental disorders.
Whereas these observations are not mutually exclusive, future
studies should aim at disentangling the lifespan dynamics, e.g.,
by including individuals with a wider age range, and pursuing
longitudinal designs including individuals across a wide range of
functional levels and risk. The latter may be particularly pertinent
to disentangle primary disease-related mechanisms and sec-
ondary factors related to the disease, including medication and
lifestyle factors such as nutrition, physical activity, education,
and a range of sociodemographic variables, all of which interact
with key neurodevelopmental processes (68). Unfortunately,
although possible effects of psychotropic drugs on the brain is a
topic of great interest and importance (69–71), in common with
other studies employing a cross-sectional and nonrandomized
design, the current design does not allow us to make inference
about the effects of medication and other clinical and lifestyle
factors on brain age, which should be investigated by future and
properly designed studies. Meanwhile, previous studies report-
ing associations with medication status in smaller samples need
to be interpreted in light of the recent lack of significant asso-
ciations in the largest DTI study to date (15). We did not exclude
WM hyperintensities in the training or test sets, and future
studies including a wider range of MRI modalities are necessary
to determine the possible confounding effects of WM hyper-
intensities on the age prediction models and subsequent group
comparisons. Whereas our procedure for correcting for scanner
effects using linear models effectively removes simple main ef-
fects of scanner, even subtle differences in clinical recruitment
and other participant characteristics between sites might induce
interactions with site- or scanner-related variance that are very
difficult to account for statistically. Additionally, future studies
using different samples and approaches for brain age prediction
is needed to validate and test the generalizability of the model.

In conclusion, in this multisample study including patients
from 10 different cohorts, we report higher brain age in patients
with SZ and BD compared with HC subjects using various DTI-
based indices of WM structure and organization. In contrast to
most previous studies comparing diffusion MRI metrics
directly between groups, we used a multisample approach,
which allowed us to specifically assess generalizability across
9 or 10 different cohorts, sites, and scanners. These results
represent a highly relevant contribution to the field and an
important supplement to previous reports, which have largely
ignored between-sample heterogeneity and generalizability.
Although the effect sizes were modest, our unique design
allowed us to specifically quantify the heterogeneity and
robustness of effects across cohorts and scanners, supporting
that brain age prediction using diffusion MRI is a sensitive
marker in the clinical neurosciences.
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