
Contents lists available at ScienceDirect

Mathematical Biosciences

journal homepage: www.elsevier.com/locate/mbs

Original research article

Experimental design for parameter estimation in steady-state linear models
of metabolic networks
Håvard G. Frøysa⁎, Hans J. Skaug, Guttorm Alendal
Department of Mathematics, University of Bergen, Bergen, Norway

A R T I C L E I N F O

Keywords:
Systems biology
Metabolic networks
Parameter identifiability
Experimental design
Fisher information
D-optimality

A B S T R A C T

Metabolic networks are typically large, containing many metabolites and reactions. Dynamical models that aim
to simulate such networks will consist of a large number of ordinary differential equations, with many kinetic
parameters that must be estimated from experimental data. We assume these data to be metabolomics mea-
surements made under steady-state conditions for different input fluxes. Assuming linear kinetics, analytical
criteria for parameter identifiability are provided. For normally distributed error terms, we also calculate the
Fisher information matrix analytically to be used in the D-optimality criterion. A test network illustrates the
developed tool chain for finding an optimal experimental design. The first stage is to verify global or pointwise
parameter identifiability, the second stage to find optimal input fluxes, and finally remove redundant mea-
surements.

1. Introduction

Dynamical models of metabolic networks typically consist of a large
number of metabolites and reactions (fluxes). Each of the reactions has
a reaction rate that is modelled by a rate law parametrized by one or
more kinetic parameters. For some reactions and networks, information
about these rates can be found in the literature and databases like
SABIO-RK1 and BRENDA2. However, this will not generally be the case.
To calibrate and validate the simulation models we then have to rely on
data from traditional in-vivo, in-vitro and in-situ experiments that,
preferably, are designed for this purpose [1,2]. Before performing such
experiments, however, the identifiability of the dynamical model
should be examined. If a parameter combination is structurally non-
identifiable, different parameter values will give the same data such
that it is impossible to determine the parameter values even for ob-
servations without measurement errors [3].

There is a rich literature on the identifiability of dynamical models
for reaction networks. Most papers consider a general dynamical ob-
servation function and perform numerical analyses of the identifiability
[4–9]. One powerful method is to use the profile likelihood proposed by
Raue et al. [10], or the more recent penalized optimization from
Kreutz [11]. There are also several studies that consider the identifia-
bility of specific kinetic models, where we mention some of them here.
Zou et al. [12] uses the Laplace transform to study the identifiability of

a model with dynamic PET data. Gabor et al. [13] use a collinearity
index to find the largest possible group of uncorrelated parameters and
test the method on several large-scale kinetic models. Casas-Orozco
et al. [14] use singular value decomposition to find subsets of identi-
fiable parameters for heterogeneously-catalyzed reactions. Finally,
Berthoumieux et al. [15] consider the identifiability for parameters in
linlog models of steady-state metabolic networks.

We assume the observations to be steady-state concentrations, and
do not require dynamic measurements in contrast to the studies men-
tioned above. In addition, we assume a linear kinetics structure that
makes it possible to find the steady-state concentrations analytically
and to view the model as a compartmental model [16]. This enables us
to study the identifiability of the parameters by purely analytical
methods without the use of any numerical or statistical methods. Our
novel criterion for global identifiability of the parameters in Thm. 4
only uses the network structure, and is based on ideas from stoichio-
metric metabolic flux analysis [17].

Our second main novelty is the analytical calculation of the Fisher
information matrix for given parameter values under the assumptions
of normally distributed error terms and independence of observations.
This enables us to conduct experimental design to find optimal input
fluxes and minimal observation sets for an assumed network structure.
Having an analytical expression for the Fisher information matrix
avoids the numerical problems considered in e.g. Eisenberg et al. [18].
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In Sec. 2 we set up the mathematical framework for a reaction
network. Identifiability is defined in Sec. 3.1, pointwise identifiability
studied in Sec. 3.2 and existence of designs giving identifiability con-
sidered in Sec. 3.3. Modified stoichiometric matrices are presented in
Sec. 3.4 to prepare for the study of global identifiability in Sec. 3.5. The
maximum likelihood problem is formulated in Sec. 3.6, and the Fisher
information matrix calculated in Sec. 3.7. Optimal designs are found in
Sec. 4.1, and redundant measurements removed in Sec. 4.2. An example
is studied in Sec. 5, while Sec. 6 is the discussion.

2. Mathematical modeling of reaction networks

2.1. Reaction network

We start by developing the mathematical framework to be used for a
reaction network, where the first step is the stoichiometry of the re-
actions.

A reaction network consists of n chemical species (metabolites) with
names …X X, , n1 and = …x xx [ , , ]n

n
1

T
0 as their concentrations. The

metabolites interact through r irreversible reactions, where pairs may
form reversible reactions. We assume that all reactions are of the form

X X ,s p (1)

where Xs is the substrate and Xp the product. The stoichiometric con-
stants α and β are non-negative integers assumed to be 0 or 1, which
makes the network a compartmental model [16]. The reaction (flux) of
Eq. (1) is internal if =[ ] [1 1], entering if =[ ] [0 1] and
leaving if =[ ] [1 0].

A network can be written in a notation based on Conradi et al. [19]
as

= …X X j r1, , ,j i j ij
s

j
p (2)

where ij
s is the substrate index of reaction j, and ij

p is the product index.
One of the indices is undefined for entering and leaving fluxes, but
never needed.

The network in Fig. 1 will be used as an example throughout the
manuscript. It has =n 6 metabolites and =r 13 reactions listed in
Tab. 1. In addition, Appendix C presents a sub-network of Fig. 1 as a
simpler and more accessible example of the type of models and results

contained in this paper.
A network on the form of Eq. (2) can be represented by a stoi-

chiometric matrix = ×SS { }ij
n r . Entry Sij gives the production of

metabolite Xi in reaction j [19]. Column j of S will have the value j in
row ij

s and βj in row i ,j
p while the remaining entries are zero. The ex-

ample in Tab. 1 gives

=S

1 1 1 0 0 0 0 0 0 0 1 0 0
1 0 0 1 1 0 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1 0 0 0

.

(3)

2.2. Dynamical model

The next step in the development of the mathematical model for the
reaction network is the dynamical equations including the so-called
kinetics.

Let = …v vv [ , , ]r
r

1
T

0 be the fluxes (reaction rates) of the reac-
tions. The dynamical behaviour of the concentrations x is given by the
system

=d
dt
x Sv (4)

of ordinary differential equations where the fluxes v are functions of x,
and S is the constant stoichiometric matrix [20, ch. 9]. For consistency,
x and v should remain non-negative given non-negative initial condi-
tions. Note that non-negativity of v is equivalent to irreversibility of all
the reactions.

To completely define the dynamical model of Eq. (4) we need to
specify v as a function of x, i.e. the kinetics. We assume that the en-
tering fluxes are constant (zero order kinetics) and known design
parameters. Constant fluxes occur when a reaction is saturated, but is
also a natural assumption when a flux comes from the outside. The
remaining fluxes are assumed to be proportional to the concentration of
their substrate (first order kinetics). The proportionality constants are
kinetic parameters subject to estimation.

We now separate the fluxes and renumber them if necessary such
that

= =S S S v v v[ ] and [ ] ,1 0 T
1
T

0
T (5)

where 0 refers to the zero order (constant) entering fluxes, and 1 refers
to the first order internal and leaving fluxes.

Assuming that there are r0 zero order and r1 first order fluxes, where
+ =r r r,0 1 we have ×S ,n r

0 0
0 ×S ,n r

1 1 v r
0 0

0 and v r
1 0

1 . The
reactions in Tab. 1 are numbered this way with =r 30 and =r 101 such
that

=

=

S S

1 0 0
0 1 0
0 0 0
0 0 1
0 0 0
0 0 0

and

1 1 1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0
0 0 0 1 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 1 0 1 1 0 0
0 0 0 0 0 1 0 1 0 1

.

0 1

(6)

Let = …b bb [ ]r
r

1
T

00
0 be the r0 input fluxes such that =v b0 .

Further, let = … >[ ]r
r

1
T

01
1 be the r1 kinetic parameters such

that

= …[ ]x xv ,i r i1 1
Ts

r
s

1 1 1 (7)

where we see that v1 is a bilinear function of θ and x. Note that all θj

Fig. 1. Example network. The nodes are metabolites with names Xk and con-
centrations xk, and the directed edges are irreversible reactions with reaction
rates (fluxes) vj.

Fig. 2. The network of Fig. 1 with new labels. The nodes (boxes) are metabo-
lites, and the directed edges are irreversible reactions with some flux. The in-
puts bj’s are known constant reaction rates, while the θj’s are the first order
kinetic parameters to be estimated.
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and bj must be non-negative to ensure irreversibility of all the reactions.
However, we require all θj to be strictly positive such that an internal or
leaving flux is non-zero if its substrate concentration is non-zero. For
the example we get

=
=

b b b
x x x x x x x x x x

v
v

[ ] and
[ ] ,

0 1 2 3
T

1 1 1 2 1 3 1 4 2 5 2 6 3 7 4 8 5 9 3 10 6
T

(8)

which we use in Fig. 2 to redraw Fig. 1 with the bj’s and θj’s as labels.
The bilinear structure of v1 makes it possible to write the fluxes as

= =v b v K xand ,0 1 (9)

where the matrix = ×KK { }ji
r n

0
1 is given by the parameters in θ as

=K ,ji i i j, j
s and δi,j is the Kronecker-delta

= =
i j
i j

0
1 .i j,

(10)

Each row j of Kθ is associated with a reaction. The only non-zero
entry of this row is θj in column i ,j

s the substrate index. For the example
we get

= =
b
b
b

b Kand

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

.
1

2

3

1

2

3

4

5

6

7

8

9

10 (11)

Combining the flux vectors into one vector according to Eq. (5)
gives

= = +
0

0v v
v

K x b ,1
0 (12)

such that Eq. (4) becomes the inhomogeneous linear ODE system

= = + = +
0

0d
dt
x Sv S S K x b D x c[ ] ,1 0

(13)

with = ×D S K n n
1 and =c S b n

0 0. The example has

=

=

b
b

b

D

c

0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0
0 0 0

and 0

0
0

.

1 2 3

1 4 5

4 6 9

2 7

3 5 7 8

6 8 10

1

2

3

(14)

The matrix Dθ is a compartmental matrix [16], where the metabo-
lites are the compartments. It has non-negative off-diagonal entries and
non-positive diagonal entries. This ensures non-negativity of x for all t
in the homogeneous system corresponding to Eq. (13) given non-ne-
gative initial values [16, p. 48]. Since c has only non-negative entries,
non-negativity of x for all t given non-negative initial values is also
satisfied for Eq. (13).

All eigenvalues λ of Dθ have Re(λ) ≤ 0 by the Gerschgorin circle
theorem applied to the columns of Dθ since it is a compartmental matrix
[16, p. 55]. Also, zero is not an eigenvalue of Dθ if all the metabolites
(compartments) have an exit to the outside environment [16, p. 56].
This implies that Re(λ) < 0 for all λ making Dθ invertible and the
dynamical system of Eq. (13) asymptotically stable for all initial con-
ditions of x. Finally, it also implies that the inverse D 1 has only non-
positive entries [16, p. 69].

2.3. Steady-state conditions

We now have a dynamical model for a reaction network, and will
later introduce observations of the concentrations. It is assumed that
they are made in steady-state conditions [21, p. 114], imposing the flux
balance

= =d
dt
x Sv 0 . (15)

Hence, the flux vector v should be in the nullspace of S where the
matrix usually has more columns (reactions) than rows (metabolites).
This guarantees a non-trivial nullspace and gives infinitely many pos-
sible steady-states.

The steady-state condition of Eq. (15) applied to Eq. (13) gives

+ = 0D x c , (16)

Fig. 3. Active reactions for the example and the standard input vectors ej associated with the inputs bj. Dark blue arrows are active, and light gray arrows inactive.
See Fig. 1 for labelling of the network with fluxes vj and Fig. 2 for labelling with parameters θj.

Table 1
Reactions for the example in Fig. 1 on the form of Eq. (2).

=j 1 X1 → X2 =i 1s
1 =i 2p

1
=j 2 X1 → X4 =i 1s

2 =i 4p
2

=j 3 X1 → X5 =i 1s
3 =i 5p

3
=j 4 X2 → X3 =i 2s

4 =i 3p
4

=j 5 X2 → X5 =i 2s
5 =i 5p

5
=j 6 X3 → X6 =i 3s

6 =i 6p
6

=j 7 X4 → X5 =i 4s
7 =i 5p

7
=j 8 X5 → X6 =i 5s

8 =i 6p
8

=j 9 X3 → =i 3s
9

=j 10 X6 → =i 6s
10

=j 11 → X1 =i 1p
11

=j 12 → X2 =i 2p
12

=j 13 → X4 =i 4p
13
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which is a linear equation system in x for given c and Dθ. Since D 1

exists, there is a unique steady-state z n
0 for Eq. (16) given by

=z D c .1 (17)

Non-negativity of z is guaranteed since D 1 has non-positive and c non-
negative entries. Remember that the dynamical system of Eq. (13) is
asymptotically stable for all initial conditions of x, implying

=x zlimt .
If z and c are known, the bilinear structure of v1 seen in Eq. (7)

enables us to write the steady-state condition of Eq. (15) as a linear
equation system in θ instead of Eq. (16). To do so, we write the fluxes

=v X1 where the diagonal matrix ×X r r
0

1 1 is given by the con-
centrations as = …x xX diag( , , )i is

r
s

1 1
.

As a linear system in θ, the dynamical system of Eq. (4) becomes

= + = +d
dt
x S X c E cx1 (18)

where the entries of the matrix ×E n r
x 1 are linear combinations of

the concentrations xk. The steady-state condition of Eq. (15) can now be
written

=E cz (19)

where Ez is Ex with =x z, which is a linear equation system in θ that
we will make use of later. Note the superscript θ for Ez since Ex depends
on θ when =x z. For the example, we have the matrices

= x x x x x x x x x xX diag( , , , , , , , , , ) and1 1 1 2 2 3 4 5 3 6 (20)

= =

x x x
x x x

x x x
x x

x x x x
x x x

E S X

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0

.x 1

1 1 1

1 2 2

2 3 3

1 4

1 2 4 5

3 5 6

(21)

The matrix Ez will be important in the later sections about iden-
tifiability.

3. Parameter estimation

We will now consider the estimation of the kinetic parameters in the
vector = … >[ , , ]r

r
1

T
01

1 . The data are observations of the steady-
state concentrations z for different known input vectors b, subject to
measurement error. First, we will look at pointwise and global iden-
tifiability of θ for a given experimental setup without considering
measurement errors. Thereafter, we define the likelihood function and
compute the Fisher information matrix analytically. Finally, this matrix
is used for optimal design of the input vectors b and to determine which
concentrations that should be observed.

3.1. Identifiability

It is assumed that we have a set …b b{ , , }m1 of m different input flux
vectors b called a design, and that the parameters in θ are the same
under all of these. Let =c S bl l

0 and = … =z zz D c[ ]l l
n
l l

1
T 1 be the

vectors c and z for the different bl.
Identifiability is the property of the mapping θ → z(θ) given by

Eq. (17) and a design …b b{ , , }m1 that distinct values of θ give distinct
data sets.

Definition 1. The parameter vector θ is pointwise identifiable at >
r

1 0
1

for a given design …b b{ , , }m1 if

…l mz z( ) ( ) for some {1, , }l l
1 2 1 2 (22)

holds for all >
r

2 0
1 .

To illustrate pointwise identifiability for the example of Fig. 2 we

look at the design {b1, b2} with the =m 2 input vectors

= =b b[1 0 0] and [0 1 2] .1 T 2 T (23)

For the parameter values = [2 1 1 1 1 1 1 1 1 1] ,1
T the

equalities

= =z z z z( ) ( ) and ( ) ( )1
1

1
2

2
1

2
2 (24)

only hold for = ,1 2 giving pointwise identifiability at θ1. However,
for the values = [1 1 1 1 1 1 1 1 1 1] ,1

T the equalities of
Eq. (24) hold for all

= + +
=
=

a a
a
a

where
[0 0 0 5 5 10 0 1 0 0] ,
[0 0 0 0 0 11 0 0 11 1]

2 1 1 1 2 2

1
T

2
T (25)

and ,1 2 . This can be found by the use of Eq. (28), and means that
we don’t have pointwise identifiability at this θ1. Two more similar
examples are given in Appendix B.

Altogether, this illustrates that for a given design there may exist
values of θ with pointwise identifiability and other values without. For
this reason, we also need to look at global identifiability.

Definition 2. The parameter vector θ is globally identifiable for a given
design …b b{ , , }m1 if Def. 1 for pointwise identifiability holds for all

> ,r
1 0

1 which is equivalent to the mapping …z z( ( ), , ( ))m1 being
injective.

Note that the identifiability depends on the design …b b{ , , },m1 which
is thought of as fixed in this section. Thus, the definition of global
identifiability is global in θ, but in a sense pointwise in the design.
However, we will later find optimal designs and examine how the
identifiability depends on the design. It is particularly interesting
whether or not there exists a design that provides pointwise or global
identifiability.

3.2. Pointwise identifiability criterion

We now give a criterion for pointwise identifiability of θ for a design
…b b{ , , }m1 by utilizing the steady-state formulation of Eq. (19).
Let the matrix ×E mn r1 and the vector C mn

0 be

= =E
E

E
C

c

c
and

m

z

z

1

m

1

(26)

where E
zl is Ez from Eq. (19) with =z z ,l and =c S bl l

0 as before.

Theorem 1. The parameter vector >
r

0
1 is pointwise identifiable at

= 1 for a given design …b b{ , , }m1 if and only if = rERank( ) 11 .

Proof. The true parameter vector θ1 satisfies the m equilibrium
conditions

=E cl
z 1l

1
(27)

of Eq. (19) for all l by construction. This gives the linear system

=E C1 (28)

of equations in θ, which by construction has the true parameter
values θ1 as a solution. To have pointwise identifiability, ENull( )1

must be trivial such that the true parameter vector θ1 is the unique
solution of Eq. (28). This is equivalent to E 1 having full column rank
r1. □

The number of equations in Eq. (28) could be much larger than the
number of unknowns, but the system will always have a solution by
construction. If the nullspace is non-trivial, some parameters may still
be uniquely determined by Eq. (28). Also be aware that the identifia-
bility is a property of the design …b b{ , , },m1 not of the individual vectors
bl.
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3.3. Existence of identifiability design

An important question is whether or not there exists a design
…b b{ , , }m1 that provides identifiability. We will now show that this can

be checked by considering the design …e e{ , , }r1 0 of standard basis
vectors in r0.

Theorem 2. There exists a design giving pointwise identifiability at = 1 if
and only if the design …e e{ , , }r1 0 gives pointwise identifiability at = 1.

Proof. We only need to prove that pointwise identifiability for an
arbitrary design implies pointwise identifiability for the standard
design.

The steady-state concentrations z for an input vector b are given by
the linear relation = =z D c D S b1 1

0 of Eq. (17). We can write b as

= … =
=

b b bb e[ ]r
j

r

j j1
T

1
0

0

(29)

where ej is the j’th standard basis vector in r0 as before. For this reason,
any steady-state concentration vector z is a linear combination

=
=

bz D S e
j

r

j j
1

1
0

0

(30)

given by the entries bj in b. Let E j be the matrix Ez where =z D S e ,j1
0

and let ES be E of Eq. (26) for the standard design …e e{ , , }r1 0 . Since Ez
is linear in z and z is linear in b, also Ez will be linear in b such that

=
=

bE E
j

r

j jz
1

0

(31)

for any steady-state z. This implies that the set …E E{ , , }r1 0 spans the
space of matrices Ez for steady-states z. A consequence of this is that

E ERow( ) Row( )S (32)

for the matrix E of any given design. Then, for the nullspaces we get

E ENull( ) Null( ),S (33)

where the space on the right side of Eq. (33) must trivial for = 1 to
have pointwise identifiability at θ1 for a design …b b{ , , }m1 . It then
follows that the space on the left side of Eq. (33) must be trivial such
that the standard design gives pointwise identifiability. □

If there exists a design that provides pointwise identifiability at
= ,1 we have = rERank( )S 11 by Thm. 1 and 2. Note, however, that the

pointwise identifiability can also be examined by other approaches than
Thm. 1, including the Fisher information matrix to be introduced later.

3.4. Active reactions and modified stoichiometric matrices

Next, we want to find a criteria for global identifiability of θ. To
prepare for this, we classify reactions as active or non-active and define
modified stoichiometric matrices to be used in the global identifiability
criterion.

A reaction with a non-zero steady-state flux vj > 0 under input
vector b is said to be an active reaction for the input vector. Likewise, a
metabolite with a non-zero steady-state concentration zk > 0 under
input vector b is said to be an active metabolite for the input vector.
Note that a reaction j is active if and only if the substrate is an active
metabolite, i.e. if >z 0ij

s .
Remember that the steady-state concentrations z can be calculated

from Eq. (17) for a given b and θ. However, the set of active metabolites
and reactions for a given input vector b will be the same for all θ since

the parameters in θ are assumed to be strictly positive. It will also be
the same for all scalings of the input vector b due to the linear structure
of Eq. (17).

F or small networks like the one in Fig. 2, the active metabolites and
reactions can be identified by inspection, as the metabolites and reac-
tions are active if they have a path from a non-zero input leading to
them. The active reactions for the example and the standard basis
vectors ej are given in Tab. 2 and visualised in Fig. 3, while the active
metabolites are given in Tab. 4. For an arbitrary input vector b will the
set of active reactions/metabolites be the union of the equivalent sets
for each of standard basis vectors ej that are associated with a non-zero
entry in b.

We now use the information about the active and non-active reac-
tions for an input vector b. By utilizing the splitting of S and v from
Eq. (5), the steady-state condition of Eq. (15) can be written

=S v c1 1 (34)

Table 2
The active reactions for the standard input vectors ej of the example in Fig. 2,
marked with a cross if the reaction is active. The same information is visualized
in Fig. 3.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

e1 × × × × × × × × × ×
e2 × × × × × ×
e3 × × ×

Table 3
Optimal designs of m input vectors for the example of Fig. 2 with the parameter
values of Eq. (56). Each design is the solution of Eq. (50) with the constraint of
Eq. (51). The last column is whether or not the design gives global identifia-
bility checked by Thm. 4.

m …b b*, , *
m1 ITr( )·1 2 Idet( )· 20 Global

2 1
0
0

,
0

0.838
0.162

5.97 · 102 7.07·10 13 No

3 1
0
0

,
0
1
0

,
0
0
1

2.03 · 102 3.35·10 9 Yes

4 1
0
0

,
1
0
0

,
0
1
0

,
0
0
1

1.63 · 102 5.00·10 8 Yes

5 1
0
0

,
1
0
0

,
0
1
0

,
0
1
0

,
0
0
1

1.14 · 102 6.43·10 7 Yes

6 1
0
0

,
1
0
0

,
0
1
0

,
0
1
0

,
0
0
1

,
0
0
1

1.02 · 102 3.43·10 6 Yes

Table 4
Minimal observation set Ω of Eq. (40) for the example in Fig. 2 and the =m 3
standard design of Tab. 3. Elements (l, k) in Ω are marked with a cross, and
correspond to concentrations zk

l of metabolite Xk under the standard basis input
vector el. The included elements are the active metabolites with >z 0k

l as seen
from Fig. 3 or Eq. (57).

l \ k 1 2 3 4 5 6

1 × × × × × ×
2 × × × ×
3 × × ×
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where =c S b,0 as before. Let Sl
1 be the matrix S1 where the columns of

non-active reactions for bl are set to zero. For the example and the
standard basis design =b el

l with l ∈ {1, 2, 3}, we get

=

=

=

S

S

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

S

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0
0 0 0 1 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 1 0 1 1 0 0
0 0 0 0 0 1 0 1 0 1

,

0 0 0 0 0 0
1 1 0 0 0 0

1 0 1 0 1 0
0 0 0 0 0 0
0 1 0 1 0 0
0 0 1 1 0 1

and

0 0 0
0 0 0
0 0 0
1 0 0

1 1 0
0 1 1

1
1

1
2

1
3

(35)

where a light gray column is a non-active reaction in accordance with
Tab. 2.

Since all the non-active reactions have a zero flux we can replace the
steady-state condition of Eq. (34) for =v v l

1 1 under bl with

=S v cl l l
1 1 (36)

where the active fluxes are balanced using only the active reactions.
Note that there are no restrictions on the non-active fluxes in

Eq. (36), and that any value of these will satisfy Eq. (36) even though
we know that they are zero. However, the restrictions on the active
fluxes are stronger than in Eq. (34), making Eq. (36) important in the
global identifiability analysis.

3.5. Global identifiability criterion

We now explore the global identifiability of θ. As for pointwise
identifiability, we can restrict ourselves to the standard basis design to
determine if global identifiability is possible.

Theorem 3. There exists a design that gives global identifiability of θ if and
only if the design …e e{ , , }r1 0 gives global identifiability of θ.

Proof. Global identifiability is equivalent to pointwise identifiability for
all values of θ. The theorem follows from Thm. 2 for pointwise
identifiability. □

Next, we will see that the global identifiability of θ can be de-
termined by the matrices Sl

1 of Sec. 3.4. Let the matrix ×SP
mn r1 be

given by

=S
S

S
P

m

1
1

1 (37)

where Sl
1 is the modified stoichiometric matrix for the input vector bl.

Based on this matrix we can provide a criterion for global iden-
tifiability by using ideas from Metabolic Flux Analysis (MFA) [17].

Theorem 4. The parameter vector >
r

0
1 is globally identifiable for the

design …b b{ , , }m1 if and only if = rSRank( )P 1 where SP is from Eq. (37).

Proof. Let v l
1 be the first order steady-state fluxes v1 for the input vector

bl. Each of the vectors satisfies Eq. (36) such that we get the equation
system

=

=

S v c

S v cm m m

1
1

1
1 1

1 1 (38)

for the fluxes = …v vv [ ]l l
r
l

1 1
T

1 that are unknown when doing inference
about θ. However, all these fluxes are given by =v zj

l
j i

l
j
s where the

steady-state concentrations zk
l are assumed known. This implies that to

find θj is equivalent to determining vj
l for a bl where the reaction is

active with >z 0i
l
j
s as defined in Sec. 3.4. Also remember that θ is

assumed the same under all vectors bl. If vj
l is determined for one vector

bl providing θj, the value of vj
l for all other l can then be computed as

=v zj
l

j i
l
j
s . Altogether, identifiability of θj is equivalent to vj

l being

determinable for some …l m{1, , }. Thus, vj
l has to be indeterminable

for all …l m{1, , } if θj is unidentifiable. If one or more fluxes vj
l are

indeterminable for all l, there exist a non-trivial v r
1 1 such that

=S v 0l
1 1 for all …l m{1, , }. These m vector equations for v1 can be
written in the combined form

=S v 0P 1 (39)

where SP is given by Eq. (37). A non-trivial v1 satisfying Eq. (39) exists
if and only if SP does not have full column rank r1. Thus, all parameters
θj are identifiable if = rSRank( )P 1.

On the other hand, there is no other information available to de-
termine the active fluxes of the various v l

1 than the steady-state equa-
tions of Eq. (38). This implies that the criterion of this theorem must be
satisfied to obtain identifiability. Since no specific value of θ is used, the
identifiability is global. □

By combining Thm. 3 and 4, we see that it is sufficient to check the
rank of SP for the standard design to determine if global identifiability is
possible for a given network. For the example, we have

= =rSRank( ) 10P 1 for the standard design from the matrices in Eq. (35)
such that this is possible.

Note that all v l
1 satisfy the original steady-state condition =S v cl l

1 1
from Eq. (34) in addition to Eq. (36). However, it is the use of the
different matrices Sl

1 in Eq. (38) that makes it possible to formulate the
simple criterion of Thm. 4. Also note that it is possible to have point-
wise identifiability for special designs and values of θ even though the
design does not provide global identifiability, as seen for the design in
Eq. (23).

3.6. Maximum likelihood estimation (MLE)

We now formulate a maximum likelihood estimation for θ. Thus far
we have assumed that all steady-state concentrations zk

l are known free
of error where …k n{1, , } is the index of the metabolites and

…l m{1, , } is the index of the input vectors bl. However, in a real world
experiment we will not be able to observe the exact value of a steady-
state concentration z ,k

l calling for a statistical model.
For each of the concentrations z ,k

l let yk
l be the corresponding ob-

served value including measurement error with vector notation
= …y yy [ ]l l

n
l

1
T. In addition, it may not be possible or necessary to observe

all the concentrations. For this reason, define Ω to be the observation
set

= l k y z{( , )| an observation of is available}.k
l

k
l (40)

In the previous identifiability discussion it was implicit that (l,
k) ∈ Ω for all l and k, i.e. that all observations are made. However, we
will later explore for which l and k one can have (l, k) ∉ Ω without
altering the identifiability.

We assume that the observation yk
l is a realization of a stochastic

variable Yk
l that is normally distributed, Y N z( , )k

l
k
l 2 with a common

variance σ2. All the Yk
l ’s are also assumed to be mutually independent

for all k and l.
Under these assumptions, the marginal probability density of Yk

l is

= { }f y y zb( | , , ) (2 ) exp 1
2

( )k
l

k
l l

k
l

k
l2 2 1

2 2
2

(41)

and the joint density f for all the Yk
l ’s is the product
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… … =f f yy y b b b( , , | , , , , ) ( | , , ) .m m

l k
k
l

k
l l1 1 2

( , )

2

(42)

Note that only the observed concentrations are included in Eq. (42) as
defined by Ω in Eq. (40). It follows that the log-likelihood function is

= +f
y z

ln 1
2

ln(2 )
( )

.
l k

k
l

k
l

( , )

2
2

2
(43)

The estimate ^ of θ for a given data set …y y{ , , }m1 is then

= … …f y y b b^ argmax[ln ( , , | , , , , )]m m1 1 2
(44)

where the design …b b{ , , }m1 is assumed fixed and given. This will be a
non-linear regression problem, see e.g. Bates et al. [22] for an in-
troduction.

In practice, numerical optimization is required to obtain the esti-
mate ^ from Eq. (44). If the model is not globally identifiable, the
numerical routine can run into problems that are hard to diagnose.
Hence, prior to solving Eq. (44) one should check for global identifia-
bility. If this is satisfied, the mapping …z z( ( ), , ( ))m1 will be in-
jective. Since the various zl are the expectations of the normal dis-
tribution used, distinct parameter values θ will then give distinct
probability distributions. This is the traditional definition of identifia-
bility of θ in a MLE setting [23, p. 523], which we see is in accordance
with Def. 2 for global identifiability.

3.7. The Fisher information matrix (FIM)

The FIM is a measure of the parameter information in the ob-
servations, and we will compute it analytically for a given θ and design

…b b{ , , }m1 . Let ×I r r1 1 be the FIM for the parameters >
r

0
1 . Entry

(j, j′) is

= f fI( ) ln ln ,j j Y
j j

,
(45)

where ln f is the log-likelihood of Eq. (43). The expectation operator Y
is with respect to the density of Eq. (42) for the Yl’s with a fixed θ [24].

Let Dk → l be the matrix Dθ of Eq. (13) where column k is replaced
with cl. Further, let D(i,j) and D i j

k l
( , ) be the matrices Dθ and Dk → l where

row i and column j are removed. Finally, let di,j be entry (i, j) in Dθ.
Based on these quantities and Cramer’s rule, we are able to calculate Iθ
analytically.

Theorem 5. Entry (j, j′) in Iθ is given by

=

×

z
d

z
d

z
d

z
d

I( ) 1

,

j j
l k

j
k
l

i i
j

k
l

i i

j
k
l

i i
j

k
l

i i

, 2
( , ) , ,

, ,

j
p

j
s

j
s

j
s

j
p

j
s

j
s

j
s

(46)

where αj, βj, ij
p and ij

s are the coefficients and indices of Eq. (2) and zk
l is the

steady-state concentration of Xk under the input vector bl. The partial
derivatives used in Eq. (46) are given by

= +z
d

D D D D
D

( 1)
det( )det( ) (1 )det( )det( )

(det( ))
.k

l

i j

i j
k l

i j j k i j
k l

,

( , ) , ( , )
2 (47)

Proof. See Appendix A. □

The z
d

k
l

i j,
’s of Eq. (47) are derivatives of the steady-state concentra-

tions with respect to entries di,j in the compartmental matrix Dθ. The
entries di,j give the fluxes, and are given by θ as seen in Eq. (14) for the
example.

Note from Eq. (46) that the matrix Iθ can be written as a sum

=I J J1

l k
k
l

k
l

2
( , )

T

(48)

of outer products J Jk
l

k
l T. The vector Jk

l r1 is given by

= = zJ ,k
l

z
d

z
d

r
z

d r
z

d

k
l

1 1
k
l

i p i s
k
l

i s i s

k
l

ir
p irs

k
l

irs irs

1 , 1 1, 1

1
1, 1

1
1, 1 (49)

and is the gradient of zk
l with respect to θ as a column vector. Since each

of the outer products in Eq. (48) is a rank-one matrix, Iθ has rank at
most |Ω| ≤ mn where |Ω| is the number of elements in Ω [25]. To
obtain a non-singular Iθ, the number |Ω| of observations must be at
least the number r1 of parameters. Note, however, that an equal or
higher number of measurements than parameters is only a necessary
condition for identifiability.

The rank of the FIM Iθ is equal the number of identifiable parameter
combinations [18]. It follows that θ is pointwise identifiable for given
values of θ if and only if = rIRank( ) ,1 similarly to Thm. 1 for E . Since
Iθ is a square matrix with dimension r1, it is then non-singular [26]. We
also have that the asymptotic covariance matrix for the estimate

= …^ ^
r̂1

T

1
of θ in Eq. (44) is given by I 1 [24]. We will in par-

ticular evaluate ITr( ),1 giving the asymptotic estimation variance

= Var( ^ )j
r

j1
1 .

4. Experimental design

The goal of experimental design is loosely speaking to minimize the
parameter estimation uncertainty, see e.g. Fedorov [27] for an in-
troduction. For our experimental setup, there are two things we can
control to this end. The first is the choice of the input vectors bl, and the
second is the observation set Ω of Eq. (40) for which metabolites to
observe for each input vector. When doing experimental design, a
special value for θ must be chosen. This implies that one should have
some a priori knowledge about the value of θ in order to optimize the
experimental design. However, some of the results do not depend on a
specific value of θ and can be applied in the general case.

4.1. Optimal design

We now find the optimal design of input vectors for a fixed value of
the parameters θ. An optimal design has to provide pointwise iden-
tifiability in accordance with Def. 1, so Thm. 2 should be checked to
ensure that this is possible before performing the following optimiza-
tion procedure. If the standard design gives pointwise identifiability,
there exist designs giving pointwise identifiability with m ≥ r0 input
vectors and potentially also for some m < r0 depending on the network
structure. It is also natural to apply Thm. 4 after a design is found to
check for global identifiability.

For a fixed number m of input vectors, the D-optimality criterion can
be used to find the optimal design. This is done by maximizing the
determinant Idet( ) of the FIM, which is equivalent to maximizing the
Shannon information [27]. Note that Iθ is positive semi-definite [24], as
seen from either Eq. (45) or Eq. (48), such that >Idet( ) 0 if Iθ is non-
singular. The D-optimal design of input flux vectors …b b*, , *

m r1
0

0 is
the solution of

… =
…

b b I[ *, , * ] argmax[det( )] ,m

b b

1

, , m1 (50)

where Iθ is given by Eq. (46). The parameter values θ and the ob-
servation set Ω of Eq. (40) are both assumed fixed and given.

This is a maximization in mr0 variables. Note, however, that if Ib is
Iθ for a given design …b b{ , , },m1 then =I Ib b2 where I b is Iθ for the
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design …b b{ , , }m1 . This can be seen from Eq. (30) and Eq. (46), and
implies that if >Idet( ) 0,b then Idet( )b for the design

…b b{ , , }m1 as γ → ∞. For this reason, Eq. (50) is unbounded for
values of mwhere a design that provides pointwise identifiability exists,
and we need constraints on …b b{ , , }m1 to get a well-posed problem. A
natural constraint is to require the sum of the entries in each vector to
be constant such that

= = =
= =

b bb 1l

j

r

j
l

j

r

j
l

1
1 1

0 0

(51)

for all …l m{1, , }. This has the interpretation that the total input flux is
equal to one for each of the m input vectors, where the value one is
arbitrary since the optimal design only can be determined up to a
scaling factor γ as seen above. It is, however, still not guaranteed that
there exists a unique solution to the optimization in Eq. (50), which has
to be solved numerically.

Note that the ordering of the m vectors b*
l is arbitrary, since any

permutation of the set …b b{ *, , * }m1 gives the same value in the max-
imization of Eq. (50). Also note that the optimal design is independent
of the standard deviation since σ can be factored out of Idet( ) as seen
from Eq. (46).

If an optimal addition of one input vector to a given design is
wanted, an adjusted formulation of Eq. (50) is given in Appendix D
which reduces the maximization problem to a lower dimension.

4.2. Minimal observation set

For a given design …b b{ , , },m1 we want to minimize the number |Ω|
of elements in the observation set Ω of Eq. (40) without loosing in-
formation. This has similarities to finding minimal sets of output
functions needed for identifiability of an ODE system as is done An-
guelova et al. [28]. However, we want to find the minimal set with no
information loss, not a minimal set that provides identifiability. One
could also include the minimization of |Ω| as a regularization in the
optimization of Eq. (50) in the previous subsection.

The FIM Iθ is additive in the observations as seen in Eq. (46). The
term for the observation Yk

l of the metabolite Xk under bl has a factor

=z z
d

z
d

k
l

j
j

k
l

i i
j

k
l

i i, ,j
p

j
s

j
s

j
s

(52)

for all the entries of Iθ that contain information about the parameter θj.
Thus, Yk

l has no information about θj if = 0zk
l

j
such that

=z
d

z
d

,j
k
l

i i
j

k
l

i i, ,j
p

j
s

j
s

j
s (53)

since the j’th entry in Jk
l of Eq. (48) is zero. In particular is Eq. (53) true

if

= =z
d

z
d

0 ,k
l

i i

k
l

i i, ,j
p

j
s

j
s

j
s (54)

which corresponds to the steady-state concentration zk
l of metabolite Xk

under input vector bl being the same regardless of the value of θj. If

= = …z
d

z
d

j r0 for all {1, , } ,k
l

i i

k
l

i i, ,
1

j
p

j
s

j
s

j
s (55)

the measurement Yk
l does not provide information about any of the

parameters since =J 0k
l in Eq. (48). This implies that the steady-state

concentration zk
l under bl is the same independently of all the para-

meter values. Under the condition of Eq. (55) we do not loose any in-
formation by not observing Yk

l and can have (l, k) ∉ Ω in accordance
with Eq. (40). For this reason, all pairs (l, k) that satisfy Eq. (55) could
be excluded from Ω in order to reduce the experimental cost, while the
remaining (l, k) should be included in the observation set Ω to not loose

any information. The resulting set Ω is minimal in the sense that it is the
smallest observation set that provides that same information as the full
observation set, but there may exist sets with even fewer elements that
still provide identifiability.

The most obvious way to satisfy Eq. (55) for a pair (l, k) is if =z 0,k
l

which in Sec. 3.4 was classified as the metabolite Xk being non-active
for the input vector bl. Remember that the classification of active and
non-active metabolites does not rely on the value of θ, so the non-active
metabolites can be excluded from the observation set Ω for all θ. The
active and non-active metabolites are listed in Tab. 4 for the example
with the standard design.

5. Example

We will now study the example of Fig. 2 in further detail by finding
optimal designs …b b{ *, , * }m1 and minimal observation sets Ω. Remember
that Appendix C provides a simpler example in addition to the one of
Fig. 2.

The network of Fig. 2 has =r 101 kinetic parameters = …[ ]1 10
T

associated with the first order fluxes = …v vv [ ] ,1 1 10
T and =r 30 input

fluxes = b b bb [ ]1 2 3
T. Recall that = =rSRank( ) 10P 1 for the standard

basis design, such that global identifiability for a design is possible by
Thm. 3 and 4.

The network has six metabolites Xk, such that for each bl we obtain
at most six observations Yk

l . Since the number of parameters is higher
than the number of observations for each input vector, it is impossible
to obtain identifiability with =m 1 input vector. For =m 2 vectors we
have up to 12 observations such that identifiability of all 10 parameters
could be possible.

In the following we will look at pointwise identifiability for the test
values

= = …j1 , 1, , 10j (56)

of the parameters. These values are chosen arbitrarily, but much of the
discussion is general and independent of the parameter values. The
standard deviation factors out of the computations, so a specific σ is not
assumed.

The steady-state concentrations zl for the standard design =b el
l

and the parameter values of Eq. (56) are given by

= =

= =

= =

z D S e

z D S e

z D S e

[4 2 1 4 10 11] ,

[0 2 1 0 2 3] and

[0 0 0 1 1 1]

1 1
0 1

1
12

T

2 1
0 2

1
4

T

3 1
0 3

T (57)

where z for an arbitrary input vector b and the parameters of Eq. (56) is
a linear combination of these vectors according to Eq. (30).

5.1. Optimal design

First, we find optimal designs according to the D-optimality cri-
terion of Eq. (50) for the parameter values of Eq. (56) and the constraint
of Eq. (51). For now, it is assumed that all metabolites are observed for
all the input vectors, i.e. = l k l m k n{( , )|1 , 1 }. Based on
this, the optimal designs for = …m 2, ,6 are found numerically and
shown in Tab. 3 together with the corresponding values of Idet( ) and

ITr( )1 . All the designs for =m r 30 provide global identifiability by
the use of Thm. 4.

As expected we see that the optimal value of Idet( ) is an increasing
function of m since increasing the number of observations increases the
information. We also see that with the correct design, =m 2 is suffi-
cient for pointwise identifiability. However, this design does not give
global identifiability and there is a much larger relative increase in
information by increasing m from 2 to 3 than increasing m by 1 when
m ≥ 3. This is probably since there are =r 30 degrees of freedom in the
choice of each b, not considering the constraint of Eq. (51). Thus, m≥3
is needed to span the space of possible input flux vectors as seen in
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Eq. (29) even though =m 2 is sufficient for pointwise identifiability.
For this reason, increasing m from 2 to 3 provides completely new in-
formation, while increasing m when m ≥ 3 provides replicates of al-
ready existing information. This can also be seen from Thm. 2 where it
is shown that the standard design with = =m r 30 contains all possible
information and Eq. (29) is a part of the proof.

For = =m r 30 in Tab. 3 we see that the standard design is optimal.
However, this is not a general result as the standard design is in general
not optimal. The optimal design for m ≥ 4 is to keep all the vectors
from the =m 3 design, and add copies of these for the remaining b*

l . In
particular, note that the optimal for =m 6 is two copies of the design
for =m 3. This shows that the optimal designs for the example have a
modular behaviour with modulus =r 3,0 which is reasonable since
adding vectors when m > 3 repeats already existing information.

5.2. Minimal observation set

We now find the minimal observation set Ω for the standard design,
which is optimal for = =m r 30 and the parameter values in Eq. (56) as
seen in Tab. 3. However, the minimal set will be the same for all
parameter values, and we know from Thm. 4 that the standard design
gives global identifiability.

Remember that the minimal Ω is all the active metabolites with
>z 0k

l as discussed in Sec. 3.4 and 4.2. This can be found by inspection
of Fig. 3 or the steady-state concentrations in Eq. (57), and results in the
set of Tab. 4.

We see from Tab. 4 that 5 of the 18 possible observations Yk
l can be

removed without losing information about the 10 parameters θj. Re-
member that the set Ω is minimal in the sense that it is the smallest with
the same FIM Iθ as observing all the concentrations. It may, however,
still be possible to find a smaller set that provides global identifiability
as the number =| | 13 of elements in Ω is larger than the number

=r 101 of parameters.

5.3. Global identifiability

We still consider the standard design, which gives global identifia-
bility by Thm. 4. However, we now perform the calculations to show
this in details.

First, we look at the information from the =b e3
3 input vector.

From the balance equations of Eq. (36) and S1
3 of Eq. (35) we get the

fluxes

= = = =v v v b 17
3

8
3

10
3

3
3 (58)

that are uniquely determined. This implies that θ7, θ8 and θ10 are found
from the input vector e3, since the flux of a reaction gives the para-
meter. The three fluxes can then be calculated as =v zj

l
j i

l
j
s for the other

input vectors.
We continue with the =b e2

2 input vector where we get the fluxes

= =
= =
= + = +
= =

v b v v
v v v
v v v v v
v b v v

1

1

4
2

2
2

8
2

8
2

5
2

8
2

8
2

6
2

8
2

10
2

8
2

10
2

9
2

2
2

10
2

10
2 (59)

from the balance equations of Eq. (36) and S1
2 of Eq. (35). All the fluxes

on the right side of Eq. (59) can be calculated from the parameters
already found. This gives the values of the four fluxes on the left side,
providing the parameters θ4, θ5, θ6 and θ9 in addition to the three
parameters from before.

The three remaining parameters are then θ1, θ2 and θ3, and can be
found by applying the =b e1

1 input vector. This gives the three fluxes

= +
=
= +

v v v
v v
v v v v

1
1

4
1

5
1

2
1

7
1

3
1

5
1

7
1

8
1 (60)

from Eq. (36) and S1
1 of Eq. (35). All the fluxes on the right side of

Eq. (60) can be calculated from the already known parameters, which
gives the three fluxes on the left side and the remaining parameters θ1,
θ2 and θ3.

The argument above holds for all values of θ, and shows that the
standard design provides global identifiability for the example. In rea-
lity, information from all the input vectors is used simultaneously.
However, the steps above illustrate how the vectors together provide
identifiability.

6. Discussion

We have studied identifiability of kinetic parameters under the as-
sumption of first order kinetics and known input fluxes. Theorems for
pointwise and global identifiability are presented. The standard basis
input vectors are important, and a design can only provide identifia-
bility if the standard one does. Thm. 4 gives a criterion for global
identifiability of any given design, and guarantees uniqueness of the
estimate ^ in Eq. (44) if satisfied. Note that all the identifiability the-
orems do not depend on a statistical model.

Optimal experimental designs are found by using the Fisher in-
formation matrix calculated analytically under the assumption of
normal observations. We also create a minimal observation set by re-
moving redundant observations that do not contain any information
about the parameters. All the calculations and theorems are illustrated
using an example network.

It is assumed that the parameters θ are constant for all input vectors,
but they are likely to vary due to changing external factors such as
temperature. To combine data from different experiments and mea-
surements, one could use a mixed model with random effects [29] that
allows for variation in θ.

For the calculation of optimal input vectors, a value for θ has to be
assumed. However, this is a standard procedure in experimental design.
The minimal observation set, on the other hand, does not rely on the
statistical model or the parameter values. It also worth mentioning
again that the optimal design is independent of the standard deviation σ
of the observations.

The assumption of additive normally distributed error terms with
equal variance is easy to adjust to individual variances for the different
concentrations. It is also possible to use a multiplicative model like the
log-normal distribution. This has only positive support, which is de-
sirable as concentrations by definition are non-negative. Another ad-
vantage of the log-normal distribution is that the variance naturally
scales with the expectation in contrast to the normal model used here.
The potential problem of using a different distribution is the analytical
calculation of the Fisher information matrix. However, for the log-
normal distribution this can still be done.

The framework of the manuscript can be adopted to other network
structures with zero and first order kinetics, including unknown input
fluxes and partially known internal fluxes. Also, the global identifia-
bility analysis holds for any kinetic function of one parameter that is
bijective in the parameter for a fixed concentration. Altogether, this
makes it possible to apply some of the methods in the manuscript to a
much larger class of models.

From a practical point of view, it may not be possible to measure all
the steady-state concentrations of the network. The observation set Ω of
Eq. (40) can then be used to specify which measurements that are
available. In some cases one may only have measurements of fluxes or
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gene expressions, not of concentrations. The methods of this manuscript
can then not be applied directly, but may still give valuable information
about the network.

It is also unclear if the input fluxes can be chosen freely, as assumed
for the optimal design. However, it could be of interest to evaluate the
identifiability of a given design and compare it to the optimal one.
Finally, we believe that it is possible that future technological devel-
opments will make our methods even more relevant and applicable.
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Appendix A. Calculation of the Fisher information matrix

In this section we prove the expression of Eq. (46) for the FIM given in Thm. 5. By the definition in Eq. (45), entry (q, q′) of Iθ is given by

= f fI( ) ln ln
q q Y

q q
,

(A.1)

where the log-likelihood function is given by Eq. (43). Since l and k represents independent observations, the Fisher information matrix will be
additive in the observations [24, Ch. 2.6]. This implies that Eq. (A.1) becomes

=
f f

I( )
ln ln

q q
l k

Y
k
l

q

k
l

q
,

( , ) (A.2)

where the marginal log-likelihoods fln k
l are given by the logarithm of Eq. (41).

The derivatives in Eq. (A.2) can then be calculated using the chain rule

=
= =

f f
d

dln lnk
l

q i

n

j

n
k
l

i j

i j

q1 1 ,

,

(A.3)

with respect to the matrix entries di,j of Dθ since the dependence on θ in fln k
l is through Dθ. For fixed values of θ, all derivatives di j

q
, in Eq. (A.3) are

constants and the entries of Eq. (A.2) then may be written

=
= = = =

d d f
d

f
d

I( )
ln ln

q q
l k i

n

j

n

i

n

j

n
i j

q

i j

q
Y

k
l

i j

k
l

i j
,

( , ) 1 1 1 1

, ,

, , (A.4)

which shows that Iθ is formed by linear combinations of expressions

f
d

f
d

ln ln
.Y

k
l

i j

k
l

i j, , (A.5)

The derivatives in the expression of Eq. (A.5) are given by

=
f

d
Y z z

d
ln 1 ( )k

l

i j
k
l

k
l k

l

i j,
2

, (A.6)

where the derivative is fixed for a given θ such that Eq. (A.5) becomes

=

= =

f
d

f
d

z
d

z
d

Y z

z
d

z
d

Y z
d

z
d

ln ln 1 [( ) ]

1 Var( ) 1 .

Y
i j i j

k
l

i j

k
l

i j
Y k

l
k
l

k
l

i j

k
l

i j
k
l k

l

i j

k
l

i j

, ,
4

, ,

2

4
, ,

2
, , (A.7)

Plugging this into Eq. (A.4) gives

=
= = = =

d d z
d

z
d

I( ) 1
q q

l k i

n

j

n

i

n

j

n
i j

q

i j

q

k
l

i j

k
l

i j
, 2

( , ) 1 1 1 1

, ,

, , (A.8)

for the entries of Iθ. The expression of Eq. (A.8) may seem overwhelming with several sums. However, the only assumption used is that the entries of
Dθ are functions of the parameters θ, and four of the sums will collapse by making use of the structure of Dθ. First, we refactor Eq. (A.8) as

=
= = = =

d z
d

d z
d

I( ) 1
q q

l k i

n

j

n
i j

q

k
l

i j i

n

j

n
i j

q

k
l

i j
, 2

( , ) 1 1

,

, 1 1

,

, (A.9)

such that the two brackets are associated with θq and ,q respectively. The matrix = dD { }i j, of Eq. (13) is given by =D S K1 . The only occurrence of
θq in Kθ is in position q i( , )q

s . Then, only column iq
s in Dθ contains θq. Thus, the sums over j and j′ in Eq. (A.9) reduce to only =j iq

s and =j iq
s .

Further, since Kθ is exactly equal to θq in position q i( , )q
s we have the derivatives

=
d

S( )
i i

q
i q

,
1 ,

q
s

(A.10)
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where (S1)i,q is entry (i, q) of S1. Then Eq. (A.9) simplifies to

=
= =

z
d

z
d

I S S( ) 1 ( ) ( ) .q q
l k i

n

i q
k
l

i i i

n

i q
k
l

i i
, 2

( , ) 1
1 ,

, 1
1 ,

,q
s

q
s

(A.11)

Each column q in S1 has two non-zero entries, namely q in row iq
s and βq in row iq

p. The sums over i and i′ in Eq. (A.11) then reduce such that

=

×

z
d

z
d

z
d

z
d

I( ) 1

.

q q
l k

q
k
l

i i
q

k
l

i i

q
k
l

i i
q

k
l

i i

, 2
( , ) , ,

, ,

q
p

q
s

q
s

q
s

q
p

q
s

q
s

q
s

(A.12)

By changing the notation to j and j′ instead of q and q′, we have Eq. (46) of Thm. 5 and see that we are left with at most four non-zero terms for
each pair of l and k independently of the network size.

The remaining part is to calculate the partial derivatives used in Eq. (46) where the various matrices used are explained in relation to Thm. 5.
By Eq. (17) and Cramer’s rule, zk

l can be expressed as

=z D
D

det( )
det( )

.k
l

k l

(A.13)

To prepare for differentiation with respect to di,j, one may write

= ++ d dD Ddet( ) ( 1) det( ) (without ) andi j
i j i j i j, ( , ) , (A.14)

=
=

++

d j k
d d j k

D
D

det( )
(without ) if
( 1) det( ) (without ) if

k l i j
i j

i j i j
k l

i j

,

, ( , ) , (A.15)

which gives the partial derivatives

= +
d

D Ddet( ) ( 1) det( ) and
i j

i j
i j

,
( , )

(A.16)

=
=

=

+

+

d
j k
j k

D
D

D

det( )
0 if
( 1) det( ) if

(1 )( 1) det( ) .
i j

k l
i j

i j
k l

j k
i j

i j
k l

, ( , )

, ( , ) (A.17)

By applying the quotient rule to Eq. (A.13) we then get

= +z
d

D D D D
D

( 1)
det( )det( ) (1 )det( )det( )

(det( ))
(47)k

l

i j

i j
k l

i j j k i j
k l

,

( , ) , ( , )
2

which is Eq. (47) of Thm. 5.

Appendix B. Identifiability examples

To illustrate the identifiability further, we have a few more examples for the network of Fig. 2 similar to the one given after Def. 1. First, we look
closer at the design {e2, e3}. From the argument in Sec. 5.3, all the parameters except θ1, θ2 and θ3 are identifiable for this design independently of
the values of θ. To show this, we solve Eq. (28) for θ with the parameter values of Eq. (56) and look at the pointwise identifiability. The solution is

= = + + +

1
1
1
1
1
1
1
1
1
1

1
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0

1

2

3

4

5

6

7

8

9

10

1 2 3

(B.1)

where , ,1 2 3 are free parameters, and the constant vector is the true parameter values of Eq. (56). We see that the three parameters θ1, θ2
and θ3 are free as proposed. They do not take part in linear combinations either, as we have absolutely no information about them from the
observations.

If we instead look at the design {e1, e3} for the parameter values in Eq. (56), we get a different situation. The solution of Eq. (28) is then
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= = +

1
1
1
1
1
1
1
1
1
1

1
0

1
0
2
0
0
0
0
0

1

2

3

4

5

6

7

8

9

10 (B.2)

where again is a free parameter and the constant vector is the true parameter values. There are still three non-identifiable parameters, but only
one free parameter in the solution. Looking at Fig. 2, we see that the non-identifiable parameters θ1, θ3 and θ5 form a circuit. By using the input
vectors e1 and e3 we are not able to determine how much of the flow that goes through v1 and v5, and how much of the flow that goes through v3.

Appendix C. Toy example

In this appendix we illustrate the method of the manuscript by applying it to the small toy example in Fig. C.4, which is a sub-network of the
example in Fig. 1. It has =n 2 metabolites Xk, =r 31 parameters θj and =r 20 input fluxes bj where all the =r 5 reactions are given in Tab. C.5.

We see that the reactions are already numbered according to Eq. (5) with the first order fluxes first and the leaving fluxes last. The stoichiometric
matrix S is then given by the two sub-matrices S1 and S0 as

= =S S S[ ] 1 1 0 1 0
1 0 1 0 1 where1 0

(C.1)

= =S S1 1 0
1 0 1 and 1 0

0 1 .1 0
(C.2)

The corresponding separation of the fluxes v into v1 and v0 is given by

= = = =
x
x
x

b
bv v

v v v bwhere and .1
0 1

1 1

2 1

3 2

0
1

2
(C.3)

We now want to check for global identifiability in accordance with Def. 2 using Thm. 3 and 4. To do this, we consider the design =b b e e{ , } { , }1 2
1 2

of standard basis vectors =e [1 0]1
T and =e [0 1]2

T in 2. The active reactions and metabolites for this design are given in Tab. C.6 and visualized
in Fig. C.5, where the sets are easily found by a visual inspection of Fig. C.4.

From S1 in Eq. (C.2) and the active reactions in Tab. C.6 we get

= =S S 0 0
0 0

1 1 0
1 0 1 and 0

11
1

1
2

(C.4)

as the modified stoichiometric matrices Sl
1 of Sec. 3.4 for the standard design where the gray columns of non-active reactions are set to zero. This

gives

Fig. C1. Toy example network with two dif-
ferent sets of labels. The nodes are metabolites
with names Xk and concentrations xk, while
the directed edges are irreversible reactions. In
the left panel are all the fluxes labelled by vj. In
the right panel are the first order fluxes la-
belled by their parameters θj, while the input
fluxes are labelled by bj.

Table C1
Reactions for the example in Fig. C.4 on the form of Eq. (2).

=j 1 X1 → X2 =i 1s
1 =i 2p

1
=j 2 X1 → =i 1s

2
=j 3 X2 → =i 2s

3
=j 4 → X1 =i 1p

4
=j 5 → X2 =i 2p

5
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= =S
S
S

1 1 0
1 0 1
0 0 0
0 0 1

P
1
1

1
2

(C.5)

for the matrix SP of Eq. (37). Since SP has = =rSRank( ) 3P 1 giving full column rank, the parameter vector θ is globally identifiable by Thm. 4.
The global identifiability can be also be shown by similar calculations as in Sec. 5.3 for the example of Fig. 1. As before, let zk

l and vj
l be the steady-

state values of xk and vj for the input vector =b el
l. From the steady-state condition of Eq. (36) we then get the balance equations

= = +X b v veFor under :11 1 1
1

1
1

2
1 (C.6)

=X v veFor under :2 1 1
1

3
1 (C.7)

= =X b veFor under :12 2 2
2

3
2 (C.8)

where the fluxes are given by =v zj
l

j i
l
j
s as before with the substrate indices ij

s given in Tab. C.5 and all the steady-state concentrations zk
l assumed

known.
By using that =v z ,3

2
3 2

2 Eq. (C.8) gives us the parameter value = z3
1

2
2 . Then = =v z z

z3
1

3 2
1 2

1

2
2 such that Eq. (C.7) gives = z

z z1
2
1

1
1

2
2 since =v z1

1
1 1

1.

Finally, from using that =v z2
1

2 1
1 in Eq. (C.6) we get = z z

z z2
2
2

2
1

1
1

2
2 . Note that >z z2

2
2
1 such that θ2 > 0 since = = > = =v z v z v1 13

2
3 2

2
3
1

3 2
1

2
1. In total,

we see that all the parameters θ can be calculated from the three concentrations z ,1
1 z2

1 and z2
2 for the standard design such that θ is globally

identifiable. The three concentrations are exactly the active metabolites of Tab. C.6 which gives the minimal observation set

= {(1, 1), (1, 2), (2, 2)} (C.9)

of Sec. 4.2 where (l, k) ∈ Ω if >z 0k
l such that Xk is active for =b el

l. It could also be noted that if all = 1,j the optimal design of Eq. (50) with =m 2
vectors under the constraint of Eq. (51) is simply the standard design. The corresponding maximum value for Eq. (50) is =Idet( ) 0.0156· 6.

Appendix D. Addition of an input vector to an existing design

The maximization of Idet( ) in Eq. (50) under the constraint of Eq. (51) gives a criterion for a design of m input vectors to be optimal. In general,
the full maximization in Eq. (50) must be repeated if the optimal design of +m 1 input vectors is wanted instead. However, in a practical situation
one may have a fixed design of m input vectors and want to add one more input vector in an optimal way. If the fixed design of m input vectors
provides pointwise identifiability, the maximization of Eq. (50) can be adopted to this situation. Note that the fixed design is not assumed to be
optimal, only to provide pointwise identifiability.

Theorem 6. Assume that a design …b b{ , , }m1 provides pointwise identifiability, and that we want to add one more input vector to the design in an optimal
way. When keeping the m original input vectors fixed and assuming that +m k( 1, ) for all k, the optimization

=+
+

b I* argmax[det( )]m

b

1
m 1 (D.1)

for the additional input vector is equivalent to

= ++ + +
+

b J I J* argmax det 1 ( ) ,m
n m m m

b

1
2

1T 1 1
m 1 (D.2)

where Im is the FIM for the original design, n is the n × n identity matrix and = …+ + +J J J[ ]m m
n
m1

1
1 1 with the vectors +Jk

m 1 given by Eq. (49).

Proof. The FIM Iθ for the new design of +m 1 input vectors can be written

= = +
=

+

=

+ +I J J I J J1 1

l

m

k

n

l k

k
l

k
l m m m

2
1

1

1
( , )

T
2

1 1T

(D.3)

by using Eq. (48) where the vectors Jk
l are given by Eq. (49), and Ω is the observation set for the full design of +m 1 input vectors. Since the original

Table C2
Active reactions (left) and metabolites (right) for the example in Fig. C.4 and the standard vectors ej, where a cross is active. The information is visualized in Fig. C.5.

v1 v2 v3 X1 X2

e1 × × × e1 × ×
e2 × e2 ×

Fig. C2. Active reactions and metabolites for
the example in Fig. C.4 and the standard de-
sign, same as in Tab. C.6. Dark blue fluxes and
metabolites are active, while the light gray
ones are non-active. The left panel is for

=b e1
1 and the right panel for =b e2

2.
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design of m input vectors provides identifiability, the matrix Im is invertible and symmetric positive definite with >Idet( ) 0m . Then

= +

= +

+ +

+ +

I I J J

J I J I

det( ) det 1

det 1 ( ) det( )

m m m

n m m m m

2
1 1T

2
1T 1 1

(D.4)

by the matrix determinant lemma [30]. Since Idet( )m is constant with respect to the optimization of Eq. (D.1) and has a positive value, the optimum
for Idet( ) can be found by considering only the first factor of Eq. (D.4). □

This theorem transforms the optimization from evaluating a determinant of dimension r1, the number of parameters and first order reactions, to
evaluating a determinant of dimension n, the number of metabolites. Since r1 > n in most networks, this may be beneficial even though the formula
of Eq. (D.2) involves a fixed matrix inverse I( )m 1.

Note that the optimization of Eq. (D.2) is unbounded in the same way as Eq. (50), so a constraint like Eq. (51) is still necessary for the additional
input vector. It is also worth mentioning that the method for the extra input vector easily can be adjusted if +m k( 1, ) for some k.
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