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Abstract 

Neurons often display complex morphologies with long and fine processes that can be 

difficult to visualize, in particular in living animals. Transgenic reporter lines in which 

fluorescent proteins are expressed in defined populations of neurons are important tools that 

can overcome these difficulties. By using membrane-attached fluorescent proteins, such 

reporter transgenes can identify the complete outline of subsets of neurons or they can 

highlight the subcellular localization of fusion proteins, for example at pre- or postsynaptic 

sites. The relative stability of fluorescent proteins furthermore allows the tracing of the 

progeny of cells over time and can therefore provide information about potential roles of the 

gene whose regulatory elements are controlling the expression of the fluorescent protein. Here 

we describe the generation of transgenic reporter lines in the sea anemone Nematostella 

vectensis, a cnidarian model organism for studying the evolution of developmental processes. 

We also provide an overview of existing transgenic Nematostella lines that have been used to 

study conserved and derived aspects of nervous system development.  
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1 Introduction 

Cnidarians are a group of morphologically diverse animals that includes corals, sea anemones 

and various types of jellyfish. They are the sister group to bilaterians [1] and as such occupy 

an informative position in the tree of life for understanding the early evolution of nervous 

systems. The relevance of cnidarians for the evolution of nervous systems has long been 

recognized, but only with the advent of molecular tools in the last ten to twenty years, it 

became possible to identify common and divergent features of cnidarian and bilaterian 

nervous system development [2-5]. 

Cnidarians are grouped into anthozoans and medusozoans, the latter typically being 

characterized by the presence of a pelagic medusa in their life cycle, which is generated 

asexually from polyps [6]. Anthozoans, in contrast, lack a medusa stage and exist only as 

sexually reproducing, sessile polyps. The nervous system of polyps contains areas of lower 

and higher density of neurons and can feature tracts of longitudinal neurites, but its overall 

organization is best characterized as a nerve net [2-5]. Free-swimming medusae display a 

much higher degree of concentration of neural elements [7, 8]. This is particularly evident in 

the rhopalia, light and gravity sensing structures located at the margin of the bell in 

scyphozoan and cubozoan jellyfish. Rhopalia can contain thousands of neural cells and 

contribute to the control of swimming behaviour [9, 10]. Cells of the nervous system in 

cnidarians have traditionally been grouped into sensory cells (including sensory-motor cells), 

ganglion cells (morphologically equivalent to interneurons) and cnidocytes (“stinging cells”). 

Morphological, immunohistochemical and gene expression analyses have shown that these 

three main groups consist of many subgroups, but the integration of morphological and 

molecular data to define these subgroups more precisely is still in its early stages [4, 11]. The 

development of the nervous system has been studied mainly in two groups of cnidarians, 

hydrozoans (part of the medusozoans) and anthozoans. In both groups, nerve cells develop in 
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a spatially distributed manner throughout the tissue. In hydrozoans, most neural cells are 

generated from interstitial stem cells (i-cells), a heterogeneous population of cells with 

mesenchymal appearance that includes multipotent cells [12-14]. Embryonically, i-cells 

originate from the endoderm before they can migrate to the ectodermal layer [15-17]. 

Anthozoans embryos do not possess cells that resemble interstitial cells at the morphological 

level. Neural cells first appear in the ectoderm and after gastrulation also in the endoderm 

[18]. Epithelial neural progenitor cells are located in both germ layers and give rise to sensory 

cells and ganglion cells [4, 19]. Cnidocytes (stinging cells), a sensory cell type used for 

predation and defense are formed exclusively in ectodermal tissue. Despite this uncommon, 

broad neurogenic potential, cnidarian neurogenesis shares many molecular features with 

bilaterian neurogenesis, e.g. the involvement of SoxB and bHLH transcription factors and the 

Notch and Wnt signalling pathways (though a role for Notch in early neurogenesis seems to 

be absent in hydrozoans, [20-24]). These observations now allow us to move beyond 

candidate gene approaches to obtain a detailed understanding of the molecular basis for the 

broad neurogenic potential of cnidarians during embryonic development and regeneration. A 

key technological progress for studying neural development and neural function in cnidarians 

was the establishment of stable transgenic lines [25-27]. The distributed organization of the 

nervous system in cnidarians makes it difficult or impossible to use the position of cells 

expressing particular genes (detected by in situ hybridization) as an indicator of their neural 

identity. Transgenic reporter lines overcome this problem by visualizing the morphology of 

cells expressing a transgene, for example membrane tethered fluorescent proteins. Moreover, 

they allow tracing the progeny of the cells after they terminated the expression of a gene of 

interest and they have been used to record neural activity via genetically encoded calcium 

sensors [28]. Successful use of transgenic animals has been reported for the hydrozoans 

Hydra and Hydractinia, and for the anthozoan Nematostella [25, 27, 29]. Here we focus on 
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Nematostella vectensis to summarize features of published “neural” Nematostella reporter 

lines and provide a protocol for the generation of transgenic lines. This protocol is based on 

the one published by Renfer and Technau, 2017 [26] which uses the I-SceI Meganuclease to 

obtain transgenic lines with good efficiency. 

Available Nematostella reporter lines for the nervous system 

NvSoxB(2)[19] The HMG box transcription factor NvSoxB(2) is expressed from 

blastula stages on in mitotic and non-mitotic cells scattered throughout the ectoderm and 

(after gastrulation) the endoderm. The transgenic reporter line revealed that these cells 

develop into sensory cells, ganglion cells and cnidocytes. Mitotic memOrange-positive cells 

can also be detected, but their number is significantly lower than that of mitotic cells 

expressing NvSoxB(2) mRNA. The NvSoxB(2) mRNA expressing cells thus include neural 

progenitor cells that generate a large fraction of the larval nervous system. Individual 

memOrange positive cells can be detected by immunohistochemistry (using anti-dsRed 

antibodies) from gastrula stage on; in living or unstained animals, however, individual cells 

can be distinguished only at planula stage.  

NvElav1[18]  Orthologs of the RNA binding protein Elav are often considered pan-

neural markers in bilaterians. In Nematostella, the NvElav1::memOrange reporter line labels a 

population of sensory cells and ganglion cells in both germ layers, starting from gastrula stage 

and persisting in adult polyps. Double transgenic animals suggest that NvElav1::Cerulean-

positive cells constitute a subpopulation of the NvSoxB(2)::memOrange-positive cells. While 

the NvElav1 transgenics label a large number of morphologically heterogeneous neurons, co-

labelling with antibodies against neuropeptides has shown that neither the transgenic line, nor 

the elav1 transcript are pan-neural markers in Nematostella. Notably, the NvElav1 transcript 

and the transgenic line do not label cnidocytes. The Nematostella genome encodes a second 
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elav gene, which is not part of the “neural” group of elav genes. It has so far not been possible 

to determine the mRNA expression pattern of NvElav2.  

NvLWamide-like [30]    Transcripts for the neuropeptide NvLWamide-like are first 

detected in the aboral half of gastrula stage embryos and from planula stage on in ecto-and 

endodermal cells, including the pharynx and (at later stages) the tentacles. Fluorescence 

derived from the NvLWamide-like ::mCherry transgene is visible in neurons from mid-planula 

stage on in the ectoderm and pharynx and subsequently in the endoderm. The number of 

NvLWamide-like::mCherry-positive cells is small compared to the number of 

NvElav1::memOrange cells, which allowed the identification of specific subsets of these cells. 

Interestingly, some of these subsets display only little variability in their neurite projection 

patterns and positions in the body column. This high level of stereotypy will likely be 

beneficial for studying the mechanisms that control the positioning of these neurons and the 

outgrowth of their neurites.  

NvFoxQ2d [31]  The transcription factor NvFoxQ2d is expressed in both mitotic 

and non-mitotic cells in the ectoderm, starting at gastrula stage. Mitotic cells are not found in 

the NvFoxQ2d::memOrange transgenic line. One explanation for this observation can be that 

the NvFoxQ2d mRNA expressing cells undergo a terminal division and that the maturation 

time of the fluorescent protein precludes their identification in the transgenic line. The 

NvFoxQ2d::memOrange-positive cells are excluded from the oral area of the planula and 

polyp and they display a rather uniform morphology that resembles sensory cells. While they 

have only short neurite-like processes, they can be co-labelled with an antibody against 

FMRFamide neuropeptides, supporting their neural nature.  

NEP3 [32] NEP3 encodes a toxin whose mRNA is expressed in scattered cells of the 

ectoderm and in the tentacles. As suspected, a NvNEP3::mOrange2 transgene encoding a 
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fusion protein of the predicted signal peptide of NvNEP3 and the fluorescent reporter 

identified the NvNEP3-expressing cells as a large subpopulation of cnidocytes. 

 

2 Materials 

2.1 Animal maintenance and preparation of eggs 

1. Nematostella Medium 

- sea water (artificial of filtered natural) diluted to 14-16ppt. 

2. 3% Cysteine solution (L-cysteine, Sigma) in Nematostella medium, adjust pH with 

NaOH to 7.4. 

3. Pasteur pipettes with smooth opening (see Note 1) 

3. Petri dishes (see Note 1) 

4. Injection dish with a low wall (see Note 2) 

2.2  Injection solution 

1. I-SceI meganuclease (5U/µl, New England Biolabs) 

2. Alexa-conjugated Dextran MW10.000 (Life Technologies, see Note 3) 

3. Nuclease-free water for molecular biology 

2.3 Capillaries 

1. Holding capillary (custom-made Vacu Tip, Eppendorf, outer diameter 110µm, inner 

diameter 60µm, angle 25°, limb length 500µm, round front surface) 

2. Injection capillaries (made from GB100TF-10 borosilicate capillaries with filament, 

Science Products, Germany, see Note 4) 

2.4 Equipment 
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 1. Heating block 

 2. Puller for injection capillaries (Sutter P-97) 

 3. Inverted microscope with fluorescence lamp 

 4. Coarse and fine micromanipulators (MN-4 and MMO-202ND, Narishige) 

 5. CellTram vario (Eppendorf, see Note 5) 

 6. Microinjection pump (FemtoJet, Eppendorf) 

 

3 Methods 

3.1 Design and cloning of constructs 

The cloning cassette of the vector that has been used for the generation of transgenic 

Nematostella is flanked by sites for the I-SceI homing endonuclease and it contains an 

SV40 polyadenylation signal following the ORF of a fluorescent reporter protein of 

choice [25, 26]. The use of Gibson Assembly® [33] for cloning is a good option to 

keep the distance between the regulatory elements and the sequence encoding the 

fluorescent protein minimal. The cloning is performed by standard procedures; 

plasmids can be prepared with midi-prep kits to achieve high purity (see Note 6). 

 

3.2 Preparation of embryos 

1. To induce spawning, expose separate boxes with male and female polyps to bright 

light and a temperature of 24 -25°C for 12 hours (overnight, see Note 7).  

2. In the following morning, discard egg packages that have been laid overnight. Keep 

the boxes at the standard culture temperature (18 - 19°C) and collect freshly laid egg 
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packages after two hours. Fertilize the egg packages by incubating them for 20 min  

with an excess of medium from the box containing the male polyps. 

3. Transfer the fertilized egg packages to a petri dish and incubate them for 20 min in 

the 3% Cysteine solution (pH7.4) on a rotating shaker (see Notes 8 and 9) 

4. Collect the fertilized eggs and wash them in Nematostella medium 5 x for 2min, 1 x 

5min.  

5. Place the de-jellied eggs in the injection room (see Note 10). 

3.3 Preparation of injection solution 

Prepare the solution for injection in a 1.5ml tube. Incubate at 37°C for 20min, keep dark. 

Store on ice 

1. I-SceI buffer (10x)    1.0µl 

2. Dextran MW 10.000 (200ng/µl)   2.0µl 

3. Plasmid (100ng/µl, see Note 11)   2.0µl 

4. I-SceI (5U/µl)     2.0µl 

5. Nuclease-free water    to 10µl 

 

3.4 Transfer of zygotes to injection plate and preparation of capillaries 

1. Fill the injection dish with Nematostella medium and place it on the stage of the 

injection microscope. Use a Pasteur pipette with smooth opening to place the fertilized 

eggs in the injection dish. Attempt to place them as a column (see Note 12).  

2. Insert the holding capillary in the capillary holder connected to the Cell Tram. The 

distal part of the capillary should be parallel to the surface of the injection dish. 
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3. Use a microloader pipette tip to fill the injection capillary from the back end. Insert 

the pipette tip as deep as possible and release the injection solution close to the tip of 

the capillary. 

4. Insert the injection capillary in the capillary holder (see Note 13). 

5. Connect the capillary holder to the FemtoJet injection pump via the attached tube 

(see Note 14). 

6. Use the microscope stage to move the embryos into the field of view, then use the 

coarse and the fine micromanipulators to move the two capillaries into focus. 

7. Lower the injection capillary until the site at which you want to break it touches the 

bottom of the dish. Move the tip of the holding capillary on top of the injection 

capillary and gently move it down to open the injection capillary (see Note 15). 

 

3.5 Injection 

 1. Open the shutter for the fluorescent light and use the “inject” or the “clean” button 

of the injection pump to release air from the tip of the injection capillary. Adjust the 

injection volume via the injection pressure and the injection time (see Note 16).  

2. Adjust the “hold pressure” to avoid that medium from the dish is aspired into the 

injection capillary. 

3. Use the CellTram to hold a zygote and the micromanipulator to move the needle. 

Inject and remove the needle before releasing the zygote (see Note 17).  

4. Move the microscope stage to place the next zygote in front of the holding capillary. 

 

3.6 Identification of transgenic animals 
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1. Transfer the animals with clearly visible fluorescent dextran from the injection dish 

to a petri dish. 

2. Use a stereomicroscope or an inverted compound microscope to monitor the 

animals for expression of the fluorescent protein at the expected stage of development. 

Separate animals into groups according to the strength/breadth of expression (see Note 

18). 

3. Raise the animals according to standard culture protocols. 

4. Identify the sex of the animals and cross them individually to wild-type polyps (see 

Note 19) to identify carriers of the transgene. 

 

4 Notes 

1. Nematostella eggs and embryos stick to fresh plastic ware and glass pipettes. To 

reduce stickiness, we fill fresh pipettes and dishes with Nematostella medium for at 

least one night before first use and re-use them when possible. 

2. A low wall allows mounting the injection capillary with a low angle in relation to the 

surface of the injection dish. With a low angle, the egg is pressed towards the holding 

capillary during penetration of the injection capillary. As injection dishes we use the 

lids of Nunc 4-well plates. 

3. The colour of the fluorescent dextran should be chosen according to the fluorescent 

protein of the construct. 

4. The quality of the injection capillary is important for the survival of the injected 

embryos and the number of embryos that can be injected in one session. Capillaries 

that are too wide will damage the embryo and render the control of the injection 

volume difficult. If the capillary is too thin, it will bend when it comes into contact 



11 
  

with the egg and it gets clogged more easily. Parameters for pulling the injection 

needles need to be determined for each heating filament of the puller. The Pipette 

Cookbook is a good source of information available on the website of Sutter 

Instruments. 

5. Note that simpler microinjection setups can be used for Nematostella [34]. 

6. The identification of putative regulatory elements is greatly aided by the availability of 

genome-wide maps of chromatin modifications [35] that can be used to predict 

promoters and enhancers. When using upstream sequences only, we place the reverse 

primer immediately upstream of the start codon to include the 5’UTR. For many 

genes, however, the first intron contains putative regulatory elements [35] and should 

be included in the construct. We have so far used putative regulatory regions of 1.4 – 

6kb for generating stable transgenic lines (unpublished data). Congruence of 

endogenous and transgene-derived expression can be tested by fluorescent double in 

situ hybridization with probes for the ORF of the fluorescent protein and the gene of 

interest.  

7. In our feeding regime (Artemia nauplii 5 x per week), spawning of Nematostella 

polyps can be induced every 14 – 21 days for years. Shorter intervals (7 days) can be 

sustained for a few weeks, but fecundity tends to decrease thereafter.  Protocols for 

Nematostella culture conditions and the induction of spawning have been published 

[36-38]. 

8. After fertilization, use a stereomicroscope to select egg packages in which the eggs are 

round and have a rather uniform diameter. Differences in egg size require repeated 

adjustment of the position of the capillaries during injection. 

9. De-jellying by cysteine is an important step. If the eggs are not sufficiently de-jellied, 

both the holding and injection capillary will stick to the jelly and get clogged. If the 
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eggs are exposed to the cysteine solution too long, the survival rate decreases and 

more embryos display developmental abnormalities. 

10. Injection can be done until the blastomeres are separated, this is often the 4-cell stage. 

Lower temperature delays development and allows more time for injection. We cool 

the injection room to 16-18°C. 

11. The plasmid concentration that can be used for injection varies with the injection 

volume and with the quality of the plasmid preparation. A concentration of 20ng/µl is 

a good starting point, but the concentration can be increased as long as developmental 

defects and mortality remain limited.  

12. To align the eggs in a column, they need to be released slowly into the injection dish. 

This, however, increases the risk of them sticking to the glass or plastic of the pipette. 

13. Move the capillary into the holder carefully until it touches the O-ring.  

14. Refer to the user manual of the injection pump for detailed description. 

15. The opening of the injection capillary with the holding capillary can be time-

consuming and the exact point of breakage is difficult to predict. The part of the 

holding capillary that is furthest down has to be used for breaking; otherwise, the 

holding capillary itself might be damaged. Depending on the angle in which the 

holding capillary is mounted, the bending point (the “knee”) of the holding capillary 

might be furthest down. In this case, the desired break point has to be placed under the 

“knee”. Alternatively, fine forceps can be used to cut the injection capillary. 

16. Different labs use different volumes for the injection. The exact volume is difficult to 

determine because the fluorescent dextran diffuses very quickly throughout the egg. 

Injection into drops of oil to determine the injected volume is also difficult, because 

good injection capillaries tend to be too thin and flexible to be inserted into the oil. We 
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are trying to inject a drop of about ¼ of the diameter of an egg. With an average egg 

diameter of 230µm, this injection volume corresponds to approximately 100pl.  

17. During the injection session, we keep both the shutters for the fluorescent and the 

transmitted light open. This allows control of the injected volume throughout the 

injection session. We have not observed any aversive effects of the excitation of 

fluorescent tracer. 

18. The best time point for the screening of the injected animals depends on the injected 

construct and the expected pattern. In F0 planulae, we often observe expression that 

does not match the expected pattern, but this is no longer the case in primary polyps 

and it is not present in F1 planulae. When possible, we sort the F0 animals at primary 

polyp stage (10dpf), when they don’t swim anymore. However, for genes that are 

expressed only at very early developmental stages, the fluorescent signal might no 

longer be detectable at primary polyp stage. The F0 animals display mosaic expression 

and we sort them according to the area in which expression is visible, with the 

assumption that a bigger area of expression increases the likelihood of germline 

transmission. Ideally, we raise ca 100 F0 polyps that show expression of the transgene. 

It should be noted, though, that for genes that are expressed distant from the 

mesenteries (e.g. in tentacles) transgene expression in F0 animals may not be a good 

selection criteria, as non-fluorescent, but transgenic patches may well reside in the 

germline, while fluorophore-expressing animals may not harbour transgenic patches in 

the germline. In such cases, it is best to simply raise all or a random selection of 

embryos to the next generation.   

19. With the described method, integration of the transgene can occur at different 

positions in the genome. Spatial and temporal aspects of the expression of the 

transgene can thus be affected by the integration site. It is therefore desirable to 
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generate transgenic lines from more than one F0 animal to allow comparison of the 

observed expression. 

20. The sex of the adult polyps can only be determined by inducing them to spawn 

individually.  
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Figures 

 

Figure 1 Transgenic Nematostella reporter lines. (A-C) Elav1::mOrange, detected by an anti-

dsRed antibody and pseudocoloured. (A) Primary polyp (8 dpf), with aboral pole to the 

left, F-actin is stained with Phalloidin (green). (B, C) Body wall of 3-week old polyps. (B) 

is a F1 fully transgenic animal, note the two tracts of neurites that run along the oral-

aboral axis (left to right). Nuclei are stained with DAPI (blue). (C) is a mosaic F0 

transgenic animal that has been injected with the reporter plasmid. Fewer cells are 

labelled, allowing better resolution of individual neurons. (D) Elav1::cerulean (cyan), 

FoxQ2d::mOrange (magenta) double positive planula with aboral pole to the left.There is 

no overlap of the two neural cell poulations. 
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Figure 2 Microscope set-up for Nematostella microinjections. (A) Overview; the injection 

set-up is mounted on an inverted microscope equipped with a mercury lamp. The injection 

pump is connected to the injection capillary (on the right side of the microscope), the Cell 

Tram to the holding capillary (on the left side). A joystick operates the micromanipulator. 

Injection is triggered with a foot pedal or a by mouse click (not on the image). (B) The 

coarse manipulator is mounted on the microscope.  

 

 

 

Figure 3 Opening of the injection capillary. Schematic depiction of the opening of the 

injection capillary with the holding capillary. The injection capillary is lowered to touch 

the bottom of the injection dish (point of contact is indicated by the bend of the injection 

capillary). The holding capillary is lowered to break the injection capillary (middle panel).  


