
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Vis-a-Vis: Visual Exploration of
Visualization Source Code Evolution

Fabian Bolte, Member, IEEE and Stefan Bruckner, Member, IEEE Computer Society

Abstract—Developing an algorithm for a visualization prototype often involves the direct comparison of different development stages
and design decisions, and even minor modifications may dramatically affect the results. While existing development tools provide
visualizations for gaining general insight into performance and structural aspects of the source code, they neglect the central
importance of result images unique to graphical algorithms. In this paper, we present a novel approach that enables visualization
programmers to simultaneously explore the evolution of their algorithm during the development phase together with its corresponding
visual outcomes by providing an automatically updating meta visualization. Our interactive system allows for the direct comparison of
all development states on both the visual and the source code level, by providing easy to use navigation and comparison tools. The
on-the-fly construction of difference images, source code differences, and a visual representation of the source code structure further
enhance the user’s insight into the states’ interconnected changes over time. Our solution is accessible via a web-based interface that
provides GPU-accelerated live execution of C++ and GLSL code, as well as supporting a domain-specific programming language for
scientific visualization.

Index Terms—Visualization System and Toolkit Design, User Interfaces, Integrating Spatial and Non-Spatial Data Visualization,
Software Visualization.

F

1 INTRODUCTION

THE process of developing a visualization algorithm
typically involves a trial-and-error approach consisting

of the repetitive task sequence of writing code, compiling
the program, and comparing the visual result to previous
outputs. This is common practice in research and industry
for fixing bugs or developing new features. Existing devel-
opment tools ease the software development on a general
level by providing visual insight into the source code struc-
ture and the application’s performance. Development tools
specifically designed for visualization algorithms could fur-
ther improve the user’s experience by providing insight
into the visual changes created by the source code [1]. An
overview of the visual results created at different points in
time can ease the comparison of features in the algorithm.
Source code changes and changes in the visual result can be
investigated as a unit, instead of being considered individ-
ually. When teaching visualization algorithms to students,
free exploration of the source code’s evolution and its result-
ing visual outcome can build a deeper understanding of the
underlying technical details and problems that occur during
the development of such algorithms. Some recent tools [2],
[3] provide a live view of the application’s result and thereby
relieve the user from the common compile-and-run cycle.
While several approaches present a visual history of the
source code evolution [4], [5], [6], none of them connect
the source code to its graphical output. The development of
visualization techniques, in particular for prototyping and
education purposes, could greatly benefit from a coupling
of the source code to its visual result, making it easier to
pinpoint when artifacts are introduced or whether a specific
method is sensitive to noise in the data.

• Fabian Bolte and Stefan Bruckner are with the Department of Informatics,
University of Bergen, Norway.
E-mail: {stefan.bruckner, fabian.bolte}@uib.no

In this paper, we present a novel approach for vi-
sualizing an algorithm’s evolution for a general purpose
(C++, GLSL) and a domain-specific programming language
targeted at scientific visualization algorithms. We provide
tools for investigating all revisions at different levels of
detail with side-by-side comparisons for visual results, a
visual representation of the source code’s structure, dif-
ference images, and source code differences. We further
apply user-defined algorithmic parameters to all states of
the evolution to ease the comparison task with respect to
parameter changes. We present results in an automatically
updating and interactive environment, that enables direct
state comparison and navigation throughout the whole
development process with instant state switching for free
investigation. Our system provides visual support of the
development process in an interactive visual analysis tool
for visualization researchers and practitioners. The tool can
further be utilized in the education domain to teach visual-
ization algorithms and their detailed differences to students,
building a fundamental understanding of the correlations
between algorithmic and visual changes, and a strong basis
for future visualization research.

Our main contributions can be summarized as follows:

• We introduce a novel approach for the concurrent
live visualization of the evolution of scientific visual-
ization source code and its visual output.

• We provide automatic revision management with
interactive state switching and visual guidance.

• Algorithm parameters can be automatically mapped
to user interface elements and their effects can be
explored interactively on the entire revision history.

• The system is implemented as a web-based client-
server environment enabling the development of
GPU-based visualization algorithms on any client.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

2 RELATED WORK

Our system provides support for the development of
scientific visualization prototypes and benefits from on-
the-fly compilation, live previews, automatic revision
management, and parameter management. While our
general approach of combining these features into a single
development environment is novel, many visualization
techniques exist for individual features.

Terminology
A visualization developer (user), writes visualization source
code to describe an algorithm. Instead of considering
full-fledged visualization solutions, which integrate the
whole visualization pipeline (reading and processing data,
creating a render window, etc.) we mainly focus on the
visual mapping and rendering part. We use the term state
to refer to a revision of the source code in a version control
system. Every state creates a visual result (output) based on
a given parameter set. We create a meta visualization, used
in the same sense as Bertini et al. [7] – a visualization of
visualizations, to showcase the evolution of an algorithm.

Software Visualization
Software visualization has been a prominent topic over
many years and many powerful methods have been devel-
oped. They visualize software projects at different granular-
ities, such as the source code level, the software structure,
or the runtime behavior of the program [8].

SeeSoft [9] represents a file as a column and each line
of code (LOC) as a fixed size row. Marcus et al. [10] reduce
the required space of this visualization by representing each
LOC as a square and appending them to fixed length rows.
They further highlight the syntactical structure of the source
code by coloring each square depending on its nesting
level or keywords of the language. The visualization of
source code history is likewise a prominent research field
in software visualization [11]. DeVis [12] summarizes the
number of LOCs that have been added, deleted, or modified
in a pie chart and provides this information over time in
a spiral layout. CVSscan [4] highlights structures in source
files and aligns the LOCs across time to create a history view.
Telea and Auber [5] take this approach further by directly
visualizing the evolution via a flow graph. Holten and van
Wijk [13] show how this approach can be enhanced by edge
bundling. Chronicler [6] builds a node-link diagram from
the source code structure and connects correlating nodes
in a flow graph to display the evolution of hierarchical
structures. The entire structure of a software project can
be visualized to gain an overview of all existing classes,
their relationships [14] and their evolution [15], [16], [17],
[18]. Additionally, the authors of developed classes and their
collaborations can be displayed [19], [20]. The runtime be-
havior and performance of an application can be visualized
to detect issues or bottlenecks within the code [21].

This kind of visual analysis can be generally applied
to, but is not specifically designed for, source code
of visualization algorithms. In our approach, we take
advantage of the visual output that is specific to
visualization algorithms and provide tools to support
the intrinsic needs of visualization developers.

Visualization Pipeline
Existing frameworks like VTK [22], ParaView [23] and
MeVisLab [24] enable the construction of and insight into
the pipeline of a scientific visualization process. Each
pipeline consists of several modules featuring algorithms
with their respective inputs and outputs, including
operations from data space, through visualization space,
into image space. These kinds of frameworks provide
visual support for the rapid prototyping and analysis of
visualization pipelines. They simplify the task of comparing
individual pipelines against each other and finding proper
parameter sets to run them with. In contrast, our system
provides visual support for the process of prototyping a
visualization algorithm, which could then be utilized as a
module within one of these frameworks.

Parameter Management
Many systems provide support for finding a suitable pa-
rameter set for a given visualization. Design Galleries [25]
generate multiple output images from dispersed parameter
sets to provide an overview of the parameter space and
enable the easy identification of desirable results. Image
graphs [26] display the parameter changes between different
output images and spreadsheet-like interfaces [27] allow for
the investigation of parameter effects and their interplay.
Sedlmair et al. [28] evaluate existing work on visual parame-
ter space analysis and divide problems, strategies, and tasks
into a conceptual framework.

All these approaches analyze and compare the effect of
different parameter sets for a given visualization with the
goal of finding one suitable set. In contrast, we utilize one
parameter set at a time to analyze its effect on different
visualizations in order to inform the user about aspects
such as sensitivity to parameter changes during different
phases of development.

Visual Provenance
Visualizing the evolution of a workflow is closely related to
the notions of provenance [29] and graphical histories [30].
They provide important information for improving the
user’s understanding, the product’s quality, and ensuring
reproducibility. Several tools, including Kepler [31],
Triana [32], and work by Pimentel et al. [33], focus on the
history of user interactions and modifications in data, meta
data, information systems, and workflow. Such systems
have shown that a version tree and thumbnails can be
utilized to improve a user’s exploration capabilities [34],
[35]. VisTrails [36] is a system specifically designed for
visualizing provenance in the visualization pipeline,
allowing for the comparison of several visualizations for
different data and parameter sets. It therefore addresses
many of the issues found in the process of constructing a
visualization pipeline for a given task and data set, that we
face in the context of developing a visualization algorithm.
However, our approach starts at an earlier level, even before
the visualization methods are known, and visualizes the
provenance of the algorithms themselves by allowing for
the investigation of the development process. We thereby
provide a support system for visualization developers
instead of users of existing techniques.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Live Execution & Notebooks
An increasing number of powerful online tools provide
live previews for the output of code in different languages.
Notebooks like Jupyter [37] and Observable [38] allow for
the definition and individual execution of code snippets,
interlaced with text to provide explanations of the code.
This leads to a tighter coupling of source code and its
output for interpreted languages. For compiled languages,
on-the-fly previews, as seen in Overleaf [39] for LATEX, are
often only provided for the output of the complete source
code. ShaderToy [3] allows for the editing of GLSL code and
combines a live view of the result and predefined inputs
to create a powerful environment for prototyping shader
effects. Vega-Lite [2] is a high-level grammar for interactive
information visualization that provides an online editor
with instant visual feedback and extensions for visual
debugging techniques [40]. Literate visualization [41] builds
an evolution of visualizations and explanations for their
design choices on top of that. None of these solutions,
however, provide means for exploring the evolution of the
code and its results over time.

3 OVERVIEW

Visualization has been proven to be invaluable for many ap-
plications in vastly varying fields, by improving the user’s
insight into complex data [42]. It is therefore remarkable
that we, as visualization researchers and practitioners, make
limited use of advanced visualization tools in what is often
a considerable part of our daily work – the development of
visualization algorithms. We want to improve the current
situation by providing an interactive tool for visualization
developers to support the investigation of their work. Our
first approach in this direction is aimed at the prototyping
of such algorithms and we see great potential for our appli-
cation being utilized in the education domain for teaching
visualization algorithms to students.

3.1 User and Task Requirements

In order to improve the visualization researcher’s devel-
opment process, it is important to first understand their
problems and needs. We therefore take a look at a program-
mer’s standard workflow, visualized in Figure 1. During the
development process a user typically (partially) implements
a visualization algorithm, compiles the source code, and
tests if the developed program generates the expected visual
result. If it does, the current state can be manually stored
as a backup and extended until it supports all required
features. If an intermediate result is incorrect or undesired
in any way, the source code must be inspected to locate
and fix the issue (debug), recompiled, and tested again.
This time-consuming process must be repeated until the
result appears free of issues. If the identified issue cannot
be located or cannot be fixed, a previously stored state must
be restored. Even if the source code is free of issues, the
implemented feature might turn out to be unsuitable for the
given task and should be replaced by another feature. This
again requires the user to continue from a previous state.

Start

End

program

test

compile

debug

good?

yes

no

finished?

yes

no

yes

storage

fixed?

no

retrieve

store

debug?

no

yes

Fig. 1: Development workflow. During the development
process, a user programs a visualization algorithm, compiles
the source code, and tests the outcome. Bugs are typically
fixed in an iterative manner. The whole process is normally
performed separately for each feature of the implemen-
tation. Functioning features can be manually stored, and
restored when the current state is not satisfactory.

Many visualization algorithms define several parameters
which significantly influence the visual result [43]. Aspects
such as the robustness against small perturbations of these
parameters typically need to be continuously verified.
While unit tests and other forms of testing are meant to
fulfill a similar purpose, they are often only employed
once a set of required features is clearly defined and
already implemented in form of a prototype. In research, in
particular, we often lack the detailed specification needed to
clearly specify such tests from the very beginning. Based on
previous observations [1] and our own analysis of a typical
visualization developer’s workflow, we can identify a set of
tasks that are regularly performed by the user and could
benefit from additional support:

T1. Compiling the visualization source code to investigate
the visual result regarding functionality
T2. Comparing visual results from different revisions
T3. Understanding the impact of several implemented
features on the visual outcome
T4. Locating the parts of source code that are responsible
for a visual feature or bug
T5. Switching between source code states
T6. Finding suitable input parameter values



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

explore
interact

compare

source code

visual result code structure

evolution of
visual result

and code
structure

user

compile extract

visualizevisualize

read / write

Fig. 2: System overview. When a user writes visualization
source code, its structure can be extracted and its execution
provides a visual result. Following this procedure over time
and combining both components into an interactive meta
visualization, provides insight into the evolution of the
developed algorithm.

These tasks are partially supported by common pro-
gramming environments, but could in many cases be per-
formed in a more efficient manner. Compilation of the source
code typically needs to be manually initiated, thus break-
ing the developer’s focus on the implementation of the
algorithm. Several visual results can only be compared by
individually compiling and investigating the corresponding
states, which have to be manually stored and restored.

Although the source code creates the visual features in
the algorithm’s result, these two aspects are never directly
shown in relation to each other. The source code that is
responsible for a given feature can thus only be located by
reading and understanding the source code. This task is only
accelerated if the user knows in which order the features
were coded. The same issue occurs when trying to find a bug
in the source code. By the time the user manually initiates
the compilation process, a lot of code might have been
written and is suspect to having introduced the problem.

In order to compare features and source code, the user
must be able to switch between different states. This task
is frequently performed to compare functioning to malfunc-
tioning code, but not sufficiently supported by commonly
used development tools. As bugs or other issues are often
only discovered when inspecting the visual results, current
revision management tools, which provide guidance by
highlighting source code differences and listing manually-
entered commit messages, are a suboptimal solution.

Finally, the analysis of input parameters and their effects
on different stages of the development process is only
poorly supported by current tools and typically requires a
cumbersome trial-and-error process.

3.2 System Design

Looking at the outlined shortcomings of commonly used
systems with respect to the discussed user tasks, we are
able to identify several key aspects that would greatly assist
visualization developers:

• Visualization for investigating the visual results of
several different states at the same time (T2, T3)

• Visualization of the states’ source codes in relation to
their visual features (T3, T4)

• On-the-spot switching between several states, visu-
ally guided by the states’ visual results (T5)

• Automatic compilation of source code in the back-
ground (T1)

• Automatic and transparent storage of source code
states (T2, T5)

• Interactive elements for on-the-fly value definition of
input parameters (T6)

The desire to provide an integrated solution that ad-
dresses these points lies at the heart of our system’s de-
sign, which is illustrated in Figure 2. We aim to assist
the programmer in focusing on the implementation of the
algorithm’s features, understanding and comparing the im-
pact of different choices on the visual result, and allowing
for their comparison. We provide further support for the
localization of issues and the automation of tedious tasks.

Our system was designed to flexibly support multiple
back ends. It supports C++ and GLSL code as general-
purpose programming languages, as well as Diderot [44],
a domain-specific language (DSL) specifically designed
for the development of scientific visualization algorithms.
While C++ and GLSL have been utilized in many visual-
ization applications for possible performance gains, DSLs
provide benefits in usability and expressiveness, while re-
ducing the complexity of the algorithm’s source code with
efficient syntax. Diderot specifically provides support for
visualization-specific data and features, leading to compact
and readable code. It further allows for parallel execution of
the developed algorithm and thereby provides faster visual
feedback. All examples and results in the remainder of this
paper are either generated using Diderot, or a combination
of C++ and GLSL code.

When analyzing the planned support functionalities to
build a meta visualization which enables the exploration of
a visualization’s evolution, it becomes clear that our system
requires access to the algorithm’s source code and its visual
result. Many visualization algorithms further depend on the
definition of a proper parameter set to produce a meaningful
output. We want to apply the same parameter changes
to several different states of the source code evolution to
compare their impact on the visual result. Therefore, input
parameters need to be extracted from each algorithm to
check which parameters can be applied. The toolchain of
a programming language needs to meet two requirements
to be supported by our visual analysis system:

• Facilities for extracting the visual outcome from the
algorithm’s execution

• Definition of input parameters to steer the execution
and influence the runtime environment of the algo-
rithm via external tools

When these conditions are fulfilled, the programming
language can be integrated into our system and benefit from
all the additional functionality.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 3: Meta visualization. (A) The revision tree of all stored
states is shown as a node-link diagram, where every revision
is represented as a node and a link between two nodes
illustrates the evolution from the upper to the lower node.
The number of links at the bottom of each node represent
the number of branches evolved from this state. States and
their links are colored in blue for the current branch and
grey for other branches. The current state is highlighted in
orange and collapsed nodes are highlighted in green. (B)
The static scope tree outlines the source code’s structure and
is shown for each state of the current branch. Each node
represents one structural block of the source code. A link
between two nodes represents that the scope to the right is
nested inside the scope to the left. (C) The comparison of
visual changes is presented in a juxtapositional view. For
each state of the current branch, the visual result created by
the source code is displayed as an image from a user-defined
viewpoint. For states which are collapsed in the revision tree
representation, result images are positioned next to each
other. (D) A comparison image shows the visual variance
between all result images inside such a collapsed node.

4 EXPLORING VISUALIZATION SOURCE CODE

In order to transcribe our main concept into a usable inter-
face, we provide a meta visualization displaying the infor-
mation of all visualizations created during the development
process. All methods, their main ideas and comparison to
alternative approaches, will be covered in the following. The
resulting meta visualization, produced from an exemplary
development process, is depicted in Figure 3.

4.1 Automatic Revision Management
A central goal of our approach is to enable and support
the comparison of several states during the development
of a visualization algorithm. Many of our design choices
draw inspiration from the VisTrails [36] approach for vi-
sualization pipelines. In order to access a given revision
and all its information at a later point in time, it needs
to be stored. Many applications make the user responsible
for storing their progress by enabling them to manually
save the current state. This approach only provides access
to the last development state and is prone to system fail-
ure, whereas smarter systems create automatic backups. In
practical software development, version control systems like
Git [45] or SVN [46] are typically employed as they store the
entire revision history. However, the process of storing an
individual revision still needs to be triggered manually.

We internally utilize a version control system (Git) and
draw inspiration from modern tools such as Google Docs

that automatically track the version history of a document
without user intervention. Instead of constantly interrupting
their workflow, users can simply focus on the development
process. We automatically track and store every code edit
and create a new revision whenever the corresponding
source code compiles successfully. All automatically stored
states are displayed to the user in a node-link diagram
to keep transparency over the process and visualize the
development progress (Figure 3A). Each node represents a
development state and a link between two nodes describes
the evolution from one state to the other, or, in other words,
that the successor node (child) was created by modifying the
preceding node (parent). Interacting with the visualization
allows for intuitive switching between development states
and further eases the comparison task. If the user switches to
a previous state, which by definition already has a child, and
continues coding, a new branch is created and the compiled
state is represented by a new node.

4.2 Visualization of Algorithm Evolution
After having described our visualization of the revision
tree, we will in the following describe the other visual
components which compound our meta visualization: the
visualization of source code structure, the visual result, and
the difference image.

Result Image
Writing source code is an error-prone task and mistakes in
the program can result in failure or incorrect visual results.
The visual output can serve as a compact descriptor of the
functionality and features integrated into the given source
code state. It can be utilized to easily identify different
feature sets and to add, remove and exchange them.
Furthermore, having an overview over existing features
can reduce redundant code and effort in reimplementing
features. For each compilable revision, we execute the
program and display the result image (Figure 3C) aligned
with the corresponding node of the revision tree and a
representation of the generating source code (Figure 3B).

Source Code Structure
While there are many different techniques for visualizing
source code structures, as discussed in Section 2, we focus
on its outline in the form of a static scope tree (SST).
This representation highlights the nesting scopes (block
structures) of the source code and is sufficiently compact
while still conveying the main structural aspects of the code.
In both programming languages featured in this paper,
nesting scopes are defined by opening and closing curly
brackets. The SST is visualized by a node-link diagram
(Figure 4B), where every node represents a code block and
a link exists between two nodes, if one block is nested
within the other. The tree depth represents the nesting level.
If several source code files exist, the SST is computed for
each of them, and their root nodes are linked as children
to a new root node which represents the files’ directory
(Figure 4C). While the SST provides a high-level overview
for source code comparison, the actual differences between
two given revisions are computed and visualized in a
tooltip to highlight their code changes in detail.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

A

B C

Fig. 4: Static scope tree. (A) Pseudocode. (B) SST extracted
from A. (C) SSTs extracted from three source code files
(from top to bottom: C++ source, GLSL, C++ header) and
combined under a mutual root node.

Compression
Since every compilable development state is taken into
account, the meta visualization can become very large. We
therefore compact the revision tree based on a predefined
comparison measure to enable the representation of several
successive states within a single collapsed node. A node
and its parent are represented by a single node, if both
states are equal with respect to the chosen comparison
method. The representing node inherits the children of all
collapsed nodes and the visual results of all states being
combined in such a node are displayed next to each other.
If desired, the user can manually expand and collapse the
node for detailed investigation. In a first iteration, we define
the comparison measure as the similarity in source code
structure. We assume that a structural change describes
a major change in the source code. All successive nodes
that represent states with the same source code structure
are bundled in our default abstraction. The corresponding
SST is only displayed once per bundle. One can easily
think of other possible comparison measures, like defining
thresholds for visual differences in the result image,
number of code changes or performance differences. The
question of which compression method is best suited for
the exploration of visualization source code evolution is left
open for future research. Alternatively, letting the user tag
states of interest for comparison could be a good alternative
to automatic compression approaches.

Result Comparison
The identification of subtle visual differences between the
results of multiple development states can be challenging.
For this reason, we provide an additional comparison view
(Figure 3D) that shows the per-pixel variance of the indi-
vidual results for states collapsed within a single node. The
resulting image is black if all compared images are exactly
equal. The higher the color difference between the images in
a certain location is, the brighter is this part of the computed
image. Our approach of showing visual results next to each
other and visualizing the small differences in an additional
view benefits from the advantages of both a juxtaposition
and explicit encoding [47]. It enables the user to identify

visual differences on both the large and small scale. Com-
bining the visual differences with the changes in source code
and aligning them along the algorithm’s evolution, provides
the visualization developer with an enriched insight into the
process that would require significant effort to be achieved
with common development tools.

4.3 Parameter Management

Many visualization algorithms define several input param-
eters, which can significantly alter the visual result. Investi-
gating the impact and interplay of individual parameters
on different stages of an algorithm is a non-trivial task.
Simple systems supporting this task can modify certain
parameters on the application level and visualize the result
directly. Some of them store the visual result of several
parameter settings to ease the task of comparing different
parameter sets. When the user wants to test if the change of
a parameter has different impact on individual features of
their implementation, these systems provide little support.
The user would need to run the available tool for each state
of interest, change the parameter settings in every instance,
and compare across these instances.

Our system provides the possibility of freely exposing all
input parameters of a state and mapping them to individual
type-specific elements of the interface which provide conve-
nient interaction facilities for parameter changes similar to
common property sheets, using simple syntactic constructs
specific to the host language. Based on this mechanism,
we are further able to provide more intuitive, specifically
tailored interaction elements for common parameters in the
visualization domain. The virtual camera is one of the most
common parameter sets in three-dimensional visualization,
typically specified using an interaction technique such as the
Arcball [48]. It controls the rotation of the camera around an
object and can be easily expanded to support translation
and scaling. We integrate this well-known technique via
a plugin mechanism into our system. The plugin defines
three keywords for the camera’s position, look-at point
and orientation. When the user utilizes these keywords as
names for the corresponding parameters in the algorithm’s
source code, they are automatically coupled. We display
an enlarged version of the current state’s visual result for
detailed exploration, that can be seen in Figure 5. Interacting
with the view automatically runs the algorithm with the
new parameter set and updates the result view on-the-
fly. This approach expands the visualization algorithm by
a direct, interactive component without any extra effort.
Our system provides the ability to automatically and trans-
parently make other such interaction facilities available for
developers to directly integrate into their algorithm.

To support the task of comparing the visual outcome of
different parameter settings on several states, we perform
the parameter change on all visual representations of states
within the current development branch. This means that,
for instance, moving the camera of the current state will
automatically update all other states to the same camera
position. The user can then explore whether states with
different feature sets undergo different degrees of visual
change. If a parameter is not present in a certain state, it is
simply ignored. This semi-automatic approach enables the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 5: The Live View enables direct user interaction includ-
ing rotation, transformation, and scaling to investigate the
visual result of a given state in detail. These interaction
functionalities are automatically integrated, as soon as the
developer utilizes the predefined keywords. The newly
chosen viewpoint is automatically applied to all other visual
results to enable consistent comparison between states.

user to investigate the impact of a parameter change across
all implemented feature sets. It further provides insight
into the sensitivity of different features to certain parameter
changes and into the robustness of investigated parameters
in terms of their compatibility with multiple features.

4.4 System Interactions
Although all described methods can be utilized by them-
selves, they further benefit from being visualized next to
each other and interconnected by user interactions. To pro-
vide a better picture of the possible interactions, we present
an overview of our graphical user interface in Figure 6.

The visualization of our revision management system,
the evolution of source code structure, and the evolution of
visual results all communicate progress over time. Their re-
spective components are each related to certain states of the
development process. For every compiling state of source
code, a node in the revision graph is displayed, the source
code’s structure is visualized, and a view of the visual result
is shown in an image. All three visual representations are
aligned along a common time axis. This approach further
emphasizes the evolution from one revision to the other in
a clearer manner by following the time axis from top to
bottom, as shown in Figure 3.

We display additional overlays for a more convenient
comparison of several states. When hovering over a result
image, the system displays a tooltip which includes all
source code differences between the hovered and the current
state. To easily find these differences in the code editor, all
lines of code that need to be removed and added to get from
one state to the other are highlighted and their line numbers
are displayed. This interaction mechanism allows for an in-
depth inspection of the source code changes. The current
state can be easily switched by clicking either on the result
image of a state, or its node representation in the revision
tree. Both elements, as well as the corresponding static scope

tree, are highlighted, so that the user always knows which
state they are currently working with.

Since the revision tree collapses nodes if their source
code has the same SST, it is necessary to provide the user
with tools to investigate all available states. A right click on
one of the collapsed nodes will expand all hidden nodes and
branches. In order to keep the visual components in align-
ment, the SSTs and result images of the currently shown
branch will be repositioned. Since such a displacement
might confuse the user’s mental map, hovering over a SST
highlights all result images that share the respective SST.
Following the same principle, hovering over a comparison
image highlights all result images that were taken into
account to compute it. The expanded nodes in the revision
tree can be manually collapsed again by performing a right
click on any of the nodes which share the same SST. Clicking
on a node in the revision tree which is not within the
current branch will switch branches and update all views
to visualize the meta information of the selected branch.
All nodes of the currently visualized branch are marked in
blue in the revision tree, while all other nodes are colored
in grey. It is important to keep these non-active branches
within the visualization, because otherwise there would be
no interaction available to activate them again.

When hovering over a result image, it is enlarged for eas-
ier inspection. It provides the user with a preview of what is
to be expected, when switching to that state. Continuous
alternation of hovering over two images allows for easy
comparison and detection of visual differences. To detect
even the smallest differences, the comparison image is also
enlarged when being hovered.

5 IMPLEMENTATION

Our application is divided into a server and a client com-
ponent, each benefiting from different programming lan-
guages and execution environments, whose technical details
will be briefly outlined in this section. We provide a short
description of the components’ functionality, communica-
tion, and the events being triggered by user interaction.

When setting up a machine for software development,
many tools, like compilers, libraries, or an IDE, need to be
installed. The chosen tools and developed source code often
vary based on the underlying operating system or hardware
used. Finding the right tools for a given task can be very
time-consuming, especially for beginners in software devel-
opment. We therefore chose a client-server architecture to
relieve the user from setting up the environment needed
for compiling and executing the source code on the client
side. It enables us to run a large amount of compilations in
the background without affecting the user’s workflow. Our
solution can therefore even be used on low-end clients.

In order to make our application widely available, we
implemented the client side as a web application. In ad-
dition to standard web technologies (HTML5, CSS3, and
JavaScript), we utilize the Ace Web Editor [49] as environ-
ment for writing visualization source code, and D3 [50] to
create node-link diagrams within the meta visualization.
The window layout is based on Golden Layout [51] and
is inspired by common Integrated Development Environ-
ments enabling the developer to add, delete and move mod-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 6: Graphical User Interface. The interface of our application is inspired by common Integrated Development
Environments. Every view can be individually positioned and resized based on the user’s preferences by easy drag&drop
interactions. The code editor is shown to the left and includes the source code of the current state’s visualization algorithm.
The whole evolution of the algorithm, up to the current state (highlighted in orange), is presented in our meta visualization.
The top right view would normally display the visual result of the current state, but since the user hovers over one of the
states in the meta visualization, its result is shown instead, enabling easy comparison between the two. Additionally, the
source code differences between the hovered and the current state are directly visible in the overlaying tooltip. The bottom
right view displays the compilers output after each compilation attempt.

ules based on their personal preferences. The visual presen-
tation of source code differences is handled by the diff2html
library [52]. Our server is written in C++ and handles the
compilation of source code, storage of states, visualization
of results, and the communication with web clients. The
communication channel between client and server is based
on the JSON-RPC protocol. Data is requested via AJAX calls
and exchanged in the JSON format. We further use Git [45]
as the version control system by utilizing the functionality
provided by the libgit2 library [53]. The current version of
our application supports Diderot [44] as a programming
language specifically designed for the visualization domain,
as well as C++ and GLSL. While Diderot code is commonly
manageable within a single source file, C++ and GLSL code
can become quite large. We provide multi-file support to
split up source code into several files. In order to support ad-
ditional programming languages, the system requires access
to a corresponding toolchain, the definition of commands to
build both a library and an executable from the source code,
and access to the result images. Everything else is handled
automatically, e.g., error messages from the toolchain are
forwarded to the client and source code is stored in Git.

In the beginning of the development session, the user
chooses a programming language. Based on this choice,
the server prepares the appropriate compiler and runtime

environment to compile and execute all incoming source
code. When the user writes code in the editor, our system
waits until the user stops typing for a certain amount of
time (default 1.5 seconds), before sending the code to the
server and compiling it to an application. The static scope
tree is automatically extracted during the build process. If
the compilation was successful, the source code is stored in
the Git repository and the compiled executable is cached for
future execution. The visual result is sent to the client along
with the current state of the revision graph and the SST of
the source code. If the compilation fails, an error message
is sent to the client. When the user interacts with the live
view, the visualized state is rerun with the new parameters
on the server side and the results are sent to the client. The
same parameter set is used to run every stored revision of
the current branch and thereby updates all visual results,
which are then sent to the client in an asynchronous manner.
In order not to introduce any decrease in performance
compared to common development environments, where
the user would manually start the compilation process, we
prioritize the compilation and update of new source code
over older revisions. We realize this by utilizing a priority
queue, where compilations are assigned the highest and up-
dates the lowest priority. When two operations in the queue
have the same priority, we perform the latest request first.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

For further performance improvements, older compilation
requests in the queue can be dropped when a newer revi-
sion was successfully compiled. Parameter updates across
the revision tree are only performed when the hardware
resources are available. If the user wants to switch to another
state in the revision graph, the server finds the given state
by its unique ID in the Git repository and sends the source
code to the client. In the same way, source code differences
are computed between two revisions on the server side and
sent to the client for display. When managing several source
files, the user can switch between these files by clicking
the corresponding tab in the code editor. We check if the
file contains the content of the currently selected state and
perform an update if necessary.

6 USAGE EXAMPLES

Having described the individual components of our system
and how their capabilities and interconnections employ
our conceptual methods, we now want to illustrate the
system’s advantages over commonly used systems in real-
world scenarios. As interactive processes are inherently
difficult to capture in still images, we encourage the reader
to also refer to our supplementary demonstration video.
We present the implementation of two usage scenarios of
our approach: a three-dimensional flow visualization and a
visualization with stylized line primitives. We highlight the
specific integrated features and discuss how they enhance
the user’s experience during the development process.

6.1 Flow Visualization

The user’s task is to visualize specific properties of a vector
field, starting from flow magnitude, over extremum lines,
to normalized helicity. Since the given vector field has
three spatial dimensions, the visual result shall be three-
dimensional as well, so a ray casting algorithm will be
used. In order to easily follow the development process
and to get a better impression of how our system’s support
functionality looks like, we display all intermediate results
of the now following description in Figure 7.

The process starts with an initial state which only con-
sists of Diderot’s boilerplate code and a black image as its
output (Figure 7A). With the three-dimensional result in
mind, we add camera parameters to the algorithm, cast a
ray at every pixel of our camera’s resolution and display
data in white, when it is hit by a ray (Figure 7B). At this
point already, by utilizing the predefined parameter names
for the camera’s position, look-at point and up-vector, our
application will automatically assign values to these param-
eters, allowing the user to zoom, pan, and rotate around
the data set and select the best possible viewpoint. In order
to gain a better impression of the flow, we compute the
flow’s magnitude and only display it for values above a
constant threshold (Figure 7C). At this point, we start exper-
imenting with the interpolation kernel, which is responsible
for creating a continuous field from our given input data
(Figure 7D). Diderot has convenient built-in mechanisms to
change this reconstruction method. Investigating the result
images clearly shows a much smoother flow when using B-
spline interpolation compared to trilinear interpolation. The

Fig. 7: Visualization of a visualization source code evolution.
(A) Initial state. (B) Implement ray tracing and find volume.
(C) Implement flow visualization based on flow magnitude.
(D) Test trilinear interpolation instead of B-spline interpo-
lation. The comparison image highlights minor differences.
(E) Implement shading. (F) Change the flow feature from
flow magnitude to extremum lines. (G) Test trilinear inter-
polation instead of B-spline interpolation.

comparison image highlights subtle differences to the user.
Now that the flow is already visible, we can improve shape
perception by adding a light source into our environment
and performing gradient-based shading (Figure 7E). Since



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

the basic visualization algorithm is functioning, we can start
to integrate additional flow features. Visualizing surfaces
around extremum lines and vortex structures is easily done
by modifying the computations over the corresponding
vector field (Figure 7F). After these additions, we notice
artifacts when experimenting with different interpolation
methods (Figure 7G), both in the case of trilinear inter-
polation and even when using Catmull-Rom splines. By
hovering over the images of previous states, a tooltip reveals
our last code changes and thereby highlights the different
vector field computations. We check the maths and consider
our algorithm as correct. The comparison to even earlier
states ensures us that no drastic changes were made and the
issue must be related to the interplay between flow features
and the reconstruction kernel. Also, our basic algorithm
seems to be correct, since the visualization of the flow
magnitude does not show any problems. The only difference
and possible cause of the issue in this scenario therefore
seems to be the gradient computation. If we, as a user, had
the necessary background knowledge, we would know that
trilinear interpolation does not provide the continuity nec-
essary to compute appropriate derivatives. Our application
was therefore able to reveal the complex correspondence
between interpolation kernels and gradient computation by
displaying the visual results and source code differences
in an explorable manner. Exposing such high-level rela-
tionships without explicitly knowing the reasons for their
existence, requires the human-in-the-loop for further sense-
making, but provides a hint to in-depth understanding of
the algorithm’s underlying functionality. The user can now
further compare the results of functioning states and visual
differences in all the implemented functionality, choose the
most suitable version for their task and add further features
if necessary. When investigating the evolution of the static
scope tree over the whole process, it is noticeable that the
source code structure expanded until shading was imple-
mented, but stayed constant afterwards. This provides us
with an indication that all main features being considered
during this session require the same fundamental code
structure in order to function, but mainly differ in the
mathematical formulae being computed over the flow field.

6.2 Stylized Line Primitives

In our second example, we focus on efficiently drawing
lines in a three-dimensional scene, by rendering them in 2D,
but shading them as if they were 3D tubes [54]. Addition-
ally, several styles can be applied to the lines to represent
different features in the data. It differs from our previous
example by being implemented in C++ and GLSL, and
thereby utilizing multiple files – a C++ header, a C++ source
and a GLSL file. Furthermore, the underlying source code
and the corresponding source code changes contain many
more lines of code (665 LOCs for the final state) than the
previous example being written in a domain-specific lan-
guage (72 LOCs for the final state). This scaling in data size
comes with increased compilation times, bigger static scope
trees and larger tooltips. The evolution of the algorithm’s
development is shown in Figure 8. Since some of the source
code changes being made are quite extensive, we focused
on the most salient parts.

Fig. 8: Visualization with stylized line primitives. Only ex-
tracts of source code differences are shown. (A) Implement
basic rendering of line primitives. (B) Add a black halo to all
lines. (C) Change the three dimensional data profile of lines.
(D) Implement shading. (E) Implement depth enhancement.
(F) Draw arrows on lines, to describe the flow direction.

We skip the initial development involving data handling
and the setup of the rendering process to focus on the
evolution of the visualization techniques. We therefore start
out with source code which already renders a red quad strip
for each line in the data, following its curvature (Figure 8A).
All quads are, based on the user’s viewpoint, computed and
rendered in every frame. The definition of specific parame-
ters in the code automatically provides the same interaction
handling for changing the viewpoint as demonstrated in the
previous example. In order to visually separate the lines
from each other, we plan to add a halo to each line. We
increase every quad’s width by a margin and check for each
fragment being drawn, if it lies within the line’s width or ex-
ceeds it. If it exceeds the line’s width, we paint the fragment
black as a halo, otherwise we set its color to red (Figure 8B).
The visual difference becomes immediately apparent and
provides us with a better understanding of the lines’ paths
and depths. In the next step, we want to give our lines a
three-dimensional shape, which is why we define a texture
on top of the quad, that contains the side vector, up vector
and depth correction factor at each point (Figure 8C). While



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

all other source code changes are made in the GLSL file, this
change is taking place in the C++ source file. Although the
profile texture is now correctly set, the visual result appears
to be the same and a look at the difference image confirms
that they are identical. The change is not visible, because the
texture is not yet applied and no shading is implemented.
We implement Phong shading and now the lines appear as
shaded three-dimensional tubes (Figure 8D). Unfortunately,
it is not as easy to perceive the depth of the tubes in the
scene, especially if they do not intersect in the result image.
We therefore improve the rendering by integrating depth
enhancement (Figure 8E). Interacting with the visual result
and comparing it to the previous states demonstrates the
advantages of the newly implemented feature. The tooltip
shows that this feature only consists of a few lines of code
and can therefore easily be added to other visualization
algorithms as well. As a last step, we draw arrows on the
tubes to provide the viewer with the information on the
lines’ flow direction (Figure 8F). The static scope tree of the
final state is shown in Figure 4C. It provides an overview
over the source code by clearly showing that it consists of
three source files (because the root node has three children),
where the C++ header file only consists of a single structural
block, the GLSL file is a bit more structured, and the C++
source file contains the most structuring elements.

Looking at the performance of our system in this exam-
ple, the compilation of source code took around 8 seconds,
if it was successful. If it fails, the compilation process is
canceled much faster and provides a description of the error.
Since the compilation takes place on the server side, the
user does not experience any slowdown in their coding
workflow. Changing the viewpoint on the visual result
took around 100ms per image. This means that when the
user is only interested in the most current history (last
ten states), their result images can be computed within a
second, since images are updated starting from the latest
state. Updating images for 100 states would take around 10
seconds, with the client view being progressively updated
as new images become available. The number of triggered
compilations and created states vastly vary based on the
given task and the user’s typing behavior. While typing, 10–
15 compilations can be triggered every minute, of which 4–5
will be executed, while others are ignored in favor of newer
revisions. Most of the time, only one of these compilations
is successful and creates a state in the visualization. Users
ended up with 30-50 states when working on this example.

We have shown that our novel approach is able to
reveal complex correlations between the visual result and
the underlying source code of a visualization algorithm. It
provides the user with direct feedback, enabling them to
discover implementation problems as soon as they appear. It
opens up new ways of comparing visualization algorithms
by utilizing novel viewpoints onto the available meta data
and thereby generates greater knowledge about the algo-
rithms themselves. Revealing these relations between algo-
rithmic techniques, mathematical formulas, implementation
in source code, and visual outcome can greatly benefit the
task of comparing visualizations on all these levels and be
especially beneficial for teaching visualization algorithms to
students.

7 EVALUATION

Given the subject matter of our work, we performed our
evaluation in two rounds and in the form of an expert
review [55]. In the first round we gathered qualitative
feedback on the functionality and usability of our presented
framework using the Diderot language. We selected 4 ex-
perts from academia with different specializations in the
field of visualization. All participants rated their expertise
in visualization between knowledgeable and professional.
They had extensive experience in writing visualization
source code (on a monthly to daily basis), but none of
them were intrinsically familiar with Diderot. Based on the
initial feedback, we improved our system to support C++
and GLSL code, handle multiple source files, and cache
compiled source code for faster state switching. We then
conducted a second round of evaluation to gather feedback
on the improved state of the system by selecting 4 new
experts with similar experience and an example using C++
and GLSL. All participants were familiar with different
existing toolchains, ranging from C++ IDEs to web based
development platforms and we asked them to assess our
system in the light of their experience. None of the experts
are co-authors of this paper, participated in the development
of our system, or had used it prior to the review.

Following the guidelines of Tory and Möller [55], the
evaluation was split into several sessions, interviewing one
participant at a time and following the same protocol:
At first each participant filled out a sheet of information
describing their personal background and expertise in visu-
alization algorithm development. They were further intro-
duced to the concepts of our approach and the application’s
functionality. All interaction possibilities were summarized
on a two-page handout given to the experts. We not only
wanted to assess the functionality of our application, but
also the meta visualization’s ability to communicate in-
formation about the visualization algorithm’s development
process. We therefore provided the participants with the
visualization examples from Section 6, depicted in Figure 7
(round 1) and Figure 8 (round 2). Based on this initial state,
the participants were asked to perform a set of simple tasks
and verbalize their thoughts and reasoning behind their
actions (think-aloud protocol). They were allowed to ask
questions about the tasks and application at any given time.
The tasks were performed without time limit and designed
to encourage the exploration of all aspects of our system.
Tasks like ”Find a state with a bug” and ”Figure out, what
the reason for the bug is” required the user to analyze the
whole development process on the visual and algorithmic
level. Asking the participants to ”Change the code, so that
it produces a different output” not only made them actively
develop within our framework, but created personal and
for us unexpected results that led to diverse usage of the
provided system. When the users completed the tasks, they
received a 28-statement questionnaire to answer on a 5-
point Likert scale. It covered the difficulty and suitability
of the given tasks, general functionality of the application
and assessment of individual components (e.g. ”I found the
abstract code view was giving a good impression of the source
code’s complexity.”). It further included the ten statements
of the System Usability Scale (SUS), which allows for the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

uniform comparison of different systems in terms of usabil-
ity and user satisfaction. Last but not least the participants
were asked to openly summarize what they liked/disliked
about the system, what they would like to change about
it, and how they rate its practical impact. The participants’
feedback to each question, except for the SUS (Q1-Q10), is
illustrated in Figure 9. All the answers can additionally be
found in the supplementary material.

While we cannot discuss all the feedback in detail here,
we want to highlight some of the most interesting insights
gathered through our evaluation. All participants rated
the system’s functionality as useful (Q11) and rated the
availability of such a system as beneficial for their work
or studies (Q13). When assessing the availability of other
tools with similar functionality (Q12), participants named
Git and Shadertoy (in round 2), but also mentioned the su-
periority of our approach given the extended functionalities
it provides. The participants mentioned several times that
they would like to use our system as a rapid prototyping
tool, or as a platform for teaching visualization algorithms
to students, but that larger software projects would require
additional features to support the development of other
parts than visualization or rendering modules.

Looking at the different components of our system, the
result view was easy to understand (Q18), easy to use
(Q19) and helpful in completing the given tasks (Q20). The
convenience of seeing all the visual outputs, investigating
the source code differences by simply hovering over them
and the intuitiveness of switching back and forth between
these states, were highly praised by several participants. The
fact that changing the viewpoint in one state also updates
the viewpoint in all other result images, was recognized
as being helpful for being able to compare the results to
each other. One participant raised the reasonable doubt that
finding a certain state within the result images after its
parameters were changed might be difficult, since it is then
harder to recognize as being the same state. The revision
tree gathered a more mixed feedback, with most experts
finding it easy to use (Q23) and, to a lesser degree, finding
it easy to understand (Q22). Several participants mentioned
that the knowledge of how version control systems work
is beneficial in understanding the visualization and using
it. We believe that most of the problems with this view
originate from the fact that several branches can be col-
lapsed in the same node and only results for the current
branch are shown at a time. Observing the participants’
interactions with the system showed that this behavior
was only a limitation at the first attempt, but once they
had familiarized themselves with the functionality, there
was a noticeable improvement in how fluently they used
the system. Interestingly, feedback to the static scope tree
representation was more positive for experts in the second
round, where the trees were larger and showed the structure
of multiple files. It seems that these experts had an easier
time understanding the representation (Q24) and judge the
source code’s complexity (Q25) within several files. It was
mentioned that code structure allows only for partial assess-
ment of the source code’s complexity, since for example a
single line of code can perform complex computations, and
a single block can contain one or a hundred lines of code.
Additional code metrics would be necessary. While some

participants did not look at the SST at all, others wanted
to use it but felt a lack of integration with other features,
as well as difficulties comparing multiple trees. Based on
this, we believe that additional features like using the SST
as a code navigation tool, highlighting structures on code
edits, and visualizing structural differences, can increase the
utility of such a representation. Alternatively, more direct
visualizations of the source code structure, e.g., in the form
of a pixel-based visualization, should be taken into account.

The generally good responsiveness of the system when
switching between states and investigating the different
visual outputs and source code changes was positively
mentioned by several participants. The feedback further im-
proved in the second round, where caching of states led to
even faster response times. The intermediate SUS score went
up from 78.75, which corresponds to an adjective rating
between ”Good” and Excellent” [56], to 88.75 (”Excellent”).
This confirms our impressions and is a promising starting
point for seeing our application in daily action. Quotes
like ”The programming task becomes more explorative and
free.” and ”It is actually a lot of fun to go through the
changes.” emphasize our framework’s investigation capa-
bilities with respect to the algorithm’s evolution. They show
how our tool might positively influence the development
workflow of visualization developers in the future.

The most sought after features were the comparison of
states among different branches and the availability of the
difference image for two specific states instead of showing
it for collapsed groups only. Participants asked for a better
link between the source code and the tooltip displaying code
difference. This includes clicking on lines in the tooltip for
navigation purposes, as well as highlighting code differ-
ences in the editor itself. Other feature requests included
more control over how the states are grouped within the
views, a merge tool, which combines the source code of two
different states into one, and a way of deleting revisions.
Otherwise, additional performance measures, more tools
commonly seen in professional IDEs, and general customiz-
ability were requested.

8 DISCUSSION

Our proposed approach for designing a meta visualization
system to provide insight into the evolution of the
prototyping process of a scientific visualization algorithm
combines several interesting research fields. By utilizing
methods from software visualization, visualization of
time-oriented data, visualization of visualizations, and the
analysis of the visual parameter space, it explores and
raises new research questions. Based on the feedback we
received, we believe it is a promising concept to provide
visualization developers with novel information about
their own research projects and a tool to investigate their
own algorithm development. It further allows for an easier
comparison of individual features to replace, improve, or
combine them and enhance the visualization algorithm.

Ease of Use
By automatically compiling source code and visualizing the
result in a live view, we follow in the footsteps of Vega-
Lite [2] and ShaderToy [3]. We not only apply the concept



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

very positive

positive

neutral
negative

Q11 Q12* Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28

Fig. 9: Illustration of the participants’ answers to statements of our questionnaire on a 5-point Likert scale. Very positive
feedback was reflected by either strong agreement to a positively formulated question, or strong disagreement to a
negatively formulated question (marked by an asterix). Very negative feedback was not given by any participant. The
color reflects the participants group, green for the first round and purple for the second round.

of an automatically updating result view to a programming
language which requires compilation in the first place, but
further visualize all previous results to emphasize on the
result evolution. The fact that all intermediate steps are
stored automatically further integrates with the idea of
focusing the user’s attention on the programming task.

The comparison of visualizations is a complicated
task which has not yet been solved in a general manner.
We facilitate the comparison of visualizations on a
large and small scale by providing a juxtaposition and
explicit encoding of all visual results and displaying their
correlation to the underlying source code. We thereby
increase the awareness of how visualizations evolve and in
which way different features apply visual changes to the
result. Our novel approach of applying the same parameter
set to all visual results of the algorithm’s states, further
improves the comparability and allows for the visual
exploration of the parameter space.

Scalability
While our system works well for developing prototypes for
scientific visualization algorithms, it benefits from certain
conditions given in this specific scenario. The visual result
is commonly aligned to the original spatial dimensions in
the data, which is often achieved via a virtual camera model
projecting the spatial data into two-dimensional space. This
alignment results in better comparability of different states
based on images than in abstract visualizations, where
vastly differing mappings from data to the visual result
exist. Although the evaluation of our system has shown the
experts’ interest in utilizing our approach in other fields like
information visualization or web development, it is unclear
how the comparison task scales to these scenarios in a
general manner. Additional study of this subject is required
to extend our approach to other subfields in visualization.

Utilizing Diderot as a domain-specific language allows
for comparatively short algorithms, that can be handled
within a single source code file. When handling C++ and
GLSL code, the structure and source code changes of multi-
ple files need to be visualized, which results in both larger
SSTs and longer tooltips. Scrolling along the time axis and
tooltip does not scale indefinitely and if SSTs become very
large, it is harder to make detailed comparisons between
them. For example, SSTs in our use cases had a maximum
depth of 5 and 6, and a maximum number of nodes of 7
and 51 respectively. In comparison, ParaView [23] as a full-
fledged visualization application has a SST depth of 17 and
40000 nodes in its core alone. An additional overview vi-
sualization, or a different visualization approach in general,

would be necessary to support large multi-file applications
with a lot of source code and many structural code changes.

We can reduce possible delays in the visual feedback
by utilizing parallel execution capabilities of programming
languages and compiling and executing several different
states of the visualization algorithm at the same time on the
server side. Looking at large scale development projects,
compilation time and runtime become increasingly limiting
factors for the visual support given. Since our system is
built around short-term visual feedback and runs several
revisions of the source code with possibly several parameter
sets, the outlined benefits decrease for compilation- and
runtime-heavy visual applications. While the revision
tree, SST, visual result and source code difference are still
available, the live view and parameter changes on older
revisions would be delayed or might not be created at all
within the time frame given between revisions.

Future Work
While creating a visual result from each compilable source
code state includes all the interesting cases that create visual
changes, it might produce many unnecessary results, take
up a lot of screen space, and provide only little informa-
tion. We try to counteract this issue by bundling results to
compress the time axis of our meta visualization. However,
at present we do not provide any interaction technique to
remove revisions from the view, highlight interesting ones,
or bundle states based on the user’s interests. Solutions
for the given tasks would be necessary when using our
application for an extended period of time and when many
revisions are created. It would be interesting to explore
which other measures than the SST similarity could be
utilized as factors for revision bundling and how such
measures comply with the users’ intent. Possible measure-
ments might be computations of visual differences, number
of code changes, or performance differences. Additional
user interactions for tagging, removing or grouping states
of interest might provide a good alternative to automatic
approaches.

In the same manner, the difference image provides au-
tomatically generated information for improving the task of
comparing several visualizations to each other. The explo-
ration of other measures than image variance that are able
to quantify other aspects of image difference, or improve the
comparison task in different manners, might be a fruitful re-
search area that we want to continue to investigate. We will
further concentrate on the question of how such similarity
measures can be correlated to source code to localize code
constructs and their impact on the visual result.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

While certain issues of an implementation might only
become apparent for particular parameter sets, others
can depend on the input data. Methods to compare and
investigate the behavior of several algorithms on multiple
input data sets need to be studied. Additionally, user tasks
vastly vary, so that different supportive information about
the source code and visualization need to be provided. Such
options for task-specific customization for visualization
experts need to be analyzed and integrated into our
system. Since all the important information describing the
visualization algorithm’s evolution is stored on a server,
many more interesting applications like building and
sharing visual notebooks, or collaborating with multiple
users on the same visualization algorithm come to mind.
Our web client will be publicly available in such a way
as to enable programmers to easily experiment with our
interactive environment.

Lessons Learned
Our system gives a direction for future development of
visualization algorithms. Working with the system and eval-
uating it with experts in the field revealed several points of
interest for future implementations of similar tools.

The accessibility of the system as a stand-alone website
is particularly useful for teaching purposes, since no setup
of applications and no prior knowledge is required to get
the system running. The opposite is true for experts, who
often have a running toolchain in place, have projects stored
in existing repositories, and are used to their programming
environment. They would greatly benefit from the visual
support system being independent of the code editor and
storage solutions. One could think of our system getting
access to an existing repository and visualizing all available
revisions, either as a web-based tool, or as a plugin to
existing IDEs.

The evaluation made clear that different users have vary-
ing opinions on feature behavior. For the revision tree, some
users preferred having the latest state at the top, instead of
the bottom of the visualization. Users did not agree on if the
source code difference should be shown from the hovered
to the current or to the previous state. It could further be
displayed vice versa, from the previous to the hovered state,
which might depend on the task given. Some participants
mentioned that the system was trying to update too often,
although they were not finished editing the source code yet.
These examples show that the system is required to provide
extensive customization options to adjust the interface and
feature behavior to the user’s preferences.

The decision of using a modularized interface turned
out very useful in terms of options for customization and
extensibility. Following a similar approach on the server side
allows for easy extension to support multiple programming
languages. Overall, while our current prototype received
positive user feedback and the proposed visualization and
interaction methods were appreciated, we fully acknowl-
edge that our system currently lacks several usability and
customization features commonly found in professional
IDEs. However, we plan to continue the development of
our approach, with a specific focus on addressing its appli-
cability to larger scale software projects.

9 CONCLUSION

We presented a novel approach for designing a meta vi-
sualization that enables the comparison of visual results
of scientific visualization algorithms and their underlying
source code at the same time. This concept yields addi-
tional insight into their relationship and thus enables pro-
grammers in the field of visualization to find correlations
between visual changes and differences in the algorithms
themselves. Our approach supports programmers during
the prototyping phase in keeping track of their develop-
ment, while relieving them from repetitive tasks and thereby
increasing their productivity. The frequent task of switching
between different development states and comparing their
visual outcome has been simplified to a one-click action by
providing direct user interactions in the meta visualization.
The problem of finding a given state with specific features
is further supported through state identification via result
images. We also showed how external functionality can
be linked into the developed visualization algorithm, by
providing an interactive view of the visual result and the
on-the-fly coupling of specialized interaction functionality
with program parameters. These parameters are applied to
all states of the development process to enable the instant
assessment of their impact.

ACKNOWLEDGMENTS

The research presented in this paper was supported by the
MetaVis project (#250133) funded by the Research Council
of Norway.

REFERENCES

[1] R. Laramee, “Using visualization to debug visualization soft-
ware,” IEEE computer graphics and applications, no. 6, pp. 67–73,
2009.

[2] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer,
“Vega-Lite: A grammar of interactive graphics,” IEEE Transactions
on Visualization and Computer Graphics, vol. 23, no. 1, pp. 341–350,
2016.

[3] “ShaderToy,” https://www.shadertoy.com/, accessed: 2018-12-11.
[4] L. Voinea, A. Telea, and J. J. van Wijk, “CVSscan: visualization of

code evolution,” in Proc. ACM SoftVis, 2005, pp. 47–56.
[5] A. Telea and D. Auber, “Code flows: Visualizing structural evolu-

tion of source code,” Computer Graphics Forum, vol. 27, no. 3, pp.
831–838, 2008.

[6] M. Wittenhagen, C. Cherek, and J. Borchers, “Chronicler: Interac-
tive exploration of source code history,” in Proc. ACM CHI, 2016,
pp. 3522–3532.

[7] E. Bertini, A. Tatu, and D. Keim, “Quality metrics in high-
dimensional data visualization: An overview and systematiza-
tion,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 12, pp. 2203–2212, 2011.

[8] T. Ball and S. Eick, “Software visualization in the large,” IEEE
Computer, vol. 29, no. 4, pp. 33–43, 1996.

[9] S. G. Eick, J. L. Steffen, and E. E. Sumner, “SeeSoft: a tool for
visualizing line-oriented software statistics,” IEEE Transactions on
Software Engineering, vol. 18, no. 11, pp. 957–968, 1992.

[10] A. Marcus, L. Feng, and J. Maletic, “3D representations for soft-
ware visualization,” in Proc. ACM SoftVis, 2003, pp. 27–36.

[11] L. Merino, M. Ghafari, and O. Nierstrasz, “Towards actionable
visualisation in software development,” in Proc. IEEE VISSOFT,
2016, pp. 61–70.

[12] J. Zhi and G. Ruhe, “DEVis: a tool for visualizing software docu-
ment evolution,” in Proc. IEEE VISSOFT, 2013, pp. 1–4.

[13] D. Holten and J. J. Van Wijk, “Visual comparison of hierarchically
organized data,” Computer Graphics Forum, vol. 27, no. 3, pp. 759–
766, 2008.

https://www.shadertoy.com/


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[14] M. D’Ambros, M. Lanza, and M. Lungu, “Visualizing co-change
information with the evolution radar,” IEEE Transactions on Soft-
ware Engineering, vol. 35, no. 5, pp. 720–735, 2009.

[15] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler, “A
system for graph-based visualization of the evolution of software,”
in Proc. ACM SoftVis, 2003, pp. 77–86.

[16] M. Lanza, “The evolution matrix: Recovering software evolution
using software visualization techniques,” in Proc. International
Workshop on Principles of Software Evolution, 2001, pp. 37–42.

[17] R. Wettel and M. Lanza, “Visual exploration of large-scale system
evolution,” in Proc. Working Conference on Reverse Engineering, 2008,
pp. 219–228.

[18] T. Khan, H. Barthel, A. Ebert, and P. Liggesmeyer, “Visualization
and evolution of software architectures,” in Proc. Workshop on
Visualization of Large and Unstructured Data Sets, 2011, pp. 25–42.

[19] D. M. German, “An empirical study of fine-grained software
modifications,” in Proc. IEEE International Conference on Software
Maintenance, 2004, pp. 316–325.

[20] M. Ogawa and K.-L. Ma, “Software evolution storylines,” in Proc.
ACM SoftVis, 2010, pp. 35–42.

[21] K. Isaacs, A. Giménez, I. Jusufi, and T. Gamblin, “State of the art
of performance visualization,” in Proc. EuroVis STARs, 2014.

[22] W. J. Schroeder, B. Lorensen, and K. Martin, The visualization toolkit:
An object-oriented approach to 3D graphics. Kitware, 2004.

[23] J. Ahrens, B. Geveci, and C. Law, “Paraview: An end-user tool for
large data visualization,” The visualization handbook, vol. 717, 2005.

[24] M. Koenig, W. Spindler, J. Rexilius, J. Jomier, F. Link, and H.-O.
Peitgen, “Embedding vtk and itk into a visual programming and
rapid prototyping platform,” in Proc. Medical Imaging: Visualiza-
tion, Image-Guided Procedures, and Display, vol. 6141. International
Society for Optics and Photonics, 2006, p. 61412O.

[25] J. Marks, P. Beardsley, B. Andalman, W. Freeman, S. Gibson,
J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml et al., “Design
galleries: A general approach to setting parameters for computer
graphics and animation,” in Proc. ACM SIGGRAPH, 1997, pp. 389–
400.

[26] K.-L. Ma, “Image graphs – a novel approach to visual data
exploration,” in Proc. IEEE Visualization, 1999, pp. 81–88.

[27] T. Jankun-Kelly and K.-L. Ma, “Visualization exploration and
encapsulation via a spreadsheet-like interface,” IEEE Transactions
on Visualization and Computer Graphics, vol. 7, no. 3, pp. 275–287,
2001.

[28] M. Sedlmair, C. Heinzl, S. Bruckner, H. Piringer, and T. Möller,
“Visual parameter space analysis: A conceptual framework,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2161–2170, 2014.

[29] M. Herschel, R. Diestelkämper, and H. Ben Lahmar, “A survey on
provenance: What for? What form? What from?” The VLDB Journal
- The International Journal on Very Large Data Bases, vol. 26, no. 6,
pp. 881–906, 2017.

[30] J. Heer, J. D. Mackinlay, C. Stolte, and M. Agrawala, “Graphical
histories for visualization: Supporting analysis, communication,
and evaluation,” IEEE Transactions on Visualization and Computer
Graphics, vol. 14, no. 6, pp. 1189–1196, 2008.

[31] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and
S. Mock, “Kepler: An extensible system for design and execution
of scientific workflows,” in Proc. International Conference on Scien-
tific and Statistical Database Management, 2004, pp. 423–424.

[32] I. Taylor, M. Shields, I. Wang, and A. Harrison, “Visual grid
workflow in Triana,” Journal of Grid Computing, vol. 3, no. 3–4,
pp. 153–169, 2005.

[33] J. F. Pimentel, J. Freire, V. Braganholo, and L. Murta, “Tracking
and analyzing the evolution of provenance from scripts,” in Inter-
national Provenance and Annotation Workshop. Springer, 2016, pp.
16–28.

[34] H. Stitz, S. Gratzl, H. Piringer, T. Zichner, and M. Streit, “Knowl-
edgePearls: Provenance-based visualization retrieval,” IEEE Trans-
actions on Visualization and Computer Graphics, 2018.

[35] A. Camisetty, C. Chandurkar, M. Sun, and D. Koop, “Enhanc-
ing web-based analytics applications through provenance,” IEEE
Transactions on Visualization and Computer Graphics, 2018.

[36] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger,
C. T. Silva, and H. T. Vo, “VisTrails: Enabling interactive multiple-
view visualizations,” in Proc. IEEE Visualization, 2005, pp. 135–142.

[37] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay et al.,

“Jupyter notebooks – a publishing format for reproducible com-
putational workflows.” in ELPUB, 2016, pp. 87–90.

[38] “Observable,” https://observablehq.com/, accessed: 2019-04-29.
[39] “Overleaf,” https://www.overleaf.com/, accessed: 2018-12-11.
[40] J. Hoffswell, A. Satyanarayan, and J. Heer, “Visual debugging

techniques for reactive data visualization,” in Computer Graphics
Forum, vol. 35, no. 3. Wiley Online Library, 2016, pp. 271–280.

[41] J. Wood, A. Kachkaev, and J. Dykes, “Design exposition with liter-
ate visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 25, no. 1, pp. 759–768, 2019.

[42] C. D. Hansen and C. R. Johnson, Visualization handbook. Elsevier,
2011.

[43] T. Jankun-Kelly and K.-L. Ma, “A spreadsheet interface for visual-
ization exploration,” in Proc. IEEE Visualization, 2000, pp. 69–76.

[44] G. Kindlmann, C. Chiw, N. Seltzer, L. Samuels, and J. Reppy,
“Diderot: A domain-specific language for portable parallel sci-
entific visualization and image analysis,” IEEE Transactions on
Visualization and Computer Graphics, vol. 22, no. 1, pp. 867–876,
2016.

[45] “Git,” https://git-scm.com/, accessed: 2018-12-11.
[46] “Apache subversion,” https://subversion.apache.org/, accessed:

2018-12-11.
[47] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. Hansen, and

J. Roberts, “Visual comparison for information visualization,”
Information Visualization, vol. 10, no. 4, pp. 289–309, 2011.

[48] K. Shoemake, “ARCBALL: A user interface for specifying three-
dimensional orientation using a mouse,” in Proc. Graphics Interface,
1992, pp. 151–156.

[49] “Ace,” https://ace.c9.io/, accessed: 2018-12-11.
[50] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-driven docu-

ments,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 12, pp. 2301–2309, 2011.

[51] “GoldenLayout,” http://golden-layout.com/, accessed: 2018-12-
11.

[52] “diff2html,” https://diff2html.xyz/, accessed: 2018-12-11.
[53] “libgit2,” https://libgit2.github.com/, accessed: 2018-12-11.
[54] C. Stoll, S. Gumhold, and H.-P. Seidel, “Visualization with stylized

line primitives,” in Proc. IEEE Visualization, 2005, pp. 695–702.
[55] M. Tory and T. Moller, “Evaluating visualizations: Do expert

reviews work?” IEEE Computer Graphics and Applications, vol. 25,
no. 5, pp. 8–11, 2005.

[56] A. Bangor, P. Kortum, and J. Miller, “Determining what individual
SUS scores mean: Adding an adjective rating scale,” Journal of
usability studies, vol. 4, no. 3, pp. 114–123, 2009.

Fabian Bolte is a PhD student in visualization at
the Department of Informatics of the University
of Bergen, Norway. He received his bachelor’s
degree in Applied Computer Science from the
TU Chemnitz, Germany in 2014 and his master’s
degree in High Performance & Cloud Comput-
ing in 2016 from the same university. His re-
search interests include the visualization of time-
dependent data, visual parameter space analy-
sis, and meta visualization.

Stefan Bruckner is professor in visualization at
the Department of Informatics of the University
of Bergen, Norway. He received his masters de-
gree in Computer Science from the TU Wien,
Austria in 2004 and his Ph.D. in 2008 from the
same university. He was awarded the habilitation
(venia docendi) in Practical Computer Science in
2012. From 2008 to 2013, he was an assistant
professor at the Institute of Computer Graphics
and Algorithms at TU Wien. His research inter-
ests include interactive visualization techniques

for spatial data, particularly in the context of biomedical applications,
visual parameter space analysis, illustrative methods, volume visualiza-
tion, and knowledge-assisted visual interfaces.

https://observablehq.com/
https://www.overleaf.com/
https://git-scm.com/
https://subversion.apache.org/
https://ace.c9.io/
http://golden-layout.com/
https://diff2html.xyz/
https://libgit2.github.com/

	Introduction
	Related Work
	Overview
	User and Task Requirements
	System Design

	Exploring Visualization Source Code
	Automatic Revision Management
	Visualization of Algorithm Evolution
	Parameter Management
	System Interactions

	Implementation
	Usage Examples
	Flow Visualization
	Stylized Line Primitives

	Evaluation
	Discussion
	Conclusion
	References
	Biographies
	Fabian Bolte
	Stefan Bruckner


