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Don't give up, please don't give way, 

Even if the cold burns, 

Even if fear bites, 

Even if the sun sets, 

And the wind goes silent, 

There is still fire in your soul 

There is still life in your dreams. 

 

((Don´t give up, Mario Benedetti) 
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Abstract  
 

The family of the aromatic amino acid hydroxylases (AAAH) is well studied in 

mammals. It includes four members, i.e. phenylalanine hydroxylase (PAH), tyrosine 

hydroxylase (TH) and the tryptophan hydroxylases (TPH1 and 2). These enzymes share 

important features, such as domain organization, three dimensional structure and 

mechanism of the reaction. The AAAH have important functions and are related to 

genetic human diseases. PAH, expressed in liver, is in charge of L-Phe catabolism from 

the diet and mutations in the PAH gene lead to phenylketonuria (PKU), a paradigm for 

genetic metabolic diseases. TH and the TPHs are enzymes of the neuroendocrine 

system, that carry out the rate limiting steps in the synthesis of neurotransmitters and 

hormones, i.e. catecholamines (TH) and serotonin and melatonin (TPHs). Mutations in 

TH and the TPHs genes are also involved in important neurological diseases and 

disorders, such as some forms of dystonia and parkinsonism in the case of TH and 

mood disorders in TPH. 

The nematode Caenorhabditis elegans is a model organism widely used in 

biology. We here present the expression and characterization of two AAAH from the 

nematode, PAH and TH, in order to get insights into evolution of structure, function and 

regulation in this enzymatic family. In the case of PAH we found functional and 

molecular similarities between C. elegans PAH (cePAH) and human PAH (hPAH), 

although they display important differences in enzymatic activity regulation, especially 

regarding the regulation exerted by the substrate, L-Phe. Both the preactivation and the 

positive cooperativity induced by the substrate on mammalian PAHs were absent in 

cePAH. In vivo experiments with knock-out worms bearing a deletion in the pah gene 

(pah-1) demonstrated that cePAH is involved in the synthesis of a melanin-like 

compound that localizes in the cuticle. The study of the recombinant TH from C. 

elegans (ceTH) in comparison with human TH (hTH) also revealed important 

differences at the level of short-term activity regulation. Basic regulatory mechanisms 

for hTH, such as substrate inhibition and feed-back inhibition by the end catecholamine 

products, appear to be absent in ceTH, suggesting a less tight regulation of enzymatic 

activity in the worm. But interestingly, ceTH was effectively phosphorylated by cAMP-

dependent protein kinase (PKA) at Ser35, though this modification did not translate into 

activation of the enzyme in synergy with the feed-back inhibition by catecholamines, as 
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it is the case for phosphorylation of hTH at the equivalent Ser40. We hypothesised that 

phosphorylation of ceTH could regulate the interaction with other proteins and/or 

control subcellular localization.  

Supplementation with BH4 has been recently established as a therapeutic 

intervention for PKU. A main effect of the cofactor is the stabilisation of misfolded 

PKU mutants, and BH4 appears to function as a natural chaperone molecule. Since BH4 

is a shared cofactor by all the AAAH we set to investigate the effect of BH4 

supplementation on rat brain TH. Higher doses of BH4 than those currently used for the 

treatment of PKU were needed to increase the cofactor concentration in brain, most 

probably due to the selectivity of the blood-brain-barrier (BBB). This indicates that the 

current treatments using lower doses of BH4 (up to 20 mg/kg/day) are not expected to 

affect neuronal TH and TPH2. An increment of total TH protein and activity was 

measured in the brains of wild-type (wt) mice upon treatment with 100 mg BH4/kg/day, 

suggesting that BH4 also functions as a natural chaperone in the case of TH. In 

agreement with these effects, in vitro experiments also showed the capability of BH4 to 

stabilise TH.  

Finally, the screening of chemical libraries of small organic compounds is 

arising as a promising tool to find specific stabilisers of proteins (i.e. pharmacological 

chaperones). In the case of PAH, four stabilising compounds (compounds I-IV) were 

found in a previous study, revealing their potential as therapeutic pharmacological 

chaperones for PKU. As in the case of BH4, it was interesting to study the effect of 

these four molecules upon neuronal TH and TPH2. We found that compound III 

stabilized the three AAAH investigated, whereas the other compounds exerted different 

enzyme specific effects. In vivo studies with supplemented mice revealed the potential 

of compound III to treat TH-associated diseases. These results are important not only 

for the development of new specific therapies, but also to unravel enzyme specific/non 

specific ligand binding in the AAAH family.  
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1. General introduction 
 

1.1. The family of aromatic amino acid hydroxylases (AAAH) 

 

The family of the aromatic amino acid hydroxylases (AAAH), responsible for 

the metabolism of aromatic amino acids, includes phenylalanine hydroxylase (PAH), 

tyrosine hydroxylase (TH) and the tryptophan hydroxylases (TPH1 and 2). These 

enzymes share many properties, such as domain organization, high similarity at the 

amino acid sequence level, and requirement for iron and a cofactor, tetrahydrobiopterin 

(BH4), for catalytic activity (for reviews about the AAAH family see (Fitzpatrick, 1999; 

Teigen et al., 2007)). On the other hand, they have some differing characteristics, as 

cellular localization, regulation or substrate specificity, key properties to understand 

functional and evolutionary aspects. 

In the following paragraphs we will concentrate on the characteristics of TH and 

PAH, the AAAH mainly studied in this work. However, some basic properties of the 

TPHs will be also introduced at the end of this section.   

 

1.1.1. The reaction catalysed by PAH and TH 

 

The AAAH catalyse a hydroxylation reaction dependent on the specific amino 

acid substrate, the cofactor BH4, molecular oxygen and a non-heme iron molecule at the 

catalytic site. It is generally accepted that the hydroxylation reaction mechanism is 

similar for all the AAAH (Fitzpatrick, 2003).   

 

1.1.1.1. PAH reaction 

 

PAH is present mainly in liver, but it is also abundant in kidney (Kaufman, 

1971; Moller et al., 2000), and hydroxylates the amino acid L-phenylalanine (L-Phe) in 

the para position into L-tyrosine (L-Tyr) (Figure 1). In mammals, L-Phe is an essential 

amino acid (Kalhan and Bier, 2008) that we have to take in the diet. Accumulation of 

high levels of L-Phe in brain is highly toxic, underlining the importance of PAH. Its 

implication in the effective degradation of L-Phe from the diet identifies PAH as a 

“catabolic enzyme”, in contrast to TH and TPH, considered “anabolic enzymes”. But 
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PAH has also an anabolic face, since it supplies L-Tyr for the organism, converting this 

amino acid into a non-essential one in mammals (Kilani et al., 1995). 

 

 
Figure 1.  The BH4 synthesis and recycling pathways (left part of the picture) and the reactions 
catalysed by PAH, TH, the TPHs and the NOSs (right part of the picture). Enzymatic 
abbreviations used in the picture: GTPCH (GTP cyclohydrolase), PTPS (pyruvoyl-
tetrahydrobiopterin synthase), SR (sepiapterin reductase), PCD (pterin-4a-carbinolamine 
dehydratase), DHPR (dihydropteridine reductase), PAH (phenylalanine hydroxylase), TH 
(tyrosine hydroxylase), TPHs (tryptophan hydroxylases) and NOSs (nitric oxide synthases).  

 
 

1.1.1.2. TH reaction 
 

TH is implicated in the synthesis of neurotransmitters and hormones in the 

neuroendocrine system, mainly in brain and in chromaffin cells of the adrenal medulla. 

TH hydroxylates L-Tyr into L-dihydroxyphenylalanine (L-DOPA), the first and rate-

limiting step in the synthesis of catecholamines (Figures 1 and 2). L-DOPA is then 

converted into dopamine through the reaction catalysed by aromatic amino acid 

decarboxylase (AADC). Further reactions will produce the neurotransmitters adrenaline 

and noradrenaline (Figure 2).  
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Figure 2. The pathway for the synthesis of catecholamines (dopamine, adrenaline and 
noradrenaline) from its precursor phenylalanine. 
 

 

1.1.1.3. Reaction mechanism 

 

Several studies have been carried out to study the kinetic mechanism of the 

AAAH, and it is still not clear how the reaction takes place. In the case of TH, 

Fitzpatrick reported an ordered mechanism of binding with the tetrahydropterin binding 

first, followed by oxygen and finally the amino acid substrate (Fitzpatrick, 1991). In the 
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case of PAH, studies with some of the bacterial forms of the enzyme (Pember et al., 

1987; Volner et al., 2003) indicate that the pterin, amino acid substrate and oxygen bind 

in consecutive order. The mechanism of eukaryotic PAH remains controversial. A 

common feature for all the AAAH seems to be the need of the pterin, amino acid 

substrate and O2 bound to the enzymes before the catalysis occurs (for a review see 

(Fitzpatrick, 2003)). During the catalytic cycle BH4 is oxidized to tetrahydrobiopterin-

4a-carbinolamine (4a-OH-BH4) and the dioxygen atoms are in fact incorporated both 

into the substrate and the pterin cofactor. A high-spin FeIV species have been proposed 

as the hydroxylating intermediates and FeIV=O species have been directly observed in 

catalytically relevant complexes of TH (Eser et al., 2007). 

 

1.1.2. The cofactor tetrahydrobiopterin (BH4) 

 

The AAAH share the same cofactor in the reaction, (6R)-L-erythro-5,6,7,8-

tetrahydrobiopterin (BH4). BH4 belongs to a family of compounds called pteridines, 

with multiple and important biological functions. Pteridines are based on a two ring 

structure containing a fused pyrimidine and a pyrazine ring and were first identified as 

yellow pigments purified from butterflies wings (Longo, 2009) (Figure 3). For reviews 

about the synthesis and functions of BH4 see (Thony et al., 2000; Werner et al., 2003). 

 

1.1.2.1. The BH4 biosynthetic pathway 

 

The biosynthesis of BH4 proceeds by three metabolic reactions from the 

precursor GTP (Figure 1). The first reaction is catalysed by the enzyme GTP 

cyclohydrolase (GTPCH), the main regulatory point in the BH4 synthesis pathway 

(Mori et al., 1997; Cai et al., 2002; Tatham et al., 2009). GTPCH shows a well 

conserved sequence along evolution, notably with respect to the residues implicated in 

pterin binding and catalysis. The main divergence at the N-terminal domain may reflect 

regulatory differences between species (McLean et al., 1990; Witter et al., 1996; 

Golderer et al., 2001)). 
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Figure 3. Pteridine structures. A) Pteridine; B) Pterin; C) 5,6,7,8-tetrahydrobiopterin (BH4); D) 
7,8-dihydrobiopterin (BH2). 

 

 

Pyruvoyl-tetrahydrobiopterin synthase (PTPS) is the second enzyme in the BH4-

synthesis pathway and it also constitutes an important regulatory step (Linscheid et al., 

1998). Although there is not as much information available as for GTPCH, its 

conservation through species has also been demonstrated (Kim et al., 1996; Ben et al., 

2003).  

The last BH4 biosynthetic enzyme is sepiapterin reductase (SR), which is also 

implicated in the “salvage route” of BH4 synthesis (Auerbach et al., 1997). Evolutionary 

information between species for this enzyme is less abundant, compared with GTPCH 

and PTPS, but we can find homologues of SR in some invertebrate organisms (Seong et 

al., 2000; Meng et al., 2009). 

 

1.1.2.2. Enzymes involved in the recycling of BH4 

 

BH4 is usually referred to as a cofactor, but it is in fact a co-substrate that is 

modified during the catalysis, producing 4a-OH-BH4, an oxidised form of the pterin. 

This compound has to be quickly catalyzed, since spontaneous non-enzymatic 

conversion of 4a-OH-BH4 produces toxic metabolites (e.g, primapterin) (Curtius et al., 

1990; Davis et al., 1991). 4a-OH-BH4 is thus regenerated to BH4 through two enzymatic 
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steps, catalysed by pterin-4a-carbinolamine dehydratase (PCD) and dihydropterin 

reductase (DHPR) (Thony et al., 2000). 

 

1.1.2.3. Biological functions of BH4 

 

BH4 has multiple functions that we could divide into two categories: enzymatic 

cofactor and cellular effector. 

o Enzymatic cofactor: apart of its implication on the AAAH reactions (Figure 1) 

BH4 is also the cofactor for the enzymes nitric oxide synthases (NOSs) and 

glycerol-ether mono-oxygenase (Taguchi and Armarego, 1998; Wei et al., 2003; 

Watschinger et al., 2009). 

o Cellular functions: BH4 has also several functions in the cell “per se”, such as 

growing factor or protecting factor for nitric oxide (NO) in neurons (Tanaka et 

al., 1989; Anastasiadis et al., 1997; Werner et al., 2003). Moreover, BH4 has also 

been assigned a neurotransmitter release-stimulating role, especially for 

dopamine and serotonin (Mataga et al., 1991).   

 

1.1.3. Function and cellular localization of PAH and TH 

 

1.1.3.1. Liver PAH and degradation of L-Phe from the diet 

 

PAH is a cytosolic protein mainly found in liver but also in kidney (Kaufman, 

1971; Moller et al., 2000). Although PAH is traditionally considered a catabolic 

enzyme, since the major function is the degradation of L-Phe from the diet, it is in fact a 

dual catabolic-anabolic enzyme because it also produces a supply of L-Tyr for the 

organism, converting this amino acid into a non-essential one  (Hufton et al., 1995).   

It seems that an alternative extra function for PAH in lower eukaryotes, together 

with TH and a group of enzymes called tyrosinases, is the synthesis of melanin and 

melanin-like compounds (Wiens et al., 1998; Johnson et al., 2003; Infanger et al., 2004; 

Leiros et al., 2007). Melanin has multiple functions; maybe one of the most important 

and characterized role is its implication in the immune system of invertebrate animals, 

such as Drosophila melanogaster or some species of mosquitoes (Muller et al., 1999; 

Leclerc and Reichhart, 2004; Cerenius et al., 2008). The role of PAH in melanin 

production in humans has also been suggested (Schallreuter et al., 2004; Schallreuter et 
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al., 2008). However, this function is not completely acknowledged, despite the fact that 

it has been shown that PAH is also expressed in the epidermis (Schallreuter et al., 

2005).  

PAH from D. melanogaster has been cloned and studied extensively (Bel et al., 

1992; Silva et al., 1992), and immunological studies have detected the enzyme in the 

cuticular fraction of the fly, suggesting a role in formation and hardening of the cuticle 

(Silva et al., 1992). Since melanin is also present in the cuticle of Drosophila a role of 

PAH related to the synthesis of melanin is not unlikely (Wittkopp et al., 2002), taking 

into account that the product of the PAH reaction, L-Tyr, is the precursor in the melanin 

synthesis pathway.  

 

1.1.3.2.  Neuroendocrine TH and synthesis of catecholamines 

 

In mammals TH is found in diverse tissues of the central and sympathetic 

nervous system: brain, adrenal medulla and other peripheral sympathetic neurons 

(Flatmark and Stevens, 1999; Fitzpatrick, 2000; Flatmark et al., 2002). Although TH is 

considered a cytosolic protein, a membranous fraction has also been reported (Kuhn et 

al., 1990; Thórólfsson et al., 2002). The extension or physiological significance of this 

fraction is unclear, but it has been proposed to be associated to the coupling of synthesis 

and storage of neurotransmitters in the synaptic vesicles at the synaptic cleft  (Tsudzuki 

and Tsujita, 2004).  An unexplored and interesting field is emerging in relation with the 

TH binding to the synaptic vesicle membrane (Cartier et al., 2010).  

The main function of TH is the synthesis of catecholamines (Figure 2), 

functioning as hormones and neurotransmitters both in invertebrates and vertebrates. In 

relation with diseases such as Parkinson’s disease or Dopa responsive dystonia (DRD), 

the control of locomotor functions -spontaneous and voluntary movements- arises as 

one of the most studied roles of TH (Laverty, 1978; Nishii et al., 1998). Lately, 

catecholamines have been involved in other cognitive and more complicated processes, 

such as behaviour, mood states or even learning (Kobayashi, 2001; Fernstrom and 

Fernstrom, 2007). The emergence of simpler organisms as animal models to study 

neurological functions and development, like D. melanogaster or Caenorhabditis 

elegans, opens the possibility of exploring these new roles of dopamine, adrenaline and 

noradrenaline (Tierney et al., 2003; Sanyal et al., 2004; Kindt et al., 2007).  
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 TH is also implicated in the synthesis of melanin (Walter et al., 1996) providing 

a pool of L-DOPA used for the synthesis of melanin-like compounds, although the main 

suppliers for L-DOPA are the enzymes called tyrosinases (van Gelder et al., 1997; 

Halaouli et al., 2006).  

 

1.1.4. Structure,  domain composition, and molecular genetics of PAH and TH 

 

All mammalian AAAH are oligomeric proteins, composed by four subunits. 

Each subunit contains three well differentiated domains: i) the N-terminal regulatory 

domain which varies in length depending on the enzyme, from around 100 residues in 

PAH to 160 in the largest isoform of human TH, i.e. TH4, ii) the central catalytic 

domain with around 280 residues and iii) C-terminal oligomerization domain containing 

45-50 residues (Flatmark and Stevens, 1999) (Figure 4A and Appendix). TH, PAH and 

the TPHs are highly homologous proteins, reflecting the fact that all arise from a single 

locus through evolution (Ledley et al., 1985; Grenett et al., 1987; Siltberg-Liberles et 

al., 2008). Whereas the catalytic domain (also called catalytic core) (Fitzpatrick, 2000) 

is almost identical between the different proteins of the family, the regulatory domain 

shows a low degree of similarity, pointing to different regulatory mechanisms 

(Appendix).  

The three dimensional crystal structure has been solved for a number of 

truncated forms of the enzymes (for a review see (Flatmark and Stevens, 1999)). Human 

PAH lacking the first 102 and the last 25 residues (Erlandsen et al., 1997) and rat TH 

lacking the first 155 residues (Goodwill et al., 1997), were the first structures solved for 

this family, and revealed the high structural similarity. At present we have access to 

more complete crystal structures, including the regulatory domain of rat PAH (Kobe et 

al., 1999). The structure for the full length tetrameric form has not been solved yet for 

any of the AAAH although composite structural models have been prepared (Flatmark 

and Stevens, 1999; McKinney et al., 2001; Teigen and Martínez, 2003) (Figure 4B). 
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Figure 4. Structure and domain organization of the human AAAH. A) Schematic drawing of the 
three different domains present in the human enzymes. B) The structural model of monomeric 
(left) and tetrameric (right) PAH. Composite model created using the structures PDB 2PHM 
(rat) and PDB 2PAH (human). 

 

 

1.1.4.1. PAH 

 

The N-terminal regulatory domain of the AAAH is classified as an ACT domain 

(Siltberg-Liberles and Martinez, 2008) and shows little sequence similarity. In PAH, 

there is a 30-residue sequence stretch located N-terminal to the ACT domain, referred to 

as IARS (intrinsic auto regulatory sequence) (Kobe et al., 1999). The IARS includes the 

phosphorylation site, and has been related to the allosteric regulation of the enzyme by 

L-Phe (Kobe et al., 1999; Liberles et al., 2005).  

Mammalian PAH has been demonstrated to be in equilibrium between dimers 

and tetramers, with the tetramer being a high activity form of the enzyme whereas the 

dimer is a low activity form (Martínez et al., 1995; Knappskog et al., 1996). Increase of 

L-Phe concentration shifts the equilibrium towards the tetramer, what correlates with 
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PAH activation (Døskeland et al., 1982; Martínez et al., 1995). The tetramer is not 

completely symmetrical, and it can be considered a dimer of two dimers of different 

topology (Fusetti et al., 1998). 

The human PAH (hPAH) gene is located in chromosome 12q23.2 (Scriver, 

2007). The hPAH genomic sequence and its flanking regions contain around 171.000 

base pairs although the codifying region, with 13 exons, represents only 3% of the total 

sequence (Scriver et al., 2003). The hPAH gene codifies for only one enzymatic 

isoform.  

 

1.1.4.2. TH  

 

The N-terminal domain of TH is quite complex, with 4, or even 5 depending on 

the authors, phosphorylation sites (Dunkley et al., 2004). The multiple phosphorylations 

have been related to the tight regulation of the enzyme, controlling either kinetic activity 

or/and binding to protein partners. We will further discuss TH phosphorylation 

elsewhere (section 1.1.5.2). The boundary between the regulatory and the catalytic 

domain is located around the residues 165-179 (Goodwill et al., 1997), and the last 50 

residues in the C-terminal constitute the oligomerization domain.  

TH is tetrameric, and dimeric forms of the enzyme have not been detected in 

vivo. Furthermore, TH is a symmetric tetramer with four identical subunits, in 

comparison with the asymmetric PAH tetramer (Fusetti et al., 1998).  

The human TH gene (hTH) (Nagatsu, 1989) is located in chromosome 11p15.5, 

spanning around 8 kilobases and containing 14 codifying exons. It codifies for four 

different isoforms, created by alternative splicing (hTH1-4), although latter studies have 

revealed that more mRNA species may be expressed in the cell (Dumas et al., 1996; 

Ohye et al., 2001; Roma et al., 2007). The hTH1-4 isoforms are expressed in the same 

tissues, although in different proportions, and share similar kinetic properties, being 

hTH1 the more active and abundant form (Kaufman, 1995). Nowadays, the 

physiological significance of the TH isoforms is not completely understood, being an 

interesting field for future experiments (Kaufman, 1995; Nagatsu, 1995). 
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1.1.5. Short term regulation of PAH and TH  

 

As it corresponds to enzymes involved in important metabolic processes, the 

AAAH are well regulated proteins.  There are two classes of regulation, short term 

(seconds-minutes scale) and long term (hours-days scale) regulation. Short term 

regulation works at the protein level and it is a fast process in response to acute stimuli. 

On the other hand, long term regulation affects gene expression and it is usually a 

slower process reflecting continuous stimulus (Stachowiak et al., 1990; Patel and 

Korotchkina, 2006). In the following paragraphs we will focus on some aspects of the 

short term regulation of PAH and TH. The major divergence at the N-terminal domain 

level makes reasonable to assume that the highest differences will be found for the 

regulatory mechanisms. 

 

1.1.5.1. PAH is principally regulated by phosphorylation and the concentrations of               

substrate and BH4 

 

L-Phe is an allosteric regulator of PAH enzymatic activity (for definition and 

discussion of allosterism, see (Monod et al., 1963) and (Changeux and Edelstein, 2005) 

for a more recent discussion). The L-Phe substrate binds to the protein inducing a 

conformational change that produces two related effects (Kaufman, 1993). First, PAH 

preincubated with L-Phe behaves as an activated enzyme with higher specific activity 

compared with the non incubated form. This phenomenon seems to be related to 

movements of the N-terminal domain, increasing the accessibility of the catalytic site, 

since deletion mutants of PAH lacking the regulatory domain show increase affinity for 

L-Phe and do not need this preincubation to show maximal activity (Stokka and 

Flatmark, 2003; Thórólfsson et al., 2003). Secondly, L-Phe binds to PAH with positive 

cooperativity (for some reviews about cooperativity mechanisms of enzymes, see 

(Perutz, 1989; Koshland and Hamadani, 2002; Laskowski et al., 2009)), with a Hill 

coefficient (h) of 2, which represents the conformational change of PAH accompanied 

by an increase in substrate affinity and catalytic efficiency (Phillips et al., 1984; 

Thórólfsson et al., 2003). The molecular basis for the activation and positive 

cooperativity in PAH is not completely understood since there is no available structure 

of full-length PAH in the substrate-bound form. Nevertheless, limited proteolysis and 

site directed mutagenesis studies with deletion mutants have revealed important 
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information about the allosteric mechanisms (Abita et al., 1984; Knappskog et al., 

1996). 

Another mechanism of short term regulation, widely spread among metabolic 

enzymes, is phosphorylation. Mammalian PAH is phosphorylated at Ser16 by cAMP 

dependent protein kinase A (PKA). Upon phosphorylation, PAH shows an increase in 

basal activity and higher affinity for the substrate, which translates into an activation of 

the enzyme (Phillips and Kaufman, 1984; Miranda et al., 2002).  

Finally, an additional regulatory mechanism is provided by the cofactor. BH4, 

besides working as the cofactor of the reaction, also induces a conformational change in 

PAH structure that results in inhibition and stabilization of the enzyme (Mitnaul and 

Shiman, 1995; Teigen and Martínez, 2003; Pey et al., 2004; Pey et al., 2004). 

 

1.1.5.2. TH is principally regulated by the catecholamine products and 

phosphorylation 

 

In contrast to PAH, the effect of the substrate on TH activity and the possible 

regulatory consequences of this effect in vivo are not completely understood. High 

concentrations of L-Tyr (>50 µM, which is similar to the concentration of this amino 

acid in the bloodstream and the interior of cells) seem to inhibit specific activity, but 

there is no physiological explanation for this phenomenon at the moment. Experiments 

with deletion mutants demonstrated that substrate inhibition is an allosteric mechanism 

involving the regulatory domain (Quinsey et al., 1998). 

Another allosteric mechanism that has been described for TH is a negative 

cooperativity for BH4 binding (Flatmark et al., 1999), with an h value of 0.6-0.5. 

Negative cooperativity is a rare event in biology and its physiological explanation is not 

easy (Koshland, 1996). However, Flatmark et al. explained this mechanism as a thigh 

regulation exerted by the cofactor in a very narrow concentration range (Flatmark et al., 

1999), corresponding with the low physiological concentrations of BH4 within some 

neurons (<5 µM).  

One of the most important and well studied regulatory mechanisms, not only in 

TH but in a vast majority of metabolic enzymes, is the feed-back inhibition by the 

product, in which the final product of the reaction inhibits the enzymatic activity of the 

committed step, avoiding excessive accumulation of the metabolite (Okuno and 

Fujisawa, 1985; Kumer and Vrana, 1996). The final products of the biosynthetic 
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pathway controlled by TH, the catecholamines, bind to the active site of the enzyme 

inhibiting the enzymatic activity by quelation of the iron producing an inactive 

catecholate-ferric complex (Almås et al., 1992), which results in a competitive 

inhibition vs the cofactor (Nakashima et al., 1999). The complex with the iron atom is 

responsible for the blue-green colour of the inactivated enzyme form (Andersson et al., 

1988). 

TH also displays regulatory mechanisms by post-translational modifications, 

being phosphorylation the most extensively studied. The N-terminal domain of hTH 

contains at least four recognised phosphorylation sites: Thr8 (Ser8 in rat TH), Ser19, 

Ser31 and Ser40 (Dunkley et al., 2004). The best characterized phosphorylation site is 

Ser40, which is phosphorylated by PKA and leads to a lower affinity for 

catecholamines, blocking the inhibitory effect of these biomolecules (Haavik et al., 

1990; Kumer and Vrana, 1996). Phosphorylated TH at Ser40 also presents lower Km for 

the cofactor (Toska et al., 2002). Other kinases, as calcium and calmodulin stimulated 

protein kinase (CaMPK) or mitogen activated protein kinase (MAPK), are able to 

phosphorylate the protein at Ser40, although it is believed that PKA is the principal 

effector.  

TH phosphorylation is a complex process that is not completely understood, 

either the mechanism or the physiological significance. In fact after more than twenty 

years of research, the significance of the phosphorylation in other sites than Ser40 is 

still under extensively investigation. For instance, phosphorylation at Ser31 is only 

achieved by ERK (extracellular signal-regulated kinase) 1 and 2, and some studies 

reported an activation of catalytic activity upon phosphorylation (Haycock and Wakade, 

1992). Ser8 has only been found to be phosphorylated in vitro (Campbell et al., 1986), 

remaining unclear if it is relevant in vivo. CaMPK II has been identified as the kinase 

for the site Ser19 in several studies (Campbell et al., 1986; Itagaki et al., 1999). 

Phosphorylation at Ser19 seems to be related to interaction with the proteins 14-3-3, and 

it is this interaction the responsible for the enzymatic activation of Ser19 

phosphorylated TH (Itagaki et al., 1999; Kleppe et al., 2001; Halskau et al., 2009).  

 

1.1.6.  Genetic diseases related to PAH and TH 

 

The importance of the AAAH enzyme family is also reflected by their 

association to human pathologies, including a number of severe rare genetic diseases. 
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The study of the molecular, catalytic and regulatory properties of these enzymes 

contributes to the understanding of the molecular mechanism of the associated illnesses.  

 

1.1.6.1. PAH and PKU 

 

Mutations in the PAH gene lead to a deficiency in PAH enzymatic activity, with 

accumulation of the amino acid L-Phe (hyperphenylalaninemia) (Waters et al., 1998). 

This metabolic phenotype is linked to the disease called phenylketonuria (PKU), 

inherited in an autosomal recessive fashion; in these patients accumulation of the excess 

of L-Phe in brain leads to mental retardation (Scriver and Kaufman, 2001).  

PKU research has had a tradition in Norway since the molecular basis of the 

disease was discovered by the Norwegian Asbjørn Følling in 1934 (Christ, 2003). Since 

then more than 500 different mutations in the PAH gene have been associated to PKU 

(the whole list of mutations can be found at the website www.pahdb.mcgill.ca). Some of 

the mutations produce kinetic defects of the enzyme while others are linked to stability 

impairment and incorrect folding of the protein (Pey et al., 2007), which allows us to 

classify PKU as a misfolding disease (Martinez et al., 2008). There is no definitive 

treatment for PKU (Kim et al., 2004; Scriver, 2007), but several strategies have been 

developed in order to avoid the mental impairment caused by hyperphenylalaninemia. A 

low phenylalanine semi-synthetic diet is the first level of manipulation, but it is 

expensive and difficult to maintain the whole life of the patient (Blau and Scriver, 

2004). Supplementation with the cofactor, BH4, which exerts a protective and chaperone 

effect on PAH, appears effective depending on the mutation (usually, in mild forms of 

PKU) (Muntau et al., 2002; Blau and Erlandsen, 2004; Erlandsen et al., 2004). An 

enzyme substitution strategy with phenylalanine ammonia lyase (PAL) has been 

developed recently (Sarkissian et al., 1999), and constitutes a promising alternative to 

special diets.  

Epidermal PAH has also been related to a multifactorial disease called vitiligo, 

characterised by loss of skin colour. The ethiology of vitiligo is largely unknown being 

the autoimmune hypothesis the most accepted one (Le Poole and Luiten, 2008). Patients 

with vitiligo have been reported to present an impaired BH4 synthesis and recycling, 

with an abnormal accumulation of 7(R,S)-BH4. These 7-BH4 cofactor analogues are 

important inhibitors of PAH, resulting in PAH deficient activity in patients with vitiligo 

(Schallreuter et al., 2005). 
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1.1.6.2. TH and autosomal recessive DRD and Parkinson’s disease 

 

The scenario with diseases associated to TH dysfunction is far more complicated 

than for PAH, possibly because of the lethality of mutations in TH gene, which has been 

observed in transgenic mice with  this gene disrupted (Zhou et al., 1995). However, 

specific point mutations (Knappskog et al., 1995; Ludecke et al., 1996; Royo et al., 

2005) in the TH gene have been linked to the autosomal recessive form of the Segawa’s 

disease, also called Dopa responsive dystonia (DRD) (Ichinose et al., 1999). The 

autosomal dominant form of the disease was first described by Segawa (Segawa et al., 

1976) as a dystonia with onset in the childhood and responsive without side effects to L-

DOPA, and it is produced by mutations in the GTPCHI gene (Nygaard et al., 1993; 

Nagatsu and Ichinose, 1996). 

Parkinson’s disease is characterised by degeneration of dopaminergic neurons in 

the substantia nigra, affecting the motor capacities of the patient. The causes and 

mechanisms of this pathology are not completely clear, but it seems that TH plays a role 

in the mechanism of the disease, since dopaminergic neurons, where TH is abundantly 

expressed, are the first ones to degenerate (Haavik and Toska, 1998). For reviews about 

TH and dopamine related diseases, see (Nagatsu and Ichinose, 1999; Haavik et al., 

2008). 

 

1.1.6.3. BH4 and human genetic diseases 

 

Diseases related to BH4 deficiency were first described associated to a type of 

PKU (atypical or malignant PKU) unresponsive to dietary treatment (Scriver et al., 

1995). Later it was seen that the hyperphenylalaninemia was accompanied by low levels 

of neurotransmitters (dopamine and serotonin) in cerebrospinal fluid (CSF). These 

diseases constitute a heterogeneous group where we can find mutations in different 

genes, both in the synthesis and recycling pathways (Blau et al., 2001).  

As we have mentioned previously, mutations in the GTPCHI gene generate the 

dominant form of DRD (see paragraph 1.1.6.2) or Sewaga’s disease (Thony and Blau, 

2006). PTPS deficiency is the most frequent form of BH4-related diseases, while PCD 

and DHPR, the recycling enzymes of BH4, are also implicated in human diseases, being 

DHPR deficiency the most severe one, while PCD deficiency is presented with 



30 
 

hyperphenylalaninemia and persistent high urinary levels of primapterin (Thony et al., 

1998). For a review on BH4 related diseases see (Longo, 2009).  

 

1.1.7. Tryptophan hydroxylase (TPH) 

 

Although this work mainly focuses on PAH and TH, TPH activity has also been 

considered. TPH is the rate limiting enzyme in the synthesis of serotonin or 5-

hydroxytriptamin (5-HT), hydroxylating tryptophan into 5-hydroxytryptophan. It is also 

implicated in the synthesis of melatonin, a derivative of serotonin. The hydroxylation 

mechanism is similar to that of TH and PAH, requiring for the catalysis BH4, ferrous 

iron and oxygen. 

Probably the most important difference between TPH and TH and PAH is the 

fact that in mammals two independent genes codify for two different TPH isoforms, 

TPH1 and TPH2. Although the site of expression of these two genes is controversial in 

the literature, they are referred to as peripheral TPH1 (predominantly expressed in 

pineal gland, mast cells and enteric neurons) and central or neuronal TPH2 (expressed 

in mesencephalic tegmentum, striatum, and hippocampus in the central nervous system) 

genes, reflecting the main tissues where they are expressed (Sakowski et al., 2006; 

Haavik et al., 2008).  

Serotonin and melatonin function as neurotransmitters and hormones, 

controlling important behaviours, as appetite, sleep, memory, body temperature, mood 

or sexual behaviour, among others (Lucki, 1998). Moreover, some polymorphisms in 

the TPH genes have been associated with mood disorders, as depression or 

schizophrenia (Cichon et al., 2008; McKinney et al., 2009).  
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1.2. The nematode Caenorhabditis elegans 

 

1.2.1. C. elegans as a model system in modern molecular biology: an introductory 

overview 

 

C. elegans is a free living nematode worm that lives in the soil (see Figure 5 for 

an overview of the worm morphology), and became famous 45 years ago, when Sydney 

Brenner proposed the worm as a model system to study development and neurobiology, 

between others (Brenner, 2009). Since then, the number of laboratories using C. elegans 

has increased in an exponential manner (Hoffenberg, 2003). But what are the reasons 

for the success of such a small animal that has already received three Nobel prizes? 

(About these important C. elegans achievements see (Barbour, 2002; Zamore, 2006; 

Zimmer, 2009)).  

C. elegans is considered a model organism in biology, presenting important 

advantages among other organisms, as already seen and exposed by Brenner in his first 

article on the nematode (Brenner, 1974) and we here proceed to enumerate a few of 

them (for reviews on the use of C. elegans as a model organism see (Artal-Sanz et al., 

2006; Kaletta and Hengartner, 2006)): 

 

- A fast development. At 20 oC completed life cycle is achieved in 3-4 days. 

- There are two sexes. Although the main gender is hermaphrodite, 0.1% of the 

population are males. This rare feature is essential to maintain and isolate 

genetic strains, but the existence of males allows crossing strains carrying 

different mutations.  

- Production of large numbers of offspring. Around 300 eggs are laid by the 

hermaphrodite by self-fertilization, and around 1000 by male-mating.  

- Easy and inexpensive laboratory conditions. The worms are maintained on Petri 

dishes on agar, seeded with a bacterial lawn as food source.  

- Relatively simple anatomy. Approximately 1000 cells constitute the whole body, 

(959 somatic nuclei for the hermaphrodite and 1031 for the male). Despite this 

simplicity, complicated structures and behaviours characterize this organism. 

- C. elegans was the first multicellular organism whose genome was sequenced, 

which consists of just over 100 million base pairs and 20,000 genes (The C. 

elegans Sequencing Consortium, www.wormbase.org ). 
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- Survival to freezing mechanisms. Worms stocks can be stored frozen in liquid 

nitrogen, being viable during decades.  

- Transparency. An important feature, since it allows us to distinguish anatomical 

structures and to follow fluorescence markers in vivo.  

 

Since Brenner´s initial studies, investigation with C. elegans has not stopped, 

with new techniques and methods developed every year. 4D microscopy, green 

fluorescence protein (GFP) tagging and visualization in vivo, silencing at specific stages 

or in specific groups of cells, electrophysiology of single neurons and other 

experimental procedures are nowadays routine work in C. elegans laboratories. 

Research fields are extensive, but important advances have been developed regarding 

interesting topics as ageing, programmed cell death, obesity or plasticity of the nervous 

system (for reviews in some of these topics see (Hobert, 2003; Putcha and Johnson, 

2004; Olsen et al., 2006)).  

 
Figure 5. C. elegans general body plan. A) Hermaphrodite anatomy. B) Male anatomy, with 
focus on differential structures. Figure adapted from www.wormatlas.org 
 

 

1.2.2. Evolutionary relationships 

 

C. elegans belongs to the phylum of nematoda, in which we can find free-living 

nematodes (as C. elegans and C. rabditis) and parasitic nematodes (Ascaris sum and 



33 
 

Brugia malayi, between others). Nematodes are located in the evolution tree in a deep 

branch close to the separation between arthropod and vertebrate lineages. Although they 

are far from mammals, it has been shown that almost all lower and higher animals share 

a great variety of biological processes and molecules (Blaxter, 1998; Cutter et al., 

2009). Biological processes are well conserved across animal kingdom, and the main 

difference seems to be the degree of complexity of these processes. As an example to 

understand this idea, around 60-80% of the genes in C. elegans genome have the 

corresponding version in the human DNA (Harris et al., 2004).  

It has been seen that protozoans, as Dyctiostelium discoideum or Leishmania, 

only present one copy of the AAAH in its genome, whereas metazoans, such as C. 

elegans or D. melanogaster, own at least three different genes of the AAAH family. 

Characterization of PAH from the mould D. discoideum (Siltberg-Liberles et al., 2008) 

confirmed that PAH was the ancestor of the AAAH. This ancestral gene from 

protozoans must have been duplicated twice, in agreement with the three copies of the 

hydroxylases found in the C. elegans genome, generating the new functions of TH and 

TPH (Figure 6).   

 

1.2.3. C. elegans as a model organism for human diseases 

 

Once that we have explained the advantages of C. elegans and the evolutionary 

relationship with other species, it is reasonable to select the nematode to study 

important human diseases. Let’s consider the two possible scenarios that we can find  

(Culetto and Sattelle, 2000; Kaletta and Hengartner, 2006): 

- If the gene of interest has an ortholog in the C. elegans genome: apart of 

expression pattern experiments to see localization or cDNA cloning to study 

protein properties in vitro (between others), knocking out or knocking down the 

gene of interest is an available tool to study gene function. As an example, the 

human gene responsible for Duchenne muscular distrophy has its counterpart in 

the worm genome, and loss-of-function animals exhibit muscular contractions 

defects (Bessou et al., 1998). Here, C. elegans emerges as a good model to get 

further knowledge on this disease. In this thesis several worms knocked-out in 

genes related to AAAH and their human genetic diseases have been studied and 

characterised.  
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- If the gene of interest has no ortholog in the C. elegans genome: even then there 

is a possibility to model the human disease. Microinjection of the corresponding 

human cDNA into the gonads of the animal will produce a transgenic offspring 

expressing the human protein under a specific promoter. Transgenic models of 

Alzheimer’s disease and Parkinson’s disease have been developed in C. elegans 

with this technique and are the choice model to study neurodegenerative 

diseases in many cases (Link, 1995; Link, 2005; Teschendorf and Link, 2009). 

This strategy has not been pursued in the present work, although the possibility 

to inject disease-related mutant constructs of the human PAH, TH and TPHs to 

study its in vivo behaviour is extremely interesting. 

 

 

1.2.4. The AAAH family in C. elegans 

 

The C. elegans genome is predicted to have three different genes encoding three 

AAAH (Figure 6). The gene K08F8.4 in C. elegans genome was predicted to encode a 

putative PAH, while the genes B0432.5 and ZK1290.2 were proposed to encode 

putative TH and TPH, respectively. 
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Figure 6.  Phylogenetic tree of the AAAH, rooted with PAH from the protozoa as an outgroup. 
The three AAAH from C. elegans are circled in red. The figure has been adapted from 
(Siltberg-Liberles et al., 2008) 
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1.2.4.1. PAH is expressed in hypodermis 

 

Since PAH is expressed in hypodermis and in close relation with the epithelial 

system, a brief description of these organs will be presented here. The hypodermis is 

composed by a main body syncytium (hyp-7), some extra hypodermal cells in the head 

and the tail (hyp1-hyp11), and the seam cells (Figure 7A), a kind of blast cells 

responsible for alae production in the cuticle. The principal functions of the hypodermis 

are nutrient storage, secretion of the adjacent cuticle and engulfment of apoptotic cell 

bodies.  

The cuticle is a flexible and resistant exoesqueleton that completely surrounds 

the body of the nematode. It is implicated in body morphology, correct locomotion and 

protection from the environment. It is synthesised five times, once in the embryo and 

another four at the end of each larval stage. The cuticle presents four different layers, 

from the outer to the inner part: epicuticle, cortical, medial and basal cuticle (Figure 7, 

B). The molecular components of this exoesqueleton are collagens, non-reducible 

cuticlins and a surface coat of lipids and glycoproteins. Both collagens and cuticlins are 

highly cross-linked through di, tri and iso tyrosine bridges, which makes the cuticle a 

very resistant structure (www.wormbook.org). 

 

 
Figure 7.  The cuticle of C. elegans. Representative pictures of the components of cuticle and 
hypodermis in longitudinal (A) and transversal (B) sections. The figures have been modified 
from its originals in www.wormatlas.org.  
 
 

Loer et al. cloned and sequenced the nematode PAH gene (K08F4.8) (Loer et 

al., 1999). Expression pattern, seen by LacZ (β-galactosidase) reporter fusion constructs 

and confirmed by immunostaining with mammalian PAH antibody PH8, revealed that 
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PAH is expressed mainly in the cytoplasm of hypodermal cells, with a strong anterior-

posterior gradient (Loer et al., 1999). Bacterial expression of K08F4.8 cDNA was 

performed and PAH activity was measured in crude extracts, confirming the PAH 

function of the gene and also low, but detectable, TPH activity (no TH activity was 

detected) (Loer et al., 1999). 

In spite of these experiments confirming the presence of a gene encoding PAH 

in C. elegans genome, at the start of this thesis project no studies had been reported on 

PAH function in nematodes. Loer et al. proposed a role of PAH involved in synthesis 

and maintenance of cuticle structures (Loer et al., 1999). A supply of tyrosine would be 

provided by PAH and used for tyrosine cross-linking of collagens and cuticlins 

(Fujimoto et al., 1981; Yang and Kramer, 1999). 

 

1.2.4.2. TH and  TPH are expressed in the nervous system 

 

More studies are available in relation to TH and TPH function in the nematode, 

due to its importance in the synthesis of neurotransmitters, dopamine and serotonin. A 

brief introduction of both these enzyme systems will be given here.   

  

TPH and serotonin 

The gene ZK1290.2 (tph-1) is expressed in serotonergic neurons and is involved 

in several processes, as metabolic control of food ingestion and reproduction and egg-

laying rate, between others (Nuttley et al., 2002; Estevez et al., 2004). Mutants bearing a 

deletion on the TPH gene (tph-1 mutants) are defective in serotonin synthesis (Sze et 

al., 2000).  

 

TH and dopamine 

The gene B0432.5 (cat-2) was identified as a putative TH (Lints and Emmons, 

1999), and mutants lacking this gene (cat-2 mutants) were defective in dopamine 

synthesis. Experiments carried out with GFP reporter fused to the cat-2 gene confirmed 

that TH was expressed in the catecholaminergic system. 

There are 8 dopaminergic neurons in C. elegans hermaphrodite (Figure 8) 

(Sulston et al., 1975): four symmetrically cephalic cells (CEPs), two bilateral anterior 

deirids (ADEs) in the head and two bilateral posterior deirids (PDEs) in the middle part 

of the body. Moreover, males contain three extra pairs of dopaminergic neurons in the 
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tail (Sulston et al., 1975; Lints and Emmons, 1999). Already from the first observations 

these neurons were considered to be mechanosensory, since their ciliated endings of the 

dendrites are embedded in the sub-cuticle in contact with the exterior world, a perfect 

position to sense diverse stimuli from the environment (for a good review on dopamine 

in the worm, see (Nass and Blakely, 2003)).  

 

 
Figure 8. Dopaminergic neurons in C. elegans. A) Schematic cartoon showing the left side of 
neurons expressing dopamine (CEPD, CEPV, ADE and PDE) in the hermaphrodite. B and C) 
Green fluorescence protein (GFP) expressed under dat-1 (dopamine transporter) promoter is 
only seen in dopaminergic neurons in the head (B) and the medial part (C). A) has been taken 
from www.wormatlas.org, and B) and  C) from (Nass and Blakely, 2003). 

 

 

The possibility of a mechanosensory function of dopamine was confirmed by 

Sawin et al. (Sawin et al., 2000) in their experiments with cat-2 knock-out mutants, 

demonstrating that dopamine controls the context-dependent locomotion in response to 

food. Dopamine is involved in what it is called “Basal slowing response”, consisting on 

the slower rate of movement that well-fed animals present in the presence of a bacterial 

lawn than in the absence of the food source. Cat-2 animals do not have this behaviour. 

But the availability of food also regulates locomotion with, at least, one extra 

mechanism, which is called the “Enhanced slowing response”. This is exhibited by 

starved animals when they encounter a bacterial source, moving much more slowly than 

if they are not starved. Contrary to the basal slowing response, this behaviour is 
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mediated via serotonin. In Nature, both mechanisms are supposed to be very important 

for survival, since feeding is a basic and primary necessity for C. elegans. Dopamine 

has also been implicated in the process of learning and behavioural adaptation (Sanyal 

et al., 2004; Kindt et al., 2007; Lee et al., 2009), and in the male-mating behaviour 

(Loer and Kenyon, 1993), what is expected since the extra dopaminergic neurons of the 

males are associated with the copulatory apparatus.  

 

1.2.4.3. TH and dopamine from other organisms 

 

Extensive research has been done with catecholamines in different organisms. D. 

melanogaster is another model organism used for biological research (Burdett and van 

den Heuvel, 2004; Ashburner and Bergman, 2005), and we have extensive information 

about TH protein from the fly. There is only one gene for TH in D. melanogaster, 

although two different isoforms of the protein are generated by alternative splicing 

(Neckameyer and Quinn, 1989; Birman et al., 1994). One of them is expressed in 

nervous system and its physiological role is the synthesis of catecholaminergic 

neurotransmitters; on the contrary, the second one is expressed in hypodermis and it has 

been described as an enzyme implicated in the pigmentation and hardening of the 

cuticle. Moreover, animals lacking the th gene are characterized by unpigmented 

embryos unable to hatch (for further information on the TH function in the hypodermis 

of Drosophila see (Davis et al., 2007)). These two isoforms present important 

differences in regulation of the activity, especially concerning two important 

mechanisms of TH regulation in mammals, i.e. feed-back inhibition and 

phosphorylation (Vie et al., 1999). The hypodermal isoform appears comparatively less 

sensitive to dopamine inhibition than the neuronal isoform, while the later is activated 

through phosphorylation by PKA also in the absence of dopamine.  

Different invertebrates have been used to study TH activity and catecholamine 

biosynthesis. The presence of dopamine in the central nervous system of crustaceans 

has been demonstrated and it appears to be related, between other roles, to adaptative 

behaviour (Tierney et al., 2003). In the cuttlefish Sepia officinalis, TH is expressed in 

the ink defence system. S. officinalis appears to use melanin as a primitive immune 

mechanism and dopamine is implicated in melanin synthesis and regulation (Fiore et al., 

2004). 
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1.3. Natural and chemical chaperones 
 

As already mentioned (see section 1.1.6.1), most PKU mutations are linked to 

impaired folding and stability of the protein (Pey et al., 2007), and PKU is one of the 

metabolic misfolding diseases most studied to date (Martinez et al., 2008). There are not 

as many different mutations in the TH gene as in the PAH gene, but some of them have 

also been reported to exert decrease thermal stability (Royo et al., 2005). Based on the 

identification of disease-associated mutants of the AAAH as rather unstable proteins, 

new therapeutic strategies aiming to increase protein stability are arising for these 

diseases. 

 

1.3.1. The quality control system of the cell 

 

Folding inside the cell is an extremely important and regulated process that  

ensures correct protein stability and function. The quality control system (QCS) in the 

cell monitors that proteins are correctly folded, assists them if they are not able to fold 

by themselves, and targets the unfolded proteins for degradation. The QCS has two 

principal members: the chaperones and the proteasome. Here we proceed to introduce 

them briefly; for detailed information see (Trombetta and Parodi, 2003; Bukau et al., 

2006) (Figure 9). 

Molecular chaperones and cochaperones are a set of proteins that bind to 

partially unfolded peptides, usually via hydrophobic exposed regions, and help these 

peptides to fold correctly (Liberek et al., 2008). Probably, the most extensively studied 

chaperone is the bacterial GroEL and its cochaperone GroES, which share several 

properties with the mammalian chaperones (Fenton and Horwich, 1997; Sigler et al., 

1998).  

The ubiquitin proteasome pathway (UPP) is the main route for protein 

degradation. If a protein is unfolded or incorrectly folded and it is not able to reach the 

native conformation even with the chaperone help, it will be targeted for proteasomal 

degradation. Attachment of at least four molecules of ubiquitin through ordered 

enzymatic reactions is the key signal for proteasome recognition. The proteasome is a 

multi domain protein complex that cleaves proteins and peptides into short peptides (for 

a review on UPP see (Nalepa et al., 2006; Schwartz and Ciechanover, 2009)).  
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Figure 9. Quality control system (QCS) in the eukaryotic cytosol. A) Protein assisted folding 
for newly synthesized polypeptides, involving the interactions with different molecular 
chaperones; NAC, nascent-polypeptide associated complex; HOP, Hsp organizing protein. B) 
Ubiquitin-proteasome pathway (UPP) for the degradation of defective proteins. U, ubiquitin; 
E1, ubiquitin activating enzyme; E2, ubiquitin conjugating enzyme; E3, ubiquitin ligase. The 
figure has been taken from (Martinez et al., 2008). 

 
 

1.3.2. Misfolding human diseases 

 

Customarily, misfolding diseases are classified in two groups (Martinez et al., 

2008; Winklhofer et al., 2008):  

- Gain-of-function diseases: also referred to as amyloid diseases, due to the 

amorphous deposits of amyloid fibrils found in different tissues and organs in 

these diseases. The molecular basis of these pathologies is either an 

overwhelmed QCS or an unfolded protein that is resistant to degradation. In the 

latter case the unfolded peptides exposing hydrophobic patches are accumulated 

within the cell, and the protein aggregates into toxic insoluble structures that will 

finally form the amyloidogenic fibril (Selkoe, 2004; Chiti and Dobson, 2006; 

Luheshi and Dobson, 2009). 

- Loss-of-function diseases: Though most proteins will form fibers at selected in 

vitro conditions, only a limited number of proteins actually form amyloids in 

vivo (Lopez de la Paz and Serrano, 2004). Thus, most misfolded proteins are 

completely degraded by the proteasome with no intracellular accumulation of 

aggregates, and as a result no specific protein function is retained. In fact, most 
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of the genetic misfolding diseases belong to this group, including metabolic and 

endoplasmic reticulum (ER) trafficking-diseases, such as cystic fibrosis, one of 

the misfolding illnesses most studied in the literature (Amaral, 2004; Amaral, 

2006). In this group we also find PKU (Pey et al., 2007). 

 

1.3.3. Natural and pharmacological chaperones 

 

An important therapeutic aim in relation with misfolding diseases is to promote 

the correct folding and restore protein activity (pharmacological rescue). One of the 

strategies to recover proper folding is by using small molecules called chaperones. 

These molecules will bind to native or partially folded states of the protein and will 

promote folding and stabilization (Kolter and Wendeler, 2003).  

 

1.3.3.1. Chemical chaperones 

 

Chemical chaperones are small organic molecules, such as osmolytes (glycerol, 

sucrose…), dimethyl sulfoxide (DMSO), trimethylamine or even detergents and 

phospholipids, that have been proved to stabilize protein structure (Tatzelt et al., 1996). 

Despite their initial promising potential, soon it was obvious that they presented some 

important disadvantages. Since they are not specific stabilisers of one protein 

(unspecific binding and stabilization) high amounts are needed to see a biological effect, 

and these high doses are usually toxic for the cell, as found in the case of stabilization of 

mutants associated with cystic fibrosis (Sato et al., 1996; Wang et al., 2007). 

   

1.3.3.2. Pharmacological chaperones 

 

On the other hand, pharmacological chaperones are low molecular weight 

compounds specific for one protein or family of proteins that have a stabilizing effect at 

low concentrations (Ulloa-Aguirre et al., 2004). One of the disadvantages of these 

chaperone molecules is that they usually bind very tightly and/or to functional sites 

within the protein, functioning as inhibitors. A compromise between binding and 

inhibition must be found.  

A recent strategy to find specific pharmacological chaperones is the use of high 

throughput (HTP) screening with chemical libraries, containing a broad set of 
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representative organic compounds. The HTP methodology allows the researcher to 

search a determined set of positive hits within a library of thousands of putative 

compounds (Tropak and Mahuran, 2007). The number and type of available commercial 

libraries increases steadily, each one adapted to specific research needs and 

applications. 

Some examples about protein rescue through pharmacological chaperones in 

relation to misfolding diseases can be found in the following articles: (Parenti, 2009) in 

lysosomal storage diseases, (Yam et al., 2006) in Fabry’s disease or (Amaral, 2006) in 

cystic fibrosis. 

  

1.3.3.3. Natural chaperones 

 

Natural chaperones are specific cases of pharmacological chaperones, since they 

are natural substrates, cofactors or inhibitors of the studied protein and their in vivo 

concentration can be increased therapeutically. These natural ligands have stabilising 

effects, apart from their biological role in the catalysis or physiological function of the 

protein (Martinez et al., 2008). Therapeutic supplementation with these biomolecules 

arises as a possibility to treat misfolding diseases, as it has been seen with the role of 

vitamins stabilising some proteins (Li et al., 1998; Ames et al., 2002). Also in the case 

of treatment with natural chaperone compounds dose-dependent toxicity should be 

taken into account. 

 

1.3.4. Therapeutic application of natural and pharmacological chaperones in the 

treatment of PKU 

 

As most PKU mutations are related to misfolding and decreased stability of the 

native state of the protein (Gjetting et al., 2001; Pey et al., 2003; Pey et al., 2007; 

Scriver, 2007), the use of natural and pharmacological chaperones arises as a good 

candidate for clinical treatment. Actually, supplementation with BH4 is already 

established as a PKU therapy in some patients with mild forms of the illness (see 

paragraph 1.1.6.1) (Erlandsen et al., 2004; Levy et al., 2007). BH4 seems to exert its 

therapeutic role through different mechanisms, including a natural chaperone effect in 

PAH, stabilizing the structure of the enzyme (Pey et al., 2004; Thony et al., 2004; 

Scavelli et al., 2005).  
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Pey et al. have recently demonstrated the usefulness of HTP screening of 

chemical libraries to find putative pharmacological chaperones to treat PKU (Pey et al., 

2008). The authors identified a set of compounds that stabilised recombinant PAH. 

Moreover, experiments with disease-related mutants in cellular animal cultures as well 

as with wild type mice supplemented with these organic molecules further established 

their potential as putative therapeutic agents. 
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2. Aims of the study 

 
The main goal of this thesis was to comparatively study the AAAH from 

humans and nematodes, in order to unravel evolutionary and novel functional aspects of 

this enzyme family. A second goal of this work was to analyze the effect of small 

molecules as stabilizers of the conformation of TH, PAH and TPH. These molecules 

have a potential as therapeutics for diseases related to AAAH, based on the chaperone 

concept. In order to achieve these goals, we have focused on two main subprojects, with 

the following partial aims: 

 

2.1. The family of AAAH in C. elegans (Papers  I-II) 

 

- PAH is a well studied protein in mammals, possible due to its implication in the 

disease PKU. On the other hand, little is known about the function and 

regulation of this enzyme in invertebrate organisms. We aimed here to get 

deeper insights into the cePAH characteristics and functions, both in vitro and in 

vivo, and to extract evolutionary information on PAH. Moreover, this 

information is expected to provide a better understanding of the function and 

regulation of the human enzyme both in health and disease. 

- We also aimed to investigate another important AAAH in C. elegans, i.e. TH, 

which required the cloning and characterization of the recombinant enzyme 

(ceTH). In addition of being important for the understanding of adaptive 

changes along evolution in this enzyme family, this study is expected to provide 

the basis for the investigation of the physiological relevance of important 

regulatory mechanisms established for mammalian TH, such as feed-back 

inhibition by catecholamines or N-terminal phosphorylation, using a simpler and 

easy to handle organism, like C. elegans.  

 

2.2. Stabilization of the AAAH through chaperone molecules (Papers III-

IV) 
 

- BH4 is considered a chaperone of PAH conformation, and it is used for the 

treatment of PKU patients, notably those with mild forms of the disease. This 
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BH4 supplementation therapy is supposed to increase both PAH activity and 

stability. Moreover, BH4 is also used in the therapy of other diseases, as 

hypercholesterolemia or diabetes mellitus. We attempted in paper III to unravel 

if BH4 is able to cross the BBB at therapeutic doses and if so, to study the effect 

upon TH. We also aimed to investigate a potential use of BH4 as chaperone for 

the treatment of DRD associated to the misfolding of TH mutants. 

- HTP screening of PAH detected four compounds with potential as 

pharmacological chaperones that increased PAH (wild-type and mutant) 

stability. In paper IV, we aimed to comparatively study the effect of these four 

compounds on PAH, TH and TPH2 stability. The close relationship, regarding 

both structure and catalytic activity, of the members in this enzymatic family 

points to the importance of comparative studies, especially when the goal is to 

develop new and specific therapies. 
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3. Results and contributions 

 
3.1. The AAAH in C. elegans (PAH and TH) 

 

3.1.1. C. elegans PAH (cePAH) is implicated in the synthesis of a melanin-like 

compound (Paper I) 

 

Previous studies by Loer et al. focused on the cloning and expression of the 

recombinant PAH from the nematode C. elegans and confirmed that the K08F8.4 gene 

encoded a PAH (Loer et al., 1999). Kinetic characterization of recombinant cePAH 

revealed similar catalytic properties in comparison with human PAH (hPAH): high 

specific activity and similar apparent affinities (Km) for the substrate, cofactor and O2, 

and similar substrate and cofactor specificity. On the other hand, the regulatory 

behaviour presented several differences. cePAH does not need to be pre-incubated with 

the substrate, L-Phe, to reach maximal activity. It is also devoid of the positive 

cooperativity induced by Phe, a regulatory mechanism of mammalian PAH that seems 

relevant for the need of avoiding the toxic accumulation of this amino acid. A detailed 

study of the pah-1 mutant, lacking cePAH in the worm, was performed in order to 

elucidate the in vivo function of the enzyme. The pah-1 worms seemed apparently 

healthy with no obvious phenotype. Since cePAH is expressed in hypodermal cells 

(Loer et al., 1999) special focus was given to the cuticle. The structure of pah-1 mutant 

cuticles, in contrast with cat-4 mutants, which are defective in GTPCH, appears to be 

normal, as studied by different microscopy approaches. Mechanical resistance was 

studied by sonication but no significant differences were observed between wt (N2) and 

pah-1 animals. In contrast, the bli-3 strain, which is defective in the enzyme Doux (dual 

oxidase) responsible for di-tyrosine cuticle cross-linking and that presents cuticle 

defects such as blisters and disattachment of the cuticle to the hypodermis, is highly 

sensitive to sonication. Interestingly, treatment with hydrogen peroxide revealed 

dramatic differences between pah-1 and wt strains, the pah-1 mutants being much more 

resistant to the oxidizing conditions. Isolation and characterization of wt and pah-1 (and 

cat-4) cuticles subjected to acid hydrolysis revealed a compound almost absent in pah-1 

and cat-4 mutants but not in wt. Further purification and physico-chemical 

characterization of this molecule identified it as a putative melanin-like compound of 
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the family of pheomelanins. The fluorescence and infrared spectra of this melanin is 

incompatible with that of a di-tyrosine. In order to investigate a putative role of this 

melanin-like compound in anti-oxidant mechanisms, we measured catalase and 

superoxide dismutase (SOD) activities in wt and pah-1 extracts. In fact, an important 

increase in SOD activity, together with a slight increase in worm survival, was detected 

in pah-1 mutants. This is most probably due to a compensatory mechanism that further 

confirms the role of cePAH in the synthesis of a melanin-like compound with anti-

oxidant protection function.  

 

3.1.2. Cloning and recombinant expression of C. elegans TH (ceTH) (Paper II) 

 

The gene B0432.5 was predicted to codify a putative TH involved in the 

synthesis of dopamine (Sawin et al., 2000). In order to get further knowledge on TH 

function in the worm we aimed to clone and characterise this gene, producing the 

recombinant protein in vitro and studying its function and regulation. Information 

available in Wormbase (www.wormbase.org) seemed confusing, since the gene 

structure predicted two spliced isoforms of TH: one of them (B0432.5a) was lacking 

part of the catalytic domain and the complete oligomerization domain, and the second 

one (B0432.5b) did not have a complete regulatory ACT domain. Amino acid sequence 

of these two isoforms and several THs both from invertebrates and vertebrates 

(including the nematode C. briggsae, closely related to C. elegans) did not provide 

coherent sequence alignments. Moreover, every TH protein studied so far presents the 

typical three domain organization, which is absent in the B0432.5a and B0432.5b 

isoforms. By using specific primer design we confirmed the existence of a new more 

reliable isoform (B0432.5c), combination of the a and b isoforms. This c isoform 

presents the three domains of the AAAH, and it was cloned in this study. The 

recombinant ceTH protein was expressed in E. coli and purified, and its kinetic 

characterization confirmed its tyrosine hydroxylating activity, and almost no PAH or 

TPH activity. This is different to the properties of the hTH, which hydroxylates L-Tyr 

and L-Phe with similar efficiency. Moreover, the specific TH activity was significantly 

lower than for the human enzyme, but similar or even lower activities have been 

previously reported for THs from other invertebrate organisms. Special focus was paid 

to the regulation of the catalytic activity, and in agreement with the divergence of the N-

terminal domain, important differences were found between ceTH and hTH. The 
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apparent affinities for the cofactor were similar, but ceTH does not display negative 

cooperativity binding for BH4. The apparent affinity for the substrate is significantly 

lower for ceTH, and the substrate inhibitory effect at high concentrations of L-Tyr is 

almost absent. Moreover, the feed-back inhibition by dopamine is much lower in ceTH 

than in hTH, suggesting that the regulation by the product is not as critical in the worm 

as in the human. A putative phosphorylation site, homologue to Ser40 in hTH, was 

found in the sequence of ceTH. As seen by MALDI-TOF mass spectroscopy, Ser35 in 

ceTH was phosphorylated upon incubation with PKA. PKA phosphorylation does not 

seem to activate the enzyme, either in the presence or absence of dopamine, as is the 

case for hTH. Other regulatory effects might be affected by phosphorylation at this site. 

   

 

3.2. Towards the stabilization of the AAAH: natural and 

pharmacological chaperones 

 

3.2.1. The cofactor BH4 functions as a natural chaperone of hTH (Paper III) 

 

The role of BH4 as a natural chaperone of PAH, stabilising the enzyme 

conformation upon binding, is well established, both in vitro and in vivo. On the other 

hand the effect of the cofactor on TH is confusing, and both destabilization/inactivation 

of the enzyme by BH4, with concomitant cell death, and protective effects have been 

reported. Moreover, the final catecholamine products are also known to have a 

stabilising role in TH conformation. In this work we thus set up to get insights on the 

effect of BH4 and dopamine on TH stability and activity, both in vitro and in vivo.  

The circular dichroism (CD) unfolding kinetics of recombinant hTH1, in 

absence or presence of BH4, revealed a concentration dependent stabilization exerted by 

the cofactor. Same experiments with other synthetic BH4 analogues (BH2 and 6M-PH4) 

showed lower stabilising effect, indicating that the effect is specific of the natural 

cofactor. Addition of dopamine also decreased the unfolding rate of TH, even at 

stoichiometric amounts, in agreement with the high affinity binding of the 

catecholamines. Additional experiments using the coupled in vitro cell free rapid 

transcription-translation system (RTS) for the synthesis of hTH1 in the presence or 

absence of BH4 also revealed the stabilizing role of the cofactor. The stabilization might 
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also be caused by catecholamines, which production is stimulated upon increasing 

concentration. Nevertheless, the chaperone effect of the cofactor per se was proven by 

using specific AADC inhibitors. Furthermore, the mutant hTH1-L205P, associated to 

DRD and juvenile Parkinsonism is also stabilized by BH4, revealing the potential of 

BH4 as a natural chaperone to treat TH related disorders. Finally, we investigated the in 

vivo effect of BH4 in wild type young adult mice supplemented with BH4 at two 

different dose regimes. The cofactor was able to cross the BBB in a concentration 

dependent way. Moreover, a small but detectable and reproducible increase in TH 

activity and protein was observed, whereas the mRNA of TH was unchanged, further 

demonstrating a natural chaperone function for BH4. 

 

3.2.2. Stabilization of the AAAH by pharmacological chaperones (Paper IV) 

 

Recently, Pey et al. identified four compounds (compounds I-IV) from a 

chemical library of organic molecules as stabilisers of PAH conformation, both in vitro 

and in vivo, suggesting its possible use as pharmacological chaperones for the treatment 

of PKU (Pey et al., 2008). In this paper we thus aimed to comparatively study the effect 

of these compounds on the three hydroxylases, to better unravel its specificity and 

therapeutic potential. As done earlier for human PAH (hPAH), the direct in vitro 

stabilization of human TH isoform 1 (hTH1) and human TPH2 (hTPH2) by compounds 

I-IV was analyzed by differential scanning fluorimetry (DSF). Compound I presented a 

small stabilising effect in hPAH, but no effect at all in the other two proteins. In 

contrast, compound II, with a small effect on hPAH and no effect in hTPH2, showed an 

important stabilising effect of hTH1. Interestingly, compound III strongly stabilised the 

three enzymes with similar up-shift of the melting temperature (T0.5), whereas 

compound IV appeared specific for hPAH, with no effect on hTH1 and even a small 

destabilising effect on hTPH2. R202H-hTH1, an up to now uncharacterised variant of 

TH associated to DRD that shows decreased thermal stability (T0.5~44 oC vs ~48 oC for 

the wt) suggesting a conformational defect, was also strongly stabilized by compounds 

II and III.  

In vivo experiments were performed using wild type mice treated with 5 

mg/kg/day of each compounds II-IV during 12 days. Compound II, which was an 

important and specific stabiliser for hTH1 in vitro, did not have any measurable effects 

in the mice. In contrast, compound III greatly stabilised PAH and TH, but not TPH, in 
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vivo, measured as a stimulation of total activity and protein. The effects of compound 

IV were surprising since a decrease in neurotransmitters and their metabolites was 

found, reflecting a possible destabilising effect, notably on TPH. In all conditions, 

levels of BH4 and mRNA for the enzymes were normal and no changes were detected 

between control and treated samples.  

All together our results point to the importance of comparative studies of ligand 

binding in proteins showing high structural and functional similarity, though different 

tissue localization, in order to rationally design specific drugs and avoid secondary 

harmful effects. Furthermore, the stabilizing effect of compound III on wt TH and the 

mutant R202H both in vitro and in vivo points to its potential as pharmacological 

chaperone for the treatment of TH-associated neurological disorders. 
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4. General discussion 

 
4.1. The AAAH in C. elegans 

 

4.1.1. Regulation of cePAH and ceTH 

 

The low similarity at the regulatory domain of both PAH and TH reveals 

regulatory differences between these enzymes. In the case of PAH, the enzyme from the 

worm lacks the tight regulation exerted by the substrate (activation and positive 

cooperativity). In humans, both mechanisms ensure a fast degradation of L-Phe from 

the diet (Kaufman, 1986) since when accumulated in the bloodstream, this amino acid 

quickly goes to the nervous system inducing mental retardation (Kahler and Fahey, 

2003). In C. elegans, on the other hand, a role of the enzyme in protection of the 

nervous system appears to be less important, since pah-1 mutants do not present a PKU-

like phenotype. Moreover, administration of extra L-Phe in the worm diet does not have 

any deleterious effect (Paper I). Absence of allosteric regulatory mechanisms in cePAH 

suggests that an anabolic function of PAH could be more important, in contrast with the 

major catabolic role of hPAH. We hypothesise that this switch in function is related to 

the development of nervous system complexity (Paper I). ceTH also presents important 

differences in regulation when compared with mammalian TH. Apart from the lack of 

the negative cooperativity for the cofactor, ceTH is not inhibited by either the substrate 

or the catecholamine end-products. These two are important mechanisms in hTH 

regulation (Kumer and Vrana, 1996). These facts could be reflecting a less tight 

regulation in the synthesis of catecholamine neurotransmitters through TH in relation 

with a simpler nervous system in lower eukaryotes (Vie et al., 1999; Neckameyer et al., 

2005). Moreover, phosphorylation at Ser35 by PKA in ceTH does not appear to activate 

enzymatic activity, as it has been shown to be the case in hTH (Dunkley et al., 2004). 

How phosphorylation regulates the worm enzyme remains unclear, although it could be 

related to the interaction of ceTH with partners (e.g. 14-3-3, AADC, GTPCH) or to the 

subcellular localization of the enzyme (e.g. a distribution between cytoplasm and 

membrane fractions, such as the synaptic vesicles). Interactions of the enzyme have 

been reported to be regulated by phosphorylation in hTH (Kleppe et al., 2001; Halskau 

et al., 2009).  ceTH appears then as an enzyme lacking, at least partially, some of the 
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regulatory mechanisms characteristic of the mammalian orthologs. It seems reasonable 

to hypothesize that ceTH does not need as strict regulation as hTH and behaves as a 

constitutive enzyme, with low but constant activity. This also seems to be the case for 

the epidermal isoform of TH from D. melanogaster, which -as ceTH- is resistant to 

dopamine inhibition and phosphorylation activation (Vie et al., 1999).  

 

4.1.2. Function and molecular biology of cePAH and ceTH 

 

Pah-1 knock-out animals lacked an organic molecule in the cuticle that we 

identified as a melanin-like compound in the family of pheomelanins (Nighswander-

Rempel, 2006). Until the publication of this work it was unknown that C. elegans 

contained melanin, but several studies in other invertebrates (notably insects) have 

shown that melanin is present in their cuticular fraction (Kato et al., 2006; Ninomiya 

and Hayakawa, 2007). Moreover, in several invertebrates, such as insects or Geodia 

cydonium (Wiens et al., 1998), PAH appears to be the first enzyme in the synthesis of 

melanin. As a possible remainder of this primitive function, PAH is expressed in human 

skin cells (Schallreuter et al., 2005) and, moreover, PKU patients show a decrease in 

skin pigmentation, facts that some authors have related to a role of PAH in 

melanogenesis (Schallreuter et al., 2008). In mammals, melanin synthesis is catalyzed 

by tyrosinase (del Marmol and Beermann, 1996), that converts tyrosine into L-DOPA. 

Interestingly, the C. elegans genome owns four putative genes for tyrosinases, all 

expressed in hypodermis (Blaxter, personal communication). PAH would function as a 

previous step to tyrosinase, providing an extra pool of tyrosine.  

The up regulation of SOD in the pah-1 mutants points to a protective role of 

worm melanin against oxygen harmful radicals. Melanin has been demonstrated to be a 

very effective oxygen species scavenger (Simon et al., 2009), and its presence in the 

cuticle of the nematode, in contact with the oxidizing environment, further supports the 

antioxidant role of the compound isolated in this work.  

Another possible implication of PAH is related to the structural integrity of the 

cuticle. cePAH has been previously related to the synthesis of di-tyrosine cross-links of 

collagens and cuticlins (Loer et al., 1999), structural proteins of the cuticle (Parise and 

Bazzicalupo, 1997; Yang and Kramer, 1999). The strong phenotype of the double 

mutant bli-3:pah-1, with severe cuticle abnormalities, suggests a role of PAH in cuticle 



54 
 

structure maintenance. If these abnormalities are due to the lack of di-tyrosine bridges 

itself, or if melanin is also implicated, remains unclear.  

The function of ceTH has been much more studied than in the case of cePAH, 

since the role of TH in the synthesis of catecholamines is completely established, as it is 

the important neurotransmitter role of these biological amines for both vertebrates and 

invertebrates. Cat-2 mutants, defective in TH activity, display an extremely low level of 

dopamine as well as mechanosensory impaired function (Sawin et al., 2000). However, 

the molecular organization of the cat-2 gene has not been studied in detail so far. We 

here describe, clone and characterise a new isoform of ceTH, different to the two shorter 

isoforms reported in Wormbase. This novel ceTH c isoform seems to be more 

consistent, in terms of domain structure and organization, with the rest of THs from 

lower and higher eukaryotes. The resulting cloned enzyme is active and stable and our 

results strongly support that isoform c of ceTH is the enzyme being encoded in vivo by 

the cat-2 gene, whereas isoforms a and b appear very unlikely. In the era of genomic 

annotations and sequencing, computational mistakes on the databases are not a rare 

event due to the immense amount of information, and experimental confirmation of the 

data seems essential. 

 

4.2. Natural and pharmacological chaperones of the AAAH 
 

PKU is one of the metabolic diseases recognized as a misfolding disease 

(Waters, 2003), where an unstable or partially unfolded version of the protein is target 

for degradation in the proteasome, with partially or completely lost of function. Natural 

and pharmacological chaperones are small organic molecules that help the protein to 

fold correctly and restore proper biological function (Martinez et al., 2008).  

As we have pointed out in the introduction, the AAAH are functionally and 

structurally related enzymes. For this reason comparative studies of the three enzymes 

are necessary especially when considering putative therapies for one of the enzymes, 

since the therapy could easily influence the other activities. 

 

4.2.1. Natural chaperones: the BH4 case 

 

The therapeutic importance of BH4 is well established, not only for PKU (Levy 

et al., 2007)), but also for hypercholesterolemia (Cosentino et al., 2008), diabetes 
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mellitus (Nystrom et al., 2004) and cardiovascular diseases (Moens and Kass, 2007) 

among others. For this reason it is important to elucidate the effect of BH4 

supplementation on the rest of the AAAH. 

Whether or not BH4 is able to cross the BBB has been a controversial issue 

(Shintaku, 2002; Hyland, 2007). Our experiments on mice with BH4 supplemented diets 

confirmed that BH4 actually is able to reach the nervous system, although high doses are 

necessary (i.e. 100 mg/kg/day), compared with the lower doses used to treat PKU (10-

20 mg/kg/day) (Sanford and Keating, 2009) or other human disorders nowadays. Our 

first conclusion seems that the actual doses used in the clinic are unlikely to interfere 

with nervous system enzymes, as TH or TPH.  

We further investigated the putative chaperone effect of BH4 upon TH, in 

comparison with the situation regarding PAH and some forms of mild PKU (Blau and 

Erlandsen, 2004).  Our in vitro and in vivo results clearly point to a similar stabilization 

of TH by BH4, as it was previously suggested in studies with ptps knock-out mice 

where the absence of the cofactor produced a complete loss of TH protein while TPH 

was not affected (Sumi-Ichinose et al., 2001). Moreover, the experiments performed in a 

RTS system with TH mutant isoforms implicated in DRD, showed that the chaperone 

effect of BH4 is also effective for some of these mutations, such as hTH1-L205P 

(Ludecke et al., 1996) (Paper III), which opens the possibility of BH4 as a therapy for 

DRD and Parkinson’s related diseases. 

 

4.2.2. Pharmacological chaperones for the treatment of AAAH related diseases 

 

The importance of pharmacological chaperones to stabilise the AAAH enzymes 

was demonstrated by Pey et al. (Pey et al., 2008).  In such work, organic compounds 

that increased the thermal stability of PAH were identified, and four (compounds I-IV; 

see full name and structure in paper IV) were suggested as possible therapeutic agents 

for the treatment of PKU. As it was the case for BH4 (paper III), investigation about the 

effect of the compounds on the other hydroxylases appears essential. Even though 

compartmentalization of PAH in liver and TH and TPH in neuroendocrine system is an 

efficient first barrier for drug selectivity, some molecules will be able to reach all 

locations (as it is the case for BH4) at similar concentrations, and our work (paper IV) is 

a good example of these concepts.  
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In vitro studies with compounds I-IV showed a different behaviour in the 

thermal unfolding of the hydroxylases. Compound III was the only one that bound and 

stabilised human PAH, TH and TPH2 in a similar way, whereas compounds II and IV 

seemed to be specific stabilisers for TH and PAH, respectively. No specific potential 

chaperone was found for TPH. 

In vivo studies are a necessary step in the drug design process, although the 

results from these studies are not so straightforward to analyse and interpret. For 

instance, compound III that stabilized all AAAH in vitro, produced a clear increase in 

total protein and activity in both TH and PAH in vivo, but not in TPH. A different 

compartmentalization between catecholaminergic and serotonergic neurons in mouse 

brain could explain this different behaviour of compound III. Other explanations might 

be a more strict regulation and protection of TPH inside the neurons, in comparison 

with TH. A similar situation is found for BH4 (paper III) where, despite the ability of 

the cofactor to reach the nervous system and stabilise TH enzyme, no significant effect 

was detected regarding TPH (unpublished results). Another inconsistent in vitro/in vivo 

effect was seen for compound II, which exerted a huge in vitro stabilisation on the 

hTH1 protein but no effect on TH in mice brains. We hypothesise a poor uptake of the 

compound in nervous system due to e.g. low lipophilicity (Josserand et al., 2006; Ballet 

et al., 2008), which might hinder crossing the BBB. In summary, we have seen that in 

vivo mechanisms for drug delivery, especially concerning the well protected nervous 

system, are complex and should be analysed carefully. 

The results on the effect of the pharmacological chaperones on mutants involved 

in DRD in the case of TH and PKU in PAH, point to the possibility of using these 

compounds as putative therapeutic agents in some forms of the diseases ((Pey et al., 

2008) and paper IV). More experiments with cellular cultures and, even better, 

transgenic animals models, expressing different mutations will be necessary to develop 

these drugs. 
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5. Conclusions and future perspectives 

 
5.1. The study of the AAAH in C. elegans  

 

C. elegans is a simple and widely used model organism in biology. We have 

been interested in the comparative characterization of the human and nematode 

enzymes of the AAAH family. We have focused on enzymatic activity and regulatory 

aspects, and have also investigated some features of the in vivo function of PAH and 

TH. This investigation using the nematode has provided important evolutionary 

information regarding the structure, function and regulation of the AAAH. 

PAH resulted to be implicated in the synthesis of a new compound localized in 

the cuticle of the animal (paper I). The spectroscopic properties of this isolated molecule 

fitted well those of pheomelanin, but a more detailed characterization remains to be 

done. The use of mass spectrometry to analyse the purified melanin-like compound 

appears as a good strategy to obtain a more detailed chemical structure. Besides, more 

in vivo studies with wt and mutant worms are being planned to get further knowledge 

into the physiological function of this newly identified compound. Since the increase of 

antioxidant enzymes and survival in the pah-1 knock-out animals pointed to an oxygen 

radical scavenger role for the PAH end product, future experiments will aim to 

investigate that possibility.  

As pointed out in the introduction TH is a well regulated enzyme (Kumer and 

Vrana, 1996), but there is no enough in vivo information about enzymatic regulation. 

We have characterised the recombinant enzyme from the nematode (paper II), showing 

that some regulatory mechanisms are conserved between humans and worms. We are 

very interested on studying how ceTH is regulated in vivo and how this regulation 

affects behaviour in C. elegans. Dopamine has been shown to be implicated in several 

complex behaviours of the nematode, as motility or egg-laying, and it would be a 

challenge to investigate how regulation of the enzyme is reflected in some of these 

physiological functions. We intend to make use of the customary C. elegans 

methodology, as GFP expression constructs, measurement of calcium currents in 

dopaminergic neurons, and diverse phenotypic analysis to investigate coupling of 

dopamine synthesis and transport to synaptic vesicles (Cartier et al., 2010), as well as a 

putative role of phosphorylation in subcellular localization.  
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5.2. Pharmacological chaperones for the AAAH 

 

A HTP screening of a chemical library was carried out in the case of PAH to 

identify several compounds that increase protein stability and function as putative 

pharmacological chaperones (Pey et al., 2008). Four positive hit compounds were 

selected for further experiments, and we tested these compounds in parallel in PAH, TH 

and TPH2, revealing important information about specificity in protein stabilization of 

the three related enzymes by chaperone molecules (paper IV). A new HTP screening for 

TH and both TPHs seems an interesting next step in our investigation, in order to find 

new and specific stabilisers for these neuroendocrine enzymes, always keeping in mind 

the molecular properties of the compounds that facilitate crossing the BBB.  

Finally, it would be interesting to perform experiments in mammalian cell 

cultures with several DRD related TH mutants (Knappskog et al., 1995; Ludecke et al., 

1996; van den Heuvel et al., 1998). In vitro studies, both with BH4 and the 

pharmacological chaperones (papers III and IV), showed that some of these mutations 

present impaired protein stability. Thus, the use of small compounds that increase 

stability is certainly a promising therapeutic alternative. Initial experiments in our 

laboratory with PC12 cultures supplemented with BH4 and the compounds did not 

provide optimal conditions for reliable results, but improvement of cellular culture 

experiments constitutes an interesting field to study mutant-related stability therapies. 

Moreover, the possibility of expressing specific disease-mutant proteins in C. elegans 

opens the possibility to easy and inexpensive animal studies in our laboratory.  
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6. Appendix 

 
6.1. Sequence alignment of the AAAH 

 

Sequence alignment of the human aromatic amino acid hydroxylases, TPH1 

(SWISS-PROT P17752), TPH2 (TrEMBL Q8IWU9), PAH (SWISS-PROT P00439) 

and TH (splicing isoform 1; SWISS-PROT P07101). The asterisks above the sequences 

indicate identity, while homologue properties of the residues are indicated with two dots 

or one dot, depending on the degree of similarity. 
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