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Abstract Air bubble penetration depths are investigated with a bottom-mounted echosounder at a
seabed observatory in northern Norway. We compare a 1-year time series of observed bubble depth against
modeled and estimated turbulent kinetic energy flux from breaking waves as well as wind speed and sea
state. We find that the hourly mean and maximum bubble depths are highly variable, reaching 18 and

38 m, respectively, and strongly correlated with wind and sea state. The bubble depth is shallowest during
summer following the seasonal variations in wind speed and wave height. Summertime shallowing of the
mixed layer depth is not limiting the penetration depth. A strong relationship between bubble depth and
modeled turbulent kinetic energy flux from breaking waves is found, similar in strength to the relationship
between bubble depth and wind speed. The wind sea is more strongly correlated with bubble depth than
the total significant wave height, and the swell is only weakly correlated, suggesting that the wave model
does a reasonable separation of swell and wind sea.

Plain Language Summary Down-mixed air bubbles measured with a bottom-based
echosounder provide an opportunity to observe upper ocean processes continuously through all types

of weather. Here we investigate the correlation between air bubble depth and modeled energy flux from
breaking waves. We investigate 1 year of data available from an offshore location in Northern Norway.
Results show that the hourly mean and maximum bubble depths are highly variable, reaching 18 and

38 m, respectively, and strongly correlated with wind and sea state. The bubble depth is shallowest during
summer, following the seasonal variations in wind and wave height. We find that the bubble depth is not
limited by the depth of the mixed layer. A relationship between bubble depth and energy flux is found,
similar to the relationship between wind and energy flux. This is important for prediction of both dispersal
of particles (such as oil spills and marine plankton) and transfer of gases from the atmosphere to the ocean.

1. Introduction

Breaking surface waves generate turbulent mixing and entrain air bubbles in the water column (Gemmrich
& Farmer, 1999; Thomson et al., 2016; Thorpe, 1982). This controls the air-sea gas exchange crucial for the
ventilation of the ocean and the uptake of carbon dioxide and oxygen (Rhein et al., 2013). Quantifying these
fluxes is essential for modeling of the air-sea interaction and its role in coupled Earth system models (Breivik
et al., 2015; Fan & Griffies, 2014). This in turn has consequences for anthropogenic emissions as these fluxes
determine the properties of the ocean mixed layer and the absorption of gases (Zappa et al., 2007).

While the wind stress acting on the sea surface in the open ocean causes mixing of diffused gases by
shear-driven turbulence and wave generation (and thereby also Langmuir circulation), it is only when waves
break that there is direct entrainment of gas into the ocean (Bell et al., 2017; Zappa et al., 2007) in the form
of bubbles. To realistically model air-sea gas exchange, numerical models must be able to represent the flux
of wave-generated turbulent kinetic energy (TKE). Recent studies have parameterized wave-generated tur-
bulence in ocean models, with the purpose of improving the representation of ocean surface temperature
and the mixed-layer depth (Alari et al., 2016; Breivik et al., 2015; Burchard, 2001; Mellor & Blumberg, 2004;
Staneva et al., 2017; Wu, Staneva et al. 2019; Wu, Rutgersson, et al. 2019).

Several ocean and wave model studies (Ali et al., 2019; Belcher et al., 2012; Breivik et al., 2019; Li et al.,
2017) and fully coupled atmosphere-wave-ocean climate models (Breivik et al., 2015; Fan & Griffies, 2014;
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Li et al., 2016) have investigated the relationship between Langmuir turbulence and upper ocean mixing
and how this may change under a changing climate. It is clear that Langmuir turbulence will enhance
the vertical extent of the air-sea gas exchange brought about by wave breaking and thus affect the vertical
distribution of buoyant particles. It is however not clear how deep into the mixed layer buoyant particles
may be brought by wave-generated and shear-generated turbulence. Knowing the vertical distribution of
buoyant particles is crucial when predicting dispersal since horizontal currents vary with depth, whether
the particles in question are air bubbles (Thorpe, 1992), buoyant fish eggs (Sundby, 1983), or oil droplets
(Jones et al., 2016; Paris et al., 2012). The challenge in addressing these issues is often due to measurement
limitations, both for observing processes and for model validation. Our aim with this paper is to exploit
continuous acoustic data to investigate the relationship between turbulent mixing by breaking waves and
the air bubble distribution in the upper ocean.

Down-mixed air bubbles scatter sound waves and can be observed by echo sounding instruments (Thorpe,
1982). Such instruments, initially used for mapping the ocean sea floor, detecting submarines and assisting
fisheries (Sund, 1935), are now widely used in physical oceanography (Colbo et al., 2014). In the past four
decades echosounders have been used to study various dynamic processes in the upper ocean (see early
work by Thorpe, 1982, 1984, 1992; Vagle & Farmer, 1992 and more recent work by Trevorrow, 2003 and
Wang et al., 2016). There is an ongoing debate about the turbulent dissipation near the ocean surface and
whether the law-of-the-wall scaling is valid in this zone (Craig & Banner, 1994; Esters et al., 2018; Terray
et al., 1996, 1997). Some of this work is based on observations of bubble clouds (Thorpe, 1992; Wang et al.,
2016). Itis nevertheless clear that the law-of-the-wall scaling does not hold in the breaking zone (Fisher et al.,
2018; Gemmrich, 2010; Sutherland & Melville, 2015; Thomson et al., 2016; Zippel et al., 2018). Vertical
size-specific bubble distributions for radii between 8 and 130 pm were measured by Vagle and Farmer (1992)
using a multifrequency acoustic backscatter technique. Such detailed bubble distributions allow estimates
of the total amount of air entrained by breaking waves and the associated gas transfer. Air-sea gas fluxes are
usually parameterized in terms of a gas transfer velocity, which is typically taken to depend on wind speed.
Efforts to link the gas transfer velocity directly to turbulence dissipation rates (Lamont & Scott, 1970; Zappa
et al., 2007) are promising, but there are still uncertainties due to a lack of dissipation measurements very
close to the surface (Esters et al., 2017).

Here we investigate the relation between the measured bubble penetration depth and the modeled TKE flux
from breaking waves. The recent work by Callaghan et al. (2016) and Callaghan (2018) shows a new frame-
work for bubble volume as a proxy for dissipation, connecting whitecapping and bubble penetration depth.
As shown by Callaghan (2018), the missing link in defining a relationship between the energy dissipation
rate associated with whitecaps is the bubble plume penetration depth. For the first time a yearlong series
of bubble depths measured with an upward looking echosounder is compiled and analyzed. Following the
procedure of Thorpe (1992), Trevorrow (2003), and Wang et al. (2016), we investigate how the bubble depth
varies with surface wind speed and sea state (represented by significant wave height, swell, wind sea, and
the amount of wave breaking). We assess the relation between observed bubble depth and the TKE flux
from breaking waves from the wave model EC-WAM (ECMWF, 2019). In particular, we address the follow-
ing questions: (i) how far down do air bubbles penetrate and what is the seasonal variation, (ii) how does
bubble depth relate to wind and sea state, and finally (iii) how does the modeled TKE flux correlate with
measured bubble depth?

This paper is organized as follows. The observatory, the echosounder instrument, other observations, and
the wave model are presented in sections 2 and 3. The observed relationship between bubble depth and
modeled wind and wave parameters is presented in section 4. The results are discussed, and conclusions
are presented in sections 5 and 6. An assessment of the echosounder’s ability to measure significant wave
height is presented in Appendix A.

2. Observations

We have compiled measurements over a 1-year period (14 November 2014 to 18 November 2015) north of
the Lofoten archipelago in Northern Norway (between 67° and 68°N, centered around 14°E; see Figure 1).
Observations include acoustic data from an upward looking echosounder located at the Lofoten-Vesteralen
(hereafter LoVe) Ocean Observatory, meteorological observations from Andeya and Rest, and observed
hydrography at Eggum.
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Figure 1. Location of the LoVe Ocean Observatory; the two meteorological stations, Rest and Andeya, and the hydrological station, Eggum.

Located north of the Arctic Circle, the study area undergoes a period of near complete darkness during
winter and strong biological productivity during spring. The Norwegian continental shelf is at its narrowest
near the LoVe site, linking the near-shore continental shelf strongly to the deep Norwegian Sea, where the
most important zooplankton species in the area, Calanus finmarchicus, overwinter in the deep (e.g., Melle &
Skjoldal, 1998; Melle et al., 2004). Periods of high biological primary and secondary production give strong
backscatter throughout the water column and will be considered as a possible contaminating factor when
investigating the echosounder measurements.

The site is exposed to the open ocean at a location with frequent passages of extratropical storm systems from
the southwest with associated significant wave height in excess of 12 m (Aarnes et al., 2012; Breivik et al.,
2013). The depth is more than 250 m, making it a deepwater site in terms of the wave dispersion relation
(see Figure 1).
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Figure 2. (a) Raw data from the upward looking echosounder (EK60). The x axis shows time as the number of samples
during the month of July 2015. The y axis shows the amount of samples starting counting from the echosounder
transducer to the ocean surface. The sample range is around 19 cm. (b) The filtered bubble layer depth at the LoVe
ocean observatory for the whole data set 14-18 November 2015. (c) Zoom of July 2015, the same month as in panel (a).
The black line is maximum air bubble depth, red is the hourly mean, while green is the hourly maximum. The cyan line
shows the signal from R/V Hakon Mosby as it passed through the area (since removed from the data set). Gray shading
in (a) and (b) indicates missing data. (d) A 2-hr zoom of the bubble depth during a high wind situation. There is a
marked periodicity to the bubble penetration depth which is attributed to wind gustiness and the natural groupiness of
waves. The red and blue lines indicate the mean and maximum bubble depth (linearly interpolated), respectively.

2.1. The EK60 Echosounder

The permanent LoVe Observatory located outside Vesterdlen (Figure 1) has a 70 kHz bottom-mounted nar-
row band split beam (7°) echosounder (Simrad EK60). The frame is placed at 258-m depth and has a 31-m
surface detection diameter. Sampling frequency is 0.25 Hz with a vertical sample resolution of 0.19 m.
The echosounder was calibrated using a tungsten carbide calibration sphere (WC38.1), according to best
practice for calibration of scientific echosounders, using the standard sphere method (Demer et al., 2015;
Foote, 1987). A time variable gain function is applied to compensate the received echo data for the loss of
acoustic energy due to geometric spread and absorption. Backscatter intensity from July 2015 is shown in
Figure 2a. Air bubble backscatter depends on the product of acoustic wavenumber, a quantity proportional
to the acoustic frequency, and the dimension of the scatterer (the bubble). Assuming spherical bubbles and
using mass and stiffness equations (see, e.g., Clay & Medwin, 1977), the radius of resonating bubbles at 70
kHz close to the surface is estimated to be about 45 pm, increasing to 85 pm at 30-m depth. Since ours is a
single-frequency instrument with a sampling frequency of 0.25 Hz, the observed signal will come from res-
onant bubbles of differing radii (depending on depth) that remain in the water column for more than 4 s.
The echosounder is also able to measure significant wave height, as we present in Appendix A. However, its

STRAND ET AL.

40f14



) .¥edl!

100

VANCING EAR
AND SPACE SCI

Journal of Geophysical Research: Oceans 10.1029/2019JC015906

Standardized bubble depth within each hour

15 x10* 5 %108 Bubble depth, whole year
— July 2015

July 71 2015 14 utc 457

4 L
2 2

c C 35 L
Q (]
£ ‘ 5

5 \ 5 3r
[72) | [%2]
g g

£ £ 29/
w“ “

° o 2t
[0} []
Ke) 51 o)

g €15
b4 b4

1 L

\ 05F

O 1 L 1 1 N— 0 .
-4 -2 0 2 4 6 8 0 10 20 30 40
Standardized depth Bubble depth [m]

Figure 3. Left panel: The histogram of standardized depth within each hour for the data shown in Figures 2c and 2d
(black curve represents the month of July),and 1 hr (gray curve represents 2015-07-07T14UTC) shown in Figure 2d).
The intrahourly data follow a weak lognormal distribution slightly skewed toward higher bubble depths. Right panel:
The histogram of the bubble depth for the entire year (all data) follows an exponential distribution.

low sampling frequency (0.25 Hz) biases the measurements in short-period sea states (where the Nyquist
frequency is higher than the dominant wave frequency).

2.1.1. Estimating Bubble Depth

The depth of air bubbles from breaking waves is determined relative to the instantaneous ocean surface
elevation (¢), similar to methods by Gemmrich (2010) and Wang et al. (2016). The backscattered signal is
smoothed using a 3 x 3 spatial filter. The surface is detected below a threshold (here —25 dB, corresponding
to the 99th percentile). The thickness D of the bubble layer is defined relative to the sea surface (¢) as the
depth where the backscattered signal drops below —50 dB (Wang et al., 2016). The signal must be above
—50 dB continuously to the surface or else it is removed (as it potentially represents a biological signal).
Finally, the hourly mean (D) and maximum (D,,,, ) bubbles depth are calculated (Figure 2b) for comparison
with observations and wave model parameters. Figures 2c and 2d show the bubble depth variability within
1 month and within 2 hr, respectively. In the example shown in Figure 2d, the wind is approximately 17 m
s~ with stable atmospheric conditions and continuous wave breaking. We see that there is a periodicity of
larger breaking events of 5-10 min which we attribute to wind gustiness and the natural groupiness of waves.

The long-term probability distribution of bubble depths exhibits an exponential distribution (Figure 3, right
panel). In our study we focus on the hourly mean and maximum bubble depths. It is thus of interest to
also look at the probability distribution of the intrahourly measurements, that is, how do the 0.25-Hz mea-
surements distribute around their hourly averages? As the sea state and the associated bubble depth vary
greatly throughout the yearlong data set, we have standardized the data according to their hourly mean and
standard deviation

z,=—L 1 )

Here D, represents the hourly average depths, s; is the hourly standard deviation, and D, ; the 0.25-Hz
measurements organized in intrahourly chunks of N; measurements numbered from j = 1, ... , N;. The his-
togram of standardized depth for the month of July 2015 is shown in Figure 3, left panel. The data are skewed
toward higher bubble depths, following a weak lognormal distribution. Overlaid on the monthly standard-
ized histogram is the histogram of the storm episode highlighted in Figure 2d. It is clear that the two are very
similar, which suggests that a weak lognormal distribution is the norm across a broad range of sea states.

2.2. Wind and Hydrographic Observations
Hourly 10-m wind observations are taken from stations Rest (Uy) at 67.5°N, 012.1°E and Andeya (U, ) at
69.3°N, 016.1°E; see Figure 1. Both are operated by the Norwegian Meteorological Institute. Hydrographic
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observations are taken at the Eggum station located offshore of the island Vestvagey in Lofoten (68.4°N,
013.6°E). The station is operated by the Norwegian Institute of Marine Research. These observations are
taken manually two to three times per month with a SATV SD 204 conductivity-temperature-depth instru-
ment with external water sampler (T. Hovland, personal communication, September 2018). The temperature
is calibrated with reversing thermometers, while salinity is calibrated with water samples analyzed in lab.
The accuracy is 0.01 for both salinity (PSU) and temperature (K). The mixed layer depth (MLD) is calculated
from the potential density profile. The MLD is defined at the point where there is a difference of 0.003 kg
m~3 in relation to a reference depth of 5 m (to avoid diurnal heating, see de Boyer Montégut et al., 2004).

3. Modeled Wave Parameters

3.1. The EC-WAM Hindcast

Hourly wind (Uy) and wave parameters are taken from a global wave hindcast forced with ERA-Interim
10-m wind (Dee et al., 2011), run by the European Centre for Medium-range Weather Forecasts (ECMWF).
The spatial resolution is 0.36°. The spectrum is resolved by 30 frequencies arranged logarithmically between
0.035 and 0.55 Hz and 36 directional bins. The model is set up with source terms as presented by Ardhuin
et al. (2010). See also Breivik et al. (2019) for details on the hindcast integration. Wave parameters such as
total significant wave height (H,), wind sea (H,,,) and swell (Hy, ) wave height, drag coefficient (C,) and the
TKE flux (@) are bilinearly interpolated to the LoVe Observatory location.

3.1.1. Modeled TKE Flux From Breaking Waves

Although the presence of bubbles means that waves dissipate, only a fraction of the total energy lost by the
waves contributes directly to upper ocean mixing and manifests itself as bubbles (Melville, 1994). It is not
clear exactly how the wave energy loss is partitioned between turbulence in the air (Iafrati et al., 2014), in
the water column (Terray et al., 1996, 1997), and as work against buoyancy (Melville, 1994), that is, bubbles.
Thomson et al. (2016) found the TKE dissipation to be a decreasing fraction of the total wave dissipation
as the sea state increases. Since microscale wave breaking does not entrain air into the water column but
contributes to wave energy dissipation (Banner & Phillips, 1974; Sutherland & Melville, 2015), we are not
able to measure this part of the energy budget.

However, for fully developed sea state, the TKE flux from breaking waves has traditionally been parameter-
ized as a function of the wind energy input (Craig & Banner, 1994), proportional to the cube of the friction
velocity

cDoc,p = pwaCBui - (2)

Here, p,, is the density of seawater, the nondimensional coefficient a.; depends on the sea state (but was
assumed constant by Craig & Banner, 1994), or equivalently the wave age (Terray et al., 1996, 1997), and
u, is the waterside friction velocity, defined as u, = \/m The wind stress 7 = C,p,U?% where p, is the
density of the atmosphere, C, is the drag coefficient, and U, is the local 10-m wind speed. Substituting u,
into equation (2) allows us to estimate @ from the local wind speed U,

Dy, = 4 /(piCj)/pwaCB U130. 3)

Here, p, = 1.125 kgm™> (the standard air density of ERA-Interim), p,, = 1026 kg m™> (observed mean
surface water density at Eggum), C; = 1.5 x 1073 (mean), and the nondimensional TKE flux acg = 100,
following Craig and Banner (1994). Mellor and Blumberg (2004) suggested a range 50 < acp < 150 from the
work by Terray et al. (1996, 1997) and Stacey (1999).

The waves are however normally not in equilibrium with the local wind, and the TKE flux from breaking
waves should properly be calculated from the dissipation source term of a spectral wave model (Breivik
et al., 2015)

2r )
Dy = —pwg/ / S4s dow dO, 4)
0 0

where g is the gravitational acceleration and Sy is the dissipation source term of the energy balance equation
integrated over all frequencies (w) and directions (). The flux, equation (4), is calculated online in EC-WAM.
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Figure 4. One year of data. (a) Mean (D) and maximum (D,,,,) bubble depth (m) calculated from EK60 echosounder observations at the LoVe observatory.

(b) Observed wind (m s~1) at both Andeya (U, ) and Rest (Ug). (c) Modeled wind (m s~1) from EC-WAM (Ugc). (d) Modeled H and

Hy, (m) from EC-WAM.

(e) TKE flux (Wm~2) from breaking waves by EC-WAM (@, 1, red) according to equation (4) and parameterized (@, ,, black) according to equation (3). Note
that the y axis is cubic.

The subscripts m and p for ® . in equations (2)-(4) distinguish between modeled and parameterized
estimates. The formulation by Gemmrich et al. (1994) is

(5)

2
q)oc,eff = pwu*ceff s
where ¢  is an estimate of the weighted, effective wave speed that takes into account the sea state and
as such yields a more realistic estimate of the TKE flux. Here we choose to rather contrast the wave model

TKE flux, equation (4), against equation (2) as it is the simplest possible baseline parameterization of wave
dissipation (ignoring sea state).
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Table 1

Correlation Coefficients (Pearson’s Linear (r,, ) and the Spearman Rank (r,)) Between Observed Mean (D) and Maximum
Bubble Depth (D,,,,) Between the Following Time Series: Wind Speed, Uy, (From EC-WAM, Ugc, Andoya, Uy, and Rost,
Ug), Total Significant Wave Height from EC-WAM (H) and NORA10EI and Split Between Wind Waves, H,,;, and Swell,
Hyg,), and Turbulent Kinetic Energy Flux from Breaking Waves (®,, Both Modeled; @, (equation 4), and Estimated
From Wind Speed, @, (equation 3) Using Wind Speed (EC-WAM; ®pc and Andoya; @,)

Wind speed Uy, ECMWF H NORA10EI H Param @, ,
U Uy Uz Hy Hy,, Hy, Hy Hy, Hy ECMWF®,, & @,
080 072 060 069 035 084 070 022 087 0.67 0.64  0.67
. 080 072 055 064 041 082 064 029 085 0.81 080 0.7
Dpax 7, 077 069 058 074 046 082 075 033 084 0.64 061 0.64
. 077 068 055 074 054 080 074 042 0380 0.79 077 073

(w]]
=

4. The Relationship Between Bubble Depth and Wind and Wave Parameters

Hourly time series of echosounder mean (D) and maximum (D,,,,) air bubble depth are compared with
modeled (Ug.) and observed (U, and Uy) wind speed, modeled wind sea (H,,,), swell (H, ), total significant
wave height (H;), and TKE flux from breaking waves from EC-WAM (®,,. ,,) as well as the flux parameterized
(®q p) using wind from EC-WAM and Andoya (Figure 4). We see that D varies between 0 and 18 m, while
D, varies between 2 and 38 m. The linear correlation between D and D, is r = 0.94, suggesting that
the estimates of maximum hourly bubble depth are quite robust. The fact that D, ,, is more than twice the
hourly average illustrates the importance of individual breaking events for the bubble injection.

Before we look at the relationship between the TKE flux from the wave model and the bubble depth, we
briefly investigate the sensitivity of the parameterized TKE flux given by equation (3). Varying p, between
1.125and 1.2 kg m~3 (typical atmospheric density range) in equation (3) changes the flux by up to 0.7 Wm™2.
Varying p,, between 1,025 and 1,027 kgm™ (the surface range observed at Eggum) yields differences of the
order of 10~> Wm™2. Finally, varying a.yz between 50 and 150 (the typical range suggested by Banner &
Phillips, 1974) changes the flux by as much as 6.4 Wm™2. Finally, varying the drag coefficient C; between
1.5 and 3 x 1073 gives differences up to 12 Wm™2. It is clear that the uncertainty in the drag coefficient and

the dimensionless flux far outstrip uncertainties in density.

Correlation coefficients (Pearson's linear and Spearman’s rank correlation; see Press et al., 2007) between
the different time series are given in Table 1. The correlation with wind (Ugc, U,, and Uy), H; and @ is
generally higher for D than for D,,,,. The linear correlation between D (D,,,,) and modeled wind, Ug, is
r = 0.80 (0.77). Wind sea, H,, yields the highest correlation coefficient against D (D,,,), ¥ = 0.84 (0.82). As
expected, the swell wave height (Hy, ) exhibits significantly weaker correlation. The MLD is usually deeper
than the mean bubble depth, with a seasonal variation of 50-75 m in winter and 10-20 m in summer, and
only occasionally does D, ,, exceed the MLD. Dividing the time series into four seasons, the correlations
between wind (observed wind U, and modeled wind Ug.) and D show either slightly lower or the same
strength for summer and winter, and slightly higher or the same for spring and autumn (not shown). The
approximately cubic relationship between wind speed and mean (max) bubble depth naturally yields a weak
linear correlation coefficient r = 0.67 (0.64) between D (D,,,,) and modeled TKE flux @, .. A better estimate
for such highly nonlinear relationships is either to take the linear correlation of the cubic root of the flux or
to use the rank correlation which is found to be r = 0.81 (0.79). A similar rank correlation is found for the
parameterized @, , (Table 1).

oc,p

Scatter plots of wind, H, and @, , against bubble depth (D and D,,,,) are shown in Figure 5. The relation-
ship shows the expected near-cubic relationship between modeled @, and bubble depth (both D and D,,,,,),
whereas there is a linear relationship between wind speed and D from 4-17 ms~!. D,,,, and wind show a
more logarithmic behavior from 7 m s~! up to at least 17 m s~!. For H,,, below 5 m there is a linear behavior

(D ~ aH,,, where the factor a is on average 2.4 for H,, and in the range 0.2-6 for H,).

ws?

4.1. Bubble Depth Correlated Against a High-Resolution Hindcast

To assess the impact of atmospheric and wave model resolution, we have also compared the bubble time
series with time series of wind and waves from NORA10EI, a high-resolution hindcast archive (Haakenstad
et al., 2020) similar to the NORA10 hindcast (Reistad et al., 2011), but forced with downscaled ERA-Interim
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Figure 5. Scatter plot for 1 year of data, for both mean (upper panels) and maximum (lower panels) bubble depths.
Left panels show bubble depth against observed wind speed at Andeya (red) and EC-WAM wind (black). Middle panels
show bubble depth against modeled EC-WAM wind sea, Hy,. Right panels show bubble depth against modeled TKE
flux from breaking waves by EC-WAM, @, ,, (Note that the x axis is cubic).

winds rather than ECMWF analyses. It is thus dynamically consistent with the EC-WAM hindcast (40 X
40-km resolution) which is also forced with ERA-Interim winds. Parameters evaluated from NORA10EI
include wind speed (U, ), wind sea (H,,,), swell (H,, ), and total significant wave height (H,). We also param-
eterize the TKE flux (@, ,) from the NORA10EI wind speed with variable and constant drag coefficient (Cy).
The overall highest linear correlation coefficient with mean and maximum air bubble depth is found against
NORAI10EI wind ( = 0.86 and 0.81, respectively) and H,,, (r = 0.87 and 0.84, respectively). The NORA10EI
parameters H and @, , with variable Cy exhibit similar linear correlation coefficients compared with same
parameters from EC-WAM. Higher model resolution thus appears to strengthen the correlation between
modeled parameters and the observed bubble depth, even in open ocean conditions. This is evident in the
relationship between the modeled wind sea, H,, and bubble depth.

5. Discussion

Bottom-mounted echosounder measurements provide a unique opportunity to continuously monitor the
upper ocean over long periods and to investigate the interaction between weather, sea state, and the underly-
ing mixed layer. Because air bubbles directly affect backscatter of sound waves, they are easily detected and
can be quantified within specific size ranges limited by the frequency of the emitted sound. Bubble depth
may inform on dynamical processes including downmixing of buoyant particles due to breaking waves and
the entrainment of gases such as carbon dioxide to the ocean interior. To better understand how buoyant
particles are distributed in the vertical due to various forcing, we analyzed a year of concurrent measured
and modeled wind and modeled waves and wave-induced TKE flux.

The highly variable hourly mean and maximum bubble depths reach maxima of 18 and 38 m during our
1-year time series, respectively. In general, the bubble depth is shallowest during summer following the
seasonal variations in wind speed and waves. The correlation between wind and bubble depth is also slightly
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weaker in the summer. This may be caused by high biological activity which can obscure the backscattered
signal, either through primary production causing supersaturation of oxygen and bubbles in the mixed layer
or through high concentrations of zooplankton. The calculated MLD follows a similar seasonal variation as
observed by Nilsen and Falck (2006). The summertime MLD may be shallower than maximum bubble depth
and is thus not a limiting factor for breaking waves, but we cannot rule out that the density stratification
may obscure the wind to bubble depth relationship. Hydrographic observations with same time resolution
as the acoustic data would give more conclusive results.

There is a strong correlation between bubble depth and both wind and wave height, in agreement with
previous studies (e.g., Wang et al., 2016). The correlation is generally higher for mean bubble depth than
for maximum bubble depth. This is expected, as the maximum bubble depth is a noisier parameter than
the hourly average bubble depth. However, a linear correlation coefficient of r = 0.94 between mean and
maximum bubble depth gives confidence in the data processing and the filtering (e.g., removal of ship traffic,
asillustrated in Figure 2c). It is also interesting to note that this shows that a much lower sampling frequency
than our 0.25 Hz would still yield a good estimate of the average bubble depth. Swell is defined in both wave
models (EC-WAM and NORA10EI) as spectral wave components whose propagation vector projected on the
local wind vector cannot be sustained by the local wind (ECMWF, 2019),

1.2 x 28(u* /c) cos(d — ¢) < 1. (6)

Here u* is the airside friction velocity and c is the phase speed of the wave component in question. The
cosine of the angular difference 6 — ¢ between the propagation direction of the waves (6) and the local wind
direction (¢) ensures that wave components traveling at large angles to the local wind are classified as swell.
These will presumably not contribute to the flux from breaking waves as swell waves have low steepness.
The total significant wave height H, and the swell height H, should thus exhibit weaker correlation than
the wind sea part of the waves, H,,,. This is seen in Table 1.

The mean bubble depth is linearly dependent on the wind speed between 4 and 17 ms™. The lower limit
4 ms~! coincides with the threshold for whitecapping (Callaghan & White, 2009; Hwang & Sletten, 2008;
Monahan & O'Muircheartaigh, 1986; Scanlon et al., 2016). Figure 5 indicates that bubble depth is higher than
expected in low-wind conditions. This may be a signature of the biological productivity otherwise hidden by
the high backscatter of air bubbles from breaking waves. The higher limit of 17 ms~! may partly be related
to intense wave breaking in high wind events and partly to ERA-Interim'’s inability to capture high wind
events (Aarnes et al., 2015; Breivik et al., 2014). ERA-Interim wind correlates better with bubble depth than
observed wind. This partly reflects not only the high quality of ERA-Interim but also the fact that the wind
observations from Andeya and Rest are affected by topographic features and thus less representative for the
offshore LoVe location. The overall highest linear correlation is between mean bubble depth and H,,, which
is as expected since it is the wind-sea component of the wave field that breaks and causes entrainment of
air bubbles. The mean bubble depth is D ~ 2.4H, (see Figure 5) and between 0.2 and 8 times the total
significant wave height, H,. These relations correspond well with the results of Wang et al. (2016) who found
that the mean bubble detph was of the order of 2H, < D < 4H, from 2 weeks of data. Since we have a
sampling frequency of 0.25 Hz these results will include an effect of orbital motions for waves with period
less than 8 s, similarly assessed by Thomson et al. (2016).

Correlating ranked values can reveal strongly nonlinear relations. For this reason the Spearman rank cor-
relation (Press et al., 2007, pp 749-751) between ® . and mean bubble depth is higher than the Pearson
linear correlation coefficient (because of the cubic relationship between ®,. and mean bubble depth; see
Figure 5). No clear difference is seen between the TKE flux calculated using @, ,, compared to @, ,, and
both show high rank correlation with bubble depth (see Table 1). This may be related to the area investi-
gated, which is located offshore at 68°N where the waves are usually close to full development. A possible
follow-up study may thus be to investigate the relationship between the bubble depth and the TKE flux in a
fetch-limited area.

6. Concluding Remarks

We have investigated a full year of bubble depth measurements relative to wind, waves, and the TKE flux
from breaking waves. The exposed location means that the measurements were taken in sea states ranging
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from calm to as much as 10-m significant wave height. Bubble depths show strong correlation with both wind
speed and wave height, as reported by previous studies (Thorpe, 1992; Wang et al., 2016). The total significant
wave height displays a lower correlation than the wind sea, and the swell is even more weakly correlated
(Table 1). This is as expected from physical considerations (swell should not break), but is indirect evidence
that the wave model is correctly separating wind sea from swell. We also found that increased resolution
strengthens the correlation, as we compare with a high-resolution (10 km) wave hindcast (Haakenstad et al.,
2020) forced with the same (ERA-Interim) winds as the coarse (40 km) global wave model run used for the
assessment of TKE fluxes (Breivik et al., 2019).

The most important finding is the strong correlation with the modeled energy flux from breaking waves.
The fact that the bubble depth correlation is comparable to that against wind speed shows that there is a
remarkably strong relation between the energy dissipation parameterized by the wave model and observed
bubble depth.

Although we found that the bubble depth exhibits a strong relationship with the TKE flux from breaking
waves, we cannot conclude on exactly how the energy from dissipating waves is partitioned between turbu-
lence production in the air and water and work against buoyancy. An important avenue of further research
is to quantify the energy budget of breaking waves and how it is split between generation of bubbles and pro-
cesses such as microbreaking that do not generate bubbles (Melville, 1994; Melville & Matusov, 2002). Being
able to do so would benefit both ocean and wave models. The latter because at present the dissipation terms
are not calibrated separately (see Tsagareli et al., 2010), the former because it would allow a more precise
estimate of the turbulence production in the active breaking zone of the mixed layer. However, because of
the strong correlation between the TKE flux from breaking waves and the observed bubble depth, it seems
likely that the fraction of energy that goes into bubble production is relatively constant over a broad range
of sea states.
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Figure Al. Hourly data of total significant wave heights (H) from NORA10EI (blue), EC-WAM (black), H estimated by the EK60 with NORA10EI wave
period Ty, below 8 s (gray), and with Ty, above 8 s (red); see legend in lower panel. Upper panel: One year of data from 14 November 2014 to 18 November
2015. Two green vertical lines mark the period in panel below. Lower panel: Zoom on February 2015.
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Appendix A: Estimating Significant Wave Height From the EK60 EchoSounder

The instantaneous ocean surface elevation (¢) is detected by the EK60 echosounder. This allows us to make
an estimate of H,. First, the mean value is subtracted from the time series to get values around zero at the
surface. Second, the tidal variability is removed using the t tide MATLAB toolbox (Pawlowicz et al., 2002).
Hourly averages of significant wave height were estimated from the standard deviation of elevation, H, =
4 std (¢). The correlation between modeled H, from NORA10EI and H, estimated from EK60 is r = 0.72.
Since the sampling frequency of the EK60 echosounder is 0.25 Hz, the Nyquist frequency is 0.125 Hz, and
the instrument is thus only able to capture waves with periods of 8 s or longer. The peak period was found to
be longer than 8 s about 30% of the time. If the sampling frequency had been increased to 0.5 Hz, 80% of the
waves would be captured. In Figure Al the time series of measured H; is shown in red where the NORA10EI
mean wave period T, = exceeds 8 s. The mean observed wave height is biased low, but the correlation with
modeled wave height is quite high, exceeding 0.8 against both EC-WAM and NORA10EL
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