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Bereśniewicz J, Kazimierczak K,

Ersland L, Hugdahl K and Grüner R

(2021) Simultaneous Measurement of

the BOLD Effect and Metabolic

Changes in Response to Visual

Stimulation Using the MEGA-PRESS

Sequence at 3 T.

Front. Hum. Neurosci. 15:644079.

doi: 10.3389/fnhum.2021.644079

Simultaneous Measurement of the
BOLD Effect and Metabolic Changes
in Response to Visual Stimulation
Using the MEGA-PRESS Sequence
at 3 T
Gerard Eric Dwyer 1,2*, Alexander R. Craven 1,2,3, Justyna Bereśniewicz 1,2,
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The blood oxygen level dependent (BOLD) effect that provides the contrast in functional

magnetic resonance imaging (fMRI) has been demonstrated to affect the linewidth of

spectral peaks as measured with magnetic resonance spectroscopy (MRS) and through

this, may be used as an indirect measure of cerebral blood flow related to neural activity.

By acquiring MR-spectra interleaved with frames without water suppression, it may be

possible to image the BOLD effect and associated metabolic changes simultaneously

through changes in the linewidth of the unsuppressed water peak. The purpose of

this study was to implement this approach with the MEGA-PRESS sequence, widely

considered to be the standard sequence for quantitative measurement of GABA at

field strengths of 3 T and lower, to observe how changes in both glutamate (measured

as Glx) and GABA levels may relate to changes due to the BOLD effect. MR-spectra

and fMRI were acquired from the occipital cortex (OCC) of 20 healthy participants

whilst undergoing intrascanner visual stimulation in the form of a red and black radial

checkerboard, alternating at 8Hz, in 90 s blocks comprising 30 s of visual stimulation

followed by 60 s of rest. Results show very strong agreement between the changes in the

linewidth of the unsuppressed water signal and the canonical haemodynamic response

function as well as a strong, negative, but not statistically significant, correlation with

the Glx signal as measured from the OFF spectra in MEGA-PRESS pairs. Findings from

this experiment suggest that the unsuppressed water signal provides a reliable measure

of the BOLD effect and that correlations with associated changes in GABA and Glx

levels may also be measured. However, discrepancies between metabolite levels as

measured from the difference and OFF spectra raise questions regarding the reliability of

the respective methods.
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INTRODUCTION

Performing magnetic resonance spectroscopy (MRS) in a time-
resolved or functional manner makes it an ideal complement
to functional magnetic resonance imaging (fMRI) in that it has
the potential to allow patterns of neural activity to be related to
associated biochemical events. Due to their roles as the principal
excitatory and inhibitory neurotransmitters in the human brain,
functional MRS studies have largely focused on dynamic changes
in glutamate, or a composite signal of glutamate and glutamine
denoted “Glx,” and γ-aminobutyric acid (GABA) levels. To date,
functional spectroscopy paradigms have been used to measure
increases in glutamate and lactate in the occipital cortex (OCC)
in response to visual stimulation (Mangia et al., 2006, 2007; Lin
et al., 2012; Schaller et al., 2013; Bednarík et al., 2015; Mekle et al.,
2017; Boillat et al., 2019), changes in glutamate in the anterior
cingulate cortex (ACC) and insula in response to pain (Mullins
et al., 2005; Gussew et al., 2010; Gutzeit et al., 2011; Cleve et al.,
2017) as well as dynamic changes in GABA in the sensorimotor
cortex in response to learning (Floyer-Lea et al., 2006) and in the
dorsolateral prefrontal cortex (DLPFC) under a workingmemory
task (Michels et al., 2012).

Activity within a neural circuit may be characterized in
terms of the balance of excitatory and inhibitory inputs to the
circuit, commonly referred to as the excitation-inhibition balance
(Denève and Machens, 2016; Jardri et al., 2016). As Isaacson
and Scanziani (2011) illustrate, inhibition plays a critical role
in shaping spontaneous and sensory-evoked cortical activity,
placing a particular importance on the ability to quantify GABA
in understanding the relationship between neural activity and
the excitation-inhibition balance. Furthermore, where glutamate
serves a myriad of functions in addition to its role as a
neurotransmitter, including its roles in energy metabolism,
protein synthesis and as a precursor to GABA (Agarwal and
Renshaw, 2012; Mangia et al., 2012), in the brain GABA is
almost exclusively a neurotransmitter, suggesting that changes
in GABA levels as measured with MRS are likely to be more
closely related to changes in the excitation-inhibition balance and
synaptic transmission.

As challenging as it may be to investigate relationships

between neural activity and glutamate or Glx, investigating

relationships with GABA are further complicated by factors
such as the relatively low biological concentration of GABA
and significant spectral overlap with other more abundant
metabolites. At lower field strengths (i.e., ≤3 T) many
spectroscopy sequences may not sufficiently resolve GABA
signals for accurate quantification (Gussew et al., 2010;
Siniatchkin et al., 2012; Apšvalka et al., 2015). The MEGA-PRESS
(MEscher-GArwood Point RESolved Spectroscopy) sequence
(Mescher et al., 1998), widely considered to be the standard
for performing MRS of GABA at field strengths of 3 T or less
(Mullins et al., 2014), may facilitate accurate quantification of
GABA, but requires the acquisition of two interleaved spectral
datasets: one with a frequency selective editing pulse (“ON”
spectrum) and one without (“OFF” spectrum) to create a
difference spectrum, effectively reducing temporal resolution
and complicating its implementation for functional paradigms.

Despite the usefulness of functional MRS, many
implementations give no indication of neural activity or
how it relates to changes in measured metabolite levels.
Similarly, the blood oxygen level dependent (BOLD) effect that
provides the contrast used in BOLD-fMRI provides a measure
of changes in cerebral blood flow, which infers neural activity,
but says little about its nature. However, the BOLD effect also
induces a decrease in R∗

2 rate, i.e., the inverse of T∗
2 , resulting in

a decrease in linewidth and increase in height of spectral peaks
(Just, 2020). Previous studies have utilized this phenomenon as
an indirect measurement of the BOLD effect through changes
in the linewidth of an unsuppressed water signal (Hennig et al.,
1994; Frahm et al., 1996; Zhu and Chen, 2001). By interleaving
spectral frames with and without water suppression, Apšvalka
et al. (2015) demonstrated that it may be possible to exploit this
effect to perform functional measurement of both the BOLD
effect and related changes in Glx levels simultaneously.

The purpose of this study was to implement this approach
with a GABA specific MEGA-PRESS sequence at 3 T, effectively
permitting simultaneous functional imaging of the BOLD effect
and changes in both Glx and GABA levels with the linewidth
of the unsuppressed water signal as an indirect measure of the
BOLD effect. MR-spectra were acquired from the occipital cortex
(OCC) in response to visual stimulation in the form of a red-
black radial checkerboard, alternating at a frequency of 8Hz,
a stimulation paradigm previously demonstrated to induce a
measurable positive BOLD response (Kwong et al., 1992; Ogawa
et al., 1992) and metabolic changes in the OCC (Mangia et al.,
2006, 2007; Ip et al., 2017; Boillat et al., 2019). Previous studies
suggest that visual stimulation will induce a measurable increase
in Glx levels (Mangia et al., 2006, 2007; Ip et al., 2017; Boillat et al.,
2019) and a possible decrease in GABA levels (Lin et al., 2012;
Bednarík et al., 2015; Mekle et al., 2017). Assessment of activity
through BOLD related linewidth changes predicts a significant
difference in the linewidth of the unsuppressed water signal
between spectra acquired during stimulation and at rest.

MATERIALS AND METHODS

This study was conducted under regional review board approved
protocols (REK-Vest, REK case number 2016/1629) with written
informed consent from all participants.

Participants
The participant group for this study comprised 20 healthy
individuals (mean age: 29 years, range: 20–40 years, 11 male).
Based on self-report, participants were free from psychiatric
and neurological conditions, and not currently using any
psychoactive/psychotropic substances.

MR-Imaging and Spectroscopy
All imaging and spectroscopy was performed on a 3 T GE
750 Discovery Scanner from GE Healthcare (General Electric,
Milwaukee, United States of America) using a standard 8-
channel head coil from Invivo (Invivo corp., Gainsville, Florida,
United States of America).
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FIGURE 1 | Voxel placement in the midline OCC in coronal (left), sagittal (middle), and axial (right) views.

FIGURE 2 | Experimental design showing one 90 s round of a 30 s active

block (red) and 60 s rest block (blue). MEGA-PRESS spectra acquired with

water suppression and editing pulse (“ON,” blue), with water suppression and

without editing pulse (“OFF,” dark blue), and without water suppression or

editing pulse (“REF” light blue). fMRI volumes acquired continuously with one

volume acquired every 3 s (green).

FIGURE 3 | Radial red and black checkerboard used for visual stimulation.

Following a 3-plane localiser sequence (2D Spin Echo,
TE= 80ms, FOV = 240mm, slice thickness = 8mm, slice
spacing= 15mm) structural anatomical imaging was performed
using a 3D T1 weighted fast spoiled gradient sequence (number
of slices= 192, slice thickness = 1.0mm, repetition time
(TR)= 7.8ms, echo time (TE) = 2.95ms, field of view = 260 ×

260 mm2, flip angle = 14 degrees, matrix = 256 × 256). These

structural images were used to position a 31× 26× 24mm3 voxel
in the midline occipital cortex, across the longitudinal fissure and
angled parallel to the parieto-occipital sulcus (Figure 1).

Spectroscopy was performed using a GABA-specific MEGA-
PRESS sequence (Mescher et al., 1998) (TE/TR = 68/1500ms,
editing pulses at 1.9 and 7.5 ppm) consisting of 600 spectral
frames for a total acquisition time of 15min and 30 s with an
additional 16 frames acquired without water suppression to be
used for scaling in quantitative metabolite estimates. Shimming,
RF calibration and frequency adjustment were performed using
an automated pre-scan prior to each spectral acquisition,
providing a measure of the linewidth of the unsuppressed water
signal that would be used in assessment of spectral quality.
Spectra were acquired in groups of six spectral frames, first
with water suppression and the MEGA-editing refocusing pulse
(“ON”), secondly with water suppression and without the editing
pulse (“OFF”), and thirdly without the editing pulse and without
water suppression (“REF”), then with the ON and OFF spectra
acquired in reverse order before the next reference frame (i.e.,
ON—OFF—REF—OFF—ON—REF repeated, Figure 2).

Following spectroscopy, BOLD-fMRI was performed using an
echo-planar imaging (EPI) sequence (TR= 3000ms, TE= 30ms,
image matrix = 96 × 96, FOV = 220mm, flip angle = 90◦,
slice thickness = 3.0mm, slice spacing 0.5mm) with the same
visual stimulation parameters, also for a total of 15min and 30 s.
In order to minimize the effects of thermal frequency drift on
spectra, fMRI data were acquired after MRS for all participants.

Visual stimulation was delivered to participants through a
set of MR-compatible binocular video goggles (NordicNeurolab
Inc., Bergen, Norway) as an alternating, red-black, radial
checkerboard (Figure 3) flickering at 8Hz. Stimulation was
delivered in blocks of 30 s followed by 1min of a white fixation
cross on black background, repeated for 8 blocks, with 2min
of fixation cross presented before the first and after the final
stimulus presentation.

Spectral Analysis
Following zero and first order phase correction, coil combination
and frequency alignment, ON and OFF pairs were combined to
produce MEGA-PRESS difference spectra providing quantitative
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FIGURE 4 | Upper: Voxel placement (blue) and activation map (red) in one participant. Lower: fMRI time course of same participant showing % signal change.

FIGURE 5 | Time resolved analysis of changes in FWHM of unsuppressed water signal compared to predicted BOLD response between active blocks (gray

background) and rest (white background). Zero line indicates average linewidth during rest blocks.

estimates of Glx, GABA, and NAA. MEGA-PRESS OFF spectra
were used to provide quantitative estimates of Glx, NAA,
Creatine, Choline, lactate and glucose, equivalent to a PRESS
sequence with TE = 68ms. For each participant, four spectra
were produced, a difference and OFF spectrum containing all
frames acquired during visual stimulation blocks, referred to
as the “Active” condition, and a difference and OFF spectrum
containing all frames acquired as the white fixation cross was
present, referred to as the “Rest” condition (Figure 2).

Quantitative spectral analysis was performed with LCModel
(version 6.3-1J) (Provencher, 1993, 2001) using a simulated basis
set (Dydak et al., 2011) with Kaiser coupling constants (Kaiser
et al., 2008) to provide quantitative estimates of Glx, GABA
and N-acetyl aspartate (NAA) from the MEGA-PRESS difference
spectra, and from theOFF spectra in theMEGA-PRESS pairs: Glx

(Glx OFF), NAA (NAA OFF), creatine (Cr OFF), choline (Cho
OFF), lactate (Lac OFF), and glucose (Glc OFF).

It is important to note that when performing MEGA-
edited GABA spectroscopy, co-editedmacromolecule resonances
contaminate the GABA signal. Thus, when referring to GABA as
measured with a MEGA-PRESS sequence in this study, this refers
to both GABA and the co-edited macromolecule (Edden et al.,
2012).

Unsuppressed Water Signal Analysis
In order to investigate how changes in the linewidth of the
unsuppressed water signal relate to the haemodynamic response
function (HRF), and how they may be used as a proxy measure
of neural activity in the same manner as BOLD-fMRI, a response
curve was constructed as a time course of the response for each
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FIGURE 6 | Parallel difference plots showing difference in metabolite levels between rest (blue) and active (red) conditions for GABA (A), Glx (B), and Glx measured

from the OFF spectra (C).
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TABLE 1 | Metabolite estimates and Cramér-Rao lower bounds (%SD) for the active and rest conditions (Mean, SD) with results of repeated-measures t-tests.

Metabolite Active (IU) Active %SD Rest (IU) Rest %SD Mean of the difference t p

GABA 0.89 (0.33) 18.27 (11.64) 0.92 (0.32) 18.18 (14.87) −0.02 −0.39 0.71

Glx 3.82 (0.30) 8.36 (2.50) 3.90 (0.25) 7.45 (3.17) −0.08 −0.75 0.47

NAA 6.03 (0.60) 1.64 (0.50) 6.23 (0.78) 1.36 (0.50) −0.20 −1.43 0.18

Glx OFF 8.91 (2.68) 11.18 (11.91) 9.05 (2.02) 8.91 (4.46) −0.14 −0.46 0.65

NAA OFF 14.22 (4.16) 2.00 (2.05) 14.14 (4.18) 1.91 (2.07) 0.08 0.77 0.45

Cr 9.08 (0.93) 4.71 (0.90) 8.98 (0.74) 4.67 (0.74) 0.09 1.22 0.25

Cho 1.53 (0.23) 1.84 (6.11) 1.51 (0.20) 0.45 (1.51) 0.02 0.92 0.38

Lac 0.67 (0.71) 304.64 (446.44) 0.31 (0.33) 282.00 (365.40) 0.36 1.53 0.16

Glc 2.79 (0.51) 19.45 (4.03) 2.66 (0.92) 22.00 (8.10) 0.13 0.76 0.46

TABLE 2 | Correlation matrix for differences between active and rest for linewidth of the unsuppressed water signal (H2O) and measured metabolites.

Correlation (Pearson’s r)

H2O GABA Glx NAA Glx OFF NAA OFF Cr Cho Lac Glc

H2O 1.00

GABA 0.40 1.00

Glx 0.14 −0.25 1.00

NAA −0.06 −0.60 0.76 1.00

Glx OFF −0.66 −0.56 0.29 0.37 1.00

NAA OFF 0.15 0.39 −0.23 −0.19 −0.38 1.00

Cr 0.51 −0.25 −0.19 −0.04 −0.27 0.18 1.00

Cho 0.53 −0.15 −0.33 −0.05 −0.37 0.02 0.86 1.00

Lac −0.08 0.01 −0.17 −0.07 0.33 −0.04 0.05 0.22 1.00

Glc 0.08 0.66 0.10 −0.18 −0.28 0.06 −0.48 −0.22 0.23 1.00

p-values (lower) and FDR-adjusted p-values (upper)

H2O 0.83 0.93 0.95 0.31 0.93 0.62 0.62 0.95 0.95

GABA 0.22 0.91 0.48 0.54 0.83 0.91 0.93 0.99 0.31

Glx 0.68 0.46 0.15 0.91 0.91 0.91 0.91 0.91 0.95

NAA 0.87 0.05 0.01 0.83 0.91 0.95 0.95 0.95 0.91

Glx OFF 0.03 0.07 0.38 0.26 0.83 0.91 0.83 0.91 0.91

NAA OFF 0.67 0.24 0.49 0.58 0.25 0.91 0.97 0.95 0.95

Cr 0.11 0.46 0.58 0.90 0.42 0.59 0.03 0.95 0.67

Cho 0.10 0.65 0.33 0.89 0.26 0.95 0.00 0.91 0.91

Lac 0.82 0.99 0.61 0.84 0.33 0.91 0.89 0.51 0.91

Glc 0.81 0.03 0.78 0.60 0.41 0.87 0.13 0.52 0.51

stimulation block for each subject based on a method previously
used by Brix et al. (2017) for investigating reproducibility of
GABA measurements.

Linewidth was measured as the full-width at half-maximum
(FWHM) in Hz. The time course was constructed using a
Gaussian-weighted combination of between 60 and 100 time
points of the FWHMof the unsuppressed water signal to produce
a curve reflecting the change in FWHM of the unsuppressed
water signal over the course of each 90 s stimulation block,
including both active and rest periods.

Correlation was performed between the time courses for
unsuppressed water FWHM and the task model convolved with
a canonical haemodynamic response function (HRF) from the

Statistical Parametrical Mapping software toolkit version 12
(SPM12, http://www.fil.ion.ucl.ac.uk/spm/).

fMRI Analysis
Prior to analysis, all fMRI volumes acquired using the EPI
sequence were converted from DICOM to NIfTI format
using the dcm2nii program (http://people.cas.sc.edu/rorden/
mricron/dcm2nii.html). Pre-processing of the converted images
was performed using the Matlab/SPM based toolbox CONN
(Whitfield-Gabrieli and Nieto-Castanon, 2012). Volumes were
realigned to the first volume in each set and unwarped to correct
for subject motion (Friston et al., 1995) then spatially normalized
to an EPI template based on the Montreal Neurological Institute
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FIGURE 7 | Correlation plot depicting differences in linewidth of unsuppressed

water signal (H2O) and all measured metabolites.

(MNI) standard reference brain (Evans et al., 1992). Images
were finally smoothed through spatial convolution with a 5mm
Gaussian kernel.

Following pre-processing, beta values (i.e., parameter
estimates in the general linear model) were extracted from a
region of interest defined by a mask based on the placement of
the spectroscopy voxel for each participant, using an in-house
script drawing on the tools for NIfTI and ANALYZE image
toolbox (https://se.mathworks.com/matlabcentral/fileexchange/
8797-tools-for-nifti-and-analyze-image).

Statistical Analyses
All statistical analyses were performed using R (R Development
Core Team, 2020). Repeated measures t-tests were performed
comparing the measured linewidth of the unsuppressed water
signal (i.e., the measured difference, not subject to convolution
with the HRF) and LCModel estimates for each of the
measured metabolites between the rest and active conditions for
each participant.

In order to investigate how changes in metabolite levels may
relate both to one another and to changes in the local BOLD
response, particularly with respect to the excitation/inhibition
balance and Glx and GABA levels within the region (Isaacson
and Scanziani, 2011), a correlation analysis was performed on the
differences in all measured metabolite levels and the difference in
unsuppressed water signal linewidth changes as measured (i.e.,
not subject to convolution with the HRF) between the active and
rest blocks. Given the multiple comparisons performed as part
of the correlation matrix, p-values for the correlation analysis
were adjusted for using the false discovery rate (FDR) method
(Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001)
as part of the p.adjust function in the R base package. Significance

was tested at α = 0.05, results were considered statistically
significant if the FDR adjusted p-value was <0.05.

RESULTS

Due to poor quality data or withdrawal before fMRI data could
be acquired, four participants were excluded from fMRI analyses.
The resulting participant group for the fMRI analysis component
comprised 16 individuals (mean age: 29 years, range: 20–40 years,
10 male).

The fMRI data showed that the visual stimulation paradigm
used elicited a positive BOLD response within the region of
interest (Figure 4) with a mean difference in intensity between
the active and rest blocks that was statistically significant [t(15)
= 6.62, p < 0.001].

Figure 5 depicts the changes in the FWHM of the
unsuppressed water signal reconstructed as a time-resolved
curve. Linewidth changes in the unsuppressed water signal
showed a very strong correlation between the group average of
time courses for unsuppressed water FWHM and the task model
convolved with a canonical haemodynamic response function
(HRF) and the predicted haemodynamic response (r = −0.98, p
< 0.001) with a mean change in FWHM between the active and
rest blocks of 1.2%.

Prior to statistical analysis, spectral quality was assessed based
on FWHM of the unsuppressed water peak measured during
the automated prescan and Cramér-Rao lower bounds (%SD)
for quantitative estimates provided by LCModel. Spectra with a
prescan FWHM >12Hz and %SD for GABA, Glx or Glx OFF
great than or equal to 50 were excluded from further analyses.
The resulting participant group for the MRS analysis comprised
11 individuals (mean age: 30 years, range: 21–40, seven male).

Repeated measures t-tests revealed no significant difference
between the active and rest conditions for the linewidth of the
unsuppressed water signal as it was measured [t(10) = 0.09,
p= 0.92]. There were also no significant changes in GABA
[t(10)=−0.39, p = 0.71] or Glx levels whether measured from
the difference spectra [t(10) = −0.75, p = 0.47] or the OFF
spectra [t(10) = −0.46, p = 0.66] (Figure 6). Differences were
found in NAA levels as measured from the difference spectrum
[t(10)=−1.43, p= 0.18] but did not reach statistical significance
at the α = 0.05 level. Full results from the repeated measures
t-tests are presented in Table 1.

Correlation analysis of the differences between the active and
rest blocks revealed a moderate negative correlation between the
change in the measured water peak linewidth and the change in
Glx as measured from the OFF spectra (r = −0.66, p = 0.03,
FDR adjusted p = 0.31) but not from the difference spectra
(r = 0.14, p = 0.67, FDR adjusted p = 0.93). Correlations
were also observed between GABA levels as measured from the
difference spectra and NAA (r = −0.60, p = 0.05, FDR adjusted
p = 0.48) and glucose (r = 0.66, p = 0.03, FDR adjusted p =

0.31), and a moderate negative correlation was observed between
GABA and Glx as measured from the OFF spectra (r = −0.56,
p = 0.07, FDR adjusted p = 0.54). However, none of these
correlations were statistically significant when accounting for
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multiple comparisons. Full results from the correlation analysis
are provided in Table 2 and depicted graphically in a correlation
plot in Figure 7.

DISCUSSION

The purpose of this study was to determine whether a MEGA-
PRESS sequence, modified to include spectral frames without
water suppression, could be used to perform simultaneous
measurement of the BOLD effect and associated metabolic
changes. This implementation is based on one previously used
by Apšvalka et al. (2015) with a PRESS sequence (TE/TR =

105/1500ms) for simultaneous measurement of the BOLD effect
and glutamate dynamics in response to a repetition suppression
paradigm. The advantage to this implementation with a MEGA-
PRESS sequence is the ability to measure both GABA and
glutamate (as Glx) dynamics at a field strength of 3 T. The
results show that the unsuppressed water signal provides a
reliable measure of the BOLD effect, and the experimental
design and analysis methods used allow differences in the
water signal linewidth and differences in metabolite levels to
be assessed in terms of how they correlated with one another.
However, this study also illustrates a number of problems
regarding the use of spectral editing methods in functional
spectroscopy paradigms.

One of the issues adversely affecting this this study was the
amount of data that had to be excluded from analysis as part
of the MRS component. Though 20 participants were scanned,
nine were excluded from final analyses, mostly due to large errors
surrounding metabolite estimates. Though small, this number is
comparable to other, similar studies employing fMRS paradigms
(e.g., N= 13 (Apšvalka et al., 2015), N = 13 (Kupers et al., 2009),
N = 12 (Mullins et al., 2005). A power analysis conducted with
G∗power (Faul et al., 2009) found that the correlation analysis
component of this study had sufficient power to detect a medium
to strong effect (for d > 0.6, 1–β = 0.74, α = 0.05). However,
for changes in Glx and GABA in the OCC in response to visual
stimulation, the effect may be much smaller.

According to both the fMRI acquisition and the changes in the
FWHM of the unsuppressed water signal, the visual stimulation
paradigm used in this experiment was able to elicit a BOLD effect
in the area of interest (Figure 4). The agreement between the
changes in FWHM over the course of a 90 s experimental block
and the modeled response show that the unsuppressed water
signal provides a reliable measure of the BOLD effect (Figure 5),
echoing the findings of Frahm et al. (1996) and Hennig et al.
(1994) who, in the early days of fMRI suggested that it could
be a useful alternative on systems where appropriate imaging
sequences could not be implemented.

Despite this, measuring changes in spectral linewidth offers
little advantage over conventional BOLD-fMRI in measuring
haemodynamic responses. The advantage to this method was
the ability to measure both the BOLD response and associated
metabolic changes. The repeated measures t-tests revealed no
significant changes between the rest and active conditions, and
while the correlation analysis similarly revealed no statistically

significant correlations when adjusted for multiple comparisons,
a number of the finds warrant further discussion.

The observed correlation between the change in water signal
linewidth and Glx OFF is consistent with many of the common
findings from both fMRS and combined fMRI/MRS studies that
glutamate or Glx levels correlate positively with a positive BOLD
signal or a task/stimulus positive condition (Mullins et al., 2005;
Mangia et al., 2007; Gussew et al., 2010; Lin et al., 2012; Apšvalka
et al., 2015; Bednarík et al., 2015; Cleve et al., 2015; Ip et al.,
2017). It is worth bearing in mind that the linewidth of the water
signal is expected to decrease as a result of the BOLD effect,
hence the negative correlation. What is interesting, however,
is that the correlation was only observed in the Glx signal as
measured from the MEGA-PRESS OFF spectrum, and not from
the difference spectrum.

Although previous studies have found the MEGA-PRESS
sequence to be comparable to standard short echo time
PRESS sequences for quantitative estimates of the Glx signal
(Henry et al., 2011), the presence of such a strong, positive
correlation between Glx measured from the OFF spectra but
not from the difference spectra raises questions regarding
both the accuracy and sensitivity of the two approaches
to quantifying Glx when using the MEGA-PRESS sequence.
Maddock et al. (2018) compared the two measurements of
the Glx signal, i.e., from the difference and OFF spectra
from a MEGA-PRESS sequence (TE/TR = 68/1500ms), with
the Glx signal from a glutamate optimized PRESS sequence
(TE/TR = 80/1500ms) and found that in healthy participants,
Glx measured from the OFF spectra correlated much more
strongly (r ≥ 0.88) than the difference spectra (r ≤ 0.36)
with the PRESS measurements. This discrepancy suggests that
difference spectra may not be as sensitive to dynamic changes in
metabolite levels as unedited spectra, but as there is no alternative
measure for GABA in the OFF-spectra, there is insufficient
evidence to determine how it applies to GABA in this study.
It is possible that the reduced amount of spectral information
available in the difference spectrum makes it less sensitive to
dynamic changes.

In addition to being considered the optimal method for
quantitative measures of GABA at field strengths of 3 T and
lower, the findings of Mullins (2018) suggest that another
benefit to measuring GABA with the MEGA-PRESS sequence,
particularly in a functional capacity, may be the ability to
distinguish synaptic GABA from vesicular GABA. Due to
restrictions on their ability to tumble and move when packaged
in synaptic vesicles, vesicular neurotransmitters may have a
shorter T2 time than neurotransmitters in the cytosol or synapse.
Using short echo time sequences (i.e., ≤15ms) such as those
frequently used with STEAM sequences and similar at 7 T, the
measurement of neurotransmitters such as glutamate and GABA
include contributions from both the vesicular and synaptic
compartments, whereas with a longer echo time sequence,
vesicular neurotransmitter signals may have dephased to the
extent that they no longer contribute significantly to the
measured signal. Thus, measurements performed with longer
echo time sequences may more accurately reflect changes related
to GABAergic synaptic transmission.
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Though not statistically significant when adjusted for multiple
comparisons, it is worth noting that a negative correlation was
observed between Glx OFF and GABA (r = −0.56, p = 0.07,
FDR adjusted p = 0.54). This observation is also consistent with
previous studies finding that GABA levels correlate negatively
with BOLD or a task/stimulus positive condition (Lin et al.,
2012; Bednarík et al., 2015; Cleve et al., 2015; Chen et al., 2017;
Just and Sonnay, 2017; Mekle et al., 2017) but further suggest
a relationship between glutamate and GABA within neural
circuits. GABA levels did not show a statistically significant
correlation with the FWHM of the water signal, though the
differences between Glx signals from the difference and OFF
spectra suggest that in a similar fashion, the difference spectrum
lacks sufficient spectral information to detect changes with
sensitivity comparable to the OFF spectra. Options for measuring
GABA in a functional manner at 3 T without spectral editing do
exist, such as the STEAM sequence (TE = 20ms) as used by
Kupers et al. (2009) and SPECIAL sequence (TE = 8.5ms) used
by Kühn et al. (2016), both of which were able to measure large,
significant changes in GABA in the ACC. In light of the issues
raised by this study, they may provide a promising alternative
for functional imaging of the BOLD effect and metabolic changes
and their use warrants further investigation. However, as stated
previously, short echo time sequences may include contributions
from vesicular, cytosolic and synaptic GABA, making them less
sensitive to compartmental changes in GABA.

The visual stimulation paradigm used in this study was chosen
as previous studies have shown it to unambiguously produce a
positive BOLD response in the visual cortex, a part of the brain
ideal for fMRS experiments as it typically allows placement of
a large voxel away from areas of air, bone or fluid that typically
contribute to spectral artifacts, and it is typically associated with
an increase in glutamate or Glx levels (Mangia et al., 2007;
Bednarík et al., 2015; Ip et al., 2017), and decrease in GABA
levels (Lin et al., 2012; Mekle et al., 2017). In this study, the
MRS voxel was placed in the midline occipital cortex, crossing
the longitudinal fissure. It was believed that placing a large voxel
in this location would help increase signal-to-noise ratio, and
improve spectral quality, however, as can be seen in Figure 4, the
positive BOLD signal from an individual participant does not fill
the entire voxel. As Just (2020) states, one of the critical issues
in determining BOLD responses is positioning of the voxel with
respect to the activated area. It is possible that blind placement
of the voxel lead to some participants having less positive BOLD
signal generated in the MRS voxel. Future studies may benefit
from voxel placement guided by fMRI. This was not performed
in the present study because it was believed that performing fMRI
before MRS could adversely affect the MRS component due to
thermal frequency drift.

Taken together, the absence of any statistically significant
differences according to the repeated measures t-tests suggest
that it is possible that no consistent changes were observed
between the active and rest conditions due to differences in
the amount of activity within the spectroscopy voxel across
participants. However, the correlation analysis suggests that for
those participants in which there was a haemodynamic response
within the spectroscopy voxel that was able to elicit a measurable

change in the linewidth of the unsuppressed water peak, there
were corresponding metabolic changes. However, this represents
only a portion of an already limited sample, and lacks statistical
power for reliable conclusions to be drawn.

The main difference between the present study and others
in which a change in either Glx or GABA was measured in
response to a similar visual stimulation paradigm is firstly that the
majority of these studies were conducted using 7 T scanners, and
secondly that, with the exception of Ip et al. (2017), participants
viewed stimulation in blocks of at least 5min. The theory behind
the shorter, 30 s blocks used in this experiment was that it
would be possible to disentangle metabolic changes related to
synaptic transmission from changes related to shifts in energy
metabolism and possibly the effects of long term potentiation
that may be seen with longer stimulation blocks. The absence of
any significant measured change in Glx levels between the active
and rest blocks in this study suggests that the more consistently
measured changes in glutamate or Glx levels measured in other
studies represent changes in energy metabolism, but make it
difficult to evaluate the performance of the modified MEGA-
PRESS technique. It is possible that a longer stimulation block
may have elicited a more significant response in the measured
Glx levels, however, visual stimulation may not be the optimal
form of stimulation for inducing a large, measurable change in
neurotransmitter levels.

Mullins (2018) illustrates that with regard to changes in
glutamate or Glx in fMRS studies, larger changes were observed
in event-related paradigms 13.429% (±3.59) compared to block
designs 4.749% (±1.45%) and of those stimuli that elicited a
metabolic response, visual stimuli elicited the smallest response,
with a mean glutamate increase of 2.318% (±1.227%) with
painful stimuli eliciting the largest change 14.458% (±3.736%).
This observation holds for fMRS studies into GABA changes as
well, with studies using some form of pain stimulus recording
∼15% changes in GABA in the anterior cingulate cortex (ACC)
(Kupers et al., 2009; Cleve et al., 2017) compared to a ∼5%
change measured with visual stimulation in the OCC (Mekle
et al., 2017). Kühn et al. (2016), in a study measuring changes in
the ACC in response to an interference task, namely the Stroop
task, measured an 18% increase in GABA in the ACC between
the pre-task and task windows. It is possible that the changes
in both glutamate and GABA related to synaptic transmission
are transient, and that these short-lived changes are diluted
when averaging over the entire block. Unfortunately there were
too few stimulation blocks per participant for the data to be
analyzed as an event-related design. Future studies in evaluating
fMRS methods for detecting changes in GABA levels may benefit
from implementing event-related or hybrid event-related/block
designs where possible.

Finally, one of the fundamental problems facing functional
spectroscopy is that of how to disentangle the BOLD effect on
spectral linewidth from its consequences on quantitative spectral
analysis. It has been established that the BOLD effect affects all
peaks in an MR-spectra, not just the unsuppressed water signal,
and that this may lead to an overestimation inmetabolite levels in
quantitative analyses (Zhu and Chen, 2001; Mangia et al., 2006;
Bednarík et al., 2015; Ip et al., 2017) and should be corrected
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for. Creatine is noted for being particularly stable under normal
physiological conditions, so much so that metabolite levels are
often reported as a ratio relative to creatine (Stagg and Rothman,
2014), a practice that has attracted some criticism as creatine has
been shown to be affected in some pathologies as well as being
susceptible to the influence of sex hormones (Hjelmervik et al.,
2018). Apšvalka et al. (2015) andMullins et al. (2005) suggest that
because no statistically significant change in the concentration
of creatine, nor total NAA or choline, was measured in their
study, the significant differences in glutamatemeasured represent
a genuine change rather than a generalized effect. Bednarík et al.
(2015) and Ip et al. (2017), under the assumption that levels
of total creatine should remain stable across changes in neural
activity, used the change in the FWHM of the creatine signal
between active and rest conditions as a correction factor for
the other measured metabolites. Similarly, Mangia et al. (2007)
used the difference between spectra acquired during rest and
stimulation to calculate a line-broadening correction function to
be applied to spectra acquired during the stimulation conditions.

Many of the suggested correction factors for BOLD
interference, however, are applied generally and do not
account for how the BOLD effect may affect different metabolite
signals to different degrees. Zhu and Chen (2001) show the
larger, singlet peaks typically found in an MR-spectrum, such as
those from creatine, choline and NAA, to be more susceptible
to BOLD interference than the smaller multiplets from GABA
and Glx. Given the absence of significant correlation between the
difference in creatine and choline levels and the change in BOLD
signal, there is insufficient evidence to conclude that the BOLD
effect has significantly interfered with quantitative analyses. The
experimental results are presented as they were measured with
the caveat that no correction has been applied and that while
significant interference from the BOLD effect appears unlikely it
cannot be ruled out entirely.

In conclusion, the modified MEGA-PRESS sequence
presented here provides a reliable measure of the BOLD effect

through linewidth changes in the unsuppressed water peak, but
whether it may also be used to measure associated metabolic
changes remains inconclusive. Future studies may benefit from
the use of event-related or hybrid block/event-related designs
were possible, and the use of sequences that do not rely on
spectral editing may be advantageous in light of the increased
spectral information and sensitivity they may provide.
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