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Abstract 

 
Food safety and authenticity are important issue. Ingredients presenting high value are the most 

vulnerable for adulteration as the common practice is to replace original substance partially 

with cheap and easily available substance for economic gains. Authentication is also of concern 

to manufacturers who do not wish to be subjected to unfair competition. 

Fishmeal has been the major source of protein in feeds for farmed fish. Due to increase in the 

growth of aquaculture production and limited availability of FM, alternative protein sources 

such as plant proteins (PP) are used. Wheat gluten is a PP source that has given promising 

results. Wheat gluten is made by washing wheat flour dough with water until all the starch 

granules and soluble fiber have been removed. It is a high protein raw material with good 

digestibility and interesting amino acid profile in addition to be used for its binding property. 

Due to these qualities use of wheat gluten as plant protein source has considerably increased in 

aquaculture feeds. 

The aim of this study is to use NIRS and chemometric tools for the early discrimination of 

adulterated wheat gluten samples from pure wheat gluten samples. A SIMCA model was 

developed to discriminate between adulterated and unadulterated samples. SIMCA model 

showed 100 % classification at adulteration level of 3000 ppm .Thus, NIRS together with 

SIMCA model represent an attractive option for quality screening without sample 

pretreatments. 
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List of Abbreviations and Notations 

 
CV 

 

Cross validation 

EMA 

 

Economically Motivated Adulterants 

EMSC 

 

Extended multiplicative signal correction 

LV 

 

Latent variables 

NIRS 

 

Near infrared spectroscopy 

NPN 

 

Non- protein Nitrogen 

PCA 

 

Principal component analysis 

PCA 

 

Principal components 

PLS 

 

Partial least square 

PP 

 

Plant Proteins 

RSD 

 

Relative standard deviation 

SIMCA 

 

Soft independent modelling of class analogy 

Wg 

 

Wheat gluten 
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1 Introduction 
 

1.1 Background  
 

Food adulteration is the process of replacing original substance partially with cheap substance 

and thereby lowering or degrading the quality and effecting nutrients like protein, fat, 

carbohydrates, vitamins and others, that are important for normal growth. Protein is a high value 

ingredient since it plays a vital role in a number of important functions such as, catalyzing 

metabolic reactions, DNA replication and intracellular transport from one location to other. 

Protein is thus most vulnerable for adulteration. Proteins are large complex biomolecules 

consisting of one or more long chains of amino acids. Amino acids are organic compounds 

containing amino, carboxyl group and side chain (R-group) specific to each amino acid Figure 

1.1 

 

 

    Figure 1.1: Amino Acid Structure 

 

 A non-protein nitrogen (NPN) compound is a term used for substances that have element 

nitrogen in them, but are not protein. For example melamine, cyanuric acid and urea amongst 

others. Due to low cost of NPN compounds, compared to plant and animal protein, they may 

be added to raw materials to artificially increase crude protein value. Such substances are called 

Economically Motivated Adulterants (EMA) and are intentionally added for financial gains. 

EMA present a challenge to the food industry and regulatory authorities because they are 

deliberate acts that are intended to evade detection. Journal of Food protection have reviewed 

some of EMA incidents [1]. In March 2007 contaminated pet food lead to the deaths of a 
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number of cats in North America. This had prompted pet food recall in North America. In China 

in November 2008 there was a major food safety incident involving milk and infant formula 

adulteration causing the death of six infants from kidney damage and kidney stones. Due to 

these and other similar incidents, EMA has become a crucial safety issue for the food industry. 

EMA incidents reveal gaps in quality assurance testing methodologies that are exploited for 

financial gains. 

 As discussed in the study conducted by Phromkunthong [2] , inclusion of EMA  in fish feed 

have shown harmful effects on fish and consumption of such fish may be hazardous to human 

health. An eight-week feeding trial demonstrated, that the fish fed on feed containing EMA 

grew less, utilized less feed and performed poorly. Fish fed on the adulterated feed also 

exhibited symptoms and defects like anorexia, sluggish swimming behavior, fin erosion, 

darkening of skin and high mortality. Food safety crises have aroused the need for a sensitive, 

reliable and rapid procedure for detection of possible adulterants. The standard protein 

determination assay, for example Kjeldahl method, measures total nitrogen in the samples and 

cannot differentiate between protein nitrogen and non-protein nitrogen. Hence, some producers 

for economic gains add NPN compounds and try to make their product seem to contain more 

protein than it actually does. European food and safety authority [3] in 2010 has set a maximum 

permitted concentration for NPN in food and feed at a level of  2.5 mg/kg, these are limits for 

low level of contamination. However, to make profit by EMA, much higher level of NPN needs 

to be added. Example ; for 2% addition of NPN to a raw material , the nitrogen content of the 

resulting mixture is increased by approximately 1.3% and the apparent protein content would 

be increased by over 8% assuming a nitrogen to protein ratio of 6.25 [4]. 

The traditional and novel detection methods like Gas Chromatography Mass-Spectrometry 

(GC-MS), High Performance Liquid Chromatography (HPLC), Capillary electrophoresis (CE), 

Nuclear magnetic resonance spectroscopy (NMR), Enzyme Linked Immunosorbent Assays 

(ELISA), Nanoparticle based sensors amongst others are very sensitive, but destructive, time 

consuming and require highly trained analysts. In addition they are costly as high-tech 

instruments are required [5] . New approaches based on biomimetic sensors, vibrational 

spectroscopy, Hyperspectral and Multispectral imaging (HIS-MSI) are being explored as rapid 

and non-destructive techniques for determination of authenticity and quality [6, 7].  
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Near Infrared Spectroscopy (NIRS) is a vibrational spectroscopy technique applied in areas 

such as nutrition and authenticity in aqua and agro culture. NIRS is becoming an important tool 

due to non-destructive capabilities, speed, reproducibility and ease of implementing this 

technology into an industrial set-up. NIRS in combination with chemometrics can be used to 

discriminate between fishmeal, soya meal and meat meal samples [8]. NIRS can be used to 

discriminate  different species of fishmeal batches [9]. NIR spectroscopy to detect adulteration 

in soybean meal using multivariate calibration models has been demonstrated by Haughey [10].  

1.2 Objective  
 

The main objective of this study is to devise a method using near-infrared spectroscopy (NIRS) 

and chemometrics to detect the presence of NPN compound in wheat gluten that is used as a 

source of plant protein in fish feed. Multivariate statistical tools provide pattern recognition 

techniques that allow adequate differentiation to be made between authentic and unauthentic 

wheat gluten samples. Additional objective is to investigate the extent of adulteration which 

can be identified using PLSR model. 
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2 Theory 
 

2.1 Spectroscopy 
 

2.1.1 Near Infrared Spectroscopy  

 

Near-infrared spectroscopy (NIRS) is a vibrational spectroscopy method that measures 

absorption in the near-infrared region of the electromagnetic spectrum, defined as wavelengths 

from approximately 700 to 2500 nm. The basic principal of NIRS is based on vibrational 

energy, which results in periodic displacement of atoms from their equilibrium state. When a 

sample is irradiated, molecules in the sample absorb light and they vibrate accordingly to their 

selective vibrating frequencies giving rise to a spectrum. The NIR region is characterized by 

overtone and combination bands of fundamental vibrations of –CH, -NH, -OH and –SH 

functional groups. The information in the NIR spectra is repeated through successive overtones 

and combinations. The intensity of bands involved become weaker towards shorter 

wavelengths. The weaker intensities in the NIR region mean that solid samples need no dilution 

and non-linearity effects due to strong absorption are less likely [11]. Interaction of near 

infrared radiation with solid particles give rise to refraction, transmittance, absorption, and 

scattering effects as shown in  figure 2.1 [11]. 

 

Figure 2.1. Interaction of near infrared radiation with solid particles in a sample 

According to Beer-Lambert law, the amount of light absorbed (A) by the sample is directly 

proportional to the concentration (c) of the analyte, molar absorptivity (a) and path length (b). 
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The path length of radiation is maintained constant in absorption spectroscopy, but is affected 

by scattering of light for transmittance and reflectance spectroscopy. Scattering occurs when 

radiation transmitted through the surface is diffused by refraction, reflection and diffractions. 

The concentration and absorbed energy relation for NIRS region further involves overlapping 

of spectral bands from different constituents present in the sample, hence NIRS is an empirical 

technique and needs to be calibrated using standard chemical methods. NIRS is a simple, rapid, 

nondestructive technique that provides several parameters from one analysis, and hence cost 

effective compared to wet chemistry methods. It is a nondestructive technique and requires no 

sample preparation with hazardous chemicals, solvents or reagents. The instrument is safe and 

easy to use [11]. 

2.1.2 NIR Instrumentation 
 

The basic NIR instrument configuration is either transmittance or reflectance figure 2.2. 

Irrespective of the configuration, both types consist of the following five components; source 

of energy, wavelength discrimination, sample holder or cup, detector, and signal processor. The 

common source of energy is tungsten filament lamp since it emits light from 320 to 2500 nm. 

Filters or monochromators are used for wavelength discrimination. Filters (usually between six 

and nineteen) are mounted on a rotating flat disc allowing radiation from the lamp to pass 

sequentially through each filter whereas monochromators scan the whole wavelength range by 

using a prism or grating as dispersing medium. Detection of NIR radiation occurs photo 

electrically. The incident photons change the electron state of the photosensitive material of 

detector, thereby producing an electrical impulse as detector output. To minimize scattering 

effect detectors are placed near the sample at 45 degree. The signals from the detector are 

amplified and readout as spectrum [11]. 
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Figure 2.2: NIR instrument configuration for transmittance and reflectance 

 

2.2 Multivariate Data Analysis 
 

NIR spectra are complex and possess broad overlapping and combination of NIR absorption 

bands that require special mathematical techniques for data analysis. Modern near-infrared 

technology relies heavily on computers for its ability to acquire data from instruments and 

facilitate data analysis. Multivariate data analysis techniques can been applied effectively for 

explorative analysis, discrimination and classification or regression and prediction. The choice 

of technique depends on the goals of the analysis [12]. 

2.2.1 Spectral Preprocessing Techniques 
 

Experimental and instrumental effects that are not related to sample compositional differences 

make sample comparison difficult. When samples are analyzed by either reflectance or 

transmittance NIRS, uncontrolled variations in light scattering is a dominating artifact. The 

spectra obtained contains noise and background information in addition to sample information. 

The undesired scattering variation is due to physical variation in the sample, such as particle 

size, sample surface, sample packing etc. The goal of data pre-treatment is to minimize 

variability unrelated to the property of interest. When analyzing spectral data, it is common to 

try out different pre-treatment and their combinations. Pre-treatment methods should be used 

with care as they can reduce signal of interest [13]. 
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Derivatives are commonly used to remove unimportant signal from samples [14]. Derivatives 

are a form of high pass filter and are often used when high frequency features contain signal of 

interest. This method should only be used when the variables are strongly related to each other 

and the adjacent variables contain similar or correlated signal. The simplest form is first 

derivative, in which each variable is subtracted from its neighboring variable, to remove the 

signal that is similar and leaves the part of signal that is different. The first derivative thus 

removes any offset from the sample and deemphasizes low frequency signals. A second 

derivative is calculated by repeating the process and there by further accentuates higher 

frequency features. Since differentiation emphasizes higher frequencies, it also tends to 

accentuate noise and hence some form of smoothing is required along with differentiation. 

Smoothing improves the signal to noise ratio by attenuating high frequency signals. 

Undersmoothing will not remove any noise, whereas oversmoothing will reduce the signal 

intensity and resolution. The optimum smoothing function depends on peak widths and noise 

characteristics [15]. Most common methods for smoothing are moving average or Savitzky-

Golay smoothing [16]. In moving average (MA), a fixed number of data points are selected, 

their ordinates are added and then divided by the number of data points selected to obtain the 

average value. The number of data points selected is called window. The spectral data is 

smoothed by moving the window along the spectrum and by successively replacing each data 

point with a new point through entire dataset. Running median smoothing (RMS) operates in 

similar way but calculates median rather than mean over a window. Better noise reduction may 

be obtained by selecting more number of points, but this can lead into distorted signals as show 

in the figure 2.3 [15]. 

 

Figure 2.3: Change in signal with increase in window size 
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 Savitzky - Golay is the most commonly used polynomial smoothing method to improve signal 

to noise ratio. Least square method is used to fit set of data points through a polynomial function 

to a data in a moving window. One needs to decide the number of points used to calculate the 

polynomial (window size) and the degree of polynomial fitting [15].  

Multiplicative Scatter Correction (MSC) [13, 17] in its basic form was first introduced by 

Martens et al. (1983). It is a preprocessing technique used to remove non-linearity in the data 

caused by scattering from particle size of the sample. MSC  deal with light scattering to 

compensate for multiplicative (amplification) and additive (offset) effect in the raw spectral 

signal  [13]. It assumes that the light scattering for each sample is estimated relative to that of 

reference spectrum. Each spectrum is then corrected so that all samples appear to have the same 

scatter level as the reference spectrum. The reference spectra can either be a pre-defined 

reference or the average spectra over a set of samples (e.g. the calibration set). The average 

over a set of samples is normally used as it is difficult to obtain one appropriate reference 

spectrum [13]. MSC model for each individual spectrum comprises of two steps [13] 

1. Estimation of the corrected coefficient 

xorg = b0 + bref,1 xref  + e             (2.1) 

 

          2.   Corrected spectra 

xcorr = (xorg – b0 )/  bref,1           (2.2) 

Where Xorg is one original sample spectra measured by NIR instrument, Xref is the reference 

spectrum, e corresponds effects that cannot be modelled in Xorg , Xcorr  is the corrected spectra 

and b0 and bref,1 are scalar parameters estimated by least square and differ for each sample.  

Extended multiplicative signal correction (EMSC) is a modification of the MSC method to 

include wavelength corrections [13, 18]. With EMSC it is possible to estimate and separate 

multiplicative physical effects ( path length, sample thickness ,light scattering, etc. ) from 

additive physical effects (baseline variation ,temperature shifts , etc. ) and additive chemical 

effects (absorbance of analytes and interferants) [19] 
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Standard Normal Variate (SNV) [13, 20] is a preprocessing technique used for scattering 

correction. The signal correction concept behind SNV is same as for MSC except that common 

reference signal is not required. SNV transformation centers each spectrum and then scales it 

by its own standard deviation  

Xcorr = (Xorg – a0)/ a1                        (2.3) 

Where Xcorr is the corrected spectra, Xorg is the original sample spectra, a0 is the average value 

of the sample spectrum to be corrected and a1 is the standard deviation of the sample spectrum. 

 

2.2.2 Principal Component Analysis (PCA) 
 

PCA is one of the most important multivariate explorative data analysis tool. PCA is a bilinear 

modeling techniques that provides a visual approach to identify patterns in data, outlier 

detection, variable selection, classification and dimension reduction. The possibility of using 

PCA for classification forms the basis for the classification method called SIMCA (Soft 

Independent Modelling of Class)[21]. PCA is also called as projection method as it uses 

information from original variables and projects them onto a smaller number of latent variables 

called Principal Components (PC). Each PC explains certain amount of information present in 

the original data. First PC stretch out in the direction of most variance, the next PC is orthogonal 

to this axis and has the direction where there is second most spread of variance. Thus, the first 

PC explains greatest amount of information in the data set and each subsequent PC explains 

less or remaining information than the previous one. The matrix X of the NIR spectral data has 

sample as rows and wavelength as columns and can be decomposed by PCA into a product of 

scores (T) and loading (PT) matrix as illustrated in equation 2.4. For the loading matrix (PT) 

superscript T implies transposition of column into row vector. E is residual matrix .Thus , E is 

the part of X that is not explained by the product TPT [12]. E is a good measure of “lack-of-fit” 

that describes how close the model is to the original data. 

X= TPT + E = Structure + Noise          (2.4) 
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The score and loading plots are normally constructed using PC1verses PC2, as they explain the 

largest variance in the data set. The score plot of PC1 verses PC2 is shown in figure 2.4 [12]. 

The score plots reveals patterns or groupings of objects. On a score plot, objects that are closely 

clustered behave similar whereas objects that are diametrically opposite are negatively 

correlated [15]. The loading plots describe variable correlations. On a loading plot, variables 

that are close have high correlation whereas variables on opposite side of origin have negative 

correlation. 

 

 

Figure 2.4: The plot to the left is of first and second principal components. The plot to right is 

a score plot illustrating the coordinates of the object i on PC1 and PC2.  

NIR spectra consists of data collected at hundreds to thousands of different variables 

(wavelengths). Moreover, for NIR these variables (wavelengths) are highly correlated, meaning 

that the measured absorbance at two or more wavelengths are not independent of each other. 

This is referred to collinearity or multicollinearity and can pose problems with linear regression 

models [12]. To handle multicollinearity and to get a better overview of the data , it is necessary 

to reduce the amount of data [20]. Principal component analysis (PCA) among others is the 

most commonly used method for dimension reduction of the NIR spectra matrix [20] 

 

2.2.3 SIMCA Classification  
 

Soft independent modeling of class analogy (SIMCA) [22] , is a supervised pattern recognition 

class modeling technique. In class modeling the focus is on modeling the similarity between 
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the samples belonging to a particular class. SIMCA classification algorithm is based on 

Principal Component Analysis (PCA). PCA is performed on each class to create a separate 

bilinear model for each group in the training set. The number of PCs needed to describe each 

group is usually different; too many PCs will add noise whereas few components can distort 

the information contained in the data. Hence, it is important to optimize the number of PCs 

retained for each class PC model. Cross-validation is used to find the number of PCs necessary 

to describe the data[22]. The variance that explains data is called model variance of the class 

model whereas the residual variance describes noise in the data and is part of the PCs not 

included in the model. Since SIMCA is based on PC models, it is sensitive to the quality of the 

data used to create PC models. Parameters such as modeling power and discriminatory power 

are used to assess the quality of the data. Modeling power is a measure of how well a variable 

helps the PCs to model variation and has value between 0 and 1. Modelling power [15] close 

to 1 means that the variable is mostly accounted for by the model. A value close to zero indicates 

that the variable has a variation pattern distinct from the PCs, and such a variable should be 

deleted. 

Modelling power of each variable for each separate class is given by equation 2.5 

 Mj = 1- Sjresid/ Sjraw    (2.5) 

Where Sjraw is the standard deviation of the variable in the raw data and Sjresid the standard 

deviation of the variable in the residuals. Discriminatory power [15]describes how well a 

variable helps PCs to discriminate between two groups; it is a positive number equal to or 

greater than one. A value close to one indicate that the variable has no ability to distinguish 

where as a value greater than three indicates good separation test is used to compare the residual 

variance of unknown sample with mean residual variance of the class model.  

The equations below mathematically describe detailed procedure of SIMCA [23] 

                (2.6) 
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Where s0
K is the mean residual standard deviation of the training set for class K, nk is the 

number of objects, pk is the number of significant PCs in class K, m is the number of variables 

and eij is the residual. 

                                         (2.7) 

The residual standard deviation of the unknown spectrum, su
k is given by equation 2.7 and is 

calculated using euj value.  

Comparison of the relative standard deviation (RSD) for the unknown (su
k ) with the mean RSD 

for the model s0
K gives a direct measure of its similarity to the subset model. F test statistics is 

used for the comparison of  su
k  and s0

K  

If the F-value is larger than the critical F-value at a given level of significance, it can be 

concluded that the distance from class K is significantly larger, i.e. the sample does not belong 

to the class K.  

                                               (2.8) 

 

2.2.4 Univariate and multivariate calibration models 
 

Calibration modeling involves using empirical data and prior knowledge for predicting 

concentration of the unknown samples. Univariate calibration model or simple linear regression 

model consists of dependent variable (y), independent variable (x), coefficient term (b0 and b1) 

and unexplained variance in the dependent variable which is given by error (e), as shown in the 

equation 2.9. The  coefficient terms b0 and b1 are found using least square principle, as given 

in the equation 2.5 [12]. 
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y= b0+ b1x+ e                (2.9) 

 

    (2.10) 

NIRS is non-selective, meaning there is no single wavelength that provides sufficient 

information and the absorbance at all wavelengths are effected by physical and chemical 

property of the sample. The selectivity problem in NIRS can be solved by using several 

wavelengths i.e. having number of independent variables. However, a simple linear regression 

model cannot be applied when there is more than one independent variable. Multivariate 

calibration or multiple linear regression model (MLR) is used to solve this situation. A 

multivariate calibration model is illustrated in equation 2.11.  

y= b0+b1x1+b2x2+…..bkxk+ e                           (2.11) 

The above equation can be written in the matrix form as equation 2.12 

      y= X b + e                                      (2.12) 

The vector of regression coefficients b (b0, b1,b2…bk ) is found by least squares fitting so as to 

minimize the sum of squares residuals as given in equation 2.13 

   b= (XTX)-1XTy              (2.13) 

In case of strong collinearities in X variables, (XTX) is no longer a non-singular or full rank 

matrix and inverse is not possible [24]. This a drawback of MLR. 

Partial least square regression (PLSR) is a multivariate calibration technique used to predict 

dependent variables from independent variables. PLSR is a dimension reduction technique 

that uses original variables to calculate number of latent variables called factors. PLSR can 

thus be used to handle collinearity issues with X variables. It uses covariance between 

independent variables in data matrix X and dependent variables in response matrix Y. Thus 

both data matrix X and response matrix Y are decomposed into product of scores (T and U) 

and loadings (PT and QT), E and F are residual matrix’s equation 2.14 and 2.15. 
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X=TPT+ E = Structure + Noise                      (2.14) 

Y=UQT + F = Structure + Noise                   (2.15) 

Scores (T) explain part of X which is related to Y and Score (U) explain part of Y which is 

related to X [12]. 

 

2.2.5 Variable selection 
 

Variable selection is used for improving the model performance, give better predictions or 

reduce the model complexity by removing unnecessary, uninformative and interfering variables 

that add noise and makes prediction worse. Variable selection is a process of reducing number 

of independent variables in X matrix; by discriminating informative variables from the ones 

that are not related to dependent variable Y [25]. If too many variables are used the equation 

becomes over-fitted. This means the model will be data dependent and will give poor prediction 

results. On the contrary, using too few variables could result in under-fitting. This means the 

model is not large enough to capture the important variability in the data. Various variable 

selection approaches have been developed to reduce the complexity of the model [26]. A 

thorough understanding of data is necessary to make qualified decisions and get appropriate 

insight on what variable seems important, unimportant or is of intermediate importance. 

Chemical information from NIR spectra should be used when selecting variables to keep. 

Variable selection is an iterative process and should not be used as an automated black box 

selection approach. 

2.2.6 Cross-Validation (CV) 
 

Cross validation [27, 28] is a method used for evaluating predictive performance of a model. It 

is based on splitting the calibration data set into training set and test set, the process of splitting 

is repeated several times using different partition of the calibration data. The resulting 

prediction errors are averaged across the multiple rounds of CV. 

In k-fold CV the data set is divided into k equal size subsets. Each time, one of the k subset is 

used as test set and k-1 subsets are used as training set to build model. The subset which was 

removed is then fitted to the model and the deviation between the actual response variable (y) 
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and the predicted response variable (yˆ) is used to obtain prediction error. The CV process is 

repeated k times, with each of the k subsamples used exactly once as the test data. The 

prediction error for all objects are then combined to obtain an overall prediction error given by 

root mean square error of cross validation (RMSECV) equation 2.16 [20] . This error is 

calculated for each number of LVs used to build the model. The number of LVs that archives 

lowest error is the optimal one. 

                      (2.16) 

 Where n is number of objects (samples), yi actual response and yˆi is predicted response  

 

Figure 2.4: Representation of a 10 fold CV example. The calibration set is partitioned into 10 

different groups. The error of each group (E1, E2 ….E10) is combined to obtain overall 

prediction error (E). 
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3 Experiment 
 

3.1 Sample preparation  
 

Thirty different commercial wheat gluten samples were collected from fish feed producing 

companies. Sample preparation for the experiment was done in three stages. Each of these 

stages are described in section 3.3 below. 

 

3.2 Retsch Sample Divider PT 100 for sample splitting 
 

 

Figure 3.1: Retsch Sample Divider PT 100 

 

Retsch Sample Divider PT 100 is used for splitting. It ensures representativeness of samples. 

In a retsch sample divider the material to be split flows through a vibratory feeder and is directed 

via a dividing head hopper into the opening of the dividing head. This dividing head is speed 

controlled and rotates at a constant speed of 110 revolutions per minute (rpm). The dividing 

head divides the sample evenly among the sample bottles that are attached to the adapter tube. 

While splitting the wheat gluten samples it was observed that since wheat gluten is a very dry 

amorphous powder, a small amount of powder needs to be added to the vibratory feeder at a 

time. This was necessary to avoid blockages in the vibratory feeder. 
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3.3 Sample preparation and splitting  
 

 Sample preparation for the experiment was done in three stages, which are as described below. 

Stage one:  Obtaining representative sub samples  

Stage one involved splitting each received wheat gluten sample into representative sub samples.  

This is done as follows. 

1. Each of the 30 received wheat gluten samples (2.5 kg) was divided into 8 

representative sub-samples (each being 280-290 grams approximately) by using a 

Retsch Sample divided PT100 as described under section 3.2. 

2. Five sub-samples obtained were used to prepare test samples containing NPN 

compound at 5 different levels (500, 3000, 5500, 8000 and 10500 ppm), as described 

in stage 2 below. 

3. One sub-sample was analyzed for microscopic analysis to ensure that the initial 

sample is pure and does not contain any impurities. 

4. One sub-sample was used for pure wheat gluten scan on NIRS. 

5. The remainder sample was stored as a backup sample. 

 

The Flow chart figure 3.2 below show stage one splitting of the each of the 30 wheat gluten 

samples received. 
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Figure 3.2: Flow chart to show stage one splitting of the each of the 30 wheat gluten samples 

received 

Stage two: Mixing sub sample with NPN compound 

Stage two was considered a very crucial step as it involved homogenous mixing of known 

amount of sub sample with the known amount of NPN compound to obtain test samples at 

desired concentration levels. Stage two consisted of the following steps: 

1. Of the five sub samples obtained at stage one (from each wheat gluten sample), 

approximately 270- 285 grams of each sub sample was weighed using a 

weighing balance. Weight of the sub sample was noted down. 

2. Required quantity of NPN compound to spike sub sample was weighed. Weight 

of NPN compound was noted down. 

3. The weighed sub samples was mixed with weighed amount of NPN compound 

using mortar pestle to produce the desired concentration level as described 

below. 

3.1 The sub sample with a weight of approximate 275-285 g was mixed with a NPN 

compound of 138-143 mg in order to attain a concentration level of 500 ppm 

3.2 The sub sample with a weight of approximate 275-285 g was mixed with a NPN 

compound of  825-855 mg in order to attain a concentration level of 3000 ppm 
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3.3 The sub sample with a weight of approximate 275-285 g was mixed with a NPN 

compound of 1510-1575 mg in order to attain a concentration level of 5500 ppm 

3.4 The sub sample with a weight of approximate 275-285 g was mixed with a NPN 

compound of  2200-2280 mg in order to attain a concentration level of 8000 ppm 

3.5 The sub sample with a weight of approximate 275- 285 g was mixed with a NPN 

compound of 2890-3070 mg in order to attain a concentration level of 10500 

ppm 

4. Caution was followed to avoid samples spillage. The test samples obtained were 

collected in a self-sealing bag. 

 As a result, each wheat gluten sample was mixed with NPN compound to produce 5 different 

concentration levels. Thus, leading to 30 samples each, at concentration levels of 500 ppm, 

3000 ppm, 5500 ppm, 8000 ppm and 10500 ppm. This generated a total of 150 samples at five 

different concentrations. 

      

 

Figure 3.3: Flow chart to show 5 different levels of test sample, that were obtained from 5 sub 

samples of each wheat gluten sample.  

Stage three: Splitting Test samples  

In stage 3 each test sample obtained under stage 2 was split into three parts using Retsch sample 

divided PT100 as described under section 3.2. One of the split parts was used for NIR scanning, 

the second part was for reference analysis and the third part was stored as a backup sample.  

The flow chart for the overall sample preparation and splitting is shown in figure 3.4
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Figure 3.4: Flow chart representing overall sample preparation and splitting process of each wheat gluten sample 

*Sub sample 2, 3, 4 and 5 have been treated   in same way as sub sample 1 to obtain corresponding test samples
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3.3.1 Sample marking 
 

Table 3.1 gives information on the sample markings used to identify samples at different 

concentration, together with color code used to identify concentration levels during data 

analysis 

 

Table 3.1. An overview of the sample composition and color coding used.   

3.4 Reference method 
 

3.4.1 Analysis of NPN Compound 
 

Test samples obtained in stage 2 of sample preparation were prepared by mixing sub samples 

with NPN compound using mortar and pestle to ensure homogenous mixing of NPN 
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compound. Ten test samples at each concentration level (total of 50-test sample) were sent to 

external lab for reference analysis of NPN compound using Liquid chromatography Mass 

spectroscopy (LC-MS) method. The results are given in table 3.2 

The LC-MS method is validated by the external lab for lower concentrations of 0.1- 1.0 ppm 

and 1.0-100 ppm. The estimated measurement of uncertainty as provided by the external lab is 

12.5%. This is based on extrapolation of validation data. 

 The samples marked as (x) in table 3.1, were analyzed to find concentration of NPN compound 

spiked . In the table 3.2 theoretical value is the value obtained by calculating known amount of 

NPN added to known amount of sub sample. Whereas concentration of NPN compound 

obtained by LC-MS method is marked as reference value. There is a good agreement between 

the theoretical value and the reference value. Thus, the method used for mixing NPN compound 

with the sub sample to prepare test sample was good enough to obtain homogenous samples. 

 

Table 3.2:  Gives comparison of theoretical value with actual value of NPN compound in the 

test samples. 

3.4.2 Total nitrogen determination by Kjeldahl method 
 

 Ten pure wheat gluten and ten test samples at each concentration level (total 50 test samples) 

were analyzed by analytical lab using Kjeldahl method for protein determination. Kjeldahl 

analysis was done to check for the contribution of nitrogen by NPN compound. The results are 

given in table 3.3. 

Kjeldahl [29] is a method for quantitative determination of total nitrogen content in substance. 

The Kjeldahl nitrogen determination method is made for the calculation of protein content in 

feeds, raw materials, forages and other samples. Kjeldahl method is recognized internationally 
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for the estimation of protein content. It however does not give measure of true protein content 

as it measures non-protein nitrogen in addition to protein nitrogen in samples.  

The procedure is carried out in three steps as follows. 

1. Digestion: The sample is boiled in concentrated sulfuric acid and the nitrogen contained 

in the sample is converted to ammonium sulfate.  

2. Distillation: Excess of sodium hydroxide solution is added to release ammonium ion in 

the form of ammonia, which is collected in the volumetric flask containing either boric 

acid, sulfuric acid or hydrochloric acid solution.  

3. Titration: The amount of ammonia is then back titrated with sodium hydroxide solution.  

The samples marked as (x) in table 3.1 were analyzed by Kjeldahl to determine nitrogen 

contribution of NPN compound at different spiked levels. In the table 3.3 Kjeldahl Value BLK 

is the kjeldahl nitrogen content of the pure wheat gluten sample. Kjeldahl value 500 ppm is 

nitrogen content of the test sample prepared to contain 500 ppm of NPN compound. Difference 

BLK-500 is the difference between two values obtained. Average value at the bottom of the 

table is the average difference between two readings. 

The results from the Kjeldahl analysis show that as the level of spiking is increased the 

contribution of nitrogen by NPN compound is also increased. The average contribution of 

nitrogen at 500 ppm is 0.23% whereas the average contribution at 10500 ppm is 3.65%.Thus it 

can be concluded that, to generate profit from EMA, higher levels of NPN compound needs to 

be added. 

 

Table 3.3: Test to check contribution of nitrogen by NPN compound at different spiked levels  
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4 Data analysis, results and discussion 
 

4.1 Spectral acquisition 
 

30 pure wheat gluten samples and 150 spiked samples (test samples) that were obtained after 

step 3 of sample preparation and splitting were analyzed using FOSS NIR instrument.  Detail 

diagnostic test that gives information on the overall performance of the instrument was done 

before scanning test samples. It was ensured that the instrument was clean and all the samples 

were at room temperature. Each prepared NPN spiked sample (test sample) was scanned in 

duplicate between 400 nm- 2498 nm wavelength range with interval of 2 nm . Pure wheat 

gluten samples were scanned first followed by spiked test samples in the order of increasing 

concentration. This was done to prevent contamination of pure or lower concentration test 

samples with higher concentration test samples. 

4.2 Software 
 

Spectroscopic analysis was performed using FOSS NIR XDS Rapid Content™ Analyzer. NIR 

spectral data was collected using Foss ISIScan software version 4.10. The multivariate data 

analysis and modelling has been done using the program Sirius version 11.0 (Pattern 

Recognition System AS, Bergen, Norway software) 

4.3 Multivariate Modelling 
 

 NIR spectra of pure wheat gluten figure 4.1 and of NPN compound figure 4.2 provide spectral 

signature rich in peaks. For the NIR spectra of NPN compound, three distinct peaks are seen 

around 1466, 1490 and 1520 nm. Cluster of peaks are also seen between 1974-2498 nm for 

both wheat gluten and NPN compound. The detection of contaminated samples was based on 

NIR spectra in the range from 1100-2498 nm region, as this region shows most of the peaks. 
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Figure 4.1: NIR Spectrum of pure wheat gluten recorded between 400- 2498 nm, showing 

major peaks  

 

Figure 4.2: NIR spectra of NPN compound recorded between 400- 2498 nm, showing major 

peaks 

NIR spectra often contain undesired scattering variation due to particle size, packing and 

sample surface amongst others. The scattering effect in NIRS consists of an additive effect and 

a multiplicative effect. The additive effect is reflected as baseline offset. The multiplicative 

effect is reflected as a slope that scales the entire spectrum. To minimize these complex baseline 
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variations and scattering effects, data pre-treatment is needed. NIR spectra of the training set 

figure 4.3 was pre-processed using extended multiplicative scatter correction (EMSC)  

followed by second order differentiation width (nine), order (three) to eliminate these effects 

[19] . NIR spectra after scatter correction is shown in figure 4.4.  

 

 

Figure 4.3: NIR Spectra of 30 pure wheat gluten samples and 150 test samples (30 at each 

concentration level (without any pre-processing) 

 

Figure 4.4: NIR Spectra of 30 pure wheat gluten samples and 150 test samples (30 at each 

concentration level) after applying extended multiplicative scatter correction together with 

second order derivative pre-processing method. 
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4.3.1 SIMCA Model 
 

The main objective of this study is to develop SIMCA model that can differentiate between 

authentic and unauthentic wheat gluten samples. The SIMCA method builds individual PCA 

models, one for each class, and uses these to classify and discriminate new samples.  Cross 

validation was used to determine the number of significant components needed to describe the 

systematic variation in spectral data [30, 31] . NIR spectra was pretreated to compensate for 

scattering using EMSC followed by second order derivative width (nine) order (three). Spectral 

range where informative spectral difference between adulterated and non-adulterated wheat 

gluten samples was available, were selected to obtain an optimal calibration model. In this case 

spectral range used for best discrimination was 1100-2498 nm wavelength (refer figure 4.1 and 

4.2). Performance of the developed SIMCA model was evaluated using the following criteria 

1. PCA score plots. 

2. The interclass distance between pure wheat gluten samples and the wheat gluten 

samples spiked with NPN compound  

3. The acceptance or rejection rates of the samples used for the validation of the model.  

Classification performance of SIMCA model was evaluated based on seventeen totally new 

pure wheat gluten samples and twenty totally new wheat gluten samples spiked with NPN 

compound at a concentration level of 15000 ppm, 20000 ppm, 30000 ppm and 35000 ppm (five 

samples at each concentration level) was used.  

4.3.2 PLSR model for quantitative modeling 

 

The additional objective of this study is to investigate the extent of adulteration which can be 

identified using PLSR model. Schematic diagram to represent PLSR model is given in figure 

4.5. PLSR model was created with NIR spectra of the test samples (training set) in matrix X. 

The concentration of the NPN compound mixed to obtain these test samples was used as the 

reference value in the Y vector. The training set consisted of 30 pure wheat gluten samples and 

150 spiked samples (preparation of the test samples is explained in detail in chapter 3.3).  In 

the current study PLSR model was validated by cross validation [32]. PLSR model was not 

validated using external validation set. This is because only 30 pure wheat gluten samples were 

available. These were not considered sufficient to make an independent and representative 

external validation set. 
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Due to the presence of numerous and correlated X variables there is a risk of “overfitting”, ie,  

a well fitted model with little or no predictive power. Hence, it is important to test predictive 

significance of each PLS component and stop when components start to be non-significant. 

The best PLS component selection was based on the following criteria [32]. 

1. Cross validation ratio (CsvSD) 

2. Explained variance in the dependent and independent variables 

3. Lowest value of root means square error of cross validation 

Cross validation ratio (CsvSD) is a ratio of total prediction error of a model after including a 

new component, and the total residual standard deviation before this inclusion. If the ratio is 

less than one , new component is included in the model and the procedure continues with the 

calculation of next component [32, 33]. 

 

 

Figure 4.5: Schematic diagram to represent quantitative model 
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5 Results and discussion  
 

5.1 SIMCA model 
 

PCA was done on the whole training set (30 pure wheat gluten sample and 150 spiked wheat 

gluten samples, 30 at each concentration level) to look for groupings in the data. The data was 

mean centered and four PC’s were extracted.  The explained variance for four PC’s is given in 

the table 5.1 

Principal 

Component 
Explain variance 

1 58.71% (58.71%) 

2 27.93% (81.65% ) 

3 9.68% (91.33%) 

4 3.03% (94.36%) 

Table 5.1: Explained variance from the 4 PC’s given by exploratory analysis of the whole 

training set 

In the score plot different colors represent, different levels of spiking (refer table 3.1 for detail 

marking). It can be seen in the PC2 verses PC1 score plot figure 5.1 that the samples are not 

grouped based on the level of spiked NPN compound but are grouped based on the similarity 

between the wheat gluten samples. The figure 5.2 is score plot of PC 3 verses PC 1, it can be 

seen that samples are grouped on the bases of spiked level of NPN compound, but different 

groups overlap each other. The figure 5.3 is score plot of PC 3 verses PC 2. A better group 

separation is seen in this plot. Adding fourth PC does not seem to improve separation any 

further as seen in figure 5.4. Bar graph plot of scores verses objects for PC 3 is shown in figure 

5.5. The bar graph shows scores of every object on the third PC. It can be seen that PC 3 to a 

larger extent explains the difference between different levels of spiking. Thus it can be 

concluded that three PC’s are sufficient for separating samples based on spiked levels of NPN 

compound. 
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Figure 5.1: Score plot of PC2 verses PC1 (Different color represents different level of 

concentration) 

 

Figure 5.2: Score plot of PC3 verses PC1 (Different color represents different level of 

concentration) 
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Figure 5.3: Score plot of PC3 verses PC2 (Different color represents different level of 

concentration) 

 

Figure 5.4: Score plot of PC4 verses PC3 (Different color represents different level of 

concentration) 
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Figure 5.5: Bar graph of scores verses Objects 

To create SIMCA model, separate PCA was performed for two different classes. One to include 

thirty pure wheat gluten samples and other to include thirty samples spiked with NPN 

compound at 10500-ppm concentration level. In the current study NPN compound was 

evaluated as EMA, meaning a higher concentration needs to be added to make adulteration 

economical viable. Adding 10500 ppm of NPN compound to the wheat gluten sample results 

in 3.7 % increase in protein levels (refer table 3.3). Hence the focus of this study is to create 

SIMCA model that can discriminate samples at 10500 ppm or higher.   

Detailed information on the explained variance and cross validation ratio for PCA performed 

on thirty pure wheat gluten samples is given in table 5.2. As seen, PC 4 explains only 1.78% 

of the variance, which is very low, and has a high cross validation ratio of 0.93. Hence, a three 

PC model is considered. 

Principal 

Component 
Explained variance CsvSD 

1 58.98% (58.98%) 0.72 

2 30.76% (89.75% ) 0.62 

3 3.57% (93.32%) 0.89 

4 1.78% (95.10%) 0.93 

Table 5.2: Explained variance for pure wheat gluten class model 
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PCA model for the class with 30 wheat gluten samples spiked with NPN compound at 10500-

ppm concentration was created. The results of explained variance and cross validation ratio is 

given in table 5.3. PC 4 explains only 1.49% of the variance in the data and has a high cross 

validation ratio of 0.92. Hence, a three-component model is considered for this subset. 

Principal 

Component 
Explained variance CsvSD 

1 58.85% (58.85%) 0.73 

2 32.36% (91.21%) 0.58 

3 3.5% (94.70%) 0.88 

4 1.49% (96.19%) 0.92 

Table 5.3 Explained variance for wheat gluten samples spiked with 10500-ppm of NPN 

Modelling power for pure wheat gluten samples is given in figure 5.6 .Modelling power for 

spiked samples at 10500 ppm is given in figure 5.7. Discriminatory power of the two subsets 

is shown in figure 5.8. The two subsets have a discrimination power of 3.44. A distance greater 

than 3 indicates that the subsets are well separated and hence different [34].  

 

Figure 5.6: Modelling power plot of the pure wheat gluten sample 
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Figure 5.7: Modelling power plot of the spiked level 10500 

 

 

Figure 5.8: Discrimination power plot of the two-sub set created (pure wheat gluten and spiked 

samples at 10500 ppm) 

Figure 5.9 is a plot of  RSD verses objects, of 30 pure wheat gluten and 150 spiked wheat 

gluten samples. It can be seen that as the concentration of the NPN compound is increasing, 

the spiked samples are moving away from the pure wheat gluten samples. There is overlap 

between pure wheat gluten samples and spiked samples at 500 and 3000 ppm but the samples 

at 5500 ppm (blue grey) and above have good separation from pure wheat gluten samples.  
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Figure 5.9: RSD verses object plot of pure wheat gluten and spiked wheat gluten sample at 5 

different levels 

(C0= pure wg , C1=500 ppm, C2= 3000 ppm, C3= 5500 ppm, C4= 8000 ppm and C5=10500 
ppm) 

Evaluation of classification quality of SIMCA model using new sample set  

Classification quality of SIMCA model is associated with the expected errors of 

misclassification. Classification error are of two types: type I (false positive error) and type II 

(false negative error). The type I error occurs when an acceptable sample is classified as 

unacceptable during qualitative analysis. The type II error occurs when an unacceptable sample 

is classified as acceptable during qualitative analysis [35].  

To evaluate classification quality NIR scan of seventeen totally new pure wheat gluten samples 

and twenty totally new wheat gluten samples spiked with NPN compound at a concentration 

level of 15000 ppm, 20000 ppm, 30000 ppm and 35000 ppm (five samples at each 

concentration level) was used.  

The RSD value as shown in the figure 5.10 is very low. RSD value is calculated from F-test 

and has a very narrow confidence band due to strong correlation between the variables [30]. 

To resolve this problem the degree of freedom needs to be adjusted as each correlated variable 

does not contribute to a new degree of freedom [36].  
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An important factor for SIMCA classification is the number of PC’s included in the model. It 

is a difficult task to determine the correct number of latent variables. For the current SIMCA 

model with 2 PC , 9 out of 17 pure new wheat gluten samples had RSD lower than the samples 

spiked at 10500 level. For SIMCA model with 3 PC, 10 out of 17 pure wheat gluten samples 

had RSD lower than the samples spiked at 10500 ppm level. However the overall RSD for 17 

pure new wheat gluten samples was relatively low with 3 PC model. Hence a 3 PC model was 

used. 

It is seen in the figure 5.10, that 10 out of 17 pure wheat gluten samples have RSD lower than 

10500 ppm while 7 samples are misclassified as belonging to class with 10500 ppm or higher 

concentration spike levels. Hence there is a significant amount of type I error. This could be 

due to natural heterogeneity within the pure wheat gluten class, since the samples are coming 

from different batches, suppliers and different harvesting seasons etc. Including more samples 

will results in low type I error. The evaluation of type II error in such a classification system is 

very important. Type II error needs to be avoided as this type of error would present significant 

concern. This is done by subjecting the adulterated samples to the model, to check whether 

some of adulterated samples would be wrongly identified as belonging to the model. Of the 

twenty newly spiked samples none of the samples was wrongly identified as belonging to the 

pure wheat gluten class. This is an important result in the application of SIMCA for 

identification of adulterant in wheat gluten samples.  

 

 

Figure 5.10:  RSD verses objects (Where green= pure wheat gluten samples, orange = spiked 
at 500 ppm, turquoise = 3000ppm, blue gray = 5500 ppm, bright green = 8000 ppm, violet = 
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10500 ppm, light orange =15000, pink =20000 , blue =30000 , red =35000 , light green= 17 
new pure wheat gluten samples )  

 

 Enhancing model performance to improve classification errors 

Performance of the SIMCA model was improved by  

1.  Examination of the modelling and discriminating power plots, as it provides 

information on variables that are most important for separating the different classes. 

2. Selecting variables related to chemical spectral information as seen in the figure 4.1 

and 4.2. 

3. Selecting variables with high discriminatory power for different spiked levels (3000, 

5500 and 10500 ppm. 

After variable selection exploratory analysis was done  on the whole training set (30 pure 

wheat gluten samples 150 spiked samples) .The data was mean centered and three PC’s were 

extracted . The explained variance for the three PC’s is given in the table 5.4 

Principal 

Component 
Explained variance 

1 70.48% (70.48%) 

2 21.49% (91.96%) 

3 5.99 % (97.96%) 

Table 5.4: Explained variance for three PC’s, given by exploratory analysis after variable 

selection 

As seen in the PC 2 verses PC 1 score plot figure 5.11 that the samples are grouped based on 

the level of spiked NPN compound. The figure 5.12 is score plot of PC 3 verses PC 1 here it 

can be seen that different groups form a cluster. Looking at the results from explorative data 

analysis, it can be concluded that two PC’s are sufficient for separating samples based on spiked 

levels of NPN compound. 
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Figure 5:11: Score plot of PC 2 verses PC1 (Different color represents different level of 

concentration) 

  

Figure 5:12: Score plot of PC 3 verses PC1 (Different color represents different level of 

concentration 
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Figure 5.13 shows the bar graph plot of score verses object. As can be seen in this figure, 3 PC 

2 to a larger extend explains the difference between different levels of spiking. The variables 

that are selected to enhance SIMCA model performance are indicated by shading the area 

below the curve in figure 5.14  

 

Figure 5.13: Bar graph of scores verses objects 

After variable selection new PCA models were created for the pure wheat gluten samples and 

spiked samples at 10500 ppm. Explained variance and cross validation ratio for the pure wheat 

gluten class is shown in table 5.5. Explained variance after second PC is 97.33% with the cross 

validation ratio of 0.68. The cross validation ratio for the third PC is 0.92 and it explains only 

0.72% of the variance. Thus, two PC are sufficient to explain the total variance in the model. 

Principal 

Component 
Explained variance CsvSD 

1 89.50% (89.50%) 0.48 

2 7.83% (97.33%) 0.68 

3 0.72% (98.05%) 0.92 

Table 5.5: Explained variance for new pure wheat gluten model after variable selection 

Explained variance and cross validation ratio for the wheat gluten samples spiked at 10500-

ppm is shown in table 5.6. Explained variance after third PC is 98.10% with the cross validation 
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ratio of 0.85. The cross validation ratio for the fourth PC is 0.9 and it explains only 0.62% of 

the variance. Thus, three PC’s are good enough to explain the total variance in the model. 

Principal 

Component 
Explained variance CsvSD 

1 88.37% (88.37% ) 0.5 

2 8.56% (96.93%) 0.63 

3 1.16% (98.10 %) 0.85 

4 0.62% (98.71%) 0.9 

Table 5.6: Explained variance for 10500 ppm samples model after variable selection 

The discriminatory power for the two subsets (pure wheat gluten and sample spiked at 10500 

ppm) is shown in figure 5.14. As can be seen, after variable selection discriminatory power 

was increased to 7.50 compare to 3.44 without variable selection. As seen in NIR scan from 

NPN compound (figure 4.2) three distinct peaks were seen around 1466, 1490 and 1520 nm 

that seem to be important to discriminate between adulterated wheat gluten with pure wheat 

gluten. These wavelengths have higher discriminatory power.  

 

Figure 5.14: Discrimination power plot after variable selection 

Figure 5.15 shows a plot of RDS verses object for 30 pure wheat gluten and 150 spiked wheat 

gluten samples. It can be seen that , with the redefined SIMCA model it is possible to 
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differentiate sample at spike level of as low as 3000 ppm with 100 % classification rate. The 

pure wheat gluten sample and samples at 500 ppm spike levels still show some overlap.   

 

Figure 5.15: RSD verses object plot of pure wheat gluten and spiked wheat gluten sample at 5 
different levels with redefied SIMCA model 

(C0= pure wg , C1=500 ppm, C2= 3000 ppm, C3= 5500 ppm, C4= 8000 ppm and C5=10500 
ppm) 

 

Evaluation of new SIMCA model created after variable selection 

Classification performance of the SIMCA model created after variable selection was evaluated 

using NIR scan of seventeen new pure wheat gluten samples and twenty new spiked wheat 

gluten samples at concentration level of 15000 ppm, 20000 ppm , 30000 ppm and 35000 ppm 

(five sample at each concentration level). Figure 5.16 show plot of RSD verses object. It can 

be seen in the figure that the twenty new spiked samples standout as not belonging to the pure 

wheat gluten class samples. The RSD for seventeen pure new wheat gluten samples is close to 

the RSD for samples spiked with NPN at 500 ppm concentration. Thus the misclassification 

rate is zero for type I and type II error. These results show that SIMCA model could be 

developed to discriminate the spectral signals of adulterated and non-adulterated wheat gluten 

samples at a level as low as 3000 ppm with 100 % classification. 
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Figure 5.16: Plot of RSD verses object.  

(Where green= pure wheat gluten samples, orange = spiked at 500 ppm, turquoise = 3000ppm, 
blue gray = 5500 ppm, bright green = 8000 ppm, violet = 10500 ppm, light orange =15000ppm, 
pink =20000ppm, blue =30000ppm , red =35000ppm , light green= 17 new pure wheat gluten 
samples ) 

 

5.2 PLS Model 
 

The process of deriving best PLS equation was carried out in the following steps 

Step 1: Cross validation results of initial PLSR analysis showed that five PLS components 

gave the best prediction performance figure 5.17. Detailed information on the independent and 

dependent variables together with cross validation ratio is given in table 5.7. The first two 

components explain 97.05% of the variance in Y. When the third component is added explained 

variance in Y is increased only by 0.41%. The third component explains very little of the 

variance. The second component has a CsvSD value of 0.37 and it increases to 0.88 for the 

third component. Lower value for the cross validation ratio is preferred. Thus including more 

than two PLS components could lead to overfitting.  This indicates that a five component PLS 

model is not optimum for predictions. 
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Figure 5.17: Plot of RMSECV value with number of components 

Component Explained variance in 
independent 

Explained variance 
in dependent 

CsvSD 

1 23.59% (23.59%) 76.60% (76.60%) 0.5 

2 39.77% (63.36%) 20.45% (97.05%) 0.37 

3 24.28% (87.64%) 0.41% (97.45%) 0.88 

4 6.48% (94.12%) 0.90% (98.35%) 0.83 

5 1.16% (95.28%) 0.49% (98.83%) 0.85 

Table 5.7: Explained variance for independent and dependent variable for 5 PLS components 

Step 2: Regression coefficient analysis was performed to identify less important variables. 

 

 

Figure 5.18: Regression coefficient plot 
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As seen in the figure 5.18, the region between 1100-1400nm and 1600-1900 nm is of little 

interest. In addition, similar region were also seen as less important in the NIR spectra of pure 

wheat gluten and NPN compound (refer figure 4.1 and 4.2). By omitting these variables, new 

PLSR model was created.  The explained variance in the independent and dependent variable 

along with CsvSD value is given in the table 5.8 

Component Explained variance in 
independent 

Explained variance 
in dependent 

CsvSD 

1 28.38% (28.38%) 74.81% (74.81%) 0.5 

2 39.62% (68.00%) 22.82% (97.62%) 0.34 

3 13.34% (81.35%) 0.50% (98.12%) 0.92 

4 13.46% (94.81%) 0.40% 98.52%) 0.84 

Table 5.8: Explained variance for independent and dependent variable for four component PLS 

model after omitting variables of little interest. 

As seen from table 5.8 the first two components explain 97.63% of the variance in Y. When 

the third component is added explained variance in Y is increased only by 0.50%. The second 

component has a CsvSD value of 0.34 and it is increased to 0.89 for the third component. The 

RMSECV value for the two component PLS model has increased to 637 compared to 456 for 

five component PLS model in step 1. This indicates that the model needs to be further refined, 

to find the most relevant variables and to obtain a model with a better predictive ability and 

lower RMSECV value. 

Step 3: Selectivity ratio [26, 37] was used as a method for variable selection. Selectivity ratio 

is defined as the ratio between the explained variance of each variable to the residual variance. 

Figure 5.19 shows a plot of variable selectivity ratio verses variables .The selectivity ration can 

be displayed similarly to a spectrum. A small ration increases the risk of selecting false 

variables, while a high ration increases risk of losing important variables.  

For the selection of variables based on selectivity ratio, following was also used as a guide. 

1. Information from preliminary regression co-efficient analysis figure 5.18. 

2. Variables with high discrimination power as seen in SIMCA model. 

3. Selecting variables related to chemical spectral information as seen in figure 4.1 and 

4.2. 
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 Figure 5.19: Selectivity ratio graph 

As seen in the graph figure 5.19 above selectivity ratio suggested by program is 1.07. Most of 

the variables that have high discrimination power for the SIMCA model are included at this 

level. The distinct peaks seen in the figure 4.1 and 4.2 are also included.  

After variable selection by selectivity ratio, new PLSR model was created. Table 5.9 below 

gives detail information on the explained variance and CsvSD . The total explained variance in 

dependent variable by first two component is 98.68 % and adding third component will increase 

it  only by 0.22% .The CsvSD for the second component is 0.49 and is increased to 0.95 for the 

third component. In addition, the total explained variance in independent variable with first 

two  component has increased to 95.49 % compared to 63.36 % and 68 % in step 1 and step 2 

respectively (refer table (5.7) and (5.8)). The RMSECV value for two component PLS model 

is 459 
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Thus, a two-component PLSR model based on selected variables as described in step 3 was 

created. 

Component Explained variance in 
independent 

Explained variance 
in dependent 

CsvSD 

1 82.29% (82.29%) 93.97% (93.97%) 0.24 

2 12.85% (95.14 %) 4.72% (98.69%) 0.47 

3 1.72% (96.86%) 0.20% (98.88%) 0.95 

4 1.22% (98.09%) 0.12% (99.01%) 0.98 

5 0.51% (98.60%) 0.05% (99.06%) 0.98 

Table 5.9: Explained variance for independent and dependent variables for PLS model after 

variable selection using selectivity ratio. 

The measured value of NPN compound for samples in the training set were plotted against 

predicted values of NPN compound (figure 5.20) using the two component PLS model created 

in step 3 .The correlation here is 0.993. This indicates a good fit of the model to the training 

set data. The objects are grouped in six clusters. This indicates that the dataset consists of six 

groups of objects. It is seen that two clusters that lie to the left, dark green (pure wheat gluten 

samples) and orange (500 ppm spiked test sample) are very close. Thus, the model might not 

be able to accurately predict samples with lower concentration levels of NPN compounds (500 

ppm and lower). Overlap between pure wheat gluten and spiked samples at 500 ppm was also 

observed for SIMCA model. 

 

Figure 5.20: Predicted verses measured plot 
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6 Conclusion and Future work 
 

In the rapidly changing and complex field of food authentication, it is becoming increasingly 

important that rapid and non-destructive techniques are employed to ascertain authenticity. 

The results of this study illustrate the ability of NIR spectroscopy together with SIMCA model 

to discriminate pure wheat gluten samples from adulterated wheat gluten samples. The study 

indicates 100 % classification rate at adulteration level of as low as 3000 ppm. The SIMCA 

model indicated overlap at spiked level of 500 ppm. Overlap at 500 ppm was also confirmed 

by PLSR model. The method is validated at laboratory levels. Further study on these models 

will include the transfer of these lab-based method into an industrial setting where the incoming 

batches of materials would be screened. However the model needs to be updated by adding 

more new samples to account for raw material variation, seasonal quality fluctuation and 

production variation amongst others.  

In the current study only one type of NPN compound has been studied. To develop non target 

NIR methods to be useful in routine authentication of wheat gluten samples, samples spiked 

with different NPN compounds needs to be included in the model. 

Routine testing of shipment of wheat gluten meal samples with NIRS could have economic 

benefits for the feed sector. 
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