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Two parameters., s and a related to weak inhomogenity

and mass ratio between electrons and ions are considered in

the kinetic and macroscopic equations for a two component.,

weakly coupled* weakly inhomogeneous electron - ion plasma

in electromagnetic fields. For certain orderings between

these parameters (e «a) the plasma components evolve

toward local equilibrium of the same temperature before the

typical transport processes set in. In this report we con

sider an extreme such ordering. Distribution functions and

macroscopic functions are expanded in both parameters.





Solutions of equations are discussed and we show in

particular that when Solutions of kinetic eqations are

assumed bounded on short effective collision time scales

the plasma evolves so that forces transverse to the

magnetic field in the mass velocity equation balance

on longer time scales.
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Introduction,

The transport equations of Chapman and Cowling [1] for

ionized gases, we can derive by use of the multiple time

scale method of Sandri [2], Frieman [3] and Su [4],

starting from the following set of parametrized kinetic

and macroscopic equations (rsf. Appendix 1).

df. Sc \ dc df. e. hf.
± n . 1 : \ /UT 1

' , ‘3F7 ~ r — c5cT
C. .[f .f.]if i 1 (1)

J

(2)

(4)

Besides, the following a priori condition has to be fulfilled

(5)

df. / c)f. df. df. e bf± Q df\
+ E i(£0 , '3Fi + —l“3r~ + -i’3c7 + 57-oxS - 3c7 “ -o"3?“ - 3c7O V — ~ “1 1 —1 ~ ~~±

. -N N _
Bt1 + e iBF‘^ pi-o ) + e iBF‘^ pl -l 1 = 0o — —

+ e iV3if)= ei I P Æl +£ 1 p e-^oX— +X— " e l4‘~ D)
° i

Ink(5r +e i —o ' =e i ikT3F InA +si I p +\ ° -y -i i
dc

+ - e l5: '5r2 ‘ £ 13T^

I = 0
i
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Indexes i and j refer to types of particles. Later

we shall be concerned with a fully ionized plasma of

electrons and one type of ions only. Instead of Boltz

mann collision terms we shall use Fokker - Planck (FP)

collision terms in the kinetic equations. Ph and
e.
—xH are accellerations due to an electric field andm.—o —i

a magnetic field H . The definitions of mass densities

j charge density , mass velocity _c q conduction

current j_ } thermal flow vector q , temperature T and

pressure tensor P are the same as in [1]. Ch is the

average peculiar velocity of particles of type i .

is a small parameter which partly can be interpreted as

A/L where A is the effective mean free path of particles

and L is the scale of inhomogenities , and partly as the

ratio I £ I/1 C.j_ l where is the mass velocity

perpendicular to the magnetic field. this ordering

between _c and Ch in the equations of Chapman and

Cowling is made only in the magnetic force terms. Therefore

the parametrization of Chapman and Cowling is only for

mally consistent and the range of validity of the final

equations obtained is not so clear. To clear up this Naze

Tjøtta and Øien, [5], ['6] .and [7] introduced two small para

meters s and a in the kinetic and macroscopic equations

£ relates to weak inhomogenities and weak (electric)

i.
fields and a = (m^/m^) 2 , the square root mass ratio

between electrons and ions. Relating these two parameters
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to each other a new consistent ordering between all terms

in the equations was obtained, The evolution of the gas

through its various stages was studied by use of the

multiple time scale method. The range of validity of re

sulting equations for the models studied was clear. These

models were;

2
$ etc

Model c discribes the evolution of electrons on a back

ground of immobile ions.The hydrodynamic stage was discribed

by two variables,, the density and the temperature.

The results for model b are easily obtained from the

results for model a . For model a the short time scale

is t0 q , the effective time between electron - electron

collisions. On the long time scale ~ macroscopic

equations similar, but not identical to those of Chapman

and Cowling were obtained. The relaxation of temperature

for electrons and lons also takes place on this long time

scale, This feature also differs from the theory of Chapman

and Cowling since they consider electrons and ions to have

the same temperature. If the gas is homogeneous and no electric

field is present., on the time scale the mass velocity

perpendicular to the magnetlc field dies away and the

temperatures of electrons and ions relax against each other.

2
a: a ~ e , a

b e = 0 , a finite

c: a = 0 e finite
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In this report we study a model where the relaxation of

tenperature for electrons and ions takes place before the

typical transport phenomena due to inhomogenities and

electric fields set in. We study an extreme model håving

this feature.

d: e< an , all n§ 0 as a 0

Distribution functions and macroscopic quantities are sought

as two parameter expansions. Also the time derivative is

expanded in this way. The sets of equations to zeroth and

first order in the parameter e

section 1 . In section 2 we

as time goes to infinity on the

equations to zeroth order in e

are written down in

study these sets of equations

short time scale. The

are essentially the equations

for model b , Using a H - theorem we easily see that on

the short time scale electrons and ions evolve toward local

equilibrium håving then the same temperature to this

and the perpendicular mass velocity to this order, allowed

to be of the same order as thethermal velocity of ions, dies

away é As time goes to infinity on the short time scale, from

the equations to first order in e we easily obtain con

tinuity equations and equations for the temperature and mass

transport vector parallel. to the magnetic field of the same

form as in [1] (cf. Appendix 1) except that dnly the parallel

mass transport vector is seen in these equations to this

order of approxlmation, Difficulty arises when trying to

solve the kinetic equations and the equation for the perpen-



y ' ;.
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dicular mass transport vector to first order in b . On

the short time scale these equations are strongly coupled,

and hecause of this we have not succeeded in deriving their

general form as time goes to infinity on the short time scale

To hypass this difficulty we make the plausible assumption

in section 2 that the short time derivative of distri

bution functions to first order in s goes to zero as the

short time variable goes to infinity. This is a sufficient

condition to avoid too strong growth of the distribution

functions to first order in s , but not necessary conditions

for the distribution functions to be bounded on the short

time scale. Consistent with this assumption we assume that

the short time derivative of the perpendicular mass transport

vector to first order in e (of the order of e times

the thermal velocity of electrons) also goes to zero as the

short time variable goes to infinity. This gives a balance

of transverse forces at the end of the short time

scale. With these assumptions we obtain a set of equations

for the distribution functions to first order in s at the

end of the short time scale,, corresponding co the equations

of Chapman and Cowling. The balance of transverse

forces determines the perpendicular mass transport vector.

In section 3 we partly derive what is assumed in section

2: We derive up to a certain order of approximation that

the gas evolves so that time derivatives of

bounded distribution functions do vanish as time grows ;

and in particular that the gas evolves into a State where

the transverse forces balance each other, To reach this
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conclusion we expand the sets of equations to zeroth and

first order in e in the parameter a . These equations

show the above feature as time grows on the
2

t 20 * t 21 ~ T 2c/ a and t 22 ~ T 2ø/ a time scales.
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1 . Basic equations and assumptions

The notations of [1] are used almost throughout. As in

[5 ] , [6] and [7] we study a two cotoponent inhomogeneous

electron - ion plasma in an external electromagnetic field.

The gas is assumed to be weakly coupled, [2], [3] and [7]

so that collisions between particles give rise to Pokker-

Planck (PP) collision terms only. The temperatures and

Tg of electrons and ions are initially not equal, but of

equal . orders of magnitude

i -2 i -2
2 m 1 C 1 ~ im2 C 2

Thus

(Subscripts 1 and 2 refer to electrons and ions

respectively).

This is a basic assumption. Besides we have ~n0 and

e 1 ~e2 assuming for mean particle velocities

C 1

-2 ctc^

for the mass transport vector cq we have

ac^

In the same way we estimate peculiar velocities Ch , i.e.

c2 /“A*

—~ y 1

=1

—o I p^ n i m i—1 + n2m2—2

c,l ~ C,

C_2 I ~ ctc^



\
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Besides the small parameter a we also introduce

Here is the effective time hetweeri electron-electron

collisions and L is the characteristic length scale for

all (weak) inhomogenities. For the electric and magnetic

fields E and H we assume that

T2oll
~fvp ~ e

t20Q 1 ~ 1

where = ei/miH are gy^ofrequencies. Both E and

H are assumed to be stationary and uniform on the scales

we consider, and we neglect the generatlon of an electro

magnetic field by the evolution of the plasma itself. This

assumption may be omitted, cf. Appendlx 2 .

Since the distribution functions f and f2 are functions

of the peculiar velocities Cl and C,2 , besides position

vector r and time t , we must be aware of the a; priori

condition, [1 ] ,

Till now assumptions necessary for parametrizing the kinetic

equations have been made. When parametrizing the moment

equations we assume velocity moments vary on scales the same

as the scales for corresponding powers of velocity, i.e.

C 1 T 20e ~ « 1

where P\ = are particle accellerations, and

/dC 1 f 1 (r, C_ 1 „ t )m 1 C 1 + /dC2f2 (r,, C_2 , t )m2 C 2 = 0
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C 1 1 - |c 1 1 -Cl

—2' S I—2 ~ otc^

ts-2 -2m. C . ~ m. c .ii iim.C.C.i—i—i

im.C?G.I ~ m.C?C.•2 i i—i' iii

Consequently we parametrize the apriori condition in the

following way

(6)

which also shows necessary in order to avoid a break

down of the multiple time scale method when we conslder

evolution from an initial State far from equilibrium.

Kinetic and macroscopic equations are parametrized as

follows( t is a time variable on a scale with unit t^q)

(7)

aj d£1 f 1 mi£1 + f å£2f2m = 0

df df df

+ £ “ + + S-T3c^

/c)c bc_ \ e c3f e 1 c^f

a +e a + a -o x + x -'^7

5f 1 C, S=o
6 “' 3F

= 11 ) .(i- J- - 1- ,(c;) +

+ 12 (£i - 4" %4) fi -1 )f2(-2)
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(8)

4~

(9)

(10)

Here (w) are tensors taking into account the weak

interaction between particles. For suitable cut-offs they

take Landau f s form [8], Note that ,a also appears inside

some collision terms.

df ? Sf Sf 2 9f 2
 gt" + s a + e a + £ a -2'^C^

/C>c df ? p e P
[_=£ + £ a c + a — c x H-— +

VJytP a —odr / åC_ 2 m 2 —o — dC_ 2

2 e 2 Sf 2 Sf 2 ,
+ “ —2 X E a -2 ' aF~

= 4i'/ 22 ( - 2 ~- 2) ‘(4 4” m 2

+ %4-/ d^ 21 4M )f2( - 2)

+e a -lp. (pc o ) - 0

C)C 2

p(^i 2 + e “ £ 0 'ciT 2 ) = “ lr‘ Z n i”ÆA + “ 2p X +
i=1

2

+ x H + a^n 2 e 2~2 x 5 + 6 a / p i—i
1=1
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(11)

(12)

(13)

(14)

I nk(l£ f£ “ —o"3r) ~£IkT If K-1 ) +

We also take into account the following moment equations

for each gas component:

+b a kT • + 6 P-jF-j +£ a p2—2'—2 +

+ a • (_£0 xH) + a n2 e 2—2° * ~ £ ; -|

V £) C

e“2 " e a
i=1

Sp 1 g N
5T + ea 1 £0 ) + e = 0

>

IT + e “ 3? ’^ p2-o') + e “ ’5r' p2—2^ ; = 0

It (p A) +e “ £o’If (p A) +e “ p i p i I? • +

+ E Ir' 5- e +“ P, +e “ VS^

“ n l e xI - n i e 1 C 1 XH+ £ a Pi cr^

- fl (c t )f2 (c2 )
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2 2 o
06 30-q XH- 06 n 2 e 2 P 2 HH~£ 06 P*2 P 2 " "5z* (15)

(16)

(17)

at p 2— + £ a -o* dr p 2— + S a p 2-2dr *-o +

£ dc \
+6a a? * ( p 2—2—2) “ £ a 2 + p +e a -o° dr~ y

= - a/dC ld C 2 J - -i- f 1 (C, )f 2 (Cg)

, /^T 1 1 \ -z -n _ >

+e a -o' w~J ~ 2 kT i a?' * n i-i + e  gf' ii

__ /bc d<2 \

e p 1 P 1  C 1 + a J

dc
“ n i e i£i - £ 0 x £+ £ a Pi£i£i : -gir =

“ ,/ d -1 d -2-2 ' £ ~ a' (^m 1 ac, ‘ nig 3^) f 1 (£1 )

-r T p\

2 n 2 k +e “ £ 0 "Er ~j ea 2 kT 2 "5? •( n +

+ea Ir' 12 ' e a 2—2 + 2 + ea £0 • -gr 2 )

2 _ c*c
a n 2 e ’ o x +6 a P2—2—2 : ~5r~" =

= - «jdC^OjCg.J - t (o 1 )f 2 (c 2 )
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The models studied in [5] and [6] were

X 2 2 ,
aj e ~ a , & ~ £a ~ a etc.

¥e shall now study a model which we shall characterize by

Thls is an extreme model håving the property that electrons

and ions reach the same temperature before the typical

transport processes set in. We first expand the distri

bution functions f and and macroscopic functions

in series in the parameter e , for instance

2

where

There is no such connection between expansions for and

the mass transport velocity . However,However,

b) e = 0 j a f 0 but small

c) a=0 j s =(= 0 but small

d) (0<) 8< a n all n 0 as a-> 0

f. = f ,' 0) +8'f j 1 +11 1

(0) (1)
p = p' + £ p l +

p(k) = 1/ f l k)i=1



•. 1
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we seek c as—o

Here we note that |c |/c ~ ~ a—o i —o i

This must be taken into account in the equations to first

and higher orders in the parameter e ,

*

expanded as follows

c) _ (3 c) 2 o

We substitute these expansions into Eqs(6) - (17) and

separate in zeroth, first., second order etc in e .

In each of these sets of equations we have the parameter a »

We can expand functions in each set in series of the parameter

a and in each set separate in zeroth, first., second order

etc in the parameter a . Thus, in all, we make a double

expansion of functions in series of parameters e and a ,

for instance

(0) (1)
C = ' -f 8 CX + ., . .—O “O —O

However ~ 6 so that ~ e/oli_o 1 1 1—o 1 • 1—o 1

We introduce time variables t. i = 2,3, ,, ., on time
X 2 1

scales im = . Therefore the time derlvative is
e

f. = f[°0) + a f{0l) + a2f.( °2) + +

+ e 'f{ 10) + a + ..."- -1 1
2

+ £ rf (2°) +
1 j

+
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Similarly the time derivative in all is expanded as follows

consistent with introduction of time variables t, .
ij

The functichs appearing in the collision integrals

of Eqs.(7) and (8) are expanded in terms of a hy use of

Taylors formula* assumed dlstrihutional convergent.

Each set of equations to each order in e and a should

be solved eliminating all secular terms that arise.

*

¥e end this section writing down kinetic and macroscopic

equations including the a priori condition to zeroth and

first order in the parameter e . Note the differences

between this set of equations and the corresponding set

of equations of Chapman and Cowling (cf.Appendix 1).

All ( ) in superscripts are cmitted from now on.

ci å c) 2 c)
= + “ + “ + +

c) d 2 c)
+ e dtT~ + a + ' ' ’ + e -St~ + • •' +

L 30 31 J L 4o J

T i
i = 2,3* .. . and j =0, 1 1 2, ... on time scales t_. . -—r

1J a J
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(18)

(19)

(20)

(21 )

(22)

(23)

(24)

(25)

Zeroth order equations in the parameter s

5p° - 0- 0

a f dC 1 f°m 1 C 1 + J <JC 2 f°m2 C 2 = 0

<< e o

= PPn + FP 12 f°(C,, )f°(c2 )

df2 ~o 01 2, 2e2 o „ dI 2 2 2 . „ dl 2
dt2 ‘ +am2 -o Tam2 -2 x -"^7

= a FP22 f°(C2 )f°(c;,) + a FP21 f2 (C2 )f°(C 1 ) |

5c°

P° = a2 pVJ XH + an°e 1 £^) xH + a2n°e2c£ x H

3 o, c3T° o _o / o w tt n 2 o tt n
2n k = ail 1 e 1 £-i *l£0 XH) + a n2 e2--2 x

Sp°

-TF1 = 0

9Pp
= 0
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(26)

(27)

(28)

(29)

(30)

First order equatlons in the parameter e

dc°

cFtvj( p i-i) ap i cFtrr “ a n i e i-o x - n i e i-i x -5

= -/dc^CgÆ - «Cg).(l- - i-^-)f°(c 1 )f°(c 2 )1—1 d — d

d r OttO \ o —o 2 o T T 2 t^o
+ P 2 a n 2 e 2—o x - " a n 2 0 2—2 x - “

- - aC 2 $ (C 1 -aC 2 ) TxT^J 1 1 f-1 ) f 2 (-2)

g)T° c)c°
1 °7T° —O tt n

2 n i k Btj +a P Æ sq - a n i e Æ' teo x

a j d ~] d -2-2 ’ - a_C 1 m 2 6C 2 } f 1 (-1 f 2

ST 0 c*c°
3v,°i ± 2 o -zfO —o 2 o 770 ( o TT \

2 n 2 k dt 2 +P 2 — “ a n 2 0 2—2 *o X

= - a/dC^CgCg-J -

a / d 5i f l“(£i +/ = 0
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(31)

(32)

(33)

< o < _ 19£ °
+ + a £o'dr~ + -1 ‘dr "" -1 " a *v a 1

dc° 3c° \ df° 8c° df l e df!

+ + “ £o-af + “ iT7 £C >< h-bc; +

e, 1 < e i „ „ Sf l < s £°
+ £o x + sp-i x -' ~ a ‘

*2 af 2 o 5f 2 + _ Sf 2 + *1 £1 S 4 +
+ 'BtT + a år +a -2 6r ' a ~2 V a aT^

G)G° \ c)f° dfl p e p n dfj,—o o — o A 2 —o tt, 2

+ åtj + a -o "5F~ J"53t3)’dC 2 a m 2 £o *' - dCg T

e p . SfS ? e ? ofl ofp 8o°

+ a mp £o X + a 53) —2 X " a £-2 : dr"

= fp 11 , + +

+ FP 12 f°(C^)t' 2 {C 2 ) + f]{C^)f°{C 2 )

= a FP 22 f°(C 2 )f 2 (C 2 ) + f 2 (C 2 )f°(C 2 ) +

+ a FP 21 ff°(C 2 )f](C 1 ) + f 2 (C 2 )f°(Ci)

dp 1 c)p° d /O 0\ -
ar + dr + “F( p P = 0p —



: • V 5 : ‘

 /   i  
i  . '    •

. ' i : ' 

; " : — ’  :   .  

..   ’  '

.
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(34)

(35)

H) +

(36)

(37)

1 Sc°\ O 7^——O —Oa ) n. m. C. C . : -r—/ . i i—i—i år

ofi o 1 a fo ,
O —- -* -I- ~r + Ct C -r + P -r~r— — ~ CL ~— * /H . Iu .U. P . +
pVa dt Q åt-2 -o dr J [ or i 1-1-1

d J i=1

+ a p°c XH+ a2 p ! c° XH + a n°e c] xH+ a n]eC°xH+e—o — e—o — 11—1 — 11—1 —

2

+ a2 e2-2x H + a2 X H + a ) P? F ±
1=1

3o,/ c)T 1 5t° o 9t° / 31, 3t° 3,, rpo d , cw)%

ln \ + at/ + ° ;+2n k at/ = 2 kT 3f' < n i k i } +

+ a |kT° + p°F,-C° + a P°P2 ' C° + n°e xH) +

+ a x H) + a x H) + a n°e 2 x

+ n2 e 2—2 * X X n2—2—2 * x " a lr‘^2

i=1

P 1 0(3 1 cl f O (3 i \ _ n
+ + 06 3r‘ (p 1^o } + dr* ( p 1-1 } ~ 0

a 3 — —

p 2 |J 2 d , o d . ( o7rO\ _ n
+ cFET + a Fr’ (p2^o ) + a FF (p2^2 ) “ 0

2 2 — —
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(38)

åc°\

år y

(39)

(3 / \ I O / 7=7 \ O o a , O77O \ O77O c3 o
 3^T^ P 1-1 + 3t^ p l-i) + “ -So "5r P 1— 1 ) + “ P Æ "Sr o +2 3 — —

, d ( 0 Tr - 7X 0\ of 1 o o o
+  ^•(PiC 1 Ci ) - P 1 F 1 f a + +a £q ’ isr ) +

o
1 °--0 O 1 TT 1 O TT O TT

+ a Pl - n 1 e 1 _c Q x H - a x H - x H -

*N O
, C)C

1 "TtO tt O-rrrO O

xH + a P 1 £ 1 •

= -J^C 2^ 2 {C r aC 2 ).(L-^--^-^

(f°(Ci )f^(c 2 ) +f] )f°(c 2 )^)

c) / _ \ 7T O O c3 / OttO \ O

at,/ p 2-2' ' at^ p +a —o *6r^ p 2—2 + a p 2-2 15r ‘-o +

+Ct | ? -(p 2 '£ 2^2 ) " a p 2— 2 + p =o + -sfr +a =o •
— x 2 3

1
+ p 2 cFtT* " a n 2 e 2—o x H “ a n 2 e 2—o x 5 " a^n 2 e 2?2 X H -

? 1 —r> _ Sc°
a n 2 e 2—2 x I+ a p°C° --^2

= - a /dC.dC $ 12 (c,-aC 0 )-(V -2- - — -J-)
J —' —2~ —1 —2 \m 2 åC_ 2 åC^y

(f°(c 2 )fj +
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+

(^0)

) +

+

(41)

w*

d r o —o / -p n o o o o \
+ Sr *5l " p 1-1 *-1 + + l^ +a V ) +

hc°
+ a(p 1 C 1 ) 1 - XH) - a 0 (c° xH) -

dc°
« n] ei X H) + a A

= - a/dCidCgC 2 .5 12 (C, - aC 2 )-(i- - S-^

(C 2 ) +

*4*lr(4S

+ “ '32 " a '—2 + °" (ot at| + 4 a )

hc°

+ (P 2 £ 2 1 * ‘at~ “ a n 2 e 2-2 ' f-o x H)“ a2n 2 e x “

a n 2 e 2—2 ‘ X S) + a p 2—2—2 :

-- - / >£,«,& • £ ,2 (£, - c£ 2 ). (s. -i- £-)

2 + t\ (£ 2 ) f °(^)}
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In this section we study the equations to zeroth and first

order in s in the limit = 00 , £9]. We do not need

then to expand functions and time derivatlves in the

parameter a .

The Solutions of the zeroth order equations can be discussed

by studying the H - [1]

H is bounded below and

* 0

the sign of equality holding if and only if ([10]for a

one component gas)

and

2. Solutions in the limit = 20

H= J f°{C 1 )inf°(C 1 ) dC 1 + J f°{C 2 )inf°{C 2 ) dC 2

o r p
f, (C 1 ) = exp - jC! + B 1 •C 1 +D 1

O o
o(Cq ) = ©xp - °— 2 -^2

k +®1 •£, +dJ- I- !(- *a 2 c| + b 2 -c 2 + D 2 )

= M- (C 1 - C 2 )
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and C_21

(^2)

(te)

08) ,

(44)

Here (i. (a scalar function) iU ,

and , i - 1,2 , are independent of C

The last relation is fulfilled if and only if

a. i

The a priori condition to zeroth order , Eq.

together with Eqs (42) and (4-3) glve that

A Ap

-1 = -i
m, ) m 2

and , i = 1,2 , can be expressed by the

first moments :

3
2 m i~ 7T

2kT° - -1 m C°2 i 2 m i—i

Sm.C?
B ± =

SkT? - gffl.C?2 i 2 i-i

T) ,fl xV2 r R?i o
e = n l ex P[‘ 3T7 J

C° = C° = 0
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(45)

in the limit tg = «> } and the distribution functions

then take Maxwellian forms ,

(46)

(The subscript "M" is used occasionally to denote

quantities in "local" equilibrium).

Substituting Eqs. (44) and (46) into Eqs. (29)j (28)

and (29) show that

We now study the kinetic equations to zeroth order in

the limit tg = 00 . We assume

ac. ' ac.—1 —1

at 2 ' at 2 "'

as tg -> 00 ,, and from the last relation it follows, using

Eqs. (24) and (25) and Eq. (4?) , that

3t° as tg -> rø

T° =T° ( = T°)

2
/m. \3/2 / m.C, \

f° =n? { -i— ) exp( - -i-- )
lM 1 27ikT v 2kT° '

-n o c3T°
—— , , i = 1,2 , all -> 0 as -> 00 (^7)
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Substituting from Eq.(22) , Eqs.(l9) and (20) in the

limit t 2 = 00 become

showing that the perpendicular (l) mass transport vector

in the limit t p =<» vanishes *

(48)

(while the parallel (j))mass transport vector may

he non-vanishlng).

Thus the equations to zeroth order in the parameter e 3

which correspond to the . equations in the absence

of an external electric field and inhomogenities, describe

the evolution into a local equilibrium state in space and

time where electrons and ions are of equal temperature and

where only a parallel mass transport to zeroth order may

exist. Before this local state thermal energy of

electrons and ions has grown due to the damping of 3

and electrons and ions have exchanged energy. This is in

agreement with n fine structure Solutions” (expanding in the

parameter a ) obtained in [5] , [6], [7] grid in section 3

of this report.

(- « 2 %=o x * + sr x hYc, = 0v p 1 '

(- —c° x H+ — c° x h).C 0 = 0
\ o—o — mp —° —J -2P

0
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From the equations to first order in e we find easily

and as non secularity conditions we obtain

(99)

(50)

(51)

The equation for the parallel' mass transport vector becomes

(52)

Equations (49) - (52) are similar to corresponding

equations of Chapman and Cowling [1] (cf.Appendix 1,

Eqs.A12-Al4) except that it is the mass transport vector

parallel to the magnetic field that dominates in Eqs.

U9)-(52).

that p 1 j * ,T 1 and T.| ji = 1,2 , have

transients on the t 2 time for instance

h

p]i t 2 >  •)= p]( t 2 =0 > t j, >••)- J dT a ( P°£oj_ ( T )) +
O

+ ~

 x O -N
Op O / O O N

3ET + a 3r'(p P>|| } = 0P —

åp? v*1 O / O O \ „ . , 0
-w F a -v-* (p . c «i j = 0 5 1=1,2

år VK i—ojj' *

3„o, f St° o ai° T o S -o||
f 11 \ + a «oll •¥-j = ' oip : 3^-

f o|| o c)p° \ o
p V + a L ) = - a +a L p i £±11

p !l i=1
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¥e now study the kinetic equations, Eqs.(3l) and (32),

and the transverse part of These equations are

strongly coupled as to the evolution on the time scale.
1 1

However, the problem to find the behaviour of f f p
1

and _c as t p 00 we here simplify as follows: ¥e seek

bounded Solutions of Eqs.(3l) and (32) which obey

(53)

¥e note that the conditions Eq.(53) alone are neither necessary

Chapman and Cowling implicitly make similar assumptions
1 1

concerning and f p (cf.Appendix 1, Eq»A15)* In the

limit t p = 00 f] and f p from Sqs» (31 ) and (32) wlll

then be functionals of n? ,n°, T° , c C n and c 1 , .i c. —Ojl —*0_L

All except _c Q ( we have found are either independent of t p j

Eqs. (2t) and (25) and the parallell part of Eq» (22), or

relax according to Eq.(47) as t 0 rø . To be consistent

with the assumptions above we also assume that

(5*0

This assumptlon will now glve a balance of transverse

forces in the limit t p = 00 : From the transverse part

"* 0 * as *2 " 00

cifj,
i; 0 ’ as t 2 “

1 1
nor sufficient for and to be bounded as t OQ -> <»

S -ol
-» 0 as t 2 -» »
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of Eq.(34) using the results from zeroth order equations

and the assumption Eq. we g 0 t

In this equation we find c] and from the Solutions

of the kinetic equations to first order in the limit

t p = °o . Eq. (55)then determines in this limit.

We note here that in the next section we partly derive

what is assumed above concerning the time derivatives

Making use of the results to zeroth order and also Eqs.(50),
1 1

(51) and (52) and the assumptions above (f 1 and f 2

bounded and Eqs.(53) and the kinetic equations to

first order in e } Eqs.(31) and (32) in the limit t 0

can be written

00

2

-|fi— +pVx H + n. ] e 1 C 1 xH + a X — + X P i—1 = °
i=1 (55)

of f] ,f 2 and as t 2 -> «>

t o / m l C f 1 St 0 n , f o h .1, 0 _ P 1 f 0 g°Un
" 2/ T° “ 1 1 p°p° 1-1

2_ \ 2 P 1 c)p° \ f o e 1 p ,J v H
a /°i- f iM - 1± ' -

oc°
kT° ci c „„o „ f o m 1 r o„ . = fs6)

'e~ drj P 1 j-1 f 1M fcT o -1 -1 ’Br

e c3f r
= - — + + +

1 FP 12_ f f + f
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(57)

(58)

These equations together with the constraint Eq.(30) in

the limit = 00 correspond to the ”second order kinetic

equations” of Chapman and Cowling.

Eqa(30), (56) and (57) can be solved by successive

approxiraations expanding in the parameter a . Leaving out

terms of order a in Eqs.(30), (56) and (57) we obtain

/ m 2 C 2 5\ 1 ST° . r ° f S » m °
a + P 2M\ a 3flT inp 2

0 °
/ o o x p 2 f 2 „ „ P 2 ap n

“ (p ‘ P2 “

a fp M ~~F(ir- F p i + c! x K - |5- -J- inp°\ C p +2M kT ° \e 2 —21 —o — L 2J —2

+rv f° C°C • -M
+ ° f 2M kT o -2-2 ’ år

e Sf 1 r

= -2 X + “ FP 22 _ f 2M^-2^ f +

+ f 2M^-2^ f + a FP 21 f f 1 + f ' f 1

/dC 2 4 M (C 2 )m2C 2 = 0





- jo -

(60)

- FP22 fgM(—2) P + f2M^-2^ f2M^-2^

To obtain Eq.(60) use is also made of Eq.(39) in the limit

t2 =OT . Eqs.(59) and (60) are of the same form as Eqs.(2,50)

and (2.86) of [5] or Eqs.(lO) and (15) of [6]> see also [?]•

Us Ing the Landau form for the t ens or ,

ii / w i 2 2 f 3 1<t> J (w) = k = s k - Eme.e.fn ~where I
~ ~ w3 1 J L J

is the unit tensor and the Debye length, Leversen and

Naze T.løtta [11] have proved exlstence of Solutions of Eqs.

(59) and (60) with certain properties. The solution of Eq.

(59) contains two arbitrary parameters, and imposing

O r/m i c i 1_ sr° fi_ ClLp +c 1 x H
1ML\2kT° '2/ T° ' kT° Ver1 r-° -

-If !?'<)] £. - (59)

e r

=  i~ £1 X s  + PP 1 1 + f \ +

+ 4f1M.

o fm2 C 2 5 J_ St° f0 co . jj
f ' 2 )To ST ±2+ *214 kTo ' Br

n°
Here D° =•— 2 ) «-g— is a diffusion operator.Kl 1 1
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in the limit = 00 , these parameters vanish. The

solution of Eq.(60) contains 5 arhitrary parameters so

that Eq.(58) can be fulfilled too. To see the form of the

solution of Eq.(59), which is sufficient in the discussion

later, we substitute

(61)

for the collision terms of Eq.(7) when terms of order a

are left out. Here , assumed constant, is a raeasure of

electron-electron and electron-ion effective collision

frequency, with ions at rest. The solution of Eq.(59) thus

takes the form, [5]

(62)

where f° M hj •£ 1 is the left hand side of Eq.(59). From

Eq.(62) we derive for the homogeneous case

(63)

= 0

1
T’ = 0

v (f° - f )1 v 1M x l'

f 1M = " £l|| + • 1 2 (-11 ' VJH -1 X )j'^1

1 W

1— o
"Sl. = 4 X H,

-0
-  X f —-F + C X H )

m 1 v 1 H 1 e 1 —1 + iio x -
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Leaving out terms of order a in the balance of trans

verse forces relation Eq.(55) and substituting from

Eq. (63) we obtain the form of in the limit t 2 =•«

for the homogeneous case 9

1
£ol

(64)

The first part vanishes when F ± arises from an electric
field.

i_ 2

n ? e l 7V ( 57 1 - p e *11)

1+ (vl) i=1

S 5 7

pf - ( 2p e n l e 1 - n f e 1 '

1+ (V

(^) 2 (^) 2
( p e - n l e 1 -7^X n i m l - X '- X t 9 °£i )

1+ Cy Ky 1=1

H 2 [pf Xk? (2p e n ° 6 1 - n 1 2e 1 } .
1+ vv

~ 2

o2 0
n i e i m i r VTTT2T2 S X

L 1+ Cv J

4 p e 2 -—7ø4 {2p e n 1 e l- n f e l)

1+ C*y
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From Eq.(64) we get

the drift in collisionless theory for ions in static

and uniform fields. The expression Eq.(64) is a collisional

counterpart to this result. The electron drift follows

from Eq.(63).

1 m 2 F 2 x H Q
c oi 2 — as “ > i-e.

~ x e g H V 1
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a

Evolution into a state of balance of transverse forces.

In this section we expand in a the sets of equations

to zeroth and first order in e . Then we shall in more

detail see the evolution of distribution functions and

macroscopic quatities. Assuming bounded Solutions of all

kinetic equations we shall derive to some extent the

assumptions Eq. (53) and (54) and show that the gas evolves

into a state where forces transverse to the magnetic fleld

balance in the mass transport equation.

We obtain equations to zeroth order in s and zeroth.,

first, second orders etc. in a from the equations

(18)- (29) or from the equations of [5] putting and

Ph , 1=1,2 , all equal to zero. We will discuss some of

these equations up to third order in a here. Since p° ,

p? and 4 1| are all independent of we do not expand

them in a for simpllcity here.

The equations to zeroth order in e and zeroth order in

show that f^ 0 , c°° , T°° , T?°, i = 1,2 , and are

all Independent of while evolves according to

the evolution of on the scale, A

H-theorem can be established which shows that



, : . f j, : .

. ti: o •

'    ; f:  :

'

• : '

  : :: '   

 .V'

ro:.:1
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From the equations to zeroth order In e and first in a

we get from the mass transport equation

and elimlnatlng the secular term we get that c°° is—oj_

also independent of and

t 2o ,t 2r ‘ “ •••) +

o
n i e i r

dtC°°(T) X H ,+ o ,
p o

the t,2 q time scale.
m°° m ooand are also

independent of , while

have transients on the

A K-theorem can again he estahlished showing that

pOO pOO of m 1 V 7 " 2 m 1 C 1 p „ ,
f 1 f 1M = n 1 eXP aS *20-“ < 6 5)

Accordingly -> 0 as »

dc°°
°ol^ t 2o ,t 21’ = •Soi^ t 2o =0 ’ t 21 J *••) ' t 2o +

o fc 2o

+-V f c1tC? 0 (t) x H
p o

i.e. £q' has a rans i en 't on

Similarly we find that T°° ,

independent of t 21 , T^ 1 is

T° 1 , T° 1 , C^ 1 and f° 1 all

time scale.
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Here use has been made of the a priori condition to

zeroth order in a .

The electron kinetic equation tofirstorder is of the form

(67)

o 1
where G “* as Yo °° * assumptions

concerning commutation of differential operations and

l! limit as t 0 -> 00 " operations have been made.

In the appendixes of [5]* [7] and [12] it is shown that every

bounded solution of Eq.(67) evolves as t^ Q 00 "toward
the solution of

(68)

which has the same form as Eq.(59). Substituting for the

collision terms the relaxation term Eq.(61) we get that

the Solutions of Eq,(67) evolve toward a solution of the

form Eq. (62) with - e./kT° 0 c°° x H instead of h. 1 ,1 1 —o — —1

oo .00 o f m 2 v/ 2 / m 2 C 2
f 2 -* f 2M - n 2 \ 2ttKT°0 ) / aS 21 " “ (66)

'w.Ol
of e df. r n

C, x - FP 11 [f°°(c l )f° 1 (c;) + f° l (c 1 )f°°(c;)_

r P
n° r 0 ' 1 fr \ - 1 .°° v u 1M .
D 1[ 1-1 J m x -* 1 + G

e 5f° 1 r

m7 —1 x -’d£ 1 + FP 11 +

r -l e 5f 00
+D° f° 1 (C ) - 1 C°° VH- 1M
+ *1 M —i - 5-0 x 5-307-
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Fuåm the equations_ to zeroth order in e and second in g

we derive from the mass transport equation, eliminating

the secular terms when integrating on the tg time scale

N o1 N OlOC
We have assumed that — = ~9A. (t . t~. } =

åtdtp 1 2o J 21 '

A
= "åt — ("tpo ~ . . Integrating on the time

the following equations on the Tgg time scale

(69)

(to)

/Sc° 1 Sc 00 xOf -ioi/, „ . x iol\ O OO „ O 7701

p vat 21 °> t 21’   ' + p e -o x - n 1 e l-1M x S

=^o! (t 2o= +

°
n i 1 T , f / x 7,0 A

+ J C 1 (t) - C m J X H
p o

o i
scale we see that £qj_^2o = is i °i

For c°? and likewise for T°° 3 T?° and T^ 0 we get—o_L 1 2 0

 S oo
o c

O—O O O O T T O TT
p = p e £o x S + n 1 e 1—1M x H

3o, c)T 00 o _o1 7 oo ttN
f n = X S)
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(71 )

(72)

Ti (577 \
™p V 27Tky V t OO 57? y 1

1

n 2
T f N \I exc -

V 2kT°° )

In general Eqs.(69)-(72) are a coupled set of equations

describing the relaxation of , T°° 3 and T°°

on the T 2p -time scale. We simplify using for an

expression corresponding to Eq.(63). Eq.(69) then can be

solved and shows that oscilla.tes and is damped away

exponentially on the T p2 time scale håving Solutions

±ico_j_t p p
proportional to (5) e ~ 3 u: f = t]±1~~ ,

P°
o 2 1

B _ Vi P_ n H ( o . Q 1 H i

m i 1+ ø_y ’r> = P ° ( p ® ‘ 5 ~ )

This is in agreement with Eq.(48). Due to this damping

Eq.(70) shows how the temperature grows., and Eqs.(71) and

(72) describe how T°° and T 2 ° relax against each

other. This should be compared with Eq.(45). Due to the

damping of also from Eq. (68) damps away as

°° (when n^' and are set equal to zero inare set equal to zero in

9t°°
3o k 1_ o -=oi. ,oo .

2T dt 22 1 1--1M '-o X -V

/dC <p 12 (C ); I ex-of- N )
J ~ 1 ~ - 1 ' A 2kT °° J

3 o ST ?° n ? n 2 fm 1 \V2/ T°°-T°° x r
2 n 2 k dt 22 “m 2 ( 2ik) ( -00—572 ) J d £i J tø, )

the limit t~ = 00)2o ' *





-}9-

The ion kinetic equation to this order shows that fp2

has a transient on the t2q time scale. On the time

scale the equation is of the form.

FP22 f2w0f f2 (Cf +f2 (—2 ) 0 (74)

as t21 -> 00

Using the a priori condition Eq.(l8) to first order in

a in the limits t0 -> co and t21 -> 00 and also

n° 1 = 0 and Tp 1 = 0 in the same limits give

(75)

From the electron kinetic equation to this order we get.

using the appendixes of [5], [7] and [12] and the solution

of Eq.(68) and that every bounded evolves

toward the solution of

åf° 1
- FP22 [f2S^2 )f2 1 2 ) + *V ) P2M2 )J = <*21 >

where H° 1 (t 21 ) 0 as tg1 -> *> , [5]. Using the appendix

of [12] shows that every bounded evolves toward

the solution of

= 0Z 2M





7o

(76)

as and go 1:0 ( in the limit = oo

only, f^ 0 instead of f°°), or, rewrlting terms on the
o2

left hand side., f evolves toward the solution of

+ D° f?21 1

Here we have used Landau 1 s form for the tensor $^ 2 (cf.p* 30)

To prove existence of Solutions of Eq.(77) whose left hand

side has terms of zeroth, first and higher order anistropy

df°° e Bf°° e 1
1M fjOl JM e 1 oo _1 M

dt22 x - ac 1 + x B 3C 1

/ 2 hf°°

i- -A. .rdC ( • S1£12(- 1 5N, • f00 5f
"m2 dC 1 J —2\ ‘ 2 • 1 2M dOj

„ n-.°26 . 01 1 r o o
= - -x H-Scr + ppnLfmteX(£{) +ff +

+ d°M1 n j

WVl _i) _L_ < + lic o1x h .51m + x H < .
' T°° m 1 —0 — ° — dC^

- pp, 1 )fVh&\ )] - ,c -“J- c|:-(^fm) = w

e df°2 r n

= - x H-ac7- + PPnr°M(-i )f°2(Sj) +ff (c,)^0 ,')] +
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in velocity we may follow the lines of [11].

We also need the mass transport equation to zeroth order

in 8 and third in a a

(78)

Integrating on the tp Q time scale, eliminating secular

using that c!p 1 -> 0as t^o co according to

the a priori condition and assuming

we get

n o3 o2 % o1 n oo
/OC OC OC OC \ .of —o —o —o —o \ o o1 TT

p fe + + + Pe - x - +

o TT o 770I TT
+ X H + n2 e 2—2 x —

dc°2 dc°2 2
(t2°= æ) = åt77' t2o ,t2r  • •-1 = dt77^ t2o=0,t2r ••)

>^t2o 3121 '* * -c-o3(t2o 0jt2r * * +

o

+ / dT l 1(t2o= ra) - =o' (t) ) + X“0 1(,r)
o p

=o 1 “)) XH + (t) -cf (t2o= «)) xH +

+ C.S 1 (t) x I
p
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Integrating here on the t2 time scale and eliminating

secular terms again show that c°2 (t2 = oo) (and from the

above assumption c° 2 (t2c)J .. ) and £°2 (h 2o= 0) ) is

independent of t21 and obeys

(79)

expresslon depends on 1 in the same way as depends

on £~° • Consequently the "homogeneous" eauation for c° 1x —o

corresponding to Eq.(79) is the same as the equatlon for
00 r o - -02

_2q ana (using for an expresslon corresponding to

Eq.(6f)) therefore has Solutions proportional to

7c°°

term To avold to vary like t 20 e 1 22

(which is secular .compared to c°T°T ] we set
—oM J

2-cM 2s nov-r hamped away like _c 00 on the x22 -time scale

5c° 1 Sc co \

P°(af^2o=“) - + )

o o1 /, \ __ o —o2
= p e c-o x « + n , e iC iM xH

de0,1. Sc co
c ~oM o ~o o o o —-o2

P = ‘ P + Pe-oM X S + x H

-1M we find from thø solution of Eq.(77), and the

±1“±t 22 m ±ico,t pp
6 • The Inhomogeneous term vary like e -

 n oooc

3*23 = 0
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¥e now expand some equations to first order in e

in terms of the parameter a

Equations to first order in e and zeroth order in g are

(80)

(81)

where

S p1 ° åp°+ (82)

do 1 0
0—0 n

p ~&tT 0dl: 2o
(83)

(84)

/dC 2 f l°n 2 C 2 = 0

df]° Sf°° 5f°° Sf°° Sc' 0 Sf°° e
+ + °1 "s? + p i • - + x

df*? 0 e. df]° r

x S'ac~~ + m~S.i +

+ f^(c,)f°°(c]) + D°° fj° + dJ° f°°

n iJ
_ n 2 a a

1 m 2 -1 ) 3

3_0./’dT 1 ° ,åT 3,.-,00 . / O r rOO' 1 0_ -pOO
? n  St~; - 2 kl "Sr } + +

, pOO /lo \ d oo
+ n i e Æ • *'=o x S) - "3? -<1 i



 ’ ,/ /



- u -

8p l° . 9p? 5 f 07,00 x _ A (85)

(86)

(87)

Eqs.(82)-(87) show that p 10 j and are t^ Q

independent while p 1̂ ° , T 1 ° and all have transients
,. , . n 000 moo , moo

on the t2q time scale. p j p 1 s p2 j T and are

all independent of t^ Q . The electron kinetic equation

Eq.(81) is of the form

of [5],

2° + = °

, JVp00 .
, X 1 3vmOO d 77oo n , 7^00

?nlH atT" + '3t7~ J ~ 2kT l (n l~l j + P 1-1~1x 2o 30 y —

3c 1 °
-O O wOO/ lo rj\ _S. °°

PÆ 'at„ + n 1 e 1-1 x Tir2o —

e

sq; +S7 x - FP i 1 [f°M^-i +

p2 Vqn00
flo /_ 1.00, 1,1 oof 1o“l f°°r/"m 1 0 1 JjN 1 1
f 1 "D 1 [f 1 J f 1M|_Vp, jOO

El + =o° x S - n + q10 (W (88)

1 o
Here G (t2o ) -> 0 as t 2 -> . Using the appendixes
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[7] and [12] we find that every bounded solution of

this equation evolves toward the solution of Eq.(59)

as t 0 -» 00 with obvious changes of superscripts and

T 1 in place of T

Equations to first order in e and first in q are ;

using results obtained above.

(89)

(90)

8p 11 5p 1 ° 8p° 5. / o n ooi _ n
+ (P £o ) - 0 (91)

(92)

(93)

/ + I f 2 m “ 0

•v lO N.OO > 11 N OO
Sf 2 Sf 2 ( a -o a £o , s -£o \ af 2 = n

+ dt 3o ' a ’ t 2o at 21 at Jo ' a —2

of + Np( + +

3 n o,/st 11 , ai 10 , aT° 1 , st°° , oo aT°°\ 310 ai 01 _
2 n k 20 / + 2 “

= |kT° 1 0 ) + |kT°° Ij-Orø 1 ) + P°F, -C? 1 +

+ n°e.| C°° • (c" xH) + n^C® 1 -(c^ 0 XH) + n^c] 0 - H) +

2 dc°°
10„ ttOO /OO . TT \ d Ol c) „OG V TT-n 00 . “*°

+ *,£,  (c Q xH) -  q, - 2 - n 1 m i —i—i • 3r~
i=1



..-.To / :U\: ;r ?• -

v './

I \ ki
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(94)

(95)

(96)

(97)

00
åc

:

10 11 11 11
These equations show that f 2 , p ,p 2 3 and

T 2 ° are all independent of , while , T 11 and
11 1 o

T.| all have a t 2 transient. c_ Q is independent of

t 21 and f 2 ° , and T°° are independent of t^ Q .

The variations on the - and t^ 2 time scales in

Eq. (91) and Eqs. (99) - (96) may he absorbed by

dp] 1 Sp’ 0 3 P ° a o oo, 3 , „
str + stzr + 'StTT + a? • (p 2 0 } + å?' (p } - 02o 21 j? 1 — —

 N 11 N 1 o * o
2 dpg op 2 d f _ n

+ + di— + dr - (p ) - 0

° oT°° åT°° \
3 o/ 01 ! , 01 1 , 01 1 , 0i 1 , oo ol 1 \

2 n l k Vdt 2o + otg, + dt^ o dt-j 1 -o 'dr )

dT° 1
, 3-, 1Ov ' _ 3 / Op-OON 3yrpOO •f n ( '3 =r< “ > 4-

+ 2 n i k “ 2 kl 1 17 (n Æ j + 2 kT 1 år (n A j +

+ P°^r£? 1 + X H) + n ° e iC° 1 -(c^ 0 x H) +

O TT \ 1CT 77OO /00 w yj\ d ol
+ n 1 e 1 C 1 *(c o xH)+ n 1 e 1 C 1 • {c Q xH) -

/ 0 \
I n 2 k ( + )= °



::yr

\ :

!'J / ;  7



- 4? -

* )dx -

o

the first integral comming from the equation to first order

in 8 and zeroth in a. The term p^ °(t2o=0^t^^=0) may

vary on the t02 time scale. In the limits t2 = oo ,

= 00 and t22 = oo we obtain the equations

(98)

a P° *' , o / O 00\ ~
or * p 1 —o|p ~ (99)

8p° .2 ,0 / O OOx *
+ '5r ’ (p2-9o|p “ 0 (100)

> OO
T oo -9o||Ip :2r.°v /^T00 , rt oo dT°°^

2n k + Holl  Br ) (101 )

p 1 ° , , Pg° * and T 1 ° (using that tg2 = at21 ),

for instance

*2o

P 1 t2o-’*21 J’ '‘ - =P 1 t2o=0,t21 ' f
o

*21

'/ I? ’ + P^° 1 (“ A ) dA

dp° / O 00\ ~

+3?• ( p Cop = 0
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(102)

{103)

Eqs.(98) - (101) correspond to Eqs,(49) - (51)

Equations to first ordør in s and second in a are

ad, 1 a^ 0 df° 1 df°° oo df 2 ° Sf°° df°°

+ + + 7E77 + °o + + -2'3ar "

/dei dei dc’° dei dc°° dc°° X df°°f — o , —o , —o . —o —o oo —o \ 2
 + + + • sf~ -

>m°° \ m OO OO
do, 1 3T 1 A _ T oo S =o||
2 n 1 k \atj 1 + Ho|| ‘dr ) Ip 1 ‘dr

r>P° 1 a 00 >°° .OO

+ c 1o x h c . _
t 2o d -2 m 2 ~° ~ 6a 2 <*Sg ~ 2 ‘ ~^r

= FP 22 [ f 2°^ 2 + 4°(C 2 )f°°(C')] -

 / d^ 1 £ 12 (£i)-^( f i°(c 2 )f|°(c 1 ) + 4°(c 2 )f°°(Ci))

o/^o 2 3c « 1 3c I° Sc° 1 Sc 00 Sc°° Xn°l ~~° . ~° . —O , —O , —O OO —O \
<>t 21 +£ o 'drj +

£>c 01 2

'•'"jf:--*! "°”Æ-5 0  »&° *»+ n?e lS ;» XH *i=1

+ n i° e x ~ + X p^— i
i=1



;\C, ,  . \  
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(i05)

The parallel part of Eq.(104) Is

•x 12 N 11 -N 1 O A O
o/ 9 £o|| ho}[ 3 -o|| 00 a Os\

' at 21 dt 31  -o 15r —o || )

(106)

remembering that is not expanded in a • We see

that has a transient on the t 2q time scale and
11

c il has a transient on the t 01 time scale :—o 21

t 2o

dT Ir)
o

(107)

(108)

3 o X' ST 2° < ST 2° oo aT 2° \
? n 2 k + at 21 + dt 3o + dt 31 + Ho ;

 N OO>. ocd 00 —O
= - -g? -3e - • dr

2 2
cl V o H --hOO V 1

- - v _.) n.m.C.C.ii + ) p.F.i i-i-i || L i-i
i=1 i=1

sil (w  • - -oll^cT 0, t 2T

(^ n °m 1 C 1 (TjC^TrT 00 - I P°°)

*21

£ol (t 21» =^)i| (t 2r 0 ’ t 22 5 -/ dA lr •
o

(j^2 m 2-2 °° " 1 P 2°)



 r
v V.'"

  

. r • ' -i’ c.  f = .

 ' : .
'
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(109)

Due to this

c 1 ? has a transient on the t oq time scale and in the_o|i dd

limit t 22 = oo Eq. (109) becomes

(110)

which corresponds to Eq.(52).

1 2
The transverse part of Eq.(104) shows that c_ 0 j_ as

1 1
a transient on the t 2q time scale and a transient

on the t 21 time scale. In the limits t 2o

t 0 j = 00 the transverse part is

oo and

(111 )

In the limits t 2o = 00 and t 21 = «> Eq. (106) reduces to

0 + c oo_ c o \ = V + V 0?P .
p fe -° -

oo , m oo m oo
As t 22 -» ", c ol -» o and T ± -» T

o d o Q ,V n ° -p
p + -o||* ar -o||y '“ar Z r i-i

r i 1=1

< *£! 00 9 oo\ V *2° +
P fe + + + • Tff Soi) ='I  W r

+ + n?e l5 ; o xH + £
1=1
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12)

c^j 0 we find from Eq. (88) in the limit t 2o =» . Thus

q1° depends on in the same way as _C° 1 depends

on c°° or C? 2 depends on c° 1 , and therefore the—o —1 —o
1 o

"homogeneous" equation corresponding to Eq.(lll) for c_ Q

is the same as the equation for _c°° . The inhomogeneous

term of Eq.(l1l) for tends toward a nonzero limit

as t 22 oo . Using for C] 0 a simplified expression
\ , „ OO , o1

corresponding to Eq. (63) and for c_ Q and c_ o

expressions ohtained from Eqs.(69) and (79) in the same
i o

way, we easily solve Eq. (111) and find that _c Q evolves

toward a limit as t 22 -> 00 which we can find setting

the right hand side of Eq.(l1l) in the limit t 22 =00

equal to zero, i.e.

(1

all tend to zero as t 22 °° we have shown that for

bounded distribution functions, c_ Q ( up to terms of

order e evolves so that balance of transverse forces

is established as t 22 00 , using simplified expressions

for C° 1 , C° 2 etc. However, this result is expected

to hold using for C° 1 , C° 2 etc. exact expressions

obtained from the solution of Eqs.(68) , (77) etc.

2 -n oo 2

I ir + p^°x - + n ° e^° x - + I p i-i = 0i=1 1=1 1

So, if further etc. like and c£|



.

' '

: ' ’ 1 ‘
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1 1
From Eq,(105) we see that '

while T^ 0 may ahsorbe., apart

the time scale., also the

time scale. In the limits t 2

- 00 we ohtain

is independent of t 2

from the variation on

variations on the t 22

(113)

which when added to Eq.(102) corresponds to Eq.(51)

11
Eq.(103) shows that f 2 has a transient on the

t 2q time scale and suhstituting from Eq.(59) to second

order in a for the terms in paranteses on the left hand

side of Eq.(105) and also from Eqs.(lOO) and (113) we derive

that in the limit t 2 = 00 Eq. (103) reduces to

(114)

oo t , =<» and21

3o, T 2° o \ T oo . å^||
2 n 2 k + dr ) Ip 2 ’Fr

- FP 2 2 [ f 2M^ 2 )4 +

m 2°2 5\ 1 3T°° n f oo m 2
“ ‘ 'ZJ ~3r_ ' ” *2U kT oo

dc°TI 1
~~° II . U 1 °(t t )ar H ( t 21 jZ 22 )

where H 1 ° (t 21 t- 22 ) 0 as -» 00 and t 22 -* 00
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Agaln using the appendix of[12], every hounded solution

of Eq.(114) evolves toward the solution of

as tg-j “* 03 and tpp 00 3the 2/ dtp . Eq. (114)

also taking account of the variation on the

scale. This result for the ion distrihution function

to first order in e and zeroth in a corresponds to

the result of Eq.(60) in the same way as Eq.(88) for the

electron distrihution function to the same order in the

limits = 00 3 = 00 and tgg = °° > corresponds

to Eq.(59) .

This ends our partial derivation of assumptions Eqs.(53)

and (5*0 .

FP 22 f 2M^~2^ f + f 2M^-2^__

_ _ _J_ ST 00 . c + f 00 c o c .
“ f 2M\2kT 00 2 / T°° d - ~ 2 2M kT°° ~ 2 ~ 2 å -



• , -v  - .

/  •

-. I P ...   

, .. ... : ..
’8 ;; '
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Appendix 1.

¥e here briefly derive the equations of Chapman and

Cowling [1] from Eqs. (1) —(5) by use of the multiple

time scale method.

The distrihution functions and macroscopic quantities

are expanded in terms of the parameter s for instance

Later we leave out the paranteses in the superscripts,

Also the time derivative is expanded in this way

consistent with introduction of time variahles on

roughly speeking., is the time scale on which the gas evolves

toward local thermodynamic equilihrium.

The equations to zeroth order are

c)f? åc° df? e. åf. p r
- ~vF~ + — c. X H* -Vpi = V C. . f?f°åt åt oC. m. —i — oC. / , i j i jo c —i i —i . u °

3

f 1 =f| + e.,f| 1 +

c) _ c) c) 2 c)
i " r + E i + E i +

T
time scales t. =—T , 1 = 0*1,2, .... , where t ,11 o

£ 1
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S P °
nuh 0o

(A?)

(AA)

(A5)

A H - theorem can be established showing that

(A6)

The equations to flrst order are (they correspond to

the second order equations of Chapman and Cowling)

(A7)

„ 3c °O —o .o TT
p = j x H

2n°k = 02 at o

/• m. \3/2 / m.C? \
f? n? (—J exp(- -------- ) as t oo

1 1 WkT ' ' 2kT°^

°
o —o

Thus c* transverse to H , obeys ay —> 0as

t -» oo or c°, has a transient on the t time scale ,o —ol o
t o

c°(t , ) = c°(t =0,t 1 ,...) + -Q f 0°(t) xH dT—O O —O O I -O J —
o

p? and T° are independent of t Q

I p i + X p l = °
i i



.

V '• - 
 r .

 ... , . . , _ .. ...x

  ..   '  
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(A8)

(A9)

(A10)

(A1 1 )

A
From Eq.(A9) we see that has a transient on the

t time scale due to the evolution of c°. and C? ,° —ol —i
and in the limit t = oo we obtaino

(A 1 2)

df? df? df? df? df? e. df?
1.1,O1. n ± 1 1 O tj i

dt Q dtj + —o’ dr + —i"3r~ + -l'dC ± + m ± -o x -“5CT

åf? åc° ac° åf! åc° åc°\ åf?
. -Q _ -o . 1_f -O -O O —o\ 1

"åC. —i 'år åt åC. Våt åt' — o år ) åC.—i — o —i x o 1 — ' —i

e. df! r _ , 1 "
+ ~ C. xH- =C. . f?f .+ f .f°

nx-i - dC ± ij L 1 J iJj

3 /o 0\ d / cwo\ _ n
c3t Q dt r år 3 i~o + ~~

 \ 1 "n o > o N o
of C ~Q °— O , °— 1 —O V °-n 00 Tt

p + + + . p = L P Æ + p e—o x * +i

+ i 1 x s - lp- p°

3„o,/3t 1 , ST° , „o '6T OS ] 3, m o a v OttO
2- n \at; + dt; + = 2 kT ’5f 2j n i—i +

i

*I-S5 (£*h) -
i

-N1 O / 0.0
6t r "5r oM) = 0
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where M means expressions in the limlt t = » .
 j

Similarly Eq.(A.11) shows that T has a transient on

the t time scale due to the transients of c°, .C°o — ojl J —i

(A13)

A

From the parallel version of Eq. (A* 10) we get that £ Q |j

has a transient on the t q time scale due to the transients

of c°, and P° and in the limit t =oo we obtain—ol ~ o

o d o \ ___ T* 1 dp°
P -oM ‘dr ~o \\) ~}_ p l-l || " dfjj'

(Al 4)

A
From Eq.(AS) we seek bounded Solutions for f| which obey

df ]i ~ ,~kx — 0 as t —> coo (A1 5)

/dc° Ac° \
, o —oPLi^

\dt 1 -oM‘dr )

(A16)

J° , P° and q° . In the limit t =<» we getr*-» O

3o, /dT° o hT°\ o å o
2 n ' —oM år ) år * —oM

A
Then from Eq.(A.IO) we get that _c has a transient on

the t q time scale due to the transients of ,j 1

and' P° j, and in the llmit t = co we have~ o

X p£u + x H +
i

+ i 1 y H
% X ~ dr ±



. ('  ' / r'-_

Ih
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Here we find from in the limit tQ = «> . The
A

equation for fU is, substituting from Eqs.(A.l4) and

(A.16)

8f?,, Bc°m 1/ v~iMp, . —oM _1 f \
dC. —i * "St Toy [_—i — p v .

J

or, substituting further from Eqs.(A.6), (A.12) and (A.13)

(A, 17)

Eqs. (A,12), (A.13), (A.lA), (A.16) and (A.17) are the

"second order" equations of Chapman and Cowling [1], Eq.(A.7)

in the limit t = o° i eo *

(A. 18)

Eq.(A.17) for f 1iMhas to be fulfilled when solving

SflM o . 5fiM „ . Sf lM . af iM åflM
år ~ ' —i år —i åCL nr—oM — "ScT-

~o( Z PJ-J + P xH + i-M xS - |r“)‘ ac~ +r-' * -L
'j

, % x h -_iM -V r Tf° f 1 4f 1 f° "
+ X - dC. iJL iM jM + iM jM

,1

f° / ±C± 5) 1_ c fo iTi/ y o o c o dp >N\
T° a- f±M kT°W LPj“J ' P e-oM - dr J

J

+if l?inP? - X *}°± + f?M 2) : =

V C t- 0 f 1 +f 1 f° 1 e i r Vr- Sf±M
L T iM JMj ‘ røTT -1 x - dCT"
0 11

f±M p°kT° ' (~M X“)

Ip? = 0i
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Appendix 2.

Till now the electromagnetic field has heen assumed

stationary and imposed on the plasma by external

means. the generation of a field by the evolution

of the plasma itself may also be taken into account with

only small modifications of the results obtained in

sections 2 and 3. For such a model we study the kinetic

and macroscopic equations of the previous sections

together with the Maxwell equations for the total electric

field E and magnetic field B :

(A.19)

(A.20)

(A. 21 )

(A. 22)

d , 2
dr = 47TC ~ p e

4--B = 0or —

 5? x - =  

-s 1 SE
ciF x B = + J) +



v , S

k] ~..

'
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As in section 1 we assume that

C 1 T 2
— ~ 6

E
(A.23)

C 1 B o

where E and B = H are the magnitude of the externallyo o

imposed fields. New assumptions on the sources of the fields

now have to be made: Since the fields shall not be stronger

than before the sources must be weak to a certain extent.

Also to solve the Maxwell equations requires additional

assumptions. We therefore parametrize the Maxwell equations

as we did with the kinetic and macroscopic equations and

make the assumptions when we need to make them.

The order of magnitude of the terms in Eq.(A.19) thus become

Here HL is the part of E that varies in space. We
L ~ e l

further get, dividing by

~ £

1 _ m 1
2 ~ =

E L h 2
r 4710 p e

, 4Tr ° 2n i e l m lPe L
m. ’ I?' E t

1 n 1 e L



$N : , H l mi-  • \ C * ;  iJ- • ; y :  
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.,2 2 x/ 4ttc n e \2

and using the relations Eq. (A.25) and = f — J ,

the electron plasma frequency.

Slnce for the model we consider co , »Q, and we allowp1 1

E t ~E q , for a balance of the terms of Eq.(A.19) we must

have

i.e. charge neutrality to a certain extent.

In a similar way we estimate the terms in Eq.(A.21)

\ .
L * T 2

where is the part of B that varies in time. ¥e further

get

B 2O 8

¥e have used the relations Eq.(A.23) and E T ~ E .L o

For the terms in Eq.(A.21) to balance we have B, ~ e 2 Bt o

The order of magnitude of the terms in Eq.(A.22) becomes

1: fer 1 ) 7($ fe)

2 2
p ~ (Q,/w , ) • s n„ e,1 e v r pl ' 11

B L J, _ 1 E t
L  47Tn 1 e l G 1 ; s c 2



 ,  ::'  "v- ,   .   :
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where B T and E, denote the parts of B and E thatJLi P —

vary in space and time. We have set |j_| ~ . We

further get

 pif i B o / C A 2 . /htAyh'
V eB L Vo ) • V V e 0 A b l .

1

second term to he of equal order of magnitude. The third

term will always be vanishing small when ~E q , which

is the order of magnitude of that we can permit. We

shall therefore neglect the last term (displacement current)

of Eq.(A.22), and the approximative Maxwell equations for

the gas model are

(A.19')

(A.20')

(A.21 1 )

(A. 22 1 )

where E and B are sought as

/co \2 /C \2

We as sume that yTT" ) ~e v 7 / <<C 1 ' ore s P ec i^ ca Uy> let

1 /* 2 2
( —) — { --tt ~ 8 . Then B T ~e B for the first and\ e \ cj L o

-V- ' E = k-TTC P Qcr — e

4- • B = 0or

X - = '

c) 2 —
75P x B = ap e c Q + n 1 e 1 C 1 + an^Cg)

E(r,t) = E°(rjt) + eE 1 (r,t) +

B(r,t) = H + s 2 B 2 (r,t) +



|- - j  

 , V ;'«! . .££: <: ... :V . ;S , i'.

T ,, ...

...v

’ i ty
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6
Making the multiple time scale expansion of , we obtam

as the lowest order sets of equations in the parameter s :

Necessary conditions for existence of Solutions are

(A.26)

~5r n l 6 1~i + an 2 0 2~2 “ 0

d / O 7,1 O Tfh d / 1 7=fO . 1 ttO\ n
• 3? -(n 1 e 1 C 1 + an 2 e 2—2 + "Sr ’ K 6 Æ + “ n 2 e “ 0



1  : V;. -: > . . i:y,  - ,J : . .
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which also can be sufficient condltions.

The sets of equations (A.24) and (A.25) now have to

he solved together with the zeroth and first order

equations of section Eqs.(18)-(29) and Eqs.(30)-(41).

The zeroth order equations (l8)-(29) are uncoupled with

the Maxwell equations, so the evolution of the zeroth order

distribution functions and macroscopic quatities are the

same as before. The first order equations (30)-(4l) are

coupled with the zeroth order Maxwell equations (A.24).

Due to the zeroth order evolution the electric field E°
2

and magnetic field B show a transient variation on

the - time scale. The transient of E° give rise to

new transients in the first order kinetic and macroscopic

equations in addition to the transients studied before
2

The transient of B is too small to be seen in these

equations. In the limit = °° , however, the first order

kinetic and macroscopic equations are the same as before.,

the electric field E° now obeying the Poisson equation.



- X ' -

.
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