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Abstract

Diabetes is a metabolic disorder that is characterized by high blood glucose con-
centrations resulting from insulin deficiency in case of type 1 or insulin inefficiency in
case of type 2. While no cure for diabetes exists, the artificial pancreas is a possible
way to manage diabetes, especially for type 1 diabetics. Where an artificial pancreas is a
closed loop control system with an integrated mathematical model. This control system
imitates the function of a healthy pancreas. The first part of this thesis is concerned with
the control system of an artificial pancreas that is based on Bergman’s minimal model of
the glucose-insulin dynamics. The aim of the first part of this thesis is to prove both the
controllability and the observability of the minimal model which is an fundamental step in
the design of an optimal control system. These proofs are based on several mathematical
tools such as the insertion of time delays, and theorems such as the Banach contraction
mapping theorem in addition to the results of previous related works.

On a different note, COVID-19 is a highly infectious global pandemic that tar-
gets the respiratory system. The symptoms of this disease were found to be more severe
towards patients with comorbidities including diabetes, and so, the second part of this the-
sis is concerned with the relation of COVID-19 with comorbidities, where a COVID-19
disease transmission model that focuses on comorbidity populations is presented. This
model aims at determining the major factors that contributes to the transmission of this
disease. The results of this model can aid in implementing strategies that can help in con-
trolling the spread of this pandemic. Parameter estimations of the model are presented in
addtion to several related calculations including the basic reproduction number and the
sensitivity indices of the model’s parameters.

Keywords: Diabetes, Control systems, Controllability, Observability, COVID-19, Com-

partmental disease transmission models, Sensitivity index, Basic reproduction number.



 

Title and Abstract (in Arabic) 

 

على مرضى  19-كوفيدو تأثير  و قابلية مراقبته مستوى الجلوكوز بالدمبالتحكم  القدرة على

 السكري

صف بارتفاع مستوى الجلوكوز بالدم الناتج عن يت مرض السكري هو اضطراب في عملية الأيض  الملخص

عدم كفاءة الإنسولين في النوع الثاني. في حين لايوجد  نقص مستوى الإنسولين في حالة النوع الأول أو

ً لمرضعلاج لمرضى السكري، يعتبر البنكرياس الصناعي طريقة ممكنة   ىلإدارة المرض و خصوصا

رّف البنكرياس الصناعي على أنه نظام تحكم مغلق قائم على نموذج رياضي عي  و السكري من النوع الأول. 

م بنظا يهتمالأطروحة  من هذه الجزء الأول اكاة وظيفة البنكرياس السليم.يعمل هذا النظام على مح معين.

 برجمان البسيط كنموذج رياضي خاص بديناميات يستخدم نموذج الذي صناعيالبنكرياس الخاص بالتحكم ال

الهدف من الجزء الأول من هذه الأطروحة هو إثبات كلاً من إمكانية التحكم و إمكانية  .الجلوكوز و الإنسولين

المقدمة  مراقبة المتعلقة بنموذج برجمان البسيط و هي خطوة أساسية في تصميم نظام تحكم أمثل. البراهينال

 ذج و نظريات مثلة على عدة أدوات رياضية مثل إدراج التأخيرات الزمنية في النمونيفي هذه الأطروحة مب

ج. ه جائحة عالمية شديدة العدوى تستهدف النظام التنفسيبأن 19-كوفيدعرف من ناحية أخرى، ي     صلة.النظرية النقطة الثابتة لباناخ بالإضافة إلى نتائج الأعمال السابقة ذات  د و 

بما في ذلك مرض ة أعراض هذا المرض تبدو أكثر حدة تجاه المرضى الذين يعانون من أمراض مصاحبأن 

حيث  بالأمراض المصاحبة 19-كوفيدثاني من هذه الأطروحة بعلاقة مرض ك يهتم الجزء الالسكري. ولذل

لأمراض المصاحبة. باالذي يركز على السكان المصابين  19-تم تقديم نموذج انتقال المرض الخاص بكوفيد

هذا قدمها التي ينتائج الهذا المرض.  شارانتالعوامل الرئيسية التي تساهم في يهدف هذا النموذج إلى تحديد 

في السيطرة على انتشار هذا المرض. هذا الجزء من  تساهمالنموذج قد تساعد في انشاء الاستراتيجيات التي 

النموذج بالإضافة إلى حسابات ذات صلة مثل عدد الخاصة بمعاملات الالأطروحة يحتوي على تقدير قيم 

 سية المعاملات الخاصة بالنموذج.   التكاثر الأساسي و موشر حسا

، 19-القدرة على التحكم، قابلية الملاحظة، كوفيدمرض السكري، أنظمة التحكم، : ةيمفاهيم البحث الرئيس

 عدد التكاثر الأساسي.‘ ر الحساسيةنماذج انتقال المرض المجزأة، مؤش

vii
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Chapter 1: Introduction

1.1 Description of Diabetes

Diabetes is a chronic disease characterized by high blood glucose levels resulting

from the body’s inability to produce insulin or insufficient insulin production. It can also

be a result of the body’s incapability of efficient insulin usage [1, 2]. In other words,

Processes that can lead to the development of diabetes ranges from the destruction of the

insulin producing beta cells in the pancreas by the immune system resulting in insulin

deficiency to the abnormalities that results in insulin resistance [1].

1.2 Diabetes Complications

People with diabetes are at high risk of developing some long-term complica-

tions resulting from the prolonged periods of high blood glucose. These complications

can effect different body organs including the eyes, kidneys, nerves, heart, blood vessels,

and limbs [1, 3]. Possible eye complications resulting from diabetes includes blurring,

cataracts, and blindness. Cataracts for instance is caused by glucose accumulation in

the lenses of the eyes which eventually obstructs light transmission to the back of the eye

causing the lenses to be opaque [3]. Since Kidneys are responsible for filtering blood, kid-

ney damage might also be accompanied with diabetes. This is caused by filtering blood

with high glucose levels which in turn damages the tiny blood vessels in the kidneys [3].

Other diabetes complications includes nerve damage, limb amputation, stroke, cardio-

vascular diseases and high blood pressure [3]. These complications could be avoided if

diabetes is properly managed and dealt with [2]. Figure 1.1 illustrates possible diabetes

complications on the different body parts.
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Figure 1.1: Diabetes complications

1.3 Types of Diabetes

Diabetes is commonly categorized into type 1 and type 2 diabetes. Type 1 dia-

betes is an autoimmune disease in which the immune system of the body attacks the beta

cells that produces insulin leading to insufficient or no insulin production. On the other

hand, type 2 diabetes is a result of what is known as insulin resistance, where the body

cells are unable to fully react to insulin. Insulin is ineffective during the insulin resistance

state. As a result, insulin is overly produced and over time the beta cells of the pancreas

fails to keep up with the demand resulting in insufficient insulin production [1, 2]. Type

2 diabetes is more common as it accounts for 90% of diabetes cases [2].
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1.4 Glucose-Insulin Regulatory System

The normal blood glucose concentration is within the range 70 – 110 mg/dl. The

insulin and glucagon hormones which are secreted from the pancreatic beta and alpha

cells respectively are responsible for maintaining blood glucose homeostasis as presented

in Figure 1.2 [4]. Insulin hormone is released when the blood glucose concertation is

high stimulating excess glucose uptake by the muscle, fat and liver cells and restraining

hepatic glucose production which results in lowering the blood glucose concertation. On

the other hand, glucagon hormone is released when the blood glucose concentration is low

stimulating the conversion of the glycogen stored in the liver into glucose which results

in increasing the blood glucose concentration [4].

Figure 1.2: Blood glucose regulation

In case an individual’s blood glucose concentration is continuously outside the

normal range, then the individual is considered to have either hyperglycemia (glucose

excess in bloodstream) or hypoglycemia (glucose deficiency in bloodstream). Diabetes

mellitus is a disease characterized by hyperglycemia [4].
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1.5 Prevalence of Diabetes

1.5.1 Worldwide

Diabetes is widely spread in the world given that the estimated number of the

adult diabetic individuals aged 20 – 79 years worldwide was about 463 million in 2019

making up to 9.3% of the total adult population with type 2 accounting for nearly 90%

of the diabetes cases. The number of diabetics is expected to increase to 578.4 million

worldwide by 2030, in case the current trend continues [2]. Moreover, according to an

estimate made in 2019 it was found that high-income countries have the highest preva-

lence of diabetes in adults of about 10.4% followed by middle-income countries with

prevalence of 9.5%. On the other hand, low-income counties had the lowest prevalence

of almost 4% [2].

Figure 1.3: Estimated prevalence of diabetes in adults in 2019

Figure 1.3 (obtained from [2]) gives an illustration of the estimated prevalence of

adults aged 20 – 79 years with type 1 and type 2 diagnosed and undiagnosed diabetes in

the world map. Looking at the map one can clearly deduce that the Middle Eastern and

North African regions are highly prevalent with diabetes.
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1.5.2 MENA Region/Arab world

Diabetes is notably prevalent in the Middle Eastern and North African (MENA)

region. In this region, it was estimated in 2019 that nearly 54.8 million adults aged 20 to

79 years have diabetes, which makes up to 12.8% of the total population. This prevalence

percentage of 12.8% is considered the highest among the other world regions classified

by the International Diabetes Federation (IDF) [2]. This region have the second-highest

rate of increases in diabetes in the world [5].

There is a clear rise in type 2 diabetes mellitus in the Arab world of the MENA

region. In fact, According to the IDF three Arab countries were among top ten countries

in the prevalence of type 2 diabetes mellitus in 2013, namely, Saudi Arabia, Kuwait, and

Qatar [5]. The high prevalence of type 2 diabetes mellitus in the Arab world can be a

result of some risk factors that includes genetic factors which cannot be controlled and

other modifiable risk factors such as obesity which is associated with eating habits and the

lack of physical activity in addition to rapid urbanization [5]. Obesity is closely linked to

type 2 diabetes as evidenced by many studies. For instance, a study was made in Kuwait

with 1970 subjects of both genders found that 47.7% of obese males and 77.3% of obese

females were diabetic [6]. Another study made in Saudi Arabia with 1385 male subjects

found that 65% of diabetic patients were overweight [7]. Additionally, a study from Qatar

of 1434 subjects found that 59.7% of diabetics were obese [8]. These studies serves as a

great evidence of the correlation between type 2 diabetes and obesity.

Obesity is highly prevalent in the Arab world as evidenced by many studies and

reports including a report made by the World Health Organization (WHO) in 2014 [9].

This report presented obesity percentages of adults in different countries of the world

based on data from 2010. This report revealed that obesity is highly prevalent in Arab

countries, especially in countries of the gulf region [9]. It stated that 55% and 30% of

females and males respectively are obese in Kuwait. It also stated that 42% of females

and 25% of males are obese in the UAE [9]. Since obesity is highly prevalent in the Arab

world it would not be surprising for type 2 diabetes mellitus to be prevalent as well given
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that the two are correlated.

The high incidence of obesity in the Arab world is mostly contributed by the fol-

lowed dietary habits. This is pointed out by a study made on the dietary habits of some

countries in the MENA region [10]. The analysis of this study suggested that many coun-

tries in the MENA region follow a diet that has low intake of fruits, vegetables and whole-

grains and high intake of red and processed meats as well as foods high with sodium. Such

dietary habits justifies weight gain and obesity [10]. Another factor that contributes to the

spread of obesity in the Arab world is the inactive lifestyle that most Arabs adapt. This

is demonstrated by a study made to assess physical activity in Arab countries [11]. This

study concluded that the prevalence of physical inactivity exceeds 40% in almost every

Arab country [11]. These factors that leads to obesity are usually associated with rapid

urbanization as suggested by the prevalence rates of type 2 diabetes, where prevalence

rates are much higher in urbanized countries compared to rural ones [5].

1.5.3 The United Arab Emirates

The United Arab Emirates has undergone a rapid development in the economy

during the last two decades. This development had a positive influence in the country’s

educational and medical sectors. It has also led to increased prosperity. However, there

is a downside to this development as there is a decrease in the physical activities as the

lifestyle has become more sedentary. In addition, there is an increase in food intake

along with bad dietary habits. These downsides has led to an increase in the prevalence of

obesity together with type 2 diabetes mellitus [12]. In 2017, the IDF stated that the UAE is

considered the second highest country in the percentage of age adjusted diabetes of adults

in the MENA region with a percentage of 17.3% making up to 1185500 diabetes patients.

The IDF also revealed that the number is expected to increase in case no intervention

takes place [13].
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1.6 Economical Facts of Diabetes Worldwide

Between direct medical costs of diabetes detection and treatment and indirect

costs of absence or underperformance of diabetic workers, diabetes and its complications

are a great burden to the national economies especially since diabetes complications are

either long-term, severe or both [2, 4]. A study was made to estimate the global economic

burden of diabetes in adults aged 20 – 79 years in 2015. In this study data were collected

from 184 countries where direct diabetes costs were based on health expenditure data

provided from the WHO and prevalence data provided from the IDF and indirect diabetes

costs were estimated by assuming a human-capital approach were diabetes related mor-

bidity and mortality were considered [14]. It was found that diabetes global economic

burden accounts for about US$1.31 trillion with 34.7% credit to indirect costs [14].

1.7 COVID-19 and Diabetes

Corona Virus Disease 2019 (COVID-19) is a global viral disease that targets

the respiratory system. What is concerning about this disease is that it is highly trans-

missible as it can be transmitted not only through direct contact of infected surfaces or

droplets released from the infected, but it can also be transmitted through inhalation. The

symptoms of this disease are mild for most patients, however, infected people with co-

morbidities such as diabetes and cardiovascular diseases are at a higher risk of developing

severe symptoms such as multi organ failure or even fatality [15]. A study of COVID-19

patients who were critically ill was carried out in Wuhan, china. Among 52 intensive

care unit (ICU) patients it was found that 22% of 32 non survivors were diabetic [16].

Another study found that 12% among 120 critically ill COVID-19 patients were diabetic

[16]. Furthermore, it has been evidenced that diabetic patients who were infected with

any of the earlier corona viruses, namely, Severe Acute Respiratory Syndrome (SARS) or

Middle East Respiratory Syndrome (MERS) had worse disease complications and higher

mortality rates [17]. These studies suggests that having diabetes increases the severity of

COVID-19 and its related fatality rates.
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Chapter 2: Bergman’s Minimal Model

2.1 The Origin of Bergman’s Minimal Model

Over the years mathematical models have been used to describe the behavior of

many different physiological systems. Many models were dedicated to investigate the

blood glucose regulatory system in form of a system of differential equations, and these

models varied from simple to complex [18]. Early models of the glucose-insulin dynamics

were doubted and had a very limited role in the diagnosis and treatment of diabetes. This

is caused by the unfamiliarity of using mathematical modeling to describe a closed-loop

feedback physiological system [18]. Another reason was that organs which has a primary

role in regulating the blood glucose concentration has non-linear functions by nature,

given the fact that non-linear systems are unpredictable and difficult to solve [18, 19].

The characteristics of the beta cells, responsible for producing insulin, are consid-

ered complex, especially since it secretes insulin in two phases [18]. The first secretion

phase starts after nutrient consumption and lasts for about 10 minutes, whilst the second

phase is sustained until blood glucose concentration is within the normal range [20]. As

a result, it is quite difficult to have a simple mathematical representation of the beta cells’

function [18]. In order to overcome these complexities and efficiently use mathemati-

cal modeling to investigate the regulation of the blood glucose concentration, Bergman

[21] utilized the Intravenous Glucose Tolerance Test (IVGTT) to form his model were

he frequently measured plasma glucose and insulin of a group of test subjects following

injecting them with a dose of glucose to see how plasma glucose interacts with insulin

[18, 21].

The original purpose of the minimal model was to quantify the contribution of the

responsivity of the beta cells to glucose (insulin secretion) and the sensitivity of the body

tissues to the secreted insulin (insulin sensitivity) to the glucose tolerance. Where glucose

tolerance can be defined as the body’s ability to clear the blood from glucose [21].
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2.2 The Intravenous Glucose Tolerance Test

The IVGTT is a clinical test that is used to determine the body’s ability to me-

tabolize glucose. At the beginning of this test venous fasting blood sample is obtained,

thereafter, 25gm of glucose is injected intravenously during a period of two minutes, and

within the next two hours samples of venous blood are continuously obtained and the last

of which is used to decide whether the person has diabetes or not. That is if the blood

glucose concentration is above 120 mg/dl, then the tested person has diabetes mellitus.

Whereas if the blood glucose concentration is less than 100 mg/dl, then the tested person

is most likely not diabetic. In case the glucose concentration lies in the range 100 – 120

mg/dl, then the test result is undefined [22].

2.3 Bergman’s Minimal Model

Despite the existence of many models that describes the glucose-insulin dynam-

ics, the Bergman minimal model is considered the simplest model that is useful and both

efficient and accurate. This model is given by the following system of Ordinary Differen-

tial Equations (ODEs) [23]:

Ġ = −p1(G−Gb)−GX

Ẋ = −p2X + p3(I− Ib)

İ = −n(I− Ib)+ γ[G−h]+t +u(t)

(2.1)

Where the state variables:

G: represents the plasma glucose concentration in mg
dl .

X : represents the effect of the active insulin on the glucose concentration in min−1.

I: represents the plasma insulin concentration in µU
ml .

The constants Gb and Ib represents the basal values of the plasma glucose and insulin

concentrations, and the Insulin infusion rate is represented by u(t).
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As for the parameters [23]:

p1: is the insulin-dependent glucose disappearance rate in min−1.

p2 is the natural decrease rate of the ability of tissues to absorb glucose in min−1.

p3 is the insulin stimulated increase in tissue glucose absorption ability in (min−2(µU
ml )
−1).

Figure 2.1 and Figure 2.2 demonstrates the minimal model’s glucose and insulin dynamics

respectively:

Figure 2.1: Minimal model of glucose disappearance

Figure 2.2: Minimal model of insulin kinetics

2.4 Cobeli’s Model

A More comprehensive nonlinear model that includes the dynamics of the glucagon

hormone is built by Cobelli [24]. This model is composed of three subsystems that de-

scribes the dynamics of the glucose, insulin and glucagon [24].

A single compartment is used in the glucose subsystem, this compartment describes the

distribution and metabolism of glucose. It involves the balance of the liver’s glucose pro-
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duction and consumption, kidney’s blood glucose filtration, the insulin dependent glucose

utilization which is mainly done by the muscle and fat cells, in addition to the independent

glucose utilization performed by the brain and nerve cells [24].

The insulin subsystem is composed of five compartments representing: insulin

stored in the pancreas, instantly released pancreatic insulin, insulin in the plasma, insulin

in the liver and insulin in the interstitial fluid (fluid presented in the small gaps between

the body cells) [24, 25]. The glucagon subsystem is including a single compartment that

involves the glucagon in the plasma and interstitial fluids [24].

The main purpose of this model was to investigate the interaction between glucose

and insulin during the states of hyperglycemia. This model has been validated on both

normal and pathological conditions, and it has been employed in researches that involves

the regulation of carbohydrate metabolism [24].

2.5 More Extensions

Bergman’s model has been widely used in the development of many blood glu-

cose regulation models and other related applications. In fact, Bergman himself used his

minimal model to develop a computer program that measures the insulin sensitivity, glu-

cose effectiveness (glucose’s own disappearance ability) along with the first and second

phases of pancreatic responsivity [26].

Despite the usefulness and the many applications of Bergman’s minimal model,

it received many criticism [27]. The majorly criticized shortcomings of this model were

the model’s incoherence and lack of robustness in the procedure of parameter identifi-

cation [27]. This is coming from the procedure that was performed to fit the model’s

parameters. The procedure was done in two steps. Firstly, recorded insulin concentration

was regarded as an input to derive the glucose dynamics parameters. Secondly, recorded

glucose concentration was regarded as an input to derive parameters of the insulin dynam-

ics [28]. The two step parameter identification procedure decouples the glucose-insulin

system even though, physiologically this system is a unified and an integrated feedback
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system. Consequently, this is considered a limitation of Bergman’s model [27, 28].

In order to overcome these shortcomings and furtherly improve the minimal model,

many extended and modified versions of Bergman’s model were proposed. One of those

models [28] considered a single step parameter identification procedure and excluded the

remote compartment presented in the minimal model resulting in a more coherent model.

This model was also furtherly improved and modified.
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Chapter 3: Literature Review - Mathematical Control Theory

3.1 Linear Control Systems

A linear control system can be described by the following system of ODEs [29, 30]:

 ẋ = A(t)x+B(t)u

x(t0) = x0

(3.1)

Given the following assumptions:

1. x(t) ∈ Rn, and is both real and continuous and satisfies equation (3.1).

2. A(t) ∈Mn×n, B(t) ∈Mn×m, and both of which are bounded and real.

3. In such a system, a controller u(t) ∈ Rm is selected so that it steers x(t) from an

initial state x0 at t0 to a desired state xd at t1. Given that u(t) is real and bounded on

the interval [t0, t1] and assuming values from a non-empty set Ω ⊆ Rm.

The solution of such a linear system is given by [29]:

x(t) = Φ(t)x0 +Φ(t)
∫ t

t0
Φ(s)−1B(s)u(s)ds (3.2)

Where Φ(t) is the fundamental matrix solution of the homogenous non-controlled linear

system:

ẋ = A(t)x (3.3)

In other words, Φ(t) is an n×n matrix whose columns are the linearly independent solu-

tions of (3.3) with Φ(t0) = I. Moreover, if A(t) is a constant A, then Φ(t) = eA(t−t0).
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3.2 Autonomous Linear Control systems

Autonomous linear control systems are the ones in which the rate of change of the

state variables with respect of time ẋ does not depend explicitly on the time t.

Consider an autonomous linear control system with the following representation [29]:

ẋ = Ax+Bu (3.4)

In this system x ∈ Rn. Matrix A ∈ Mn×n and matrix B ∈ Mn×m, and both of which are

real, constant valued matrices.

3.2.1 Controllability

In control theory, Controllability is regarded an essential attribute of a control

system as it must be satisfied in order to achieve the desired controlling goal. The system

defined by equation (3.4) with unrestrained control values (i.e. u(t) ∈ Ω = Rm) is said to

be completely controllable in case for any two states x0 , x1 ∈ Rn, there exists a controller

u(t) that steers x0 to x1 in a finite time [29, 30].

3.2.1.1 Controllability Test

Kalman’s rank condition: One way to determine whether the linear system in

hand is controllable or not is by finding the rank of the controllability matrix, which is an

n×nm matrix of the following form [29, 30]:

C = [B,AB,A2B, ...,An−1B]

Then, the system is controllable if and only if rank(C) = n.

Controllability operator: Another method to check the controllability of a linear

control system defined on an interval [t0, t1] is to check the range of its corresponding

controllability operator G, then:
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Linear control system is controllable⇔ Range(G) = Rn

Where the controllability operator for this control system

G : L2(t0, t1;Rm)−→ Rn

is defined as follows,

G(u) =
∫ t1

t0
eA(t1−s)Bu(s)ds,

Other methods to test the controllability of an autonomous linear system are presented in

[29] along with its proofs.

3.2.2 Observability

A control system is observable if observations or measurements of the output over

a finite time interval provides enough information to determine the internal states of the

system. In other words, if knowledge of the output y(t) on any time interval [t0, t1] allows

the computation of the initial state of the system x(t0) = x0, then the system is observable

[29, 30].

The observability equation for the linear system in (3.4) is given by [29, 30]:

y(t) = Hx(t) (3.5)

Where y(t) ∈Rr represents the observable output, and H ∈Mr×n is a real constant matrix.

3.2.2.1 Observability Test

Kalman’s rank condition: Determining whether the linear system defined by equa-

tions (3.4) and (3.5) is observable or not can be done using the Observability matrix which
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is an rn×n matrix with the following form [29, 30]:

O =



H

HA

HA2

...

HAn−1



Then, the system is observable if and only if rank(O) = n.

Observability operator: Another possible way to check the observability of a

linear control system defined on an interval [t0, t1] is to check the observability operator

µ , where

Linear control system is observable⇔ µ is one-to-one.

Where the observability operator for this control system

µ : Rn −→ L2(t0, t1;Rr)

is defined as follows,

µ(z) = HeA(.)z

Other methods to test the observability of an autonomous linear control system are pre-

sented in [29] along with its proofs.

3.2.3 The Duality Property

Observability and controllability are related in linear systems as they have a dual-

ity between them as proposed by the following theorem [29]:
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Theorem 3.2.1. The autonomous linear observed control system given by

ẋ = Ax+Bu, y(t) = Hx (3.6)

is observable if and only if the dual system given by

ẋ = AT x+HT u, y(t) = BT x (3.7)

is controllable.

To test the validity of theorem (3.2.1), it is assumed that the system defined by (3.6) is

observable, then:

rank



H

HA

HA2

...

HAn−1


= n

Since the transpose of any matrix has the same rank as the original one then,

rank
[

HT , AT HT , ... ,(AT )n−1HT

]
= n

Which applies that a linear system defined by (3.7) is controllable and vice versa.

3.3 Optimal Trajectory Tracking

Trajectory tracking aims to lead the state trajectories x(t) ∈ Rn of a dynamical

system to track a desired reference trajectory xd(t) ∈ Rn that is defined over an interval

[t0, t1]. In this case, the closer x(t) is to xd(t) the better the controlling goal is achieved.

Ideally, x(t) = xd(t) at all times t > 0 [31].

A suitable measure of the distance between x(t) and xd(t) is provided by the following
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equation [31]:

J [x(t)] =
1
2

∫ t1

t0
((x(t)− xd(t))2dt (3.8)

Optimal trajectory tracking aims to minimize the distance between x(t) and xd(t).

This is done by finding a control u(t) ∈ Rm that minimizes J [x(t)] such that other con-

trollers results in larger distances between x(t) and xd(t).

Equation (3.8) might lead to an ill-defined u(t) and x(t) functions, so a possible way to fix

this problem is by adding an additional regularization term as provided by the following

equation [31]:

J [x(t),u(t)] =
1
2

∫ t1

t0
((x(t)− xd(t))2dt +

ε2

2

∫ t1

t0
|u(t)|2 dt (3.9)

The additional term in (3.9) ensures a well defined solution and avoids large controls.

However, in most biological control systems the control u(t) ∈ Ω where Ω is a restrained

subset of Rm. This restrain depends on the biological nature of the control. Therefore, the

additional term in equation (3.9) is removed and the equation is reduced back to equation

(3.8) since the main goal of the control system in this case is to track xd .

3.4 Semilinear Control Systems

A semilinear control system can be described by the following system of ODEs [32]:

 ẋ = A(t)x(t)+B(t)u(t)+ f (t,x(t),u(t)) , t ∈ (t0, t1]

x(t0) = x0

(3.10)

Given the following assumptions:

1. x(t) ∈ Rn, u(t) ∈ Rm.

2. A(t) and B(t) are continuous real matrices with A(t) ∈Mn×n and B(t) ∈Mn×m.

3. u(t) ∈ L2([t0, t1];Rm).
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4. f : [t0, t1]×Rn×Rm→ Rn is continuous.

3.4.1 Approximate Controllability of a Semilinear System

Definition 3.4.1. The semilinear system (3.10) is said to be approximately controllable

on an interval [t0, t1], if for any ε > 0, initial state x0 ∈ Rn, and final state x1 ∈ Rn there

exists a control u ∈ C([t0, t1];Rm) such that the corresponding solution of system (3.10)

satisfies the following condition [33]:

‖x(t1)− x1‖< ε

3.4.2 Exact Controllability of a Semilinear System

Definition 3.4.2. The semilinear system (3.10) is said to be exactly controllable on an

interval [t0, t1] if for any initial and final states x0,x1 ∈ Rn, there exists a control u ∈

C([t0, t1];Rm) such that the corresponding solution of system (3.10) satisfies [33]:

x(t0) = x0, x(t1) = x1

3.4.3 Observability of a Semilinear System

Definition 3.4.3. A semilinear system of the form (3.10) along with an observation:

y = Hx

is said to be observable on an interval [t0, t1], if any pair of observation and control (y,u)

uniquely determines the initial condition of the system. In other words, for two solutions
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of (3.10) x1(t) and x2(t), if

Hx1(t) = Hx2(t), ∀t ∈ [t0, t1]

then,

x1(t0) = x2(t0)



21

Chapter 4: Artificial Pancreas and Diabetes

4.1 Problem Statement

As stated in Chapter 1, the normal fasting blood glucose concentration ranges

between 70 mg/dl to 110 mg/dl. People with type 1 or type 2 diabetes have blood glucose

concentrations that exceeds the normal range for prolonged periods of time. A possible

way to manage diabetes mellitus, especially type 1 is the artificial pancreas, which is a

closed-loop control system that regulates the patient’s blood glucose level. This system

consists of a continuous blood glucose monitoring sensor (CGM), a control algorithm

and an external insulin pump [34]. The CGM measures the patient’s blood glucose level

and sends the measurement to a small computer that acts as a moderator between the

CGM and the insulin pump. This computer then calculates the required amount of insulin

to maintain the blood glucose concentration within the normal range based on a built-in

control algorithm. Followingly, the computer sends a signal of the calculated amount

to the external insulin pump to inject the patient with the calculated amount. This way

the artificial pancreas imitates the function of a healthy individual’s pancreas. Figure 4.1

shows a block diagram of the function of an artificial pancreas.

Figure 4.1: Block diagram of an artificial pancreas
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A mathematical model of the blood glucose regulatory system is required to in-

tegrate the CGM to the insulin pump in an artificial pancreas. Furthermore, since the

artificial pancreas is a control system, where the controlled variable is the blood glucose

concentration and the control input is the external insulin infused through the pump. then,

the patient’s blood glucose concentration can only be regulated when the artificial pan-

creas is both controllable and observable. The aim of this part of the thesis is to prove

both the controllability and observability of an existing artificial pancreas control design.

4.2 Existing Approach

An existing feedback and feedforward controller design for an artificial pancreas

is presented in [35]. In this design the mathematical model used to describe the dynamics

of the plasma insulin and glucose is the Bergman’s minimal model. Since the parameters

of the model differ slightly amongst people, the model was slightly altered to include

parameter uncertainties so that the artifical pancreas can be tailored to fit a wide range of

people [35].

In [35] an exogenous glucose input J from food that passes through the intestines

is included. Moreover, it is assumed that the reference/desired glucose R as well as the

exogenous glucose J are time-varying. Furthermore, the designed controller is both feed-

back and feedforward. The feedback part uses the actual blood glucose concentration G

as an output whereas, the exogenous glucose J and the desired glucose R are regarded as

disturbances for the feedforward part. Then, the controller u = u(G,R,J) is designed such

that it tracks the desired glucose for any slight parameter variations. The flow diagram of

the feedback and feedforward controller is presented in Figure 4.2.

The version of the minimal model that has been used in [35] without parameter uncertain-
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Figure 4.2: Flow diagram of feedback and feedforward controller

ties is described by the following nonlinear system of ODEs:



dG
dt = −m1G−XG+ J

dX
dt = −m2X +m3I

dI
dt = −m4I +u

(4.1)

Designing the controller involved using several mathematical tools including the Fourier

series polynomials, the center manifold theory, variable transformations and more. to

learn more check the main reference [35].

4.2.1 Results and Problems of Approach

The main aim of [35] was to design a feedback and feedforward controller u =

u(G,R,J) such that the actual blood glucose concentration G which is the controlled vari-

able tracks a desired time varying glucose reference R while tolerating small parameter

variations.
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4.2.1.1 Results

In order to test the efficiency of the designed controller, numerical simulations

were performed using a 24 hour insulin and glucose profiles of a group of normal men

obtained from the experiment published in [36]. The simulated controlled glucose con-

centration G and the tracked glucose reference R obtained from [36] are plotted together

in the following figure (obtained from [35]).

Figure 4.3: Glucose tracking under robust controller

Figure 4.3 shows that the designed controller succeeded in achieving its goal since

clearly the controlled glucose concentration asymptotically tracks the reference glucose.

4.2.1.2 Problems

Even though the tracking goal of the controller in [35] was achieved, a problem

rise in the mathematical formulation of the tracking goal. That is,

lim
t→∞

(G(t)−R(t)) = 0

The problem with this formulation is that the time t that is needed for G to track R

could range from a couple of hours to a few days or even weeks. In other words, there is
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no time restriction, which is a problem considering that this is a biological problem that

involves a diabetic patient. The issue here is that it might take days before G could track

R. Accordingly, G could have a very high oscillations that can damage the patient’s organs

and cause him some serious health issues that could eventually lead to the development

of some long term complications. Moreover, many diabetics turn off their artificial pan-

creas when sleeping, which furtherly emphasize the importance of having an appropriate

working time frame for the artificial pancreas. As a result, this approach is not practical.

Therefore, it is better to consider a more realistic approach when addressing the issue of

blood glucose regulation. Moreover, the controllability and observability of the artificial

pancreas where not checked even though it is an essential step in control design.

4.2.2 Contribution of Thesis and Possible Future Work

Firstly, since [35] did not include any controllability or observability proofs. The

first part of this thesis is dedicated to prove the controllability and the observability of the

Bergman model presented in [35] without the inclusion of the parameter uncertainties.

Secondly, a possible future work that could improve what was made in [35] is to

find an optimal control u such that the output G(t) = R(t) at all times t > 0. Achieving this

goal seems possible using the Trajectory Controllability approach which is also known as

T-Controllability were the aim is to look for a controller that steers the state variable

trajectories of a system along a specified trajectory instead of steering the state variables

from an initial state to a desired final one [37].
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4.3 Proofs of the Controllability and the Observability

In the presented proofs it is assumed that the exogenous glucose input J in system

(4.1) is also a control variable in addition to u. This assumption was based on the fact

that the glucose input can be controlled through the management of the dietary habits.

Therefore, the control of system (4.1) is going to have the following form:

v =

 J

u


Then, model (4.1) can be presented in the following semilinear form:

ż(t) = Az(t)+Bv(t)+F(z), t ≥ 0 (4.2)

Along with the observation

y = Hz (4.3)

Where,

z =


G

X

I

 , A =


−m1 0 0

0 −m2 m3

0 0 −m4

 , B =


1 0

0 0

0 1


Since the output/measure is G, then

H =


1 0 0

0 0 0

0 0 0
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Before looking into the controllability of system (4.2), it is necessary to study the control-

lability of the corresponding linear system of ODEs:

ż(t) = Az(t)+Bv(t), t ∈ (t0,τ]

z(t0) = z0

(4.4)

Proposition 4.3.1. System (4.4) is exactly controllable on any interval [t0,τ], with t0 < τ .

Proof. The proof is straightforward using Kalman’s rank [29, 30] condition. i.e.,

Rank[B|AB|A2B] = 3

In fact,

AB =


−m1 0 0

0 −m2 m3

0 0 −m4




1 0

0 0

0 1

=


−m1 0

0 m3

0 −m4


And,

A2B =


m2

1 0 0

0 m2
2 −m3(m2 +m4)

0 0 m2
4




1 0

0 0

0 1

=


m2

1 0

0 −m3(m2 +m4)

0 m2
4


Hence, the controllability matrix C is given by the following 3×6 matrix:

C =

[
B

... AB
... A2B

]
=


1 0

... −m1 0
... m2

1 0

0 0
... 0 m3

... 0 −m3(m2 +m4)

0 1
... 0 −m4

... 0 m2
4
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And by reducing matrix C, it is found that Rank(C) = 3 =⇒ the linear system (4.4) is

controllable on any time interval [t0,τ], with t0 < τ.

4.3.1 Approximate Controllability

In order to help prove the approximate controllability of system (4.2) a time delay

of r is introduced in the term of non-linearity to get the following system:

dG
dt

= −m1G+ J−X(t− r)G(t− r)

dX
dt

= −m2X +m3I

dI
dt

= −m4I +u

(4.5)

Along with the following initial conditions:

G(s) = φ1(s), s ∈ [−r,0]

X(s) = φ2(s), s ∈ [−r,0]

I(s) = φ3(s), s ∈ [−r,0]

Where φ1(s), φ2(s) and φ3(s) are functions of the historical data of each state variable.

System (4.5) along with its initial conditions can be represented compactly as follows:

ż(t) = Az(t)+Bv(t)+F(zt(−r)), t ≥ 0

z(s) = φ(s), s ∈ [−r,0]
(4.6)

where the function zt : [−r,0]→ R3 is defined by:

zt(s) = z(t + s)
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Definition 4.3.1. System (4.6) is said to be approximately controllable on an interval

[0,τ] if for any ε > 0, φ ∈ C([−r,0];R3) and final state z1 ∈ R3 there exists a control v ∈

C([0,τ];R2) such that the corresponding solution of system (4.6) satisfies two conditions:

1. z(0) = φ(0)

2. ‖z(τ)− z1‖ < ε

In this case the solution of (4.6) is given by:

z(t) = eAtφ(0)+
∫ t

0 eA(t−s)Bv(s)ds+
∫ t

0 eA(t−s) f (zs(−r))ds, t ∈ [0,τ]

z(s) = φ(s), s ∈ [−r,0]

To assist proving the approximate controllability of system (4.6), the Gramian matrix of

the linear system (4.4) must be defined. Where the Gramian matrix definition is given by:

Definition 4.3.2. Given a set of vectors v1, v2,. . .,vn. The Gramian matrix or the Gram

matrix G = [gi j] ∈ Cn×n of these vectors is defined by [38]:

gi j =
〈
vi,v j

〉
, i, j ∈ 1,2, ...,n

The Gramian matrix/operator of the linear system (4.4) is given by:

Wt0 =
∫

τ

t0
eA(τ−s)BBT eAT (τ−s)ds

The solution of system (4.4) at any time t = τ with initial condition z(t0) = z0 is given by:

z(τ) = eAτz0 +
∫

τ

t0
eA(τ−s)Bvt0(s)ds
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Consequently, a control vt0 steering system (4.4), from an initial state z0 to a final state z1

is given by:

vt0(t) = BT eAT (τ−t)W−1
t0 (z1− eAτz0), ∀t ∈ [t0,τ]

As shown by,

z(τ) = eAτz0 +
∫

τ

t0 eA(τ−s)BBT eAT (τ−s)W−1
t0 (z1− eAτz0) ds

= eAτz0 +
∫

τ

t0 eA(τ−s)BBT eAT (τ−s) ds W−1
t0 (z1− eAτz0)

= eAτz0 +Wt0W
−1

t0 (z1− eAτz0)

= eAτz0 + z1− eAτz0

= z1

After defining the approximate controllability of system (4.6) and the Gramian of the

linear system (4.4) the proof can be done.

Theorem 4.3.2. The semilinear system with delay (4.6) is approximately controllable on

[0,τ].

Proof. For a given φ ∈ C([−r,0];R3), a final state z1 and ε > 0, it is required to find a

controller v ∈C([0,τ];R2) such that the corresponding solution zv(.) of (4.6) satisfies:

‖z(τ)− z1‖< ε

A fixed control v ∈ C([0,τ];R2) is considered with a corresponding solution z(t,φ ,v) =

z(t). Then, a number δ is considered such that is small enough so that δ < r < τ and the
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control is defined by:

vδ (t) =


v(t), i f 0 < t < τ−δ

vτ−δ (t), i f τ−δ < t ≤ τ

where,

vτ−δ (t) = BT eAT (τ−t)W−1
τ−δ

(z1− eAτz(τ−δ )), τ−δ ≤ t ≤ τ

The solution of (4.6) corresponding to the control vδ (t) denoted by zδ (t) is given by:

zδ (t) = eAt
φ(0)+

∫ t

0
eA(t−s)Bvδ (s)ds+

∫ t

0
eA(t−s)F(zδ

s (−r))ds

Evaluating zδ (t) at t = τ and taking eAδ as a common factor, the following is obtained:

zδ (τ) = eAδ

{
eA(τ−δ )φ(0)+

∫
τ−δ

0 eA(τ−δ−s)Bv(s)ds+
∫

τ−δ

0 eA(τ−δ−s)F(zδ
s (−r))ds

}
+

∫
τ

τ−δ
eA(τ−s)Bvτ−δ (s)ds+

∫
τ

τ−δ
eA(τ−s)F(zδ

s (−r))ds

The expression is simplified to get:

zδ (τ) = eAδ zδ (τ−δ )+
∫

τ

τ−δ
eA(τ−s)Bvτ−δ (s)ds+

∫
τ

τ−δ
eA(τ−s)F(zδ

s (−r))ds

= z1 +
∫

τ

τ−δ
eA(τ−s)F(zδ

s (−r))ds

After moving z1 to the other side, the expression can be represented by:

zδ (τ)− z1 =
∫

τ

τ−δ

eA(τ−s)F(zδ
s (−r))ds
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Then, by taking the norm, the following inequality is obtained:

∥∥∥zδ (τ)− z1

∥∥∥≤ ∫ τ

τ−δ

∥∥∥eA(τ−s)
∥∥∥∥∥∥F(zδ (s− r)

∥∥∥ds≤
∫

τ

τ−δ

M
∥∥∥F(zδ (s− r))

∥∥∥ds

Since zδ (s− r) = z(s− r), if τ−δ ≤ s≤ τ , then

∥∥∥zδ (τ)− z1

∥∥∥≤ ∫ τ

τ−δ

M ‖F(z(s− r))‖ds

Take K = max
s∈[0,τ]

{∥∥∥eA(τ−s)
∥∥∥‖F(z(s− r))‖

}
and δ < min

{
r, ε

K

}
to get:

∥∥∥zδ (τ)− z1

∥∥∥< ε

4.3.2 Exact Controllability

The exact controllability of system (4.2) is going to be proved without the inclu-

sion of a time delay. However, it will still involve a slight modification in the system.

The proof employs the Banach contraction mapping theorem which is also known as the

Banach fixed point theorem which has the following definition:

Definition 4.3.3. Let X be a complete metric space and T : X −→ X be a contraction

map, meaning, there exists a constant q ∈ (0,1) such that d(T (x),T (y)) ≤ qd(x,y) for all

x,y ∈ X . Then, there exists a unique point z, such that T (z) = z. In other words, T has a

fixed point [39].
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System (4.2) can be written in the following slightly altered way:

dG
dt = −m1G−m5X +X(m5−G)+ J

dX
dt = −m2X +m3I

dI
dt = −m4I +u

(4.7)

With the initial conditions:

G(0) = G0

X(0) = X0

I(0) = I0

Which can be presented in the following compact form:

ż(t) = Az+Bv+F(z)

z(0) = z0

(4.8)

Where,

z =


G

X

I

 , A =


−m1 −m5 0

0 −m2 m3

0 0 −m4

 , B =


1 0

0 0

0 1


Before proving the exact controllability of system (4.8), it is favored to start by proving

the following corresponding linear system:

ż(t) = Az+Bv, t ∈ (0,τ] (4.9)

Proposition 4.3.3. The linear system (4.9) associated with the semilinear system (4.8) is

exactly controllable on the interval [0,τ].
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Proof. Just like the case of system (4.4), it would be enough to check the Kalman’s rank

condition [29, 30]:

AB =


−m1 0

0 m3

0 −m4

 , A2B =


m2

1 −m3m5

0 −m3(m2 +m4)

0 m2
4


Then,

Rank
[
B|AB|A2B

]
= Rank


1 0

... −m1 0
... m2

1 −m3m5

0 0
... 0 m3

... 0 −m3(m2 +m4)

0 1
... 0 −m4

... 0 m2
4

= 3

Hence, system (4.9) is exactly controllable on any time interval.

Before proving the exact controllability of system (4.8) the following operators of the

corresponding linear system (4.9) needs to be defined:

◦ The controllability operator G : L2(0,τ;R2)−→ R3 is defined by

G(v) =
∫

τ

0 eA(τ−s)Bv(s)ds

◦ The Gramian operator has the form

W =
∫

τ

0 eA(τ−s)BBT eAT (τ−s)ds

◦ The adjoint G∗ : R3→ L2(0,τ;R2) is given by

(G∗(ζ ))(t) = BT eAT (τ−t)ζ

It can be noted that the Gramian operator is a combination of the controllability operator

G and its adjoint G∗, i.e.

W = GG∗ =
∫

τ

0
eA(τ−s)BBT eAT (τ−s)ds
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Now, the exact controllability of system (4.8) can be proved.

Theorem 4.3.4. Under some conditions the semilinear control system (4.8) is exactly

controllable on the interval [0,τ].

Proof. Firstly, system (4.8) is assumed to be exactly controllable on the interval [0,τ].

Then, for any initial and final states z0,z1 ∈ R3, there exists a control v ∈ C([0,τ];R2)

such that the corresponding solution of (4.8) satisfies:

z1 = eAτz0 +
∫

τ

0 eA(τ−s)Bv(s)ds+
∫

τ

0 eA(τ−s)F(z(s))ds

= eAτz0 +G(v)+
∫

τ

0 eA(τ−s)F(z(s))ds

Hence,

G(v) = z1− eAτz0−
∫

τ

0
eA(τ−s)F(z(s))ds

Now, v can be represented by the expression v = G∗W−1G(v) as shown by,

G(v) =
∫

τ

0 eA(τ−s)Bv(s)ds

G(v) =
∫

τ

0 eA(τ−s)BG∗W−1G(v)ds

G(v) =
∫

τ

0 eA(τ−s)BBT eAT (τ−s)W−1G(v)ds

G(v) =
∫

τ

0 eA(τ−s)BBT eAT (τ−s)dsW−1G(v)

G(v) = WW−1G(v)

G(v) = G(v)

Therefore,

v = G∗W−1(z1− eAτz0−
∫

τ

0
eA(τ−s)F(z(s))ds)
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Now, an operator L is defined by:

L (z) = G∗W−1(z1− eAτz0−
∫

τ

0 eA(τ−s)F(z(s))ds)

= Γ(z1− eAτz0−
∫

τ

0 eA(τ−s)F(z(s))ds)

Then, the solution of the initial value problem (4.8) can have the following representation:

z(t) = eAtz0 +
∫ t

0
eA(t−s)BL (z)(s)ds+

∫ t

0
eA(t−s)F(z(s))ds

Which motivates the definition of the following operator:

P : C([0,τ];R3)−→C([0,τ];R3)

That is defined by the following expression:

(P(z))(t) = eAtz0 +
∫ t

0
eA(t−s)BL (z)(s)ds+

∫ t

0
eA(t−s)F(z(s))ds

Hence, the controllability problem is reduced to the problem of finding a fixed point for

the operator P , which can be done by proving that P is a contraction map. In fact,

(P(z2))(t)− (P(z1))(t) =
∫ t

0 eA(t−s)B(L (z2)(s)−L (z1)(s))ds

+
∫ t

0 eA(t−s)(F(z2(s))−F(z1(s)))ds

By taking the norm and applying the triangular inequality, the following inequality is

obtained:

‖(P(z2))(t)− (P(z1)(t))‖ ≤
∫ t

0 M ‖L (z2)(s)−L (z1)(s)‖ds

+
∫ t

0 Mm5 ‖z2(s)− z1(s)‖ds
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Where

M = max
t∈[0,τ]

{∥∥∥eAt
∥∥∥ ,∥∥∥eAtB

∥∥∥} ,
The inequality ‖F(z2)−F(z1)‖ ≤ m5 ‖z2(s)− z1(s)‖ can be proved directly by substitut-

ing the expression of F(z). On the other hand,

‖L (z2)(s)−L (z1)(s)‖ ≤ ‖Γ‖
∫

τ

0 Mm5 ‖z2(s)− z1(s)‖ds

≤ ‖Γ‖τMm5 ‖z2− z1‖

where,

‖Γ‖= sup
s∈[0,τ]

∥∥BT∥∥∥∥∥eAT (τ−s)
∥∥∥∥∥W−1∥∥≤ ‖B‖M

∥∥W−1∥∥
Hence,

‖L (z2)(s)−L (z1)(s)‖ ≤ ‖B‖M2m5
∥∥W−1∥∥τ(‖z2− z1‖)

Therefore,

‖P(z2)−P(z1)‖ ≤ (‖B‖M3
∥∥W−1

∥∥m5τ2 + τm5M)(‖z2− z1‖)

‖P(z2)−P(z1)‖ ≤ (‖B‖M2
∥∥W−1

∥∥τ +1)τm5M ‖z2− z1‖

Consequently, P is contraction map in case the following condition holds:

(‖B‖M2∥∥W−1∥∥τ +1)τm5M < 1

Accordingly, the following theorem is deduced:

Theorem 4.3.5. System (4.8) is exactly controllable on the interval [0,τ] if the following
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condition holds

(‖B‖M2∥∥W−1∥∥τ +1)τm5M < 1

where,

M = max
t∈[0,τ]

{∥∥∥eAt
∥∥∥ ,∥∥∥eAtB

∥∥∥}
and

W =
∫

τ

0
eA(τ−s)BBT eAT (τ−s)ds

4.3.2.1 Example

To furtherly emphasize theorem (4.3.5), the following example is presented using

parameter values obtained from the original paper [21] that presented bergman’s model.

In this example, the parameters are those of subject no.3 in [21]:

Parameter Value

m1 0.0374 min−1

m2 0.0478 min−1

m3 0.00000873 min−2

( µU
ml )

m4 0.3 min−1

Then,

A =


−0.0374 −m5 0

0 −0.0478 0.00000873

0 0 −0.3

 B =


1 0

0 0

0 1
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τ is arbitrarily set such that τ = 60 min ( 1 hour ), and m5 = 1.8∗10−12 to get:

W =


13.2187 −9.84478∗10−29 −1.2399∗10−25

−9.84478∗10−29 7.60001∗10−9 0.0000418344

−1.2399∗10−25 0.0000418344 1.66667


and

M = max
t∈[0,60]

{∥∥∥eAt
∥∥∥ ,∥∥∥eAtB

∥∥∥}= 1

Then,

(‖B‖
∞

M2∥∥W−1∥∥
∞

τ +1)τm5M = 0.989347 < 1

So, the inequality of Theorem (4.3.5) is satisfied. Therefore, system (4.8) in this case is

exactly controllable on the time interval [0,60]. Note that for the system to be exactly con-

trollable, the value of m5 should be selected based on the value of τ . For instance, in case

τ = 60 minutes then any positive value of m5 such that m5 ≤ 1.8∗10−12 would satisfy the

inequality. However, if the value of τ is increased to 120 minutes, then m5 = 1.8∗10−12

would no longer satisfy the inequality and values of m5 such that m5 ≤ 4.5∗10−13 would

satisfy the inequality. Which means that in order to satisfy the inequality of Theorem

(4.3.5) the value of m5 should be decreased as the value of τ increases. Practically speak-

ing, if the time τ to control the blood glucose level was to be increased, then the value of

m5 should be decreased, which implies that it would require more number of digits to be

presented. This implies that the precision of the control system should increase to fit more

number of digits as the controlling time increases. Hence, it would be preferred to use

a high precision control system (artificial pancreas) when controlling a diabetic’s blood

glucose level.
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4.3.3 Observability

Just like in the case of controllability. First, the observability of the linear system

corresponding to system (4.2) is proved. This linear system has the following form:

ż = Az+Bv (4.10)

y = Hz (4.11)

Then, the corresponding observability matrix is given by:

O =



1 0 0

0 0 0

0 0 0

. . . . . . . . .

−m1 0 0

0 0 0

0 0 0

. . . . . . . . .

−m2
1 0 0

0 0 0

0 0 0



Rank(O) = 3−→ system (4.10) is observable on any time interval according to Kalman’s

Rank Condition [29, 30].

To prove the observability of the semilinear system (4.2), system (4.2) is considered to be
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independent of the control variable, i.e.

ż = Az+F(z) (4.12)

Then, the observability is proved directly using the following theorem from [40].

Theorem 4.3.6. Assume that the transformations f : R3 −→ R3 and h : R3 −→ R3 to be

continous. If the pair ( fz(0),hz(0)) is observable, then the system (5.11) is observable at

any time t > 0 [40].

Where the transformations f and h are defined as follows:

f (z) = Az+F(z)

h(z) = Hz

Then, ( fz(0),hz(0)) = (A,H). and since the linear system (4.10) is observable, then the

semilinear system (4.2) - (4.3) is observable at any time t > 0, which is clearly true since

the blood glucose level can be observed at any time through the CGM.
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Chapter 5: Literature Review - Modeling of Infectious Diseases

5.1 Compartmental Disease Transmission Models

Mathematical modeling of infectious diseases is a powerful tool to study the

spread of an infectious disease. These models can predict the progression of the disease

spread, and they can also determine the key factors that contributes to the disease trans-

mission making them a helpful tool in the development of the strategies that aids in the

prevention and control of the disease spread [41].

These models are known as the Compartmental Disease Transmission Models.

As the name suggests, in these models the population of concern is divided into compart-

ments where each individual is characterized by a distinct state variable. In other words,

no individual can be present in more than one compartment. A compartment can either be

a disease compartment containing both symptomatically and asymptomatically infected

individuals, or a non-disease compartment containing non diseased individuals [42].

In this case, the total population at issue is divided into n disease compartments and m

non-disease compartments, then the disease transmission model can be written in the

following form of a system of ODEs [42]:

x′i = Fi(x,y)−Vi(x,y), i = 1,2, ...,n

y′j = G j(x,y), j = 1,2, ...,m

Where xi, for i ∈ 1,2, ...,n represents a disease compartment, and y j, for j ∈ 1,2, ...,m

represents a non-disease compartment. Moreover, Fi represents the rate of increase of

secondary infection in the disease compartment i, and Vi represents the rate of decrease
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in the compartment i either by disease progression, recovery, or death.

5.2 SEIR Model

An example of a compartmental disease transmission model is the SEIR model.

This model segregates the population of concern into four sub populations. Namely, sus-

ceptible or vulnerable population (S), Exposed or latent infected population (E), infectious

population (I), and recovered population (R). This model assumes that all new infections

takes place at the first stage when a susceptible individual comes into contact with an

infected individual. SEIR models can be presented in may possible ways, one of which is

written as follows [42]:

S′ = Π−µS−βSI

E ′ = βSI− (µ +κ)E

I′ = κE− (µ +α)I

R′ = αI−µR

Naturally, all initial conditions are non negative, since the number of individuals

in a population cannot be negative. This representation assumes that the natural birth rate

of susceptible persons is a constant Π. On the other hand, natural death rate is assumed

to be µ for all the sub populations. The rate at which new infections emerges into the

exposed sub population is βSI. Exposed individuals become infectious by the rate κ , and

infected individuals recovers at the rate α .

It is to be noted that not all SEIR models have the presented form. Some of

which neglects the natural birth and death rates. In addition, the presented model assumes

that individuals gets immunity after recovery. However, some models assumes that the

recovered individuals progresses to become susceptible again at a certain rate.
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Figure 5.1 shows a flow chart of the presented SEIR model.

Figure 5.1: Flow diagram of an SEIR model

5.3 The Basic Reproduction Number

Definition 5.3.1. The basic reproduction number R0 can be defined as the expected num-

ber of secondary infection cases produced directly by a single infectious individual as-

suming that the population is susceptible [43].

In other words, R0 is a measure of the potential of an infectious disease to spread

in a population. If R0 < 1, then the number of infection cases will decay until the disease

vanishes from the population. On the other hand, in case R0 > 1, then the disease is going

to persist [43].

5.3.1 Basic Reproduction Number Calculation

For a compartmental ODE disease transmission model, R0 could be calculated by the

following steps [42]:

1. Firstly, The system of ODE of disease compartments is represented in the following
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form:

Ẋ = F −V

Where F ∈Rn represents secondary infections, and V ∈Rn represents disease pro-

gression, recovery, or death.

2. Secondly, Ẋ is linearized about the disease free equilibrium point to get the following

decoupled form:

Ẋ = (F−V )X

Where the infection matrix F , and the transition matrix V are n×n matrices whose

(i,j) entries are given by:

F =
∂Fi

∂X j
,V =

∂Vi

∂X j

3. Lastly, the next generation matrix K = FV−1 is calculated, and R0 is simply the

eigen value of K with the biggest modulus.

5.4 Sensitivity Index

In a model, to measure the relative change of a variable with respect to a parameter the

sensitivity index of that variable with respect to the parameter is calculated. If the variable

is differentiable with respect to the parameter, then the sensitivity index can be calculated

using the following formula [44]:

ϒ
x
θ =

∂x
∂θ

θ

x

Were x is the variable, and θ is the parameter.
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Chapter 6: The Impact of COVID-19 on Patients with Comorbidity

6.1 Problem Statement

Individuals with diabetes have weakened immune functions. As a result, diabetic

individuals were found to be at more risk of becoming critically ill when infected with a

viral or bacterial infection as witnessed in the previous pandemics including SARS-CoV-

1, H1N1, and MERS [45]. This was also found in the case of COVID-19 as suggested

by many reports and studies. For instance, The Chinese Center for Disease Control and

Prevention reported that the fatality rate of diabetic COVID-19 patients was 7.3% based

on a report of 44,672 patients. Another study showed that 72% of COVID-19 patients

with comorbidities including diabetes required admission to an ICU according to a study

of 139 patients [45]. More generally, COVID-19 patients with not only diabetes, but other

comorbidities such as cardiovascular diseases ,hypertension, lung diseases and kidney

diseases were found to constitute the majority of higher morbidity and fatality cases [46,

47, 48].

As mentioned in Chapter 1, COVID-19 is a highly transmissible disease with

many asymptomatic infection cases, making this disease very difficult to control and man-

age, and especially dangerous for the comorbidity population. Since the disease is highly

contagious and is rapidly transmitting, it is crucial to find a way to control the spread of

this disease. Mathematical modeling is a possible method to rapidly analyze the disease

spread and develop a strategy to control it [49].
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6.2 Thesis Contribution

The second part of this thesis presents a COVID-19 compartmental disease trans-

mission model in the form of a system of ODEs. As previously stated, individuals with

comorbidities are medically vulnerable, and so they are at a greater risk of developing

critical disease complications in case they get infected, and they also have a higher fa-

tality risk due to this contagious disease. Consequently, the presented model is focused

on the populations of comorbidity. This model is an extended SEIR model that divides

the population into: susceptible (S), exposed (E), mildly infected (I), asymptomatically

infected (A), and treated populations (J) with and without comorbidity. It also includes

the recovered (R), critically ill infected (C), and fatality populations (D).

The model can be used to represent the population of any city, country, or region.

This can be done by estimating the parameters after fitting the model into the real data

of the number of active infection cases in the desired population. In the presented case,

the model is made to represent the population of the United Arab Emirates Country. The

considered timeline is between the 22nd of January 2020 until the 27th of June 2020.

Calculations of the basic reproduction number are included. These calculations

will help get an insight on how rapid the disease is being transmitted. Additionally, cal-

culations of the sensitivity indices of the basic reproduction number with respect to the

model’s parameters are calculated. With the help of the sensitivity indices, the major fac-

tors that contributes to the disease transmission can be determined. Hence, by utilizing

the calculations obtained, disease transmission control strategies can be developed.
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6.3 Disease Transmission Model of COVID-19

The proposed mathematical model of the transmission of COVID-19 is given by the fol-

lowing system of ODEs:

Ṡ1 = −(β 1
I1

I1 +β 1
A1

A1 +β 1
I2

I2 +β 1
A2

A2)S1

Ṡ2 = −(β 2
I1

I1 +β 2
A1

A1 +β 2
I2

I2 +β 2
A2

A2)S2

Ė1 = (β 1
I1

I1 +β 1
A1

A1 +β 1
I2

I2 +β 1
A2

A2)S1− (γ1 +ν1)E1

Ė2 = (β 2
I1

I1 +β 2
A1

A1 +β 2
I2

I2 +β 2
A2

A2)S2− (γ2 +ν2)E2

Ȧ1 = γ1E1− (κ1 +ϕ1 +αA1)A1

Ȧ2 = γ2E2− (κ2 +ϕ2 +αA2)A2

İ1 = κ1A1 +ν1E1− (ξ1 +αI1)I1

İ2 = κ2A2 +ν2E2− (ξ2 +αI2)I2

J̇1 = ϕ1A1 +ξ1I1−αJ1J1

J̇2 = ϕ2A2 +ξ2I2− (η +αJ2)J2

Ṙ = αA1A1 +αA2A2 +αI1I1 +αI2I2 +αJ1J1 +αJ2J2 +αCC

Ċ = ηJ2− (µ +αC)C

Ḋ = µC

(6.1)

Sub populations: In this compartmental ODE model, the populations S, E, A, I,

and J are indexed by either 1 or 2. Index 1 represents a population without comorbidity,

while index 2 represents a population with comorbidity. The recovered population R

includes all individuals that have recovered with and without comorbidity. It is assumed

that only individuals with comorbidity can develop a critical condition due to COVID-

19. Therefore, the population C only includes individulas with comorbidities. Likewise,
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it is also assumed that death due to COVID-19 only constitutes comorbidity population.

Hence, population D is the fatality population of those who were infected with COVID-19

with a comorbidity. Since the considered timeline is somewhat short, the total population

N is considered to be constant, i.e.

N = S1 +S2 +E1 +E2 +A1 +A2 + I1 + I2 + J1 + J2 +C+R+D = constant

Infection: In this model, it is assumed that new infection cases arise when a sus-

ceptible individual from S1 or S2 comes into contact with either a mildly infected individ-

ual from I1 or I2, or an asymptomatically infected individual from A1 or A2. It assumed

that infected people who are being treated from J1 or J2 do not cause any secondary infec-

tions as they are isolated in a hospital. The same situation applies for infected individuals

with a critical condition from C.

Parameters: parameters of the form β x
y represents the disease transmission rate

from an individual of population y to an individual from population x. The parameters γ

and ν represents the rate at which an exposed individual progresses from the exposed class

to the asymptomatic and the mildly infected classes respectively. The recovery rates are

represented by the α parameters. An individual with comorbidity that is under treatment

develops a critical condition at the rate η , and an individual under critical condition has a

death rate of µ due to COVID-19 .
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The model’s disease progression is portrayed by the flow chart in Figure 6.1.
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Figure 6.1: Flow chart of COVID-19 transmission model
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6.4 Data Acquisition and Parameter Estimation

As a first step to estimate the model’s parameters, some key parameters of the COVID-19

pandemic were estimated using data from china, the country with the first reported cases

of the disease. These estimations are presented in Table 6.1.

Table 6.1: Estimations of key parameters of COVID-19

Parameter Symbol Value (s) Reference (s)
Fraction of asymptomatic
infections FracA 20 - 40% [50, 51, 52, 53]

Duration of the infectious
phase of the incubation
period (days)

PresPer 2

Duration of asymptomatic
infections (days) DurA 4 - 9.5 [54]

Average incubation period
(days) IncPer 4 - 9

[50, 55, 56, 57, 58]
[59, 60]

Average duration of mild
infections DurMInf 4 - 20 [54, 60, 61, 46, 62]

Average fraction of mild
symptomatic infections FracMInf 27 - 81% [54, 58, 63]

Average fraction of severe
symptomatic infections FracSev 14 - 24 % [54, 58, 63]

Average fraction of critical
symptomatic infections FracCri 2 - 6% [54, 58, 63, 64]

Average hospitalization
duration (days) DurHos 8 - 23

[46, 64, 65, 66, 67]
[68, 69]

Average ICU admission
duration (days) TimeICU 21

Probability of death
due to the infection ProbDeath 0.04 - 7.71% WHO

Average time in the ICU
until death (days) TimeICUdeath 8 - 10 [62, 70]

Note: Since Model 6.1 is intended to represent the spread of COVID-19 in the United

Arab Emirates, the probability of death in Table 6.1 is based on the COVID-19 fatality

percentages of some of the Arab countries obtained from data provided by WHO during

the considered period.



52

For the second step, the model’s parameters were given initial estimated values that are

calculated based on the COVID-19 parameters presented in Table 6.1. These initial values

are presented in Table 6.2.

Table 6.2: The estimated parameter values

Parameter Symbol Value for i = 1 Value for i = 2
Rate of progression from exposed
to asymptomatic class γi 0.5 0.5

Rate of progression from exposed
mild symptoms class νi

1
7 0.5

Rate at which the asymptomatic
develops mild symptoms κi 0.2025 27

950

Rate at which the asymptomatic
becomes hospitalized ϕi 0 0

Recovery rate of the asymptomatic
populations αAi 0.0475 73

950

Rate at which a mildly infected
individual becomes hospitalized
and isolated

ξi 0.007 0.06

Recovery rate of an infected
individual with mild symptoms αIi 0.043 0.1825

Rate at which a hospitalized individual
develops a critical condition η - 3

1150

Recovery rate of hospitalized
infected population αJ 0.1225 47

1150

Recovery rate of an infected individual
in the ICU αC - 0.04395

Death rate of an individual
in the ICU µ - 0.00964

Infection rate by a mildly
infected individual β i

I j
0.5944 1.68

Infection rate by an asymptomatically
infected individual β i

A j
0.5944 1.68

Note: the mathematical formulas used to calculate these parameters are presented in the

Appendix in Table 6.
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Thereafter, real data of the active infection cases in the United Arab Emirates were ob-

tained from the 22nd of January 2020, to the 27th of June 2020. These numbers were

obtained by subtracting the number of the recovery and death cases from the accumulated

number of infection cases obtained from the World’s Health Organization. Plots of the

accumulated, recovered, death and active infection cases are presented in Figure 6.2 and

Figure 6.3.
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Figure 6.2: Active, recovered and accumulated infection cases in the UAE
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Next, using MATLAB, Model 6.1 was fitted to the real active infection cases as shown in

Figure 6.4.
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Figure 6.4: Fitting model’s infection cases with real infection cases

The active infection cases of the model were considered to be:

active infection cases = A1 +A2 + I1 + I2 + J1 + J2 +C

Note: The exposed populations E1, and E2 were not considered as active infection cases

as they include latently infected individuals whose infection is not active and they are not

yet infectious.

The fitted parameters values are presented in Table 6.3.
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Table 6.3: Fitted parameter values

Parameter Value
γ1 0.5
γ2 0.5
ν1 0.14286
ν2 0.5
κ1 0.2025
κ2 0.02842
ϕ1 0
ϕ2 0
αA1 0.0475
αA2 0.07684
ξ1 0.007
ξ2 0.06
αI1 0.043
αI2 0.1825
η 0.0025

αJ1 0.1225
αJ2 0.04087
αC 0.0476
µ 0.00004

Before analyzing the spread of COVID-19 in the United Arab Emirates, the basic repro-

duction number is calculated as it is needed for the analysis.

6.5 The Basic Reproduction Number

The infection compartments are represented by the disease state vector ~X which is ex-

pressed as:

~X = [ E1 E2 A1 A2 I1 I2 ]T

Ẋ can be expressed in the following form:

Ẋ =
d~X
dt

= F (X)−V (X)
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Where,

F =



(β 1
I1

I1 +β 1
A1

A1 +β 1
I2

I2 +β 1
A2

A2)S1

(β 2
I1

I1 +β 2
A1

A1 +β 2
I2

I2 +β 2
A2

A2)S2

0

0

0

0



V =



(γ1 +ν1)E1

(γ2 +ν2)E2

−γ1E1 +(κ1 +ϕ1 +αA1)A1

−γ2E2 +(κ2 +ϕ2 +αA2)A2

−κ1A1−ν1E1 +(ξ1 +αI1)I1

−κ2A2−ν2E2 +(ξ2 +αI2)I2


After linearizing the model about the disease-free equilibrium point, the following decou-

pled form is obtained:

Ẋ = (F−V )X

Where the infection matrix F is given by:

F =



0 0 β 1
A1

So
1 β 1

A2
So

1 β 1
I1

So
1 β 1

I2
So

1

0 0 β 2
A1

So
2 β 2

A2
So

2 β 2
I1

So
2 β 2

I2
So

2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


Here, So

1 and So
2 denotes the disease-free equilibrium populations with and without co-

morbidity.
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The transition matrix V is given by, V =



(γ1 +ν1) 0 0 0 0 0

0 (γ2 +ν2) 0 0 0 0

−γ1 0 (κ1 +ϕ1 +αA1) 0 0 0

0 −γ2 0 (κ2 +ϕ2 +αA2) 0 0

−ν1 0 −κ1 0 (ξ1 +αI1) 0

0 −ν2 0 −κ2 0 (ξ2 +αI2)



The inverse matrix of V is expressed as, V−1 =



1
(γ1+ν1)

0 0 0 0 0

0 1
(γ2+ν2)

0 0 0 0

γ1
(γ1+ν1)(κ1+ϕ1+αA1 )

0 1
(κ1+ϕ1+αA1 )

0 0 0

0 γ2
(γ2+ν2)(κ2+ϕ2+αA2 )

0 1
(κ2+ϕ2+αA2 )

0 0

γ1κ1+ν1(κ1+ϕ1+αA1 )

(γ1+ν1)(κ1+ϕ1+αA1 )(ξ1+αI1 )
0 κ1

(κ1+ϕ1+αA1 )(ξ1+αI1 )
0 1

(ξ1+αI1 )
0

0
γ2κ2+ν2(κ2+ϕ2+αA2 )

(γ2+ν2)(κ2+ϕ2+αA2 )(ξ2+αI2 )
0 κ2

(κ2+ϕ2+αA2 )(ξ2+αI2 )
0 1

(ξ2+αI2 )



Therefore, the next generation matrix K is expressed as, K =



(φ1β 1
A1
+φ2β 1

I1)S
o
1 (φ3β 1

A2
+φ4β 1

I2)S
o
1 (φ5β 1

A1
+φ6β 1

I1)S
o
1 (φ7β 1

A2
+φ8β 1

I2)S
o
1

β 1
I1

so
1

(ξ1+αI1 )

β 1
I2

so
1

(ξ2+αI2 )

(φ1β 2
A1
+φ2β 2

I1)S
o
2 (φ3β 2

A2
+φ4β 2

I2)S
o
2 (φ5β 2

A1
+φ6β 2

I1)S
o
2 (φ7β 2

A2
+φ8β 2

I2)S
o
2

β 2
I1

so
2

(ξ1+αI1 )

β 2
I2

so
2

(ξ2+αI2 )

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





58

Given the following:

φ1 = γ1
(γ1+ν1)(κ1+ϕ1+αA1)

φ2 =
(γ1κ1+ν1(κ1+ϕ1+αA1))

(γ1+ν1)(κ1+ϕ1+αA1)(ξ1+αI1)

φ3 = γ2
(γ2+ν2)(κ2+ϕ2+αA2)

φ4 =
(γ2κ2+ν2(κ2+ϕ2+αA2))

(γ2+ν2)(κ2+ϕ2+αA2)(ξ2+αI2)

φ5 = 1
(κ1+ϕ1+αA1)

φ6 = κ1
(κ1+ϕ1+αA1)(ξ1+αI1)

= φ5
κ1

(ξ1+αI1)

φ7 = 1
(κ2+ϕ2+αA2)

φ8 = κ2
(κ2+ϕ2+αA2)(ξ2+αI2)

= φ7
κ2

(ξ1+αI2)

Then, R0 is the eigenvalue of matrix K with the biggest modulus which is given by:

R0 =
1
2
(

√
(R01−R02)2 +4R̄01R̄02 +R01 +R02)

Where

R01 = (φ1β 1
A1
+φ2β 1

I1
)So

1, R̄01 = (φ3β 1
A2
+φ4β 1

I2
)So

1

R02 = (φ3β 2
A2
+φ4β 2

I2
)So

2, R̄02 = (φ1β 2
A1
+φ2β 2

I1
)So

2

This indicates that R0 depends on four components which can be viewed as sub ba-

sic reproduction numbers. R01 represents the basic reproduction number of the non-

comorbidity population on its own, R02 represents the basic reproduction number of the

comorbidity population, R̄01 represents the basic reproduction number of the infection

of the non-comorbidity population that is caused by the comorbidity population and R̄02

represents the basic reproduction number of the comorbidity population infections which

are caused by the non-comorbidity population. Hence, different population distributions

results in different reproduction numbers as indicated by the following scenarios:

Case 1: R̄01 = 0

In this case no infection of the general population is caused by the comorbidity

population. This is achieved by isolating individuals with comorbidity from the



59

general population. The basic reproduction number in this case is:

R0 =
1
2
(
√

(R01−R02)2 +R01 +R02) = R01

indicating that infection will only be spread among the non-comorbidity population

and the disease will not be transmitted from or to the comorbidity population. In

this scenario the following points can be drawn:

R0 > 1: when R01 > 1

R0 < 1: when R01 < 1

Indicating that disease transmission depends completely on the general population.

Case 2: R̄02 = 0

In this case no disease transmission from the general population to the comorbidity

population takes place. This case has the same result as case 1.

Note: The previous two cases are examples of shielding which is a method utilized

by the governments of many countries to prevent disease spread amongst people

who are medically vulnerable. These people includes elderly, people suffering from

heart or respiratory diseases in addition to pregnant women. In this method, these

people isolate themselves and practice social distancing as much as possible in order

to protect themselves.

Case 3: R01, R02, R̄01 and R̄01 are constants. In this case the disease is being transmitted in

a constant, stable way amongst the different populations. In this case R0 < 1 holds

when:

1
2
(

√
(R01−R02)2 +4R̄01R̄02 +R01 +R02)< 1
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which implies that

√
(R01−R02)2 +4R̄01R̄02 < 2−R01−R02

in case

|R01−R02|< 2−R01−R02

which applies when max{R01,R02}< 1, implying that the disease will stop spread-

ing once it stops spreading amongst both the general and the comorbidity popula-

tions. Similarly, R0 > 1 when:

1
2
(

√
(R01−R02)2 +4R̄01R̄02 +R01 +R02)> 1,

which implies that

√
(R01−R02)2 +4R̄01R̄02 > 2−R01−R02

which applies when min{R01,R02}> 1 indicating that the disease will continue to

spread as long as it is still spreading amongst both the general and the comorbidity

populations.

6.6 Analyzing the Spread of COVID-19 in the UAE

In this section, the spread of COVID-19 in the United Arab Emirates is analyzed

using Model (6.1). The considered timeline is from the 22nd of January 2020, to the

27th of June 2020. In the model, the 22nd of January is denoted by t = 0, and the

27th of June 2020 is denoted by t = 157, where t represents the days.
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Stages of measures: The considered timeline can be divided into three stages

based on the measures the authorities of the United Arab Emirates took to help in

reducing the spread of COVID-19. These stages are given by:

Stage 1 (No intervention): This stage was at the beginning of the pandemic. Hence,

the number of cases was not significant. The country’s authorities observed the

evolution of the infection cases in this stage and started to prepared a proper

strategy for reducing the spread of COVID-19. At this stage, the transmission

rate can be considered to be constant.

Stage 2 (Slightly effective intervention): At this stage, the number of cases has signifi-

cantly increased. Hence, the concerned authorities used a series of measures to

help reducing the spread of COVID-19. These measures included switching to

remote working for applicable jobs, in addition to virtual learning for students.

Moreover, many malls and shops were temporarily closed and a nationwide dis-

infection program was established [71]. These measures helped in relenting the

spread of COVID-19 but were not very effective, as the number of active infec-

tion cases continued to rise. At this stage, the transmission rate was reduced,

but can also be considered to be constant.

Stage 3 (Effective intervention): At this stage, authorities imposed a full lock-down on

the country. This measure led to a significant decrease in the mobility of people

in the UAE as indicated by Apple’s and Google’s mobility reports [72, 73].

Naturally, the transmission rate has decreased at this stage, and the number of

active infection cases have started to decrease as well.



62

Figure 6.5 shows the three mentioned stages represented by an active infection case

timeline.
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Figure 6.5: The three stages of measures taken by the UAE authorities

Approximating disease-free equilibrium populations: At the disease-free

equilibrium, the population with comorbidity So
2 is approximated by the population

aged 55 years old and above. This approximation is based on a study on the severity

of COVID-19. In this study, data were collected from the different regions of china

including Wuhan where the virus is originated. The study showed that the fatality

rate is higher amongst the populations aged 50 and above [69].

In the UAE, the population aged 55−64 makes up 7.68% of the total popu-

lation, and the population aged 65 years and above makes up 1.9% of the total pop-

ulation, meaning that the population with comorbidity is approximated by 9.58%

of the total population of 9,992,083 as in july 2020 [74]. Hence, So
2 ≈ 957242 and

So
1 ≈ 9034841. The comorbidity percentage is denoted by p = 9.58%.

Using a similar method, the number of people with comorbidity in the different
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subpopulations can be approximated. For simplicity, it is presumed that β 1
I1
= β 2

I1
,

β 1
I2
= β 2

I2
, β 1

A1
= β 2

A1
and β 1

A2
= β 2

A2
, which means that an individual in the same class

of infection has the same transmission rate (mobility).

The transmission rate of the asymptomatic individuals depends on their mo-

bility, where infected individuals of this category do not show any symptoms, and

therefore infect others without being revealed. Individuals of this category consti-

tutes most of the careless individuals who does not respect the restrictions imposed

by the government. Using the mobility reports [72, 73] it can deduced that there

is a decrease of 55− 60% in the mobility at parks. Implying that 40− 45% of the

population did not respect the measures taken by the government. Hence, the mo-

bility rate is denoted by p1 = 40%. And so, it can be assumed that β
j

Ai
= p1β

j
Ii

for

i, j = 1,2. Now it remains to determine the transmission rates β 1
Ii

, i = 1,2.

The transmission rates β are assumed to have the following form:

β
1
Ii
=


βi, t ∈ [0,100] (Stage 1)

38.5%βi, t ∈ [100,140] (Stage 2)

38.5%βi exp−δ t , t ∈ [145,157] (Stage 3)

(6.2)

where δ = 0.0265 denotes the lock-down efficiency rate. Using these approxima-

tions, it is deduced that: β1 = 2.1×10−8 and β2 = 4×10−9.

Using the approximated parameter values of Model 6.1 in Table 6.3, and the approx-

imated transmission rates, the number of individuals in each infection class can be

approximated as shown in the following timeline.
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Figure 6.6: Infection cases in each class

By taking a closer look at Figure 6.6, one can note that the number of the mildly

infected individuals without comorbidity (I1) is far greater than the one with co-

morbidity (I2). The same remark can be noted for the A and E classes. This is a

very important remark as it indicates that the UAE community have implemented a

shielding behavior that isolates the comorbidity population in order to protect them.

Now, using the previously mentioned approximations the following values are ob-

tained:

φ1 = 3.1111, φ5 = 4

φ2 = 17.0444, φ6 = 16.2

φ3 = 4.75, φ7 = 9.5

φ4 = 2.6186, φ8 = 1.1134

Therefore, the values of R0 corresponding to the three stages are given by:

Table 6.4: R0 on the different stages

Stage 1 Stage 2 Stage 3
R0 = 3.4873 R0 = 1.3426 R0 = 0.0288−0.0209
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6.7 Sensitivity Analysis

Sensitivity analysis helps in determining how important each parameter is to

disease transmission. Such an analysis is commonly used to determine how robust

a model is to the predicted parameter values, since data collection and presump-

tions are usually accompanied with errors. Using the sensitivity index, parameters

that have a high impact on R0 can be determined, and by using this knowledge

an appropriate intervention strategy to help in reducing disease transmission can be

implemented [44].

The sensitivity index of R0, which is differentiable with respect to a given parameter

θ , is given by:

ϒ
R0
θ

=
∂R0

∂θ

θ

R0

The sensitivity index expressions of R0 with respect to the parameters of Model 6.1

are presented in the Appendix, and the values of these indices are presented in Table

6.5.

Looking at the sensitivity indices in Table 6.5, it can be noticed that all

disease transmission parameters β 1
A1

, β 1
A2

, β 1
I1

, β 1
I2

, β 2
A1

, β 2
A2

, β 2
I1

and β 2
I2

have pos-

itive sensitivity indices, which indicates that clearly when disease transmission is

increased, naturally the basic reproduction number will increase accordingly. Sim-

ilarly, the recovery rates αI1 , αI2 , αA1 and αA2 have negative sensitivity indices,

indicating that when the recovery rates increase, the basic reproduction number will

decrease in response.



66

Table 6.5: The sensitivity indices of R0 with respect to the parameters

Parameter Sensitivity Index

β 1
I1

0.8890

κ1 0.0740

β 1
A1

0.0649

ν1 0.0203

β 1
A2

0.0200

γ2 0.0094

β 2
I1

0.0039

β 1
I2

0.0028

β 2
A1

0.0015

β 2
A2

4.7710∗10−4

β 2
I2

6.5754∗10−5

ϕ1 0

ϕ2 0

ξ2 −6.9826∗10−4

αI2 −0.0021

κ2 −0.0051

ν2 −0.0094

αA2 −0.0154

γ1 −0.0203

ξ1 −0.1274

αA1 −0.1379

αI1 −0.7828
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Note: The sensitivity indices of the parameters αJ1 , αJ2 , η and µ are zero since R0

does not depend on them as they don’t involve disease transmission.
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Figure 6.7: Sensitivity index bar chart

Figure 6.7 shows the sensitivity indices that has the most effect on R0. The values

of the sensitivity indices indicates that β 1
I1

, and αI1 are the parameters that effects

the value of R0 the most, where β 1
I1

has an index of +0.8890, and αI1 has an index

of −0.7828. Indicating that when β 1
I1

increases by 100%, R0 increases by 88.9%

as a response. Similarly, when αI1 increases by 100%, R0 decreases by 78.28%

accordingly.

6.8 Results and Discussions

Using Model 6.1 with its parameters, the following conclusions can be drawn :

1. The speed of the transmission of COVID-19 is determined by R0. More-

over, since the stages with authority intervention had a smaller number of R0,

then this indicates that clearly imposing lock-down / quarantine measures helps
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greatly with reducing the transmission rate of COVID-19.

2. The parameters / factors with the major effects on R0 were the disease trans-

mission and the recovery rates. This indicates that practicing social distancing

to minimize contact between people, and enhancing the immune system to in-

crease the recovery rate are the best solutions to reduce the speed of the disease

spread and consequently diminish it.

However, the social distancing solution has its flaws. Firstly, it has a negative impact

on the economy. This results from the fact that remote working is not as productive

as working at the workplace. Additionally, many restaurants, hotels and gyms were

bankrupt as they received little to no customers. Secondly, as for education, many

students experienced difficulties with virtual learning as they cannot learn as effi-

ciently, resulting in bad academic performance.
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Appendix

The mathematical formulas that have been used to calculate the initial parameter
estimations of Model 6.1 are presented in Table 6.6.

Table 6.6: Formulas of the estimated parameter values

Parameter Mathematical Formula

γi, i = 1,2 1/PresPer

νi, i = 1,2 1/( IncPer-PresPer)

κi, i = 1,2 (1/DurA)FracMInf

ϕi, i = 1,2 0

αAi, i = 1,2 (1/DurA)(1−FracMInf)

ξi, i = 1,2 (1/DurMInf)FracSev

αIi, i = 1,2 (1/DurMInf)(1−FracSev)

η (1/DurHos)FracCri

αJ (1/DurHos)(1−FracCri)

αC (1/TimeICU)(1−ProbDeath)

µ (1/TimeICUdeath)ProbDeath
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The sensitivity of the Basic Reproduction Number R0 to the disease transmission
parameters have the following formulas:
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The sensitivity of the Basic Reproduction Number R0 to the disease transition pa-
rameters have the following formulas:
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2+4R̄01R̄02

+
So

1γ1φ2
5

(γ1+ν1)
(−β 1

A1
+

β 1
I1
(ϕ1+αA1 )

(ξ1+αI1 )
)) κ1

R0

ϒ
R0
κ2 = ∂R0

∂κ2

κ2
R0

= 1
2 (
−

2R01So
2γ2φ2

7
(γ2+ν2)

(−β 2
A2

+
β2

I2
(ϕ2+αA2

)

(ξ2+αI2
)

)+
4 ¯R02So

1γ2φ2
7

(γ2+ν2)
(−β 1

A2
+

β1
I2

(ϕ2+αA2
)

(ξ2+αI2
)

)+
2R02So

2γ2φ2
7

(γ2+ν2)
(−β 2

A2
+

β2
I2

(ϕ2+αA2
)

(ξ2+αI2
)

)

2
√

(R01−R02)
2+4R̄01R̄02

+
So

2γ2φ2
7

(γ2+ν2)
(−β 2

A2
+

β 2
I2
(ϕ2+αA2 )

(ξ2+αI2 )
) κ2

R0

ϒ
R0
ϕ1 = ∂R0

∂ϕ1

ϕ1
R0

= 1
2 (

2R01So
1γ1φ2

5
(γ1+ν1)

(−β 1
A1
−

β1
I1

κ1
(ξ1+αI1

)
)−

2R02So
1γ1φ2

5
(γ1+ν1)

(−β 1
A1
−

β1
I1

κ1
(ξ1+αI1

)
)+

4 ¯R01So
2γ1φ2

5
(γ1+ν1)

(−β 2
A1
−

β1
I1

κ1
(ξ1+αI1

)
)

2
√

(R01−R02)
2+4R̄01R̄02

+
So

1γ1φ2
5

(γ1+ν1)
(−β 1

A1
−

β 1
I1

κ1

(ξ1+αI1 )
)) ϕ1

R0
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ϒ
R0
ϕ2 = ∂R0

∂ϕ2

ϕ2
R0

= 1
2 (
−

2R01So
2γ2φ2

7
(γ2+ν2)

(−β 2
A2
−

β2
I2

κ2
(ξ2+αI2

)
)+

4 ¯R02So
1γ2φ2

7
(γ2+ν2)

(−β 1
A2
−

β1
I2

κ2
(ξ2+αI2

)
)+

2R02So
2γ2φ2

7
(γ2+ν2)

(−β 2
A2
−

β2
I2

κ2
(ξ2+αI2

)
)

2
√

(R01−R02)
2+4R̄01R̄02

+
So

2γ2φ2
7

(γ2+ν2)
(−β 2

A2
−

β 2
I2

κ2

(ξ2+αI2 )
)) ϕ2

R0

ϒ
R0
αA1

= ∂R0
∂αA1

αA1
R0

= 1
2 (

2R01So
1γ1φ2

5
(γ1+ν1)

(−β 1
A1
−

β1
I1

κ1
(ξ1+αI1

)
)−

2R02So
1γ1φ2

5
(γ1+ν1)

(−β 1
A1
−

β1
I1

κ1
(ξ1+αI1

)
)+

4 ¯R01So
2γ1φ2

5
(γ1+ν1)

(−β 2
A1
−

β2
I1

κ1
(ξ1+αI1

)
)

2
√

(R01−R02)
2+4R̄01R̄02

+
So

1γφ2
5

(γ1+ν1)
(−β 1

A1
−

β 1
I1

κ1

(ξ1+αI1 )
))

αA1
R0

ϒ
R0
αA2

= ∂R0
∂αA2

αA2
R0

= 1
2 (
−

2R01So
2γ2φ2

7
(γ2+ν2)

(−β 2
A2
−

β2
I2

κ2
(ξ2+αI2

)
)+

4 ¯R02So
1γ2φ2

7
(γ2+ν2)

(−β 1
A2
−

β1
I2

κ2
(ξ2+αI2

)
)+

2R02So
2γ2φ2

7
(γ2+ν2)

(−β 2
A2
−

β2
I2

κ2
(ξ2+αI2

)
)

2
√

(R01−R02)
2+4R̄01R̄02

+
So

2γ2φ2
7

(γ2+ν2)
(−β 2

A2
−

β 2
I2

κ2

(ξ2+αI2 )
))

αA2
R0

ϒ
R0
ξ1

= ∂R0
∂ξ1

ξ1
R0

= 1
2 (
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)
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)
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)
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)
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)
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ν1
(ξ1+αI1

)
)

2
√

(R01−R02)
2+4R̄01R̄02

+
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1β 1
I1

(γ1+ν1)(ξ1+αI1 )
(−φ6γ1− ν1

(ξ1+αI1 )
) ξ1

R0

ϒ
R0
ξ2

= ∂R0
∂ξ2

ξ2
R0

= 1
2 (
−

2R01So
2β2

I2
(γ2+ν2)(ξ2+αI2

)
(−γ2φ8−
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(ξ2+αI2

)
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1β1
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(γ2+ν2)(ξ2+αI2

)
(−γ2φ8−
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(ξ2+αI2

)
)+

2R02So
2β2

I2
(γ2+ν2)(ξ2+αI2

)
(−γ2φ8−

ν2
(ξ2+αI2

)
)

2
√

(R01−R02)
2+4R̄01R̄02

+
So

2β 2
I2

(γ2+ν2)(ξ2+αI2 )
(−γ2φ8− ν2

(ξ2+αI2 )
)) ξ2

R0

ϒ
R0
αI1

= ∂R0
∂αI1

αI1
R0

= 1
2 (

2R01So
1β1

I1
(γ1+ν1)(ξ1+αI1

)
(−φ6γ1−

ν1
(ξ1+αI1

)
)−

2R02So
1β1

I1
(γ1+ν1)(ξ1+αI1

)
(−φ6γ1−

ν1
(ξ1+αI1

)
)+

4 ¯R01So
2β2

I1
(γ1+ν1)(ξ1+αI1

)
(−φ6γ1−

ν1
(ξ1+αI1

)
)

2
√

(R01−R02)
2+4R̄01R̄02

+
So

1β 1
I1

(γ1+ν1)(ξ1+αI1 )
(−φ6γ1− ν1

(ξ1+αI1 )
)

αI1
R0

ϒ
R0
αI2

= ∂R0
∂αI2

αI2
R0

= 1
2 (
−

2R01So
2β2

I2
(γ2+ν2)(ξ2+αI2

)
(−γ2φ8−

ν2
(ξ2+αI2

)
)+

4 ¯R02So
1β1

I2
(γ2+ν2)(ξ2+αI2

)
(−γ2φ8−

ν2
(ξ2+αI2

)
)+

2R02So
2β2

I2
(γ2+ν2)(ξ2+αI2

)
(−γ2φ8−

ν2
(ξ2+αI2

)
)

2
√

(R01−R02)
2+4R̄01R̄02

+
So

2β 2
I2

(γ2+ν2)(ξ2+αI2 )
(−γ2φ8− ν2

(ξ2+αI2 )
))

αI2
R0

Note: The sensitivity indices of the remaining parameters are zero since R0 doesn’t
depend on them.
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