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Abstract 
 

The goal of this study is to classify the Date Palm varieties based on 

hyperspectral signature technology since it is difficult to identify the Date Palm 

cultivars without fruits. It will also help to obtain the hyperspectral signature for 

different types of date palm trees. Moreover, it also assists to determine the wavelength 

fingerprint of each cultivar and to recommend the best classification protocol 

differentiating among different cultivars based on spectral signature. Utilizing the 

Hyperspectral imaging technology precisely on the leaves of different Date Palm 

cultivars, thus facilitating identification of date palm cultivars without the fruits and 

make spatial classification. Hyperspectral benefits enable to detect mixtures of 

materials within same pixel, to identify specific materials with high degree of 

accuracy, to get some measure of relative abundance based on depth of absorption 

features and, to produce the quantitative (rather than qualitative) results. For the 

treatments, in this study, the six cultivars of Date Palm trees (Barhi, Khadrawi, 

Khenaizi, Khalas, Fard and Helali) were tested. Ten samples for each cultivar from 

tissue culture were taken and tested considering the same age and identical conditions 

(control). Later, the samples were analyzed by using the RGB bands. Analyzing the 

tissue culture samples, the overall results indicate that, each cultivar of Date Palm tree 

has different spectral signature. 

 

Keywords: Phoenix dactylifera, hyperspectral imaging, date palm, cultivar, and 

spectral signature.   
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Title and Abstract (in Arabic) 
 

 الخصائص الطيفية لأشجار نخيل التمر 

 الملخص 

الهدف من هذه الدراسة هو تصنيف أشجار نخيل التمر على أساس تقنية البصمة من الانبعاث  

الطيفي لأنه يصعب تحديد أصناف نخيل التمر بدون ثمارها. أيضا، لتحديد وللحصول على بصمة  

الموج الطيفي للأنواع المختلفة من أصناف نخيل التمر. علاوة على ذلك، لتحديد الطول الموجي 

 ف من أصناف النخيل والتوصية بأفضل بروتوكول لتمييز الأصناف المختلفة. لكل صن

والغرض من التصوير الطيفي هو تحديد الأصناف من خلال تحديد بصمة طيفية لكل صنف. 

ستمكننا من تحديد هذه البصمة لكل صنف من أصناف النخيل  (Hyperspectral) كما أن تقنية  

وراق النخيل. كما أن هذه التقنية تمتلك دقة عالية في إظهار  عن طريق تطبيق هذه التقنية على أ

 النتائج.                            

اللجوء لرؤية  إن أهمية هذه الدراسة سوف تسهل التعرف على أصناف نخيل التمر بدون 

 ثمار هذا الصنف أو انتظار موسم الثمار. 

نخيل أشجار  من  أصناف  ستة  اختبرنا  الدراسة،  هذه  كالتالي:  في  وهي  برحي،   التمر 

خضراوي، خنيزي، خلاص، فرض وهلالي. حيث تم اختبار عشر عينات لكل صنف. كما تم  

اختيار الأصناف من مختبر زراعة الأنسجة من نفس العمر حتى تكون جميعها تحت الظروف 

 المناخية المناسبة. 

الأنسجة   مختبر زراعة  من  المدروسة  الأصناف  إحضار  النمو تم  العمر وظروف  لتوحيد 

 )عينات كونترول(. 

حيث تبين أن لكل صنف   (RGB ANALYSIS)بعد ذلك تم تحليل البيانات باستخدام تقنية  

 من أصناف نخيل التمر بصمة طيفية تختلف عن الصنف الآخر.

الرئيسية: البحث  الفائق  مفاهيم  الطيفي  التصوير  التمر،  نخيل  التمر،  أشجار  ، الصنف ،  نخيل 

 يفي. توقيع الطال
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Chapter 1: Introduction 

 

1.1 Overview 

Date Palm (Phoenix dactylifera L.) is a crop of civilization grown in the arid 

regions of the Arabian Peninsula and the Middle East region. Across the region, people 

are suffering from a lack of food availability, nutrient deficiency and food security as 

population growth and land becomes unsuitable for farming (Stringer, 2009). There is 

a need for fruit crops that can grow in the arid, semi-arid, and saline conditions in the 

region with limited water and other resources (Arias et al., 2016). In the Arabian and 

Africa region alone, 100 million date palm trees are grown in one million ha of 

cropland (Al-Dosary et al., 2016). Cultivation of palm trees are increasing and so is 

demand for Date fruits. The Food and Agriculture Organization recognizes date palms 

as a highly important fruit crop when solve the problem of food insecurity and 

malnutrition and have invested in the research of different aspects of palm fruit 

cultivation (Arias et al., 2016).  

Date palm fruit is a big food source and source of income for local farmer 

populations in and play significant roles in the Arab economy, and environment in this 

region. Genetically, date palm is a diploid (2n = 2x = 36) chromosomes, date palm is 

perennial, and monocotyledonous fruit tree belonging to Palmaceae family (Gros-

Balthazard et al., 2013). Date palm trees are adapted to arid environment. Thousands 

of date palm species are found in different regions of date palm growing countries. 

There are many species of date palm; some of them become dominant in the world 

market (Chao & Krueger, 2007; Nixon, 1950).  
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Hyperspectral signature is an important technique that obtains spectral 

information from an object simultaneously (Serranti et al., 2013). Recently, 

hyperspectral imaging has been increasingly used in large scale investigation of crops, 

such as cereal grains, fruits, vegetables, crops and so on (Yao et al., 2013; Huang et 

al., 2013;  Teena et al., 2013). Remote sensing data can prove to be a useful method 

for detecting plants species (Soroker et al., 2013). 

1.2 Purpose of the Study 

 Remote sensing involves detecting the characteristics of a surface without being 

in direct contact with the object. There are several benefits of using remote sensing to 

collect data. Sensors can take measurements of large areas, which are especially useful 

for large scale agricultural plantations (Soroker et al., 2013). The sensors used are also 

able to detect factors that are undetectable by human observers, and data collected can 

be saved and further analyzed by multiple users (Nilsson, 1995). There are multiple 

factors that can influence the accuracy of the images that result from remote sensing 

data, and these must be accounted for when conducting analysis (Nilsson, 1995). 

Hyperspectral signatures were successfully used to detect the leaf blotch on trees 

according to López-López et al. (2016). Hyperspectral sensors were used to record the 

reflectance of trees to investigate the possibilities of detecting citrus disease (Sankaran 

et al., 2013;  Li et al., 2014). Hyperspectral signature is a spectral method that can be 

used to detect plants species. Based on the reflectance of plants at different light spectra 

it is possible to identify damaged or unhealthy plants (Nilsson, 1995; Clevers & 

Kooistra, 2012; Mahlein et al., 2010). Hyperspectral devices record the spectral 

reflectance of a surface at very high spectral resolution – bands of less than 10 nm is 

typically used (Blackburn, 2007).  
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Using hyperspectral data, it allows for more accurate estimation of plant 

biochemical properties, because it is easier to isolate the reflectance of pigments 

(Blackburn, 2007). The Earth reflect, absorb, transmit and emit electromagnetic energy 

from the sun. Hyperspectral imaging system has been developed to measure all types 

of electromagnetic energy as it interacts with objects. A measurement of energy 

commonly used in remote sensing forestry application is reflected energy such as 

visible light and near infrared that come from forest canopy surfaces. The amount of 

energy reflected from these surfaces are usually expressed as a percentage of the 

amount of energy striking the objects. Across any range of wavelengths, the percent 

reflectance values for peat swamp forest features can be plotted and compared. Such 

plots are called “spectral response curves” or “spectral signatures (Mohd, Khali Aziz, 

& Hamdan, 2011). Recently, the development of small hyperspectral imaging sensors 

has enabled high spectral and spatial resolution measurements from UAVs. Several 

pushbroom hyperspectral sensors are used in UAVs (Zarco-Tejada, 2012)  (Hruska, 

2012) (Büttner & Röser, 2014) (Suomalainen et al., 2014) (Lucieer et al., 2014). The 

novel hyperspectral cameras operating in the frame format principle offer interesting 

possibilities for UAV remote sensing by stable imaging geometry and by giving an 

opportunity to make 3D hyperspectral measurements (Mäkynen et al., 2011). 

presented the first study with 3D hyperspectral UAV imaging in individual tree-level 

analysis of bark beetle damage in spruce forests. To the best of the authors’ knowledge, 

the classification of individual trees using. 

1.3 Background of the Study         

Hyperspectral imagery from UAVs has not yet been studied. Novel 

hyperspectral imaging technology based on a variable air gap Fabry–Pérot 
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interferometer (FPI) operating in the visible to near-infrared spectral range (500–900 

nm; VNIR) measurements (Mäkynen et al., 2011) (Honkavaara et al., 2013) was used 

in this study. The FPI technology makes it possible to manufacture a lightweight, 

frame format hyperspectral imager operating on the time-sequential principle. The FPI 

camera can be easily mounted on a small UAV together with an RGB camera, which 

enables the simultaneous hyperspectral imaging with high spatial resolution 

photogrammetric point cloud creation (Näsi et al., 2015). 

Hyperspectral remote sensing applied to agricultural crops i.e. wheat, paddy, soybean, 

corn and other crops (Teng et al., 2009). Hyperspectral technique gets more 

importance in agricultural production applications, Hyperspectral Remote Sensing 

Applications commonly used in agricultural crops growth monitoring and estimation 

of crops yield, nutrition diagnosis and fertilizer, agricultural product quality, safety 

and diseases testing and many other aspects currently this application research in the 

field of agriculture of hyperspectrum focuses on the agriculture crop and products, 

including fruits, livestock products and economic crops (Wang et al., 2016).  

With a hyperspectral camera, the light is captured through a lens and split into different 

spectral lengths by a dispersive element such as a prism or a diffraction grating. Also 

possible is a recording of different wavelengths at different positions in the FOV. The 

heart of the MHSI camera is a CCD or CMOS detector array that reads out the 

information inherent to the captured light (Figure 1). 
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Figure 1: Hyperspectral Imaging Workflow 

 

 

Figure 2: Hyperspectral Remote Sensing in Agriculture 
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Date palm is an important cash crop in Middle East and African countries with limited 

water availability their hardiness in tough conditions. This research has shown that 

thermal, multispectral, and hyperspectral remote sensing imagery can provide insight 

into the health of date palm plantations as in Figure 2, 3. The study used to available 

thermal, hyperspectral, Light detection and ranging (LiDAR) and visual red, green 

blue (RGB) images to find the possibilities of assessing date palm health at two 

“levels”; block level and individual tree level. Test blocks were defined into assumed 

healthy and unhealthy classes and thermal and height data were extracted and 

compared. Due to distortions in the hyperspectral imagery, this data was only used for 

individual tree analysis. 

 

 
 

Figure 3: Applications of Hyperspectral Technology 
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1.4 Research Aim and Objectives 

The aim of this study is to test the use of high-resolution photogrammetric point 

clouds together with hyperspectral UAV imaging in individual tree detection and 

classification in particular, the data processing challenges in a real forest environment 

will be studied and the importance of different spectral and structural features in tree 

species classification will be assessed. 

The major objectives of the research are: 

1. To classify date palm trees based on hyperspectral signature technology because 

it is difficult to identify the date palm cultivars without fruits.  

2.  Hyperspectral imaging to identify the cultivars by determining the spectral 

signature for each cultivar.  

1.5 The Research will Test the Following Hypothesis 

This study will be able to classify date palm trees on hyperspectral signature 

technology to identify date palm cultivars without fruit and to determine the spectral 

signature for each cultivar for precise identification. The study will be successful 

utilizing this technology on leaves of different date Palm cultivars.  

1.6 Research Significance  

Classifying date palm trees based on hyperspectral signature technology will 

be helpful to obtain the hyperspectral signature for different type of date palm trees 

and to determine wavelength fingerprint of each cultivar. Also, to recommend the best 

classification protocol to differentiate among different cultivars based on spectral 

signature. 
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Chapter 2: Review of Literature 

 

Hyperspectral technology imaging spectrometry technology is one of the 

important leading research fields of remote sensing. Since the first imaging 

spectrometer was produced in 1983, in less than 20 years. Hyperspectral remote 

sensing technology has been successfully applied in many fields and shown great 

potential and bright prospects. However, the research on processing and applications 

of Hyperspectral remote sensing data has fallen far behind the research on sensors. 

Research on processing, analysis and information extraction of Hyperspectral data 

should be strengthened to determine more useful information, make full use of the 

advantage and potential of Hyperspectral remote sensing technology, and promote the 

development of new and important technology (Jiang et al., 2004). 

 According to work carried out by Thenkabail et al. (2004) where they determine 

the best Hyperspectral wavebands in the study of date palms and agricultural crops 

over the spectral range of 400 – 2500 nm and also assessed the date palms and 

agricultural crop classification accuracies achievable using the various combinations 

of the best Hyperspectral narrow wavebands. The Hyperspectral data were gathered 

for date palms, shrubs, grasses, weeds, and agricultural crop species from the four eco-

regions of African savannas using a 1-nm-wide hand-held spectroradiometer but was 

aggregated to 10-nm-wide bandwidths to match the first space borne Hyperspectral 

sensor, Hyperion. After accounting for atmospheric widows and/or areas of significant 

noise, a total of 168 narrow bands in 400 – 2500 nm was used in the analysis. Rigorous 

data mining techniques consisting of principal component analysis (PCA), lambda– 

lambda 2 models (LL R 2 M), stepwise discriminant analysis (SDA), and derivative 
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greenness vegetation indices (DGVI) established 22 optimal bands (in 400 – 2500 nm 

spectral range) that best characterize and classify vegetation and agricultural crops. 

Overall accuracies of over 90% were attained when the 13 – 22 best narrow bands 

were used in classifying vegetation and agricultural crop species. Beyond 22 bands, 

accuracies only increase marginally up to 30 bands. Accuracies become asymptotic or 

near zero beyond 30 bands, rendering 138 of the 168 narrow bands redundant in 

extracting vegetation and agricultural crop information. Relative to Landsat Enhanced 

Thematic Mapper plus (ETM+) broad bands, the best Hyperspectral narrow bands 

provided an increased accuracy of 9 – 43% when classifying shrubs, weeds, grasses, 

and agricultural crop species.  

     According to Chao et al. (2007) the Palm trees are a family (Arecaceas) of plants 

with hundreds of species. Most economically important species are date palm (Phoenix 

dactylifera L.), coconut palm (Cocos nucifera), and oil palm (Elaeis guineensis). Being 

monocotyledons, palm trees show distinct differences of the wood structure compared 

to common wood species. This study aimed to evaluate the anatomical properties 

‘Tadmament’ cultivar of date palm wood such as density, frequency, diameter, and 

area of vascular bundles (VB) in stem sections/zones (from the peripheral to the inner 

zone), and at two different stem heights (Top and bottom of the stem). The results 

indicated that the density and frequency of vascular bundles increase from the inner to 

the peripheral zones of the stem, thus the diameter and area of VB decrease from the 

first to the third zones. The density of VB in peripheral zone also decreases from the 

bottom to the top of the stem. In addition, it has been increased in the central and inner 

zones. In the peripheral and central zones, the VB are numerous and smaller in 

diameter. The inner zone is the broadest; the bundles reach their highest diameter. The 

fiber tissue percent is higher in the peripheral and central zones (48.5% / 44.5%, at the 
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bottom and top of stem respectively) than in the inner zone (9% / 11%, at the bottom 

and top of stem respectively). The results of this study will be used to calculate density 

of sap flux, also to develop the injection techniques to fight the red date palm weevil 

(Rhynchophorus ferrugineus). Results for coconut and oil palm are different; the 

vascular bundles have a constant size throughout the central cylinder. 

Chao and Krueger (2007) studied the date palm (Phoenix dactylifera L.) is one 

of the oldest fruit crops grown in the arid regions of the Arabian Peninsula, North 

Africa, and the Middle East. The most probable area of origin of the date palm was in 

or near what is now the country of Iraq, but date cultivation spread to many countries 

starting in ancient times. Dates are a major food source and income source for local 

populations in the Middle East and North Africa, and play significant roles in the 

economy, society, and environment in these areas. In addition to serving directly as a 

food source, dates are packed and processed in several ways, and other parts of the tree 

are used for various purposes. The date palm is a diploid, perennial, dioecious, and 

monocotyledonous plant adapted to arid environments. It has unique biological and 

developmental characteristics that necessitate special propagation, culture, and 

management techniques. Thousands of date palm cultivars and selections exist in 

different date-growing countries. Different genetic marker systems have been used to 

study genetic relationships among date palm cultivars. The long-life cycle, long period 

of juvenility, and dioecism of date palms make breeding challenging. Worldwide date 

production has grown from 1,809,091 t in 1962 to 6,924,975 t in 2005. Worldwide 

date production will continue to grow, especially in the Middle East, despite current 

and future challenges.  
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     Siddiq and Greiby (2014) studied that the date palm is grown in over 30 countries 

around the world; in recent years, date fruit has gained significant importance in global 

commerce. During the last two decades, global production of dates has more than 

doubled. Most date palm-growing areas are in developing or underdeveloped countries 

where date fruit is considered a primary food crop, thus playing a major role in the 

nutritional status of these communities. Marketing of dates involves various operations 

through the value-chain, e.g., harvesting, cleaning, grading, packaging, processing, 

and transportation/shipment to local or export markets. Some of the major challenges 

confronting date fruit production and commerce are issues related to postharvest 

handling technologies, use of appropriate processing and packaging technologies, food 

safety aspects, and quality assurance. This chapter provides an overview of production, 

harvesting and GAPs/GMPs, postharvest handling and storage, processing, processed 

products/by-products, nutritional profile, bioactive compounds, and health benefits of 

dates.  

        Majidi Heravan et al., (2002) study was carried out to investigate the 

morphological and anatomical aspects of somatic embryogenesis in date palm. Lateral 

bud and shoot tip explants excised from young offshoots were cultured on MS medium 

with 2,4-D. Somatic embryogenesis was induced by transferring the calli produced on 

the same medium without hormones. Microtome sectioning of paraffin-embedded 

specimens was carried out using the callus tissue and its differentiated structures. The 

sections were stained with safranin and fast green. Observation of three-celled 

proembryos with the longitudinal and oblique division of the top cell, which in later 

stages results in wedge-like cell(s), supports the ASTERAD type of embryogenesis in 

date palm. Polyembryonic structures were raised from the embryonic callus formed in 



12 
 

 

different regions of both the proembryos and germinating embryos and the secondary 

embryos formed directly from primary embryos. 

Chao and Krueger (2007) studied that the Phoenix dactylifera, commonly 

known as date or date palm is a flowering plant species in the palm family, Arecaceae, 

cultivated for its edible sweet fruit. Although its exact place of origin is uncertain 

because of long cultivation, it probably originated from the Fertile Crescent region 

straddling between Egypt and Mesopotamia. Krueger and Robert (2007) studied the 

species is widely cultivated across Northern Africa, the Middle East, the Horn of 

Africa and South Asia and is naturalized in many tropical and subtropical regions 

worldwide. P. dactylifera is the type species of genus Phoenix, which contains 12–19 

species of wild date palms, and is the major source of commercial production.  

Jusoff and Pathan (2009) studied that the date trees typically reach about 21–

23 meters (69–75 ft) in height, growing singly or forming a clump with several stems 

from a single root system. Date fruits (dates) are oval-cylindrical, 3 to 7 centimeters 

(1.2 to 2.8 in) long, and about 2.5 centimeters (0.98 in) in diameter, ranging from 

bright red to bright yellow in colour, depending on variety. At about 61-68 

percent sugar by mass when dried, dates are a very sweet fruit.  

NPR organimation  (2015) reported that the Fossil records show that the date 

palm has existed for at least 50 million years. Dried date, peach, and apricot from 

Lahun, Fayum, Egypt.  

Tengberg (2012) studied that the dates have been a staple food of the Middle 

East and the Indus Valley for thousands of years. They are believed to have originated 

around what is now Iraq. There is archaeological evidence of date cultivation 

in Mehrgarh around 7000 BCE, a Neolithic civilization in what is now 

western Pakistan  and in eastern Arabia between 5530 and 5320 calBC. and have been 

https://en.wikipedia.org/wiki/Arecaceae
https://en.wikipedia.org/wiki/Fertile_Crescent
https://en.wikipedia.org/wiki/Mesopotamia
https://en.wikipedia.org/wiki/Horn_of_Africa
https://en.wikipedia.org/wiki/Horn_of_Africa
https://en.wikipedia.org/wiki/Type_species
https://en.wikipedia.org/wiki/Phoenix_(plant)
https://en.wikipedia.org/wiki/Sugar
https://en.wikipedia.org/wiki/Staple_food
https://en.wikipedia.org/wiki/Middle_East
https://en.wikipedia.org/wiki/Middle_East
https://en.wikipedia.org/wiki/Indus_Valley
https://en.wikipedia.org/wiki/Mehrgarh
https://en.wikipedia.org/wiki/Pakistan
https://en.wikipedia.org/wiki/Arabia
https://en.wikipedia.org/wiki/Radiocarbon_dating#Calibration
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cultivated since ancient times from Mesopotamia to prehistoric Egypt. The ancient 

Egyptians used the fruits to make date wine, and ate them at harvest. Evidence of 

cultivation is continually found throughout later civilizations in the Indus Valley, 

including the Harappan period of 2600 to 1900 BCE. The ancient Hebrews made the 

fruit into wine, vinegar, bread, and cakes, also using the fruit stones to fatten livestock 

and the wood to make utensils. 

Nilsson (1995) studied that the germination of 200 years old seeds of Phoenix 

dactylifera from Judean desert archaeological site provide a unique opportunity to 

study the Judean date palm, described in antiquity for the quality, size, and medicinal 

properties of its fruit, but lost for centuries .Microsatellite genotyping of germinated 

seeds indicates that exchanges of genetic material occurred between the Middle East 

(eastern) and North Africa (western) date palm gene pools, with older seeds exhibiting 

a more eastern nuclear genome on a gradient from east to west of genetic contributions. 

Ancient seeds were significantly longer and wider than modern varieties, supporting 

historical records of the large size of the Judean date. These findings, in accord with 

the region’s location between east and west date palm gene pools, suggest that 

sophisticated agricultural practices may have contributed to the Judean date’s 

historical reputation. Given its exceptional storage potentialities, the date palm is a 

remarkable model for seed longevity research. 

 

Taxonomic Tree. ENH1212. 

Domain: Eukaryota 

    Kingdom: Plantae 

        Phylum: Spermatophyta 

            Subphylum: Angiospermae 

https://en.wikipedia.org/wiki/Mesopotamia
https://en.wikipedia.org/wiki/Prehistoric_Egypt
https://en.wikipedia.org/wiki/Ancient_Egypt
https://en.wikipedia.org/wiki/Ancient_Egypt
https://en.wikipedia.org/wiki/Wine
https://en.wikipedia.org/wiki/Harappa
https://en.wikipedia.org/wiki/Hebrews
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                Class: Monocotyledonae 

                    Order: Arecales 

                        Family: Arecaceae 

                            Genus: Phoenix 

                                Species: Phoenix dactylifera 

 

Rajabi and Ghassemian (2015) studied a variety of feature reduction methods 

that have been developed by using spectral and spatial domains. In these studies, a 

feature extracting technique was proposed based on rational function curve fitting. For 

each pixel of a Hyperspectral image, a specific rational function approximation was 

developed to fit the spectral response curve of that pixel. Coefficients of the numerator 

and denominator polynomials of these functions were considered as new extracted 

features. This new technique is since the sequence discipline - ordinance of reflectance 

coefficients in spectral response curve - contains some information which has not been 

considered by other statistical analysis-based methods, such as Principal Component 

Analysis (PCA) and Linear Discriminant Analysis (LDA) and their nonlinear versions. 

Also, they showed that naturally different curves can be approximated by rational 

functions with equal form, but different amounts of coefficients.  Maximum likelihood 

classification results demonstrated that the Rational Function Curve Fitting Feature 

Extraction (RFCF -FE) method provides better classification accuracies compared to 

competing feature extraction algorithms. The method, also, had the ability of lossy 

data compression. The original data was reconstructed using the fitted curves. In 

addition, the proposed algorithm has the possibility to be applied to all pixels of image 

individually and simultaneously, unlike to PCA and other methods which need to 

know whole data for computing the transform matrix. 
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Teena et al. (2013) studied that the early stages of microbial infection in date 

palm fruits are difficult to detect by the presently used manual sorting technique. The 

potential of Hyperspectral imaging technique to detect fungal contamination of edible 

date fruits was investigated in their study. The samples were treated as three groups: 

untreated control (UC), sterile control (SC) (surface sterilized, rinsed, and dried) and 

inoculated samples (IS) (surface sterilized, rinsed, dried and inoculated). 

Hyperspectral images of control samples and Aspergillus flavus inoculated date fruits 

were acquired using an area scan Hyperspectral imaging system from 75 image slices 

at 10 nm intervals between 960 and 1700 nm after every 48 h of inoculation for 10 

days. The top four most significant wavelengths corresponding to the highest factor 

loadings of the first principal components (PC) were selected and used for feature 

extraction. A total of 64 features (16 features from each selected wavelength) were 

extracted and applied in the statistical classifications (linear discriminant analysis 

(LDA) and quadratic discriminant analysis (QDA)). The classification accuracies for 

IS were compared with UC and SC separately using six-class model (control, infected 

day 2, day 4, day 6, day 8 and day 10), two-class model (control vs infected (all stages 

of infection together)) and pair-wise model (control vs each stage of infection). The 

mean classification accuracy (LDA and QDA) of IS was 91.5%, 91.0% and 99.0% for 

six-class model, two-class model, and pairwise-model, respectively while comparing 

with SC. Similarly, it was 92.4%, 100.0% and 99.6% for six-class model, two-class 

model, and pairwise-model, respectively while comparing with UC. In general, 

quadratic discriminant analysis yielded better accuracy than linear discriminant 

analysis in all the classification models tested. Further work is required to test this 

technique for other species of fungal infections and its effect on the chemical 

composition of different date fruit varieties. 
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Shen and Cao (2017) reported that the accurate classification of tree-species is 

essential for sustainably managing forest resources and effectively monitoring species 

diversity. In their study, they used simultaneously acquired Hyperspectral and LiDAR 

data from LiCHy (Hyperspectral, LiDAR and CCD) airborne system to classify tree-

species in subtropical forests of southeast China. First, each individual tree crown was 

extracted using the LiDAR data by a point cloud segmentation algorithm (PCS) and 

the sunlit portion of each crown was selected using the Hyperspectral data. Second, 

different suites of Hyperspectral and LiDAR metrics were extracted and selected by 

the indices of Principal Component Analysis (PCA) and the mean decrease in Gini 

index (MDG) from Random Forest (RF). Finally, both Hyperspectral metrics (based 

on whole crown and sunlit crown) and LiDAR metrics were assessed and used as 

inputs to Random Forest classifier to discriminate five tree-species at two levels of 

classification. The results showed that the tree delineation approach (point cloud 

segmentation algorithm) was suitable for detecting individual tree in this study (overall 

accuracy = 82.9%). The classification approach provided a relatively high accuracy 

(overall accuracy > 85.4%) for classifying five tree-species in the study site. The 

classification using both Hyperspectral and LiDAR metrics resulted in higher 

accuracies than only Hyperspectral metrics (the improvement of overall accuracies = 

0.4–5.6%). In addition, compared with the classification using whole crown metrics 

(overall accuracies = 85.4–89.3%), using sunlit crown metrics (overall accuracies = 

87.1–91.5%) improved the overall accuracies of 2.3%. The results also suggested that 

fewer of the most important metrics can be used to classify tree-species effectively 

(overall accuracies = 85.8–91.0%). 

 Foody et al. (2006) reported that the Statistical classification of Hyperspectral 

data is challenging because the inputs are high in dimension and represent multiple 
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classes that are sometimes quite mixed, while the amount and quality of ground truth 

in the form of labeled data is typically limited. The resulting classifiers are often 

unstable and have poor generalization. This work investigated two approaches based 

on the concept of random forests of classifiers implemented within a binary 

hierarchical multi classifier system, with the goal of achieving improved 

generalization of the classifier in analysis of Hyperspectral data, particularly when the 

quantity of training data is limited. A new classifier was proposed, that incorporates 

bagging of training samples and adaptive random subspace feature selection within a 

binary hierarchical classifier (BHC), such that the number of features that is selected 

at each node of the tree is dependent on the quantity of associated training data. Results 

are compared to a random forest implementation based on the framework of 

classification and regression trees.  

For both methods, classification results obtained from experiments on data 

acquired by the National Aeronautics and Space Administration (NASA) Airborne 

Visible/Infrared Imaging Spectrometer instrument over the Kennedy Space Center, 

Florida, and by Hyperion on the NASA Earth Observing 1 satellite over the Okavango 

Delta of Botswana are superior to those from the original best basis BHC algorithm 

and a random subspace extension of the BHC. 

Govender et al. (2006) reported that the multispectral imagery has been used 

as the data source for water and land observational remote sensing from airborne and 

satellite systems since the early 1960s. Over the past two decades, advances in sensor 

technology have made it possible for the collection of several hundred spectral bands. 

This is commonly referred to as Hyperspectral imagery. This review details the 

differences between multispectral and Hyperspectral data; spatial and spectral 
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resolutions and focuses on the application of Hyperspectral imagery in water resource 

studies and, in particular the classification and mapping of land uses and vegetation. 

Tarabalka et al. (2011) studied that the high number of spectral bands acquired 

by Hyperspectral sensors increase the capability to distinguish physical materials and 

objects, presenting new challenges to image analysis and classification. This work 

presented a novel method for accurate spectral-spatial classification of Hyperspectral 

images. The proposed technique consists of two steps. In the first step, a probabilistic 

support vector machine pixel wise classification of the Hyperspectral image was 

applied. In the second step, spatial contextual information was used for refining the 

classification results obtained in the first step. This is achieved by means of a Markov 

random field regularization. Experimental results were presented for three 

Hyperspectral airborne images and compared with those obtained by recently proposed 

advanced spectral-spatial classification techniques. The proposed method improves 

classification accuracies when compared to other classification approaches. 

Zarco-Tejada et al. (2005) showed that the traditional remote sensing methods 

for yield estimation rely on broadband vegetation indices, such as the Normalized 

Difference Vegetation Index, NDVI. Despite demonstrated relationships between such 

traditional indices and yield, NDVI saturates at larger leaf area index (LAI) values, 

and it is affected by soil background. The results obtained with several new narrow-

band Hyperspectral indices calculated from the Airborne Visible and Near Infrared 

(AVNIR) Hyperspectral sensor flown over a cotton (Gossypium hirsutum L.) field in 

California (USA) collected over an entire growing season at 1-m spatial resolution. 

Within-field variability of yield monitor spatial data collected during harvest was 

correlated with Hyperspectral indices related to crop growth and canopy structure, 

chlorophyll concentration, and water content. The time-series of indices calculated 
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from the imagery were assessed to understand within-field yield variability in cotton 

at different growth stages. A K means clustering method was used to perform field 

segmentation on Hyperspectral indices in classes of low, medium, and high yield, and 

confusion matrices were used to calculate the kappa (κ) coefficient and overall 

accuracy. Structural indices related to LAI [Renormalized Difference Vegetation 

Index (RDVI), Modified Triangular Vegetation Index (MTVI), and Optimized Soil-

Adjusted Vegetation Index (OSAVI)] obtained the best relationships with yield and 

field segmentation at early growth stages. Hyperspectral indices related to crop 

physiological status [Modified Chlorophyll Absorption Index (MCARI) and 

Transformed Chlorophyll Absorption Index (TCARI)] were superior at later growth 

stages, close to harvest. From confusion matrices and class analyses, the overall 

accuracy (and kappa) of RDVI at early stages was 61% (κ = 0.39), dropping to 39% 

(κ = 0.08) before harvest. The MCARI chlorophyll index remained sensitive to within-

field yield variability at late pre-harvest stage, obtaining overall accuracy of 51% (κ = 

0.22). 

Hirano et al. (2003) reported that the Data acquired by the Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) with 224 bands, each with 0.01-μm 

spectral resolution and 20-meter spatial resolution, were used to produce a vegetation 

map for a portion of Everglades National Park, Florida, USA. The vegetation map was 

tested for classification accuracy with a pre-existing detailed GIS wetland vegetation 

database compiled by manual interpretation of 1∶40,000-scale color infrared (CIR) 

aerial photographs. Although the accuracy varied greatly for different classes, ranging 

from 40 percent for scrub red mangroves (Rhizophora mangle) to 100 percent for spike 

rush (Eleocharis cellulose) prairies, the Everglades communities generally were 

successfully identified, averaging 66 percent correct for all classes. In addition, the 
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Hyperspectral image data proved suitable for detecting the invasive exotic species 

lather leaf (Colubrina asiatica) that is sometimes difficult to differentiate on aerial 

photographs. The findings from this study have implications for operational uses of 

space borne Hyperspectral image data that are now becoming available. Practical 

limitations of using such image data for wetland vegetation mapping include 

inadequate spatial resolution, complexity of image processing procedures, and lack of 

stereo viewing. 

The work carried out by Esau et al. (2006), showed that the Leaf traits and 

physiological performance govern the amount of light reflected from leaves at visible 

and infrared wavebands. Information on leaf optical properties of tropical trees is 

scarce. In their experiment, they examined leaf reflectance of Mesoamerican trees for 

three applications: to compare the magnitude of within‐ and between‐species 

variability in leaf reflectance, to determine the potential for species identification based 

on leaf reflectance, and to test the strength of relationships between leaf traits 

(chlorophyll content, mesophyll attributes, thickness) and leaf spectral reflectance. 

Within species, shape and amplitude differences between spectra were compared 

within single leaves, between leaves of a single tree, and between trees. They also 

investigated the variation in a species' leaf reflectance across sites and seasons. Using 

forward feature selection and pattern recognition tools, species classification within a 

single site and season was successful, while classification between sites or seasons was 

not. The implications of variability in leaf spectral reflectance were considered in light 

of potential tree crown classifications from remote airborne or satellite‐borne sensors. 

Species classification is an emerging field with broad applications to tropical biologists 

and ecologists, including tree demographic studies and habitat diversity assessments. 

Mountrakis et al. (2011) studied the wide range of methods for analysis of airborne- 
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and satellite-derived imagery continues to be proposed and assessed. SVMs are 

particularly appealing in the remote sensing field due to their ability to generalize well 

even with limited training samples, a common limitation for remote sensing 

applications. However, they also suffer from parameter assignment issues that can 

significantly affect obtained results.  

Sandmeier et al. (1998) reported a new approach for deriving vegetation 

canopy structural characteristics from Hyperspectral bidirectional 

reflectance distribution function (BRDF) data. The methodology is based on the 

relationship between spectral variability of BRDF effects and canopy geometry. Tests 

with data acquired with the Advanced Solid-State Array Spector radiometer (ASAS) 

over Canadian boreal forests during the BOREAS campaign show that vegetation 

structural characteristics can be derived from the spectral variability of BRDF effects. 

In addition, the incorporation of both BRDF effects and Hyperspectral resolution data 

substantially improve the classification accuracy. Best classification results are 

obtained when Hyperspectral resolution and BRDF data are combined, but the 

improvement is not consistent for all classes. For example, adding BRDF information 

to Hyperspectral data increases the overall classification accuracy for a six-

class fen site from 37.8% to 44.7%. The addition, however, reduces the accuracy for 

the jack pine class from 43.6% to 28.8%. These new findings provide evidence for 

improved capabilities for applications of MISR and MODIS data. The spectral 

resolution of MODIS is expected to be sufficient to derive canopy structural 

information based on the spectral variability of BRDF effects, and for MISR a 

significant improvement of classification accuracies can be anticipated from the 

combination of nadir reflectance and off-nadir data. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/remote-sensing-applications
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/remote-sensing-applications
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/canopy-vegetation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/canopy-vegetation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/bidirectional-reflectance
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/bidirectional-reflectance
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/distribution-function
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The work carried out by Key et al. (2001) found that the Multi temporal, small-format 

35-mm aerial photographs were combined in a co-registered database to determine the 

relative value of spectral and phenological information for over story tree crown 

classification of digital images of the Eastern Deciduous Forest. A one-hectare study 

site, located in a second-growth forest 15 km east of Morgantown, West Virginia, 

USA, was photographed from a light aircraft nine times from May to October 1997 

using both true-color and false-color infrared film. Using this imagery, differences in 

the spectral properties and timing of phenologic events between tree species made it 

possible to discriminate four tree species, namely Liriodendron tulipifera, Acer 

rubrum, Quercus rubra, and Quercus alba, which made up nearly 99% of the trees at 

this study site. Optimally timed photography acquired during peak autumn colors 

provided the best single date of imagery, while photography from spring leaf-out was 

the second best. The best individual image band for tree species discrimination was 

the blue band. Classifications using all four spectral bands (blue, green, red, and 

infrared) and four dates (05/23/97, 06/23/97, 10/11/97, and 10/30/97) provided the best 

classification accuracies. Variable canopy illumination made digital classification of 

individual trees complex. A Likelihood Ratio test confirmed that the number of 

spectral bands included in the classification procedure (spectral resolution) and the 

number of dates (temporal resolution) significantly influenced the ability to identify 

tree species correctly. This study suggests that although multispectral data appear to 

be more valuable than multitemporal data, it may be possible to compensate for the 

limited spectral resolution of planned high-resolution sensors by combining multiple 

dates of low spectral resolution images. 

Jusoff and Pathan (2009). reported a preamble step for developing an approach 

for mapping individual oil palm trees from airborne hyperspectral imaging. The study 



23 
 

 

generally describes airborne hyperspectral sensors in different fields particularly in 

agriculture by comparing and analyzing their uniqueness for different applications. 

The emphasis is on the image processing in identifying and mapping of the individual 

oil palm trees with the utilization of image histogram to examine the RGB bands. An 

algorithm was designed to discover the involvement of different materials in a single 

mixed pixel and converting it into a pure pixel. The techniques employ in this 

connection are Linear Spectral Mixture Analysis (LSMA), Mix to Pure Converter 

(MPC) and Euclidean Norm. 
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 Chapter 3: Materials and Methods  

 

3.1 Experimental Site 

The experiments were conducted in the Building E2 (laboratory of food 

science) of College of Food and Agriculture United Arab Emirates University where 

hyperspectral camera (Specimen, Spectral Imaging Oy Ltd) was used to take photos 

for the leaf samples. Also, leaf sample has been collected from tissue culture laboratory 

in Al foah research farm, College of Food and Agriculture United Arab Emirates 

University. It lies in the co-ordinate latitude and longitude of 24.2191° N and 55.7146° 

E.  

3.2 Sampling 

Leaf samples were collected from Al Foah in the same day and time, samples 

for each type were taken as triplets from ten different pots in the same age (10 leaf for 

each verity).  

3.2.1 Transferring  

Samples were transferred to lab 3 in black bags to avoid any surrounding effect. 

3.2.2 Sample Preparation  

Samples were taped from edges to a clean white sheet. There is no chemical 

analysis using to avoid and effects on the leaves. 
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3.3 Camera and Lumo Scanner  

 

 The Lumo Scanner software has been used to control the hyperspectral camera 

and the scanner (Specim, Spectral Imaging Oy Ltd), the software has a built-in 

scripting and sequential workflow engine controlling all the steps and automation to 

be performed for each measurement. 

The work started by initial camera calibration: 

Initial set up. 

1. Adjust for setting camera parameters and workflow. 

2. Capture for image acquisition.  

3.3.1 Initial Set Up 

 The License activation (Specim_QtRuntime_redist_setup_5.4.1.exe. 5.4.1), 

and the other initial set up steps were carried out previously by the food science 

department and the system was ready to use from the start of this experiment.  
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Figure 4: Adjusting for Settings 
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Figure 5: Connect the Camera 
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Figure 6: Select the File 
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Figure 7: Write the Data of Sample 
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3.3.2 Importing and Exporting the Settings 

To make sure, the samples were run with the same adjusting parameters from 

the Setup View in the Import/export settings group. 

a. Click 'Export settings to button, then after entering the file name for the 

exported settings file, and the folder location is selected and the ‘Save’ button is 

pressed and it is ensured to get the message showing “Settings exported successfully”. 

b. Each time when the camera is used it was set with the same importing 

settings and then the settings file is selected which is previously exported.  

c. After selecting the settings file, Restart button must be clicked to continue 

with the import. 

3.3.3 Run Dark and Run White References 

To acquire and apply the captured or defined dark and white current level. 

Pixels may not be entirely dark, even when no light reaches the sensor. This is 

called the dark current level. To correct the image, dark current is subtracted from the 

data. The dark current reference can be acquired from the sensor or defined with many 

options, Shutter, Constant, Thermal Calibrator, Manual, or Scanner option. 

The selected Shutter option includes the dedicated workflow, the sensor’s 

shutter closes, and 100 frames (are acquired). The frames are averaged to a single dark 

reference frame, and the shutter re-opens (Each pixel has its own measured dark 

current value). 

The white reference specifies the maximum pixel value for all pixels (Together 

with the dark reference, the white reference is used for). The white reference can be 

acquired from the sensor or defined with one of the Constant, Manual, Thermal 

Calibrator, Scanner, or Radiometric options. 
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Next, the selection of Scanner option is done. The scanner moves to the white 

reference start position, and 100 frames are acquired. The frames are averaged to a 

single white reference frame, and the scanner retraces. Each pixel in the frame has its 

own measured maximum value. 

3.3.4 Defining the Sensor Positions 

It is so important to define the positions and acquisition methods of the 

acquisition target, the white reference, and the samples, because the scanner first 

accelerates, then runs at constant speed over the target range, until decelerates and 

stops. If the start or stop position is too close to the end of the scanner range, there will 

be no room to accelerate or decelerate. In this case, running the workflow will fail. 

Move the scanner using the Motor Remote Control so that the focusing grid is 

in view. 

Move the scanner to the start of the white reference. 

Press the Set button of the white start field. 

Move the scanner to the end of the white reference. 

Press the Set button of the white end field. 

Repeat steps for the start and end of the sample (Target) positions. 

Press the Go button at each position and verify that the desired positions have been 

set. 

 3.3.5 Monitoring the Traffic Lights 

The traffic lights display information about the current system status, that 

include hardware status information, received data, and undefined application 

parameters etc., so to start it is ensured that no red boxes are shown in the traffic lights. 
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Figure 8: Monitor of Traffic Lights  
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Figure 9: Prepare the Graph of Sample 
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Figure 10: Adjusting of Workflow 
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3.3.6 Image Capture 

 The image capturing is as shown in the Figure 11, and it is done after adjusting the scanning speed. In order to save the image, firstly the 

preview option is to be used to view, and then using the record the image can be saved as shown in Figure 12.  

 

Figure 11: Image Capture 
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Figure 12: Save the Image 
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3.4 Analyzing Data 

The outcomes of analyzing shows the graph for each sample of leaf. The graph 

shows the wavelength and the reflectance of leaf sample. Leaf Samples for each 

cultivar has different wavelength from other. The graphs have been created by camera 

software. 

After processing the leaf photos and displaying the wavelength of each cultivar 

and the reflectance of light in wavelength, analyzed data by using Excel Program to 

create the graph for each cultivar between reflectance and wavelength. This step to see 

the range of wavelength of each cultivar. 

Second step is calculated frequencies, cumulative proportion and cumulative 

percentages of each reflectance point for each cultivar by using Excel Program to see 

the highest and lowest frequency of each cultivar. 

After that, using Excel Program to draw the graph which show curves for all 

cultivars for better comparison to see in which points the curves differ to each other 

and which point cross to others. 

Then, calculated the sample variance and standard deviation by Excel Program 

to detect the critical point for comparison. 

Finally, the Kolmogorov-Smirnov Normality Test (K-S Test) was performed 

in order to compare studied cultivars by using Excel program. 
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Chapter 4: Results 

 

 

After processing the leaf photos and displaying the wavelength of each cultivar 

and the reflectance of light in wavelength, analyzed data showed that, the range of 

wavelength of all cultivars are between 400 and 1000 and the range of reflectance is 

between 0.3 and 1 for Barhi, Khenezi, Khalas, Khadrawi, Fard, and Helali, as shown 

respectively in Figures 12-17. 

 

 

Figure 13: Reflectance versus Wavelength of Barhi 
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Figure 14: Reflectance versus Wavelength of Khenaizi 

 

 

Figure 15: Reflectance versus Wavelength of Khalas 
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Figure 16: Reflectance versus Wavelength of Khadrawi 

 

 

Figure 17: Reflectance versus Wavelength of Fard 
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Figure 18: Reflectance versus Wavelength of Helali 

 

 

On the other hand calculated frequencies, cumulative proportion and 

cumulative percentages of each reflectance point for each cultivar showed that, the 

highest frequency in Barhi cultivar is 49 in reflectance 0.822814, while the lowest 

frequency is 1 in reflectance 0.329974 (Figure 18), the highest frequency in Khenaizi 

is 64 in reflectance 0.776956, while the lowest frequency is 1 in reflectance 0.327765 

(Figure 19),  the highest frequency in Khalas is 64 in reflectance 0.823069, while the 

lowest frequency is 1 in reflectance 0.330217 (Figure 20),  the highest frequency in 

Khadrawi is 59 in reflectance 0.770903, while the lowest frequency is 1in reflectance 

0.310582 (Figure 21),  the highest frequency in Fard is 50 in reflectance 0.830062, 

while the lowest frequency is 1in reflectance 0.364221 (Figure 22), and the highest 

frequency in Helali is 64 in reflectance 0.824555, while the lowest frequency is 1 in 

reflectance 0.341369 (Figure 23).  
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Figure 19: Reflectance versus Frequency of Barhi 

 

 

Figure 20: Reflectance versus Frequency of Khenaizi 
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Figure 21: Reflectance versus Frequency of Khalas 

 

 

Figure 22: Reflectance versus Frequency of Khadrawi 
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Figure 23: Reflectance versus Frequency of Fard 

 

 

Figure 24: Reflectance versus Frequency of Helali
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Figure 25: Reflectance versus Frequency of All Cultivar  
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For better comparison drawing curves were displayed together, showed that, 

each cultivar has its unique figure, despite that for some wavelength intervals, some or 

all cultivars curves are crossed or even unified (Figure 24).  

The numeric data of reflectance, frequencies, and cumulative percentages for 

all cultivars are shown in (Appendix 1).  

Using the ranges of reflectance for each cultivar at each point of wavelength 

between 395.35-1007.71 nm, statistic readings basically standard deviation and 

sample variance were calculated, the highest standard deviation and sample variance 

marked at 705.25 nm point, (as shown in Figure 25 and Figure 26), suggesting that, 

this wavelength point could be the center of a promising distinguishing interval 

between the cultivars of study.  
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Figure 26: Sample Variance 
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Figure 27: Standard Deviation 
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At 705.25 nm point, Khalas (0.514393), Barhi (0.485868), and Helali 

(0.478543) showed higher readings than others while Khenezi (0.4388) reflect the 

lowest (Figure 27), Khadrawi (0.457729), and Red Fard (0.457551) reflect the same 

result at this point while they showed clear differentiation at others (Figure 24). The 

numeric data of reflectance ranges, standard deviations and sample variances for all 

cultivars are shown in (Appendix 2). 

 

Figure 28: Reflectance at 705.25 nm 
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Further calculations were made to confirm the accuracy of this study in order 

to find the best wavelength interval to comparison all species, cumulative percentage 

is another way of expressing frequency distribution, to find the value the number of 

times the reflectance occurred was divided by the total sample size. The main 

advantage of cumulative percentage over cumulative frequency as a measure of 

frequency distribution, is that it provides an easier way to compare different sets of 

data, using the cumulative proportion data (Table 1 and 2), Kolmogorov-Smirnov 

Normality Test (K-S Test) was performed to compare studied cultivars as pairs, the 

finding obtained is true regarding comparing Khalas with only Khadrawi, Fard and 

Helali, while it can’t be said that the same is achieved for the other pairs because the 

differentiation between maximum difference and critic maximum difference doesn’t 

reach the expected number (Table 3). The K-S Test do confirm the study finding as 

shown in (Figure 27), that Khadrawi and Fard couldn’t be distinguished at 705.25 nm, 

still results were promising and only show a humble, but very important base for future 

studies on more samples, different sites and applying sophisticated statistics in order 

to find scientific reliable algorithms.  
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Table 1: Cumulative Proportion of Reflectance for Barhi, Khenaizi, and Khalas 
 

  

 

 
Barhi Khenaizi Khalas 

Reflectance Frequency Proportion Cum. Prop. Frequency Proportion Cum. Prop. Frequency Proportion Cum. Prop. 

0.329974 1 0.002610966 0.002610966 1 0.002610966 0.002610966 1 0.002610966 0.002610966 

0.374777643 12 0.031331593 0.033942559 12 0.031331593 0.033942559 12 0.031331593 0.033942559 

0.419581286 14 0.036553525 0.070496084 14 0.036553525 0.070496084 15 0.039164491 0.07310705 

0.464384929 8 0.020887728 0.091383812 8 0.020887728 0.091383812 8 0.020887728 0.093994778 

0.509188571 7 0.018276762 0.109660574 7 0.018276762 0.109660574 7 0.018276762 0.11227154 

0.553992214 8 0.020887728 0.130548303 8 0.020887728 0.130548303 12 0.031331593 0.143603133 

0.598795857 17 0.044386423 0.174934726 16 0.041775457 0.17232376 14 0.036553525 0.180156658 

0.6435995 10 0.026109661 0.201044386 11 0.028720627 0.201044386 9 0.023498695 0.203655352 

0.688403143 5 0.01305483 0.214099217 5 0.01305483 0.214099217 6 0.015665796 0.219321149 

0.733206786 7 0.018276762 0.232375979 6 0.015665796 0.229765013 7 0.018276762 0.237597911 

0.778010429 26 0.067885117 0.300261097 11 0.028720627 0.25848564 59 0.154046997 0.391644909 

0.822814071 49 0.127937337 0.428198433 64 0.167101828 0.425587467 15 0.039164491 0.430809399 

0.867617714 16 0.041775457 0.46997389 16 0.041775457 0.467362924 16 0.041775457 0.472584856 

0.912421357 12 0.031331593 0.501305483 13 0.033942559 0.501305483 11 0.028720627 0.501305483 

0.822814071 49 0.127937337 0.62924282 64 0.167101828 0.668407311 59 0.154046997 0.65535248 

0.778010429 26 0.067885117 0.697127937 16 0.041775457 0.710182768 16 0.041775457 0.697127937 

0.598795857 17 0.044386423 0.74151436 16 0.041775457 0.751958225 15 0.039164491 0.736292428 

0.867617714 16 0.041775457 0.783289817 14 0.036553525 0.788511749 15 0.039164491 0.775456919 

0.419581286 14 0.036553525 0.819843342 13 0.033942559 0.822454308 14 0.036553525 0.812010444 
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Table 1: Cumulative Proportion of Reflectance for Barhi, Khenaizi, and Khalas (continued) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Barhi Khenaizi Khalas 

0.374777643 12 0.031331593 0.851174935 12 0.031331593 0.853785901 12 0.031331593 0.843342037 

0.912421357 12 0.031331593 0.882506527 11 0.028720627 0.882506527 12 0.031331593 0.874673629 

0.6435995 10 0.026109661 0.908616188 11 0.028720627 0.911227154 11 0.028720627 0.903394256 

0.464384929 8 0.020887728 0.929503916 8 0.020887728 0.932114883 9 0.023498695 0.92689295 

0.553992214 8 0.020887728 0.950391645 8 0.020887728 0.953002611 8 0.020887728 0.947780679 

0.509188571 7 0.018276762 0.968668407 7 0.018276762 0.971279373 7 0.018276762 0.966057441 

0.733206786 7 0.018276762 0.98694517 6 0.015665796 0.98694517 7 0.018276762 0.984334204 

0.688403143 5 0.01305483 1 5 0.01305483 1 6 0.015665796 1 

  383.00     383.00     383.00     
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Table 2: Cumulative Proportion of Reflectance for Khadwri, Fard and Helali 
 

 

 

 

 

 
Khadrawi Fard Helali 

Reflectance Frequency Proportion Cum. Prop. Frequency Proportion Cum. Prop. Frequency Proportion Cum. Prop. 

0.329974 1 0.002610966 0.002610966 1 0.002610966 0.002610966 1 0.002610966 0.002610966 

0.374777643 10 0.026109661 0.028720627 10 0.026109661 0.028720627 12 0.031331593 0.033942559 

0.419581286 12 0.031331593 0.060052219 12 0.031331593 0.060052219 14 0.036553525 0.070496084 

0.464384929 6 0.015665796 0.075718016 6 0.015665796 0.075718016 6 0.015665796 0.08616188 

0.509188571 7 0.018276762 0.093994778 7 0.018276762 0.093994778 7 0.018276762 0.104438642 

0.553992214 7 0.018276762 0.11227154 7 0.018276762 0.11227154 8 0.020887728 0.125326371 

0.598795857 18 0.046997389 0.15926893 18 0.046997389 0.15926893 18 0.046997389 0.17232376 

0.6435995 13 0.033942559 0.193211488 13 0.033942559 0.193211488 10 0.026109661 0.19843342 

0.688403143 5 0.01305483 0.206266319 5 0.01305483 0.206266319 5 0.01305483 0.211488251 

0.733206786 6 0.015665796 0.221932115 6 0.015665796 0.221932115 6 0.015665796 0.227154047 

0.778010429 10 0.026109661 0.248041775 10 0.026109661 0.248041775 11 0.028720627 0.255874674 

0.822814071 50 0.130548303 0.378590078 50 0.130548303 0.378590078 64 0.167101828 0.422976501 

0.867617714 31 0.080939948 0.459530026 31 0.080939948 0.459530026 17 0.044386423 0.467362924 

0.912421357 16 0.041775457 0.501305483 16 0.041775457 0.501305483 13 0.033942559 0.501305483 

0.822814071 50 0.130548303 0.631853786 50 0.130548303 0.631853786 64 0.167101828 0.668407311 

0.778010429 31 0.080939948 0.712793734 31 0.080939948 0.712793734 18 0.046997389 0.7154047 

0.598795857 18 0.046997389 0.759791123 18 0.046997389 0.759791123 17 0.044386423 0.759791123 

0.867617714 16 0.041775457 0.80156658 16 0.041775457 0.80156658 14 0.036553525 0.796344648 

0.419581286 13 0.033942559 0.835509138 13 0.033942559 0.835509138 13 0.033942559 0.830287206 

0.374777643 12 0.031331593 0.866840731 12 0.031331593 0.866840731 12 0.031331593 0.861618799 
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Table 2: Cumulative Proportion of Reflectance for Khadwri, Fard and Helali (continued) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Khadrawi Fard Helali 

0.912421357 10 0.026109661 0.892950392 10 0.026109661 0.892950392 11 0.028720627 0.890339426 

0.6435995 10 0.026109661 0.919060052 10 0.026109661 0.919060052 10 0.026109661 0.916449086 

0.464384929 7 0.018276762 0.937336815 7 0.018276762 0.937336815 8 0.020887728 0.937336815 

0.553992214 7 0.018276762 0.955613577 7 0.018276762 0.955613577 7 0.018276762 0.955613577 

0.509188571 6 0.015665796 0.971279373 6 0.015665796 0.971279373 6 0.015665796 0.971279373 

0.733206786 6 0.015665796 0.98694517 6 0.015665796 0.98694517 6 0.015665796 0.98694517 

0.688403143 5 0.01305483 1 5 0.01305483 1 5 0.01305483 1  
383.00 

  
383.00 

  
383.00 
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Table 3: Kolmogorov-Smirnov Normality Test (K-S Test) 
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Chapter 5: Discussion 

 

 

The six tested cultivars of date palms which are Barhi, Khadrawi, Khenaizi, 

Khalas, Fard and Helali reported the 705.25 nm point as the highest in variance (Figure 

14) and standard deviation (Figure 15) among the all tested wavelengths from 395.35 

to 1007.71 nm (Appendix 1). Applied variance and standard deviation readings to see 

how numbers relate to each other within a data set, at this point (Figure 16) Khalas, 

Barhi, and Helali showing higher readings than others while Khenaizi reflect the 

lowest. Khadrawi, and Fard reflect the same result at this point while they showed 

clear differentiation at others (Figure 13), so further study with more samples needed 

in order to find the best wavelength for comparison of all species.  

On the other hand, by performing Kolmogorov-Smirnov Normality Test (K-S 

Test), using the cumulative proportion data (Table 1 and 2), comparing the six cultivars 

as pairs, it can be concluded statistically that previous finding is significant regarding 

comparison of Khalas with only Khadrawi, Fard and Helali, while this could not 

confirm the same for the other pairs because the differentiation between maximum 

difference and critic Maximum difference were in minus (Table 3). 

The interpretation of hyperspectral images is accompanied by several different 

aspects, some related to the sensor technology compared to multispectral images or 

RGB images, other are related to an investigated phenomenon and the possibility to 

characterize, quantize and parametrize changes in the observations. 

In this study, the RGB images data is used to find hyperspectral signature for 

samples (showing no visible changes to the naked eye), taken from healthy plants to 

eliminate any effect of problems related to diseases as, bacterial or fungal infections 
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and /or drought. So, in this study, the data is dealt without any standard or previous 

research results to directly compare with. 

Previous studies using Hyperspectral technology imaging spectrometry 

technology and consider as one of the important leading research fields of remote 

sensing. Also, Hyperspectral remote sensing technology has been successfully applied 

in many fields as Jiang et al. (2004) described that Hyperspectral technology imaging 

spectrometry technology, is one of the important leading research fields of remote 

sensing. Since the first imaging spectrometer was produced in 1983, in less than 20 

years. Hyperspectral remote sensing technology has been successfully applied in many 

fields and shown great potential and bright prospects. Research on processing, analysis 

and information extraction of Hyperspectral data should be strengthened to determine 

more useful information, make full use of the advantage and potential of Hyperspectral 

remote sensing technology, and promote the development of new and important 

technology  (Jiang et al., 2004). Also, the results shows that this technique is useful 

and important  in agriculture field. By this technique, the study outcomes are having 

noticed a difference between the leaves of date palms. Through this study, it is noticed 

that using this technique will save us too much time waiting the date fruits to ripe, need 

only few leaves to work on, and cost nothing once the camera is ready and determining 

and the examining wavelength. The best Hyperspectral wavebands in the study of date 

palms and agricultural crops over the spectral range of 400 – 2500 nm and assessed 

the date palms and agricultural crop classification accuracies achievable using the 

various combinations of the best Hyperspectral narrow wavebands (Thenkabail et al., 

2004). In this result, after processing the leaf photos, and displaying the wavelength of 

each cultivar and the reflectance of light in wavelength, analyzed data showed that, the 

range of wavelength of all cultivars are between 400 nm and 1000 nm. The spectral 
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range that Thenkabail et al. (2004) used is wider than the range considered in this study 

due to camera range, higher wavelengths until 2500 are recommended to be added to 

the camera machine to continue with this study and other colleges researchers. 

The leaves of plants can trait the amount of light reflected from leaves. The 

work carried out by Esau et al. (2006) showed that the leaf traits and physiological 

performance govern the amount of light reflected from leaves at visible and infrared 

wavebands. Information on leaf optical properties of tropical trees is scarce. In this 

study the leaves of date palm trees and the darkness of leaves also could affect by the 

amount of light reflectance. It visualized that the difference in amount of reflectance 

from leaf to leaf is dependent on the amount of darkness of leaves which is the 

percentage of chlorophyll in leaves. However, depending on Esau result (2006), it was 

decided to work on control samples trying to delete any other factors that would affect 

the findings of this study. The concern noticed at this time was to distinguish the date 

types only with chlorophyll content.  

  According to the results obtained in this research, it is found that the results 

of Tarabalka (2011) is in agreement that large number of spectral bands acquired by 

Hyperspectral sensors increased the capability to distinguish physical materials and 

objects, and the proposed method improves classification accuracies when compared 

to other classification approaches. Future studies on palm trees need to link the 

hyperspectral metrics with other data that is generated from laboratory results on 

chlorophyll concentration, enzyme content, and/or any other biochemical parameters.   

Sandmeier et al. (1998) reported a new approach for deriving vegetation 

canopy structural characteristics from Hyperspectral bi-directional 

reflectance distribution function (BRDF) data. The methodology is based on the 

relationship between spectral variability of BRDF effects and canopy geometry. 

https://www.sciencedirect.com/science/article/abs/pii/S0034425799000322#!
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/canopy-vegetation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/canopy-vegetation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/bidirectional-reflectance
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/bidirectional-reflectance
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/distribution-function
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However, in this research using Hyperspectral Camera to distinguish between the 

leaves of palm trees. The methodology is based on the relationship between 

wavelength and reflectance. 

    According to this study the result were similar to Rajabi and Ghassemian 

(2015) who studied a variety of feature reduction methods that have been developed 

by using spectral and spatial domains. In these studies, a feature extracting technique 

was proposed based on rational function curve fitting. For each pixel of a 

Hyperspectral image, a specific rational function approximation was developed to fit 

the spectral response curve of that pixel. Coefficients of the numerator and 

denominator polynomials of these functions were considered as new extracted 

features. 

Teena et al. (2013) studied that the early stages of microbial infection in date 

palm fruits are difficult to detect by the presently used manual sorting technique. The 

potential of Hyperspectral imaging technique to detect fungal contamination of edible 

date fruits was investigated in their study. The samples were treated as three groups: 

Untreated Control (UC), Sterile Control (SC) (surface sterilized, rinsed and dried) and 

inoculated samples (IS) (surface sterilized, rinsed, dried and inoculated). While in this 

research, it was observed that there were very difficult to detect and classify the 

cultivars of date palm leaves in open fields because they were affected by many factors. 

So that, the samples were treated as under control (in tissue culture) to avoid any 

factors that could affect.  This study is showing promising analysis of hyperspectral 

signature of various date palm leaves, the findings are starting point to contribute to a 

better detection of leaves optical properties for each type. This technology being so 

promising, further analytical methods and sensor specificities should be further studied 

for development of precise high throughput screening systems of differentiation. 
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Chapter 6: Conclusions and Recommendations  

 

The study investigated the effect of reflectance of light and frequency of each 

cultivar. Based on this study, it appears that some cultivar of date palm tree has 

different spectral signature with which can be precisely differentiate between date 

palm cultivars by applying this technology on date palm leaf.  

In fact, results of this study also showed highest frequency of light reflected of 

each cultivar in Khalas, Helali and Khenaizi cultivars. While the highest reflectance in 

Khalas and Fard Cultivar.  

The six tested cultivars of date palm trees which are Barhi, Khadrawi, 

Khenaizi, Khalas, RedFard and Helali report the 705.25 nm point as the highest in 

variance and standard deviation but, further study with more samples needed in order 

to find the best wavelength to comparison all species. On the other hand, utilizing K-

S Test result, statistical comparison could be possible between Khalas Khadrawi, 

RedFard and Helali while, there was no significance with other cultivars. 

Finally, this research was conducted with the purpose to provide an effective of 

Hyperspectral Technology for classification the date palm cultivars.  

The following recommendations are provided from this study:  

1. Investigate the variation in a species' leaf reflectance across different sites  along 

the four seasons (multitemporal data). 

2. Apply the study on open field samples. 

3. Compare the results of this study with results considering taking and using remote 

airborne or satellite‐borne sensors. 

4. Classifications using individual and all four spectral bands (blue, green, red, and 

infrared; multispectral data).  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spectral-band
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Appendices 
 

Appendix 1: Reflectance, Frequency, and Cumulative Percentage of the Barhi, Khadrawi, Khenaizi, Khalas, RedFard and Helali

 
Barhi Reflectance Frequency Cumulative % Reflectance Frequency Cumulative % 

0.329974 1 0.51 0.822814071 49 25 

0.374777643 12 6.63 0.778010429 26 38.27 

0.419581286 14 13.78 0.598795857 17 46.94 

0.464384929 8 17.86 0.867617714 16 55.10 

0.509188571 7 21.43 0.419581286 14 62.24 

0.553992214 8 25.51 0.374777643 12 68.37 

0.598795857 17 34.18 0.912421357 12 74.49 

0.6435995 10 39.29 0.6435995 10 79.59 

0.688403143 5 41.84 0.464384929 8 83.67 

0.733206786 7 45.41 0.553992214 8 87.76 

0.778010429 26 58.67 0.509188571 7 91.33 

0.822814071 49 83.67 0.733206786 7 94.90 

0.867617714 16 91.84 0.688403143 5 97.45 

0.912421357 12 97.96 More 4 99.49 

More 4 100.00 0.329974 1 100.00 

khenaizi Reflectance Frequency Cumulative % Reflectance Frequency Cumulative % 

0.330217 1 0.51 0.823068857 64 32.65 

0.375021714 12 6.63 0.599045286 16 40.82 

0.419826429 14 13.78 0.867873571 16 48.98 

0.464631143 8 17.86 0.419826429 14 56.12 

0.509435857 7 21.43 0.912678286 13 62.76 

0.554240571 8 25.51 0.375021714 12 68.88 

0.599045286 16 33.67 0.64385 11 74.49 
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Appendix 1: Reflectance, Frequency, and Cumulative percentage of the Barhi, Khadrawi, Khenaizi, Khalas, RedFard and Helali (continued)
 

khenaizi Reflectance Frequency Cumulative % Reflectance Frequency Cumulative %  
0.64385 11 39.29 0.778264143 11 80.10 

0.688654714 5 41.84 0.464631143 8 84.18 

0.733459429 6 44.90 0.554240571 8 88.27 

0.778264143 11 50.51 0.509435857 7 91.84 

0.823068857 64 83.16 0.733459429 6 94.90 

0.867873571 16 91.33 0.688654714 5 97.45 

0.912678286 13 97.96 More 4 99.49 

More 4 100.00 0.330217 1 100.00 

khalas 

  

Reflectance Frequency Cumulative % Reflectance Frequency Cumulative % 

0.310582 1 0.51 0.770903429 59 30.10 

0.356614143 12 6.63 0.862967714 16 38.27 

0.402646286 15 14.29 0.402646286 15 45.92 

0.448678429 8 18.37 0.816935571 15 53.57 

0.494710571 7 21.94 0.586774857 14 60.71 

0.540742714 12 28.06 0.356614143 12 66.84 

0.586774857 14 35.20 0.540742714 12 72.96 

0.632807 9 39.80 0.908999857 11 78.57 

0.678839143 6 42.86 0.632807 9 83.16 

0.724871286 7 46.43 0.448678429 8 87.24 

0.770903429 59 76.53 0.494710571 7 90.82 

0.816935571 15 84.18 0.724871286 7 94.39 

0.862967714 16 92.35 0.678839143 6 97.45 

0.908999857 11 97.96 More 4 99.49 

More 4 100.00 0.310582 1 100.00 
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Appendix 1: Reflectance, Frequency, and Cumulative percentage of the Barhi, Khadrawi, Khenaizi, Khalas, RedFard and Helali (continued)
 

khadrawi Reflectance Frequency Cumulative % Reflectance Frequency Cumulative % 

khadwri 

  Fard 

0.364221 1 0.51 0.830062357 50 25.51 

0.406570214 10 5.61 0.872411571 31 41.33 

0.448919429 12 11.73 0.618316286 18 50.51 

0.491268643 6 14.8 0.914760786 16 58.67 

0.533617857 7 18.37 0.6606655 13 65.31 

0.575967071 7 21.94 0.448919429 12 71.43 

0.618316286 18 31.12 0.406570214 10 76.53 

0.6606655 13 37.76 0.787713143 10 81.63 

0.703014714 5 40.31 0.533617857 7 85.20 

0.745363929 6 43.37 0.575967071 7 88.78 

0.787713143 10 48.47 0.491268643 6 91.84 

0.830062357 50 73.98 0.745363929 6 94.90 

0.872411571 31 89.80 0.703014714 5 97.45 

0.914760786 16 97.96 More 4 99.49 

More 4 100.00 0.364221 1 100.00 

Reflectance Frequency Cumulative % Reflectance Frequency Cumulative % 

  Fard  0.364221 1 0.51 0.830062357 50 25.51 

  Fard 

  

Helali 

0.406570214 10 5.61 0.872411571 31 41.33 

0.448919429 12 11.73 0.618316286 18 50.51 

0.491268643 6 14.80 0.914760786 16 58.67 

0.533617857 7 18.37 0.6606655 13 65.31 

0.575967071 7 21.94 0.448919429 12 71.43 

0.618316286 18 31.12 0.406570214 10 76.53 

0.6606655 13 37.76 0.787713143 10 81.63 

0.703014714 5 40.31 0.533617857 7 85.20 

 

 



 
 

 

P
ag

e6
9

 

 

6
9

 

Appendix 1: Reflectance, Frequency, and Cumulative percentage of the Barhi, Khadrawi, Khenaizi, Khalas, RedFard and Helali (continued)
 

Fard 

  

Helali 

Reflectance Frequency Cumulative % Reflectance Frequency Cumulative % 

 
0.745363929 6 43.37 0.575967071 7 88.78 

0.787713143 10 48.47 0.491268643 6 91.84 

0.830062357 50 73.98 0.745363929 6 94.90 

0.872411571 31 89.80 0.703014714 5 97.45 

0.914760786 16 97.96 More 4 99.49 

More 4 100.00 0.364221 1 100.00 

            

Reflectance Frequency Cumulative % Reflectance Frequency Cumulative % 

Helali 0.341369 1 0.51 0.824555 64 32.65 

Helali 0.385295 12 6.63 0.604925 18 41.84 

0.429221 14 13.78 0.868481 17 50.51 

0.473147 6 16.84 0.429221 14 57.65 

0.517073 7 20.41 0.912407 13 64.29 

0.560999 8 24.49 0.385295 12 70.41 

0.604925 18 33.67 0.780629 11 76.02 

0.648851 10 38.78 0.648851 10 81.12 

0.692777 5 41.33 0.560999 8 85.20 

0.736703 6 44.39 0.517073 7 88.78 

0.780629 11 50.00 0.473147 6 91.84 

0.824555 64 82.65 0.736703 6 94.90 

0.868481 17 91.33 0.692777 5 97.45 

0.912407 13 97.96 More 4 99.49 

More 4 100.00 0.341369 1 100.00       
 

 

 



 
 

 

P
ag

e7
0

 

 

7
0

 

Appendix 2: Statistic Reading of the Barhi, Khadrawi, Khenaizi, Khalas, RedFard and Helali 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NM Helali Fard Kadrawi Khenaizi Khalas Barhi Sample Variance Standard 

Deviation 

395.35 0.95792 0.957998 0.958872 0.956051 0.96152 0.956632 3.73257E-06 0.001931987 

398.34 0.946542 0.946194 0.946534 0.944886 0.948558 0.945962 1.44177E-06 0.001200738 

401.33 0.935724 0.935964 0.936479 0.93406 0.938333 0.934779 2.18628E-06 0.001478609 

404.33 0.921961 0.922355 0.922244 0.919827 0.925202 0.921104 3.17692E-06 0.001782391 

407.32 0.909796 0.911132 0.912064 0.908551 0.913864 0.910272 3.46241E-06 0.001860755 

410.32 0.899546 0.900231 0.90021 0.89749 0.902012 0.898359 2.51457E-06 0.00158574 

413.32 0.894826 0.897347 0.896098 0.89317 0.898529 0.895835 3.52558E-06 0.001877654 

416.32 0.876535 0.878579 0.876475 0.875664 0.878759 0.876754 1.56536E-06 0.001251143 

419.32 0.881221 0.884508 0.882246 0.880604 0.884098 0.881815 2.46141E-06 0.001568888 

422.33 0.864293 0.866721 0.865297 0.863681 0.867384 0.864005 2.32906E-06 0.001526125 

425.33 0.853279 0.855764 0.85301 0.853369 0.855523 0.853299 1.56216E-06 0.001249864 

428.34 0.857507 0.860065 0.858369 0.857416 0.860283 0.857958 1.60815E-06 0.001268128 

431.35 0.818884 0.821771 0.819597 0.819134 0.822033 0.818921 2.11447E-06 0.00145412 

434.36 0.815694 0.819164 0.816951 0.815848 0.820068 0.816594 3.27984E-06 0.001811033 

437.37 0.792873 0.797119 0.793694 0.792586 0.797242 0.793018 4.69954E-06 0.002167843 

440.38 0.77906 0.783228 0.779392 0.779575 0.782251 0.778557 3.65876E-06 0.001912788 

443.4 0.770192 0.773623 0.770335 0.770309 0.774152 0.769883 3.71976E-06 0.001928669 

446.42 0.754573 0.758474 0.754739 0.754782 0.759153 0.754681 4.57698E-06 0.002139387 

449.43 0.760473 0.765627 0.761695 0.760585 0.766265 0.761258 6.7568E-06 0.002599384 

452.45 0.731674 0.735576 0.731245 0.731004 0.736499 0.731207 6.16212E-06 0.002482362 

455.47 0.744245 0.748517 0.744242 0.744652 0.749444 0.744995 5.43853E-06 0.002332065 

458.5 0.736827 0.741905 0.738797 0.735989 0.744374 0.738295 1.01696E-05 0.003188982 
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Appendix 2: Statistic Reading of the Barhi, Khadrawi, Khenaizi, Khalas, RedFard and Helali (continued)  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NM Helali Fard Kadrawi Khenaizi Khalas Barhi Sample Variance Standard 

Deviation 

461.52 0.700063 0.703522 0.698847 0.69976 0.705139 0.700353 6.09775E-06 0.002469362 

464.55 0.738542 0.741631 0.737878 0.739152 0.743803 0.738869 5.14946E-06 0.002269241 

467.57 0.717656 0.723314 0.720096 0.717292 0.724444 0.718909 8.85418E-06 0.002975598 

470.6 0.67042 0.674603 0.66906 0.669814 0.675978 0.670067 8.30986E-06 0.002882682 

473.63 0.700553 0.703182 0.697271 0.700273 0.704716 0.699865 6.8977E-06 0.002626348 

476.66 0.670531 0.675556 0.672551 0.670144 0.678429 0.671621 1.04495E-05 0.003232576 

479.7 0.625101 0.62911 0.623466 0.62399 0.631748 0.624795 1.09238E-05 0.003305119 

482.73 0.646445 0.649687 0.642866 0.645299 0.651737 0.645396 1.04938E-05 0.003239419 

485.77 0.622778 0.626657 0.622074 0.620518 0.629731 0.622281 1.20372E-05 0.003469461 

488.8 0.588272 0.591295 0.585877 0.584971 0.5951 0.586935 1.45714E-05 0.003817245 

491.84 0.596533 0.598785 0.594103 0.593365 0.60357 0.595033 1.43964E-05 0.003794257 

494.88 0.578654 0.580522 0.576067 0.574049 0.586705 0.576937 1.97969E-05 0.004449375 

497.93 0.579962 0.580795 0.574802 0.575339 0.587446 0.577857 2.14015E-05 0.004626177 

500.97 0.604247 0.605589 0.602575 0.599394 0.613381 0.603376 2.21511E-05 0.004706499 

504.02 0.571003 0.570974 0.568873 0.563177 0.581822 0.569549 3.6977E-05 0.006080869 

507.06 0.561317 0.558769 0.55254 0.552205 0.571367 0.558111 4.94085E-05 0.007029119 

510.11 0.609724 0.607288 0.603101 0.601327 0.620661 0.608016 4.63125E-05 0.006805328 

513.16 0.5989 0.597466 0.595564 0.588893 0.613859 0.599677 6.75095E-05 0.008216416 

516.21 0.562509 0.557048 0.553817 0.549179 0.578856 0.561093 0.000105207 0.010257027 

519.27 0.593512 0.58779 0.581611 0.580485 0.608737 0.59305 0.000106805 0.010334658 

522.32 0.61729 0.613074 0.611379 0.604961 0.636451 0.619894 0.000115713 0.010756988 

525.38 0.573484 0.569128 0.567686 0.557536 0.597777 0.578042 0.000183319 0.013539542 
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Appendix 2: Statistic Reading of the Barhi, Khadrawi, Khenaizi, Khalas, RedFard and Helali (continued) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NM Helali Fard Kadrawi Khenaizi Khalas Barhi Sample Variance Standard 

Deviation 

528.43 0.556145 0.550898 0.545974 0.540383 0.581524 0.560857 0.000209104 0.014460428 

531.49 0.595919 0.592138 0.586138 0.583246 0.619929 0.601942 0.000176184 0.013273442 

534.55 0.596929 0.596556 0.594271 0.585754 0.62557 0.607229 0.000191302 0.013831208 

537.62 0.553349 0.553767 0.551396 0.540606 0.586756 0.565645 0.000253801 0.015931126 

540.68 0.540752 0.540833 0.53673 0.528324 0.575008 0.553528 0.000270127 0.016435539 

543.74 0.552953 0.553031 0.549246 0.540386 0.58608 0.566263 0.000258762 0.016086093 

546.81 0.537261 0.536715 0.534666 0.521849 0.572563 0.551154 0.000305464 0.017477528 

549.88 0.524064 0.52266 0.519913 0.508683 0.559971 0.537311 0.000317573 0.01782057 

552.95 0.534024 0.532451 0.528948 0.518782 0.568324 0.546599 0.000298229 0.017269313 

556.02 0.53717 0.535682 0.533336 0.52151 0.571767 0.549743 0.000300576 0.017337129 

559.09 0.516141 0.513306 0.51081 0.498739 0.550895 0.528415 0.000324205 0.018005681 

562.17 0.511005 0.506328 0.502832 0.493754 0.544165 0.521423 0.000312824 0.01768682 

565.24 0.526625 0.523322 0.519784 0.510786 0.558901 0.53729 0.000283227 0.016829358 

568.32 0.518452 0.516906 0.515351 0.502433 0.552504 0.52974 0.000290821 0.017053472 

571.4 0.488115 0.484715 0.482734 0.470656 0.521909 0.498081 0.000307106 0.017524435 

574.48 0.483741 0.477478 0.472915 0.466175 0.513259 0.490113 0.00027533 0.016593085 

577.56 0.5121 0.505885 0.500684 0.496081 0.537537 0.51697 0.000218891 0.014794965 

580.65 0.514915 0.511833 0.509516 0.499456 0.542293 0.521739 0.00021124 0.014534091 

583.73 0.474731 0.471071 0.470515 0.456346 0.505275 0.48183 0.000266184 0.016315138 

586.82 0.445011 0.437388 0.433952 0.424879 0.472319 0.447659 0.000265074 0.016281096 
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Appendix 2: Statistic Reading of the Barhi, Khadrawi, Khenaizi, Khalas, RedFard and Helali (continued) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NM Helali Fard Kadrawi Khenaizi Khalas Barhi Sample Variance Standard 

Deviation 

589.91 0.460084 0.450143 0.442985 0.440834 0.482116 0.459675 0.000229186 0.015138877 

593 0.488422 0.481344 0.475726 0.471892 0.510619 0.489717 0.000190311 0.013795313 

596.09 0.4787 0.475112 0.472337 0.461985 0.504882 0.482835 0.000206625 0.014374467 

599.18 0.44369 0.439726 0.437594 0.425715 0.472417 0.447926 0.000243022 0.015589175 

602.28 0.427269 0.421175 0.416431 0.409494 0.453968 0.429204 0.000236197 0.015368693 

605.37 0.442199 0.4359 0.428983 0.427026 0.466293 0.443324 0.000202281 0.014222537 

608.47 0.451409 0.447398 0.442583 0.437159 0.476387 0.45468 0.000186285 0.013648617 

611.57 0.428346 0.426187 0.423175 0.413336 0.456445 0.43335 0.000210397 0.014505085 

614.67 0.399232 0.396789 0.393844 0.383625 0.427864 0.403374 0.0002202 0.014839124 

617.77 0.388668 0.384773 0.380369 0.372982 0.415577 0.390893 0.000211776 0.014552511 

620.87 0.39571 0.391223 0.38589 0.380772 0.420476 0.396837 0.000190492 0.013801896 

623.98 0.399302 0.394979 0.390468 0.3839 0.423409 0.400248 0.000182789 0.013519935 

627.09 0.389734 0.385926 0.381572 0.373977 0.414217 0.390736 0.000185797 0.013630742 

630.19 0.381106 0.376267 0.37193 0.364882 0.405374 0.381028 0.000190735 0.013810696 

633.3 0.383335 0.378589 0.373762 0.366845 0.406847 0.38285 0.000185809 0.013631163 

636.42 0.38605 0.381869 0.377378 0.370133 0.408765 0.385466 0.000171 0.013076708 

639.53 0.37722 0.374149 0.369707 0.361663 0.399468 0.376283 0.000159972 0.012648002 

642.64 0.362132 0.359193 0.353984 0.34673 0.382667 0.359591 0.000145673 0.012069504 

645.76 0.357829 0.355044 0.347744 0.343517 0.375515 0.353441 0.000122844 0.011083486 

648.88 0.370378 0.36874 0.360602 0.358059 0.385761 0.365773 9.59763E-05 0.009796751 
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Appendix 2: Statistic Reading of the Barhi, Khadrawi, Khenaizi, Khalas, RedFard and Helali (continued) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NM Helali Fard Kadrawi Khenaizi Khalas Barhi Sample Variance Standard Deviation 

651.99 0.383501 0.384475 0.377322 0.373575 0.399405 0.381072 7.92069E-05 0.008899825 

655.11 0.377617 0.381729 0.376616 0.369645 0.39608 0.377725 7.8206E-05 0.008843416 

658.24 0.353252 0.358349 0.353604 0.345946 0.372524 0.353262 8.00572E-05 0.008947468 

661.36 0.332789 0.337306 0.331072 0.325482 0.349635 0.33083 6.92823E-05 0.0083236 

664.49 0.332102 0.335642 0.327416 0.325111 0.345252 0.327765 5.5004E-05 0.007416471 

667.61 0.34699 0.351323 0.342563 0.341372 0.358165 0.342382 4.31855E-05 0.006571569 

670.74 0.360591 0.366331 0.358407 0.355943 0.371915 0.356892 3.88247E-05 0.006230948 

673.87 0.358708 0.365233 0.358316 0.353665 0.370169 0.35522 3.95984E-05 0.006292728 

677 0.344857 0.350447 0.344204 0.338495 0.35608 0.340108 4.32819E-05 0.006578899 

680.13 0.335983 0.338824 0.331679 0.327615 0.344692 0.327973 4.45454E-05 0.006674234 

683.27 0.344167 0.343354 0.335388 0.333542 0.35133 0.333194 5.32243E-05 0.0072955 

686.4 0.368719 0.364129 0.356503 0.355053 0.375623 0.356758 6.74808E-05 0.008214671 

689.54 0.392679 0.384556 0.379193 0.375169 0.403146 0.382029 0.000103999 0.010197988 

692.68 0.405709 0.393423 0.391067 0.382177 0.422646 0.397818 0.000196473 0.014016887 

695.82 0.410618 0.393418 0.393135 0.380311 0.435018 0.405505 0.000358677 0.018938769 

698.96 0.42064 0.399135 0.400079 0.383798 0.451152 0.419746 0.000553883 0.023534726 

702.1 0.443935 0.420947 0.422004 0.404046 0.478404 0.447108 0.000685591 0.026183801 

705.25 0.478543 0.457551 0.457729 0.4388 0.514393 0.485868 0.000709369 0.026633977 

708.4 0.516216 0.499178 0.498218 0.478741 0.5519 0.526606 0.000656682 0.025625812 

711.54 0.550698 0.539209 0.536859 0.516743 0.584754 0.563059 0.000552295 0.023500951 

714.69 0.57817 0.573387 0.569637 0.548708 0.610618 0.592322 0.000442883 0.021044789 

717.84 0.60079 0.602959 0.597282 0.576941 0.630636 0.615601 0.000326552 0.018070757 

721 0.621179 0.630854 0.622905 0.604488 0.648286 0.635992 0.000221152 0.014871197 
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Appendix 2: Statistic Reading of the Barhi, Khadrawi, Khenaizi, Khalas, RedFard and Helali (continued) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NM Helali Fard Kadrawi Khenaizi Khalas Barhi Sample Variance Standard Deviation 

724.15 0.641968 0.658607 0.648211 0.632458 0.665668 0.65582 0.000145526 0.012063419 

727.31 0.662161 0.685287 0.672436 0.66048 0.681935 0.674639 0.000101571 0.010078247 

730.46 0.680662 0.709564 0.694786 0.685987 0.696846 0.691278 9.93022E-05 0.00996505 

733.62 0.696098 0.72978 0.712922 0.707792 0.708717 0.704667 0.000125603 0.011207268 

736.78 0.708665 0.746178 0.727829 0.725722 0.717921 0.714922 0.000172549 0.013135786 

739.94 0.718535 0.759406 0.739536 0.740128 0.725274 0.722906 0.000230304 0.015175768 

743.11 0.727409 0.770621 0.749625 0.752492 0.731256 0.729933 0.00028936 0.01701059 

746.27 0.734853 0.779861 0.757856 0.762736 0.736439 0.735573 0.000345629 0.01859111 

749.44 0.74103 0.787514 0.764489 0.770616 0.740118 0.739943 0.000400616 0.020015402 

752.61 0.744611 0.792276 0.768608 0.775835 0.741305 0.741861 0.000455713 0.021347429 

755.78 0.746825 0.795273 0.770375 0.779206 0.741894 0.742492 0.000497124 0.022296275 

758.95 0.748958 0.797391 0.771952 0.78127 0.742616 0.742806 0.000521801 0.022842962 

762.12 0.751809 0.799768 0.773918 0.784422 0.744104 0.744511 0.000536774 0.023168386 

765.29 0.7562 0.802958 0.776704 0.788256 0.746848 0.747956 0.000535331 0.023137218 

768.47 0.760638 0.806782 0.780793 0.791498 0.750738 0.751063 0.000534344 0.023115892 

771.65 0.763918 0.809958 0.783697 0.794074 0.75301 0.754344 0.000536211 0.023156231 

774.83 0.765317 0.811061 0.785132 0.795134 0.753916 0.755222 0.000539277 0.023222334 

778.01 0.764619 0.809753 0.784278 0.793848 0.752366 0.753105 0.000547594 0.023400724 

781.19 0.76285 0.808557 0.782044 0.792105 0.749727 0.750442 0.000570934 0.023894215 

784.37 0.762502 0.807832 0.78082 0.791915 0.74864 0.749254 0.000579645 0.024075817 

787.56 0.764423 0.809078 0.781828 0.793582 0.750737 0.75074 0.000568462 0.023842445 

790.74 0.769617 0.812957 0.785619 0.797768 0.755733 0.755691 0.000543984 0.023323467 
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Appendix 2: Statistic Reading of the Barhi, Khadrawi, Khenaizi, Khalas, RedFard and Helali (continued) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NM Helali Fard Kadrawi Khenaizi Khalas Barhi Sample Variance Standard 

Deviation 

793.93 0.77536 0.81715 0.790872 0.802362 0.761432 0.761903 0.00051025 0.022588724 

797.12 0.779574 0.8203 0.794874 0.80575 0.766066 0.766106 0.000486683 0.022060891 

800.31 0.780123 0.820529 0.795964 0.806165 0.766658 0.766442 0.00048469 0.022015686 

803.5 0.778206 0.819079 0.794198 0.8042 0.764643 0.764276 0.000493827 0.022222219 

806.7 0.774314 0.815782 0.790383 0.800372 0.760521 0.759805 0.000509606 0.022574465 

809.89 0.77061 0.812117 0.786697 0.796679 0.756335 0.755202 0.000523351 0.022876877 

813.09 0.768571 0.810086 0.783955 0.794757 0.753633 0.752562 0.000534448 0.023118129 

816.29 0.769665 0.809905 0.784007 0.795343 0.754377 0.752794 0.000523409 0.022878139 

819.49 0.772438 0.811983 0.786129 0.797596 0.756598 0.755406 0.000515959 0.022714729 

822.69 0.776059 0.815003 0.789214 0.800705 0.760694 0.759214 0.000497278 0.022299734 

825.89 0.779699 0.817811 0.792255 0.804021 0.764346 0.762581 0.000485833 0.022041629 

829.1 0.781213 0.819365 0.793851 0.805286 0.76601 0.764306 0.000481429 0.02194149 

832.3 0.781716 0.819469 0.794469 0.805291 0.766506 0.764558 0.000475891 0.021814921 

835.51 0.780543 0.818423 0.793699 0.804426 0.765408 0.763295 0.000480676 0.021924335 

838.72 0.779019 0.817433 0.791906 0.802801 0.763337 0.76113 0.000497205 0.022298105 

841.93 0.777993 0.816579 0.790949 0.801996 0.76204 0.759726 0.000507287 0.022523041 

845.14 0.778185 0.816501 0.790769 0.802377 0.761867 0.759587 0.000510974 0.022604734 

848.36 0.779209 0.817598 0.791629 0.803244 0.762978 0.760706 0.000508665 0.022553598 

851.57 0.781592 0.819449 0.793484 0.805296 0.765357 0.762813 0.000501284 0.022389365 

854.79 0.783967 0.821644 0.795685 0.807877 0.767686 0.76541 0.000498274 0.022322056 

858.01 0.787199 0.823553 0.798328 0.810312 0.771006 0.768302 0.000477775 0.021858069 

861.23 0.789344 0.82553 0.800622 0.812478 0.773724 0.770745 0.000468227 0.021638563 
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Appendix 2: Statistic Reading of the Barhi, Khadrawi, Khenaizi, Khalas, RedFard and Helali (continued) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NM Helali Fard Kadrawi Khenaizi Khalas Barhi Sample Variance Standard 

Deviation 

864.45 0.790276 0.826275 0.801975 0.81371 0.775293 0.772156 0.000458748 0.021418392 

867.67 0.791167 0.826794 0.80303 0.814289 0.776625 0.772718 0.000452117 0.021263049 

870.9 0.791081 0.827018 0.803169 0.814485 0.777164 0.772836 0.000450983 0.02123636 

874.12 0.790343 0.826451 0.802915 0.813958 0.776491 0.772714 0.000448908 0.02118745 

877.35 0.78881 0.824933 0.801211 0.812317 0.775685 0.771314 0.000440763 0.020994345 

880.58 0.786731 0.822957 0.799381 0.810391 0.774431 0.769367 0.000435721 0.020873931 

883.81 0.785209 0.821373 0.797531 0.808908 0.772836 0.767756 0.000435992 0.020880422 

887.04 0.784811 0.820069 0.79702 0.808544 0.772514 0.766979 0.0004287 0.020705072 

890.28 0.785472 0.820407 0.797526 0.809112 0.773768 0.76801 0.000415996 0.020395969 

893.51 0.786318 0.820528 0.797715 0.809761 0.774873 0.768958 0.000402441 0.020060928 

896.75 0.786554 0.819664 0.797542 0.809731 0.776177 0.769625 0.00037644 0.019402068 

899.99 0.785227 0.817288 0.796305 0.80856 0.776915 0.768828 0.000348482 0.018667682 

903.23 0.783802 0.815204 0.795052 0.80748 0.777547 0.76823 0.000324964 0.018026768 

906.47 0.782018 0.810737 0.792946 0.80522 0.776576 0.766866 0.000288831 0.016995014 

909.71 0.779739 0.807913 0.790648 0.802727 0.775586 0.764636 0.000276211 0.016619603 

912.95 0.778522 0.806634 0.789766 0.801355 0.775157 0.763913 0.000267395 0.016352225 

916.2 0.779065 0.80728 0.790693 0.801779 0.775859 0.76467 0.000265575 0.016296481 

919.45 0.779826 0.808293 0.791206 0.802333 0.776236 0.765227 0.000269473 0.016415646 

922.7 0.781585 0.809669 0.792701 0.80414 0.777738 0.766714 0.000269651 0.016421044 

925.95 0.784437 0.812444 0.795203 0.806834 0.779924 0.769533 0.000270774 0.016455204 

929.2 0.789297 0.816394 0.798717 0.810647 0.784493 0.774228 0.000257674 0.01605222 
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Appendix 2: Statistic Reading of the Barhi, Khadrawi, Khenaizi, Khalas, RedFard and Helali (continued) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NM Helali Fard Kadrawi Khenaizi Khalas Barhi Sample Variance Standard Deviation 

932.45 0.795164 0.821137 0.803276 0.815825 0.790049 0.779815 0.000246631 0.015704504 

935.71 0.802957 0.827834 0.810118 0.822922 0.797137 0.788089 0.000232048 0.015233108 

938.97 0.811974 0.83594 0.818257 0.83093 0.806186 0.798329 0.000209027 0.014457756 

942.22 0.820996 0.843914 0.826967 0.839016 0.814947 0.807278 0.00019752 0.014054185 

945.48 0.82916 0.851818 0.834664 0.846069 0.822322 0.815411 0.000193095 0.013895866 

948.75 0.835296 0.857435 0.839838 0.851068 0.827375 0.821002 0.000191664 0.013844269 

952.01 0.839855 0.861685 0.8444 0.853682 0.830581 0.825145 0.000189389 0.013761873 

955.27 0.841757 0.863609 0.845074 0.854468 0.83154 0.827057 0.00018851 0.013729912 

958.54 0.841676 0.863088 0.844333 0.854593 0.831526 0.826453 0.000188934 0.013745309 

961.81 0.842315 0.863259 0.843813 0.854343 0.83127 0.826641 0.000188644 0.013734782 

965.07 0.843021 0.863826 0.844483 0.854394 0.83129 0.827292 0.000188597 0.013733048 

968.35 0.844343 0.865597 0.845626 0.855736 0.832925 0.828882 0.000188861 0.013742679 

971.62 0.847041 0.867743 0.848209 0.858883 0.836051 0.831397 0.000185467 0.013618628 

974.89 0.851225 0.871195 0.851736 0.862481 0.839993 0.836279 0.00017403 0.013192042 

978.17 0.85552 0.874323 0.856639 0.866738 0.845178 0.841498 0.000155314 0.0124625 

981.44 0.861195 0.878823 0.861897 0.871826 0.851493 0.847508 0.000140109 0.01183677 

984.72 0.867308 0.883782 0.867424 0.87744 0.858513 0.853836 0.000125921 0.011221431 

988 0.872274 0.888448 0.873447 0.882357 0.86427 0.859848 0.000114989 0.010723282 

991.28 0.876506 0.893128 0.878706 0.887132 0.870077 0.866246 0.000102702 0.010134203 

994.56 0.880638 0.896586 0.882932 0.891529 0.874859 0.871468 9.2434E-05 0.009614258 

997.85 0.883596 0.899241 0.886622 0.893197 0.879096 0.875173 7.96067E-05 0.008922259 

1001.13 0.887263 0.901027 0.890415 0.89707 0.88358 0.879175 6.7456E-05 0.008213159 

1004.42 0.890266 0.903092 0.893731 0.900395 0.887221 0.882847 6.01981E-05 0.007758742 
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