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Abstract

The efficiency of cognitive radio networks mainly depends on the spectrum
sensing stage, in which spectrum opportunities are exploited. However, one of the
challenges facing spectrum sensing is the presence of fading and log-normal
shadowing. Moreover, when the spectrum utilization is high and details regarding
primary user activity are not available, a need to sense the whole spectrum arises.

Hence, developing wideband spectrum sensing technique is a fundamental concern.

In this thesis a narrowband spectrum sensing in a log-normal shadowing
environment is addressed, a closed-form expression for the probability of detection
under shadowing is derived. The accuracy of the expression is tested using a
MATLAB simulation. Collaborative spectrum sensing is addressed, and expressions
for the probability of detection and false alarm in both AWGN channels and log-
normal channels are derived for different fusion rules namely; soft fusion using
square-law selection (SLS), square-law combining (SLC), hard fusion using OR,
AND and Majority combining. The detection performance of these fusion rules is
tested and compared. Simulation results showed that sensing performance is
enhanced due to collaboration and better detection is achieved with more
collaborative secondary users. Moreover, SLC outperforms SLS in terms of the
probability of detection. OR-combining is found to outperform both AND-combining
and Majority-combining from the primary user’s point of view by providing higher
protection for the primary user from any secondary user interference; while AND-
combining is found to outperform the other two techniques, from the secondary user
perspective, as it results in higher spectrum utilization and more spectrum

opportunities.

Wideband spectrum sensing using wavelet-based detection is investigated.
The performance of this method and the effect of parameters such as the scale factor
of the wavelet smoothing function, collaboration between secondary users in edge
detection and the presence of log-normal shadowing is investigated and analyzed
using MATLAB simulation. Simulation results indicate that better edge detection
was achieved at higher scale factor values. Log-normal shadowing affected the
accuracy of edge detection since it attenuates the average power received at the

secondary user, and adds random variations at the same time as detecting false edges.

Vi



Two approaches to wideband spectrum detection are investigated and
compared. The first approach is the tunable bandpass filter (TBPF) filterbank. The
second approach is a proposed model using wavelet-based detection. Simulation
results indicate that the proposed approach performed better in terms of spectrum
occupancy and utilization as it accurately detected the primary user signal. While the
TBPF filterbank approach failed to detect the primary user at low probabilities of
false alarm when it partially occupied the subbands, leading to more interference for

the primary user.

Keywords: Cognitive radio, spectrum sensing, narrowband sensing, log-normal
shadowing, collaborative sensing, soft fusion, hard fusion, wideband sensing,

wavelet-based detection.
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CHAPTER 1: INTRODUCTION

This thesis addresses spectrum sensing in cognitive radio networks. Spectrum
sensing is the first and most important cognitive task upon which the entire operation
of cognitive radio relies. Sensing can be performed either on narrowband or
wideband levels. Narrowband sensing is performed when there is enough
information about the primary user’s signaling, center frequency and bandwidth.
However, sensing performance on a narrowband level is affected by fading and log-

normal shadowing.

On the other hand, wideband spectrum sensing obtains better utilization of
the frequency spectrum, when the occupancy details of the primary users are
unknown to cognitive network users. The design and implementation of wideband
sensing systems are both difficult due to high implementation complexity and large

energy consumption from high-rate analogue-to-digital converters (ADC).

1.1 Motivation

Radio frequency (RF) spectrum scarcity is the main challenge facing the
development of wireless communication networks. The introduction of new services
that require high data rates, the spread of smartphones and social networks and the
wish of users to stay fully connected increased the demand on frequency spectrum.
The allocation of frequency bands is controlled by government regulators such as the
office  of communications (Ofcom) in the United Kingdom, the federal
communications commission (FCC) in the United States [1], and the
telecommunication regulatory authority (TRA) in the UAE. Current allocation
policies are characterized by static frequency allocation where the frequency bands
are assigned to licensed networks and users on a long-term basis within a certain
geographical area. However, measurements indicate that these bands are unused by
the licensed users for significant periods of time, resulting in spectrum under-
utilization [2]. For example experiments indicate that the maximal occupancy of the
spectrum from 30 MHz to 3 GHz in New York city is only 13.1%, with an average
occupancy (over six locations) of 5.2%, as was shown in Figure 1-1[3]. To overcome

the issue of spectrum under-utilization and accommodate the growing demand,
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cognitive radio (CR) networks were proposed. As a promising technology, cognitive
radio networks allow unlicensed (secondary) users to access the licensed spectrum
opportunistically without causing harmful interferences to the licensed (primary)

USers.

To achieve this spectrum sensing defines spectrum opportunities (holes) that
can be used for opportunistic access as shown in Figure 1-2. It is crucial to perform
spectrum sensing efficiently and rapidly to guarantee better spectrum utilization for
the secondary users and higher interference protection for the primary users at the
same time. Therefore, different spectrum sensing techniques have been developed to
perform sensing based on available information about primary user signaling [4].
Throughout this thesis energy detection is used for spectrum sensing because of its
generality and simplicity. However, sensing performance is affected by fading and
log-normal shadowing where the secondary user cannot distinguish between a faded
band and an empty band. To alleviate this degradation in sensing performance,
collaborative spectrum sensing is used [5, 6], in which multiple secondary users
sense the spectrum and share their sensing information to help make a more reliable
decisions regarding the presence of the primary user within the frequency band.
Different fusion rules are used to combine local decisions, including soft fusion and
hard fusion rules, and each rule is associated with a certain sensing performance

levels.

On the other hand, when spectrum utilization is low and information about
the primary user is scarce, multiple frequency bands are sensed at the same time
using wideband sensing. One of the wideband sensing approaches is the tunable
bandpass filters (TBPF) bank, in which a parallel structure of tunable BPFs is used to
sense multiple frequency bands at the same time with the center frequency and
bandwidth of each BPF preset. However, this structure requires a large number of
components resulting in high implementation complexity. Other wideband sensing
techniques have been developed [7-15] such as the filter bank detection, multicoset
sampling based detection, multirate sampling based detection, wavelet-based
detection and compressed sensing (CS). In this thesis wavelet-based detection
performs wideband sensing as it is simple and has the ability to adapt to a large

dynamic spectrum range.
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Figure 1-1: Spectrum occupancy measurement results averaged over six locations.
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The idea of wavelet-based detection is to identify the irregular structure in the
power spectral density (PSD) function of the wideband signal. These irregularities,
also called edges, carry information about the frequency boundaries of the non-
overlapping frequency bands. Hence, the main goal is to identify the edges of those
bands and classify the bands into black, gray, or white, based on whether the

estimated PSD level within each band is high, medium, or low.

The performance of this sensing technique depends on different factors such
as the scale factor of the smoothing wavelet function, the shape of the received PSD
and the collaboration between secondary users in edge detection. Besides, the
presence of log-normal shadowing affects sensing results due to attenuation in the

signal power and the addition of random variations to signal received.
1.2 Objectives and Contributions

1.2.1 Objectives
This thesis aims to:

1. Study the performance of narrowband spectrum sensing in a log-normal

shadowing environment in a non-collaborative mode.

2. Investigate the effect of collaborative sensing in a log-normal shadowing

environment using different fusion rules.

3. Analyze the performance of wideband spectrum sensing using wavelet-based

detection in both an AWGN channel and a log-normal channel.

1.2.2 Contributions
The contributions of this thesis are summarized as follows:

1. A closed-form expression of the probability of detection in a log-normal
shadowing channel is derived based on the Gauss-Hermite integration

method.

2. The performance of narrowband collaborative sensing in an AWGN channel

and a log-normal channel using different fusion rules is derived. In particular,



soft fusion, using square-law selection (SLS); square-law combining (SLC)
schemes and hard fusion using OR, AND and Majority combining are

analyzed and compared under different parameters.

3. The performance of wavelet-based edge detection in wideband sensing is
investigated. The system model is extended to include collaborative edge
detection. In addition, log-normal shadowing is introduced and the
performance of edge detection in log-normal shadowing environment is

analyzed.

4. A wideband spectrum detection approach is proposed based on wavelet edge
detection, and its performance is compared with the tunable bandpass filter
filterbank approach in terms of spectrum occupancy.

1.3 Thesis Outline

The remainder of this thesis is divided into six chapters that are organized as follows:
Chapter 2

This chapter provides an overview of the cognitive radio concept,
functionalities, applications and challenges. Common spectrum sensing techniques
from the literature are addressed, with the advantages and disadvantages of each
technique discussed. Finally, definitions of collaborative spectrum sensing,

narrowband and wideband spectrum sensing are summarized.
Chapter 3

This chapter derives expressions for the probabilities of detection and false
alarm in a log-normal shadowing channel. It also investigates the performance of
these expressions in spectrum sensing under different constraints such as the average

SNR, number of samples and a shadowing level represented by the dB-spread.
Chapter 4

In this chapter expressions for the probability of detection and false alarm
under collaborative sensing in both an AWGN channel and a log-normal shadowing

channel are derived. Collaboration using soft fusion (SLS and SLC) and hard fusion



is investigated and the collaborative probabilities of detection and false alarm are

also given.
Chapter 5

This chapter presents an overview of wideband spectrum sensing and
common wideband sensing techniques, with the advantages and disadvantages of
each technique explained. A system model for wideband sensing, using wavelet-
based detection, is investigated and the performance of this model in edge detection
is analyzed. Also, the idea of collaborative edge detection is addressed, and the
performance of wideband sensing using wavelet detection in a log-normal shadowing

environment is also evaluated.
Chapter 6

This chapter investigates and analyzes two approaches to wideband spectrum
detection. The first approach is the tunable bandpass filter (TBPF) filterbank in
which a parallel structure of tunable narrowband bandpass filters is used to sense the
spectrum on a wideband level. The second approach is a proposed wideband
spectrum detection model using wavelet-based detection. Performance analysis of
both approaches are studied and compared via a simulation.

Chapter 7

This chapter presents concluding remarks about the thesis, and provides

suggestion to extend the work in certain directions.



CHAPTER 2: COGNITIVE RADIO - REVIEW

2.1 Introduction

The evolution in wireless communications has introduced new services and
applications that require high data rates and a particular quality of service (QoS).
This resulted in dramatically increasing demand on frequency spectrum to
accommodate these new services or to enhance existing ones. However, frequency
spectrum is characterized by static frequency allocation schemes that assign the
existing frequency bands only to licensed users. This is the case despite that
measurements indicate that the spectrum is underutilized by licensed users for
significant periods of time [2]. This aggravates spectrum scarcity and make it more
difficult to accommodate the need for a greater spectrum. Therefore, the concept of
cognitive radio (CR) is a promising technology to alleviate frequency spectrum
scarcity and under-utilization by allowing unlicensed (secondary) users to access the
spectrum when it is not being used by licensed users. In this chapter an overview of

the cognitive radio and spectrum sensing techniques will be discussed.

2.1.1 Features and Functionalities

The allocation of frequency spectrum is regulated by national regulatory
bodies such as the Federal Communications Commission (FCC) in the United States.
The FCC allocates spectrum to licensed users, also known as primary users (PU),
which have the priority to use the spectrum on a long-term basis. However, this
spectrum is under-utilized, since it is not used by the PUs for significant periods of
time. This inefficient allocation of spectrum creates the need for new techniques that
allows unlicensed users, also known as secondary users (SU), to access the spectrum
whenever it is not being used by the PUs. Hence, the FCC adopted CR to overcome
spectrum scarcity. According to the FCC; “Cognitive radio is a system that senses its
operational electromagnetic environment and can dynamically and autonomously
adjust its radio operating parameters to modify system operation, such as maximize
throughput, mitigate interference, facilitate interoperability, access secondary
markets.” [4].



This definition highlights the two main characteristics of cognitive radio,
which are cognitive capability and reconfigurability. Cognitive capability enables CR
devices to interact with the surrounding radio environment in a real-time manner and
be aware of signal parameters such as waveform, RF spectrum, communication
network type/protocols, geographical information, user needs and security policies,
etc. CR devices then adjust their radio operating parameters according to the
information sensed to achieve optimal performance. This is known as

reconfigurability [16].

These characteristics are implemented via the three main functions of the

cognitive radio cycle shown in Figure 2-1:
1. Spectrum sensing and analysis;
2. Spectrum management and handoff;
3. Spectrum allocation and sharing.

In the spectrum sensing and analysis stage, CR detects spectrum holes,
known as white spaces, for opportunistic access and spectrum utilization, it also
senses PU activity to avoid causing harmful interferences due to SU transmissions.
Then the characteristics of the frequency bands sensed such as their capacity and

reliability are estimated and later used in decision making.

After that the spectrum management and handoff function allows the SU to
choose the best frequency band, or hop among multiple bands to meet QoS
requirements. For example, when the PU reclaims its band, then the SU transmitting
in that band has to move to another available frequency band according to the

channel capacity, path loss, holding time, etc.

The SU in cognitive radio networks may coexist in a certain frequency band
with a PU or other SUs. Therefore, the need for efficient spectrum allocation and
sharing mechanism is fundamental to protect the licensed PU from SU interference
and to minimize the collisions and interference between SUs sharing the same

frequency band.
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Figure 2-1: Cognitive radio cycle [16].
2.1.2 Applications

Advances in spectrum sensing and spectrum access techniques encouraged
many applications of cognitive radio networks in different areas. Certain applications

are explored in this section.
A. Cellular Networks

Smartphones, and the spread of social networks raised user expectations of
being fully connected. This in its turn added a burden to the already overloaded
cellular networks. But cognitive radio applications have been introduced to help
overcome these challenges and accommodate traffic growth. For example, indoor
coverage is one of the challenges facing cellular networks, where the concept of
femtocells has been proposed. The femtocell unit performs as a typical BS (eNodeB
in LTE) with a self-deployment property, however, this property make it difficult to

overcome femtocells interference using centralized interference management.

The solution to this problem is using distributed spectrum planning, where
each femtocell scans the spectrum to find available frequency bands, in order to
maintain coverage and avoid interference with other femtocell, as shown in Figure 2-
2.



» Signal

Interference

eNodeB

Figure 2-2: Femtocells interference [17].

B. TV White Spaces

TV White Spaces (TVWS) are unused frequency bands located within the
VHF and UHF portions of the frequency spectrum. In most countries this spectrum is
not allowed for unlicensed use, but after the conversion of TV broadcasts from
analogue to digital transmission, large parts of analogue TV channels became
completely vacant due to the higher efficiency of digital TV (DTV).

On the other hand, the transition to DTV leaves some channels in certain
geographic areas unused by DTV stations due to the interference they cause to co- or
adjacent channels. This resulted in more vacant bands that can be used by unlicensed
users operating at a low power levels without causing interference to DTV stations.
The FCC in the US, the Office of Communications (Ofcom) in the UK, and the
Electronic Communications Committee (ECC) in Europe are the main regulatory

agencies that allow unlicensed use for TV white spaces by cognitive users [1].
C. Public Safety Networks

The FCC allocated a 700 MHz (698-806 MHz) frequency band for
emergency responders (i.e. police, fire and medical services) to prevent or respond to
emergencies. However, this spectrum is not sufficient as public safety workers are
increasingly equipped with wireless devices such as laptops and mobile video

cameras, to improve the efficiency of emergency responses. Moreover, responders
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from different agencies cannot communicate during emergencies due to the use of

multiple frequency bands, incompatible radio devices and a lack of standardization

[1].

To overcome these challenges cognitive radio networks have been proposed
to utilize spectrum usage and increase the efficiency of emergency response. With
cognitive radio, public safety workers can use other frequency bands such as TVWS
for daily communication. Also, through spectrum sharing they can share the
spectrum of other commercial operators in locations where public safety networks
are unavailable, or where there is an operating public safety network but more

capacity is needed to respond to an emergency more effectively.

Cognitive radio applications can be used in many other areas such as smart

grid networks, the military and wireless medical networks [1].

2.1.3 Challenges

Several challenges are facing spectrum sensing in cognitive radio networks.
Such as; hidden PU problem, spread spectrum PUs, hardware requirements and

sensing parameters are addressed in this section.
A. Hidden Primary User Problem

Hidden primary user problem, shown in Figure 2-3, arises when the PU
transmitter is located outside the SU area of coverage (AOC). In this situation the SU
will cause unwanted interference to the PU receiver as the PU transmitted signal
cannot be detected by the SU during spectrum scanning. The multipath fading and
shadowing experienced by the PU are the main sources of this problem.
Collaborative spectrum sensing is used to overcome this issue, where multiple SUs

collaborate with each other to detect the presence of the hidden PU.
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Figure 2-3: Hidden primary user in cognitive radio network.
B. Spread Spectrum Primary Users

There are two main spread spectrum technologies that can be used by the PU
to access the frequency spectrum: frequency hopping spread spectrum (FHSS) and
direct sequence spread spectrum (DSSS). In FHSS the PU changes its operating
frequency according to a certain hopping sequence known by both the transmitter

and receiver. While in DSSS the PU spreads its energy over a single frequency band.

Detection of a PU that uses spread spectrum techniques is difficult as its
power is distributed over a large bandwidth and looks like a background noise.
However, knowing the hopping sequence and achieving perfect synchronization
between the SU and the PU transmissions allows simultaneous transmission without

causing harmful interference to the PU.
C. Hardware Requirements

Searching for a spectrum opportunity requires scanning wide frequency bands
by SUs at high resolutions. This requires RF receivers with components (antennas
and power amplifiers) tuned over a large frequency range and high speed processors
to accommodate the excessive computational demands with minimal processing

delay and to perform noise/interference estimations efficiently.

Sensing architecture is another factor that should be taken into consideration.
There are two different architectures that are implemented in cognitive radio

networks: single-radio architecture and dual-radio architecture [18]. In a single-radio
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architecture a limited time slot is allocated for sensing thus resulting in a limited
sensing time, a less sensing accuracy and lower spectrum efficiency. This is the case
since part of the time slot is used for sensing instead of data transmission. The

advantages of this architecture are low implementation costs and simplicity.

In a dual-radio architecture, two radio channels are used, one for data
communication and the other for spectrum sensing. This architecture increases
sensing accuracy and spectrum efficiency, but on the other hand it increases the

complexity, hardware costs and power consumption.
D. Sensing Parameters

Sensing parameters have to be chosen carefully to guarantee interference
protection for the PUs while achieving maximum spectrum utilization for the SUs.
Different sensing parameters have to be taken into consideration such as sensing

time, sensing frequency and sensing accuracy.

Sensing time has to be selected carefully, because the licensed PU can use its
channel anytime, and the SU should vacate this channel immediately. Hence, sensing
time has to be sufficient to identify the presence of the PU, which adds constraints on
the design of the sensing algorithms.

Another important parameter is sensing frequency that determines the number
of times spectrum sensing is performed. The value of a sensing frequency is chosen
based on the capabilities of the cognitive radio and the temporal characteristics of the
PU in its environment [19]. If the status of the PU changes slowly, then spectrum
sensing can be relaxed and performed less frequently, such as with the detection of
TVWS. Where the allocation of the TV channels is almost fixed unless a new station

comes into operation or an existing station goes offline.

PU interference tolerance is another factor that affects sensing frequency. For
example, if the SU is using a public safety channel, then sensing should be
performed more frequently and the SU should immediately vacate the channel for the

licensed user.
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2.1.4 Research Areas

The main objective of cognitive radio networks is utilizing the frequency
spectrum, by allowing SUs to access available licensed frequency bands. However, it
is crucial to protect the PU from any interference which might be caused by the SU.
This adds limitations on the SU transmission power and the interference produced to
guarantee PU protection. Hence, more research in power adaptation strategies is done
to meet the QoS requirements of the PU and maximize both the SNR and capacity of
the SU.

Another field that attracts researchers is spectrum sensing. It is the first and
most important cognitive task, since it defines the vacant frequency bands and the
state of the channel that will carry the transmission. There are many spectrum
sensing techniques such as energy detection, waveform detection, matched filtering,
etc. Significant research has been carried out in this area to study these different

techniques and optimize their parameters for efficient spectrum sensing performance.

Research in cognitive radio networks also takes other directions i.e. energy
efficiency, seamless spectrum handover, cross-layer design and optimized spectrum

decision making [20].

2.2 Spectrum Sensing

Spectrum sensing is the most important function in the cognitive cycle. It
provides the SU with the information required to access the spectrum accurately and
efficiently at a certain time at a certain position on the spectrum. Spectrum sensing is
performed across different dimensions including frequency, time, geographical area,
code and angle. Significant research has been carried out in the field of spectrum
sensing, to address the various spectrum sensing techniques, sensing dimensions and
sensing challenges. In the following sections, a brief review of spectrum sensing
techniques and dimensions is provided.

2.2.1 Spectrum Sensing Techniques

Different spectrum sensing techniques have been proposed in the literature. In
this section the most common sensing techniques are explained and the advantages

and drawbacks of each technique are presented.
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A. Energy Detector

Energy detection, also known as radiometry or periodogram, is the most
common spectrum sensing technique due to its computational and implementation
simplicity [18]. The concept of energy detection is comparing the output of the
energy detector with a certain energy threshold that depends on the noise floor to
determine the presence of the PU signal [21]. Information about the PU signal is not
necessary for the energy detector to perform sensing. However, many challenges are
faced in this technique starting for the selection of the energy threshold, the inability
to differentiate between noise and PU interference, performance degradation at low
signal to noise ratio and the difficulty in detecting spread spectrum PUs. More details
about energy detection techniques are presented in chapter 3.

B. Matched Filter Sensing

Matched filter is the optimal spectrum sensing technique when the SU has
information about the PU signal such as its operating frequency, bandwidth, pulse
shaping, modulation type and frame format. The signal received is correlated with a
known primary signal and compared to a threshold in order to detect the presence of

the PU and maximize the SNR in the presence of additive white noise.

The main advantage of the matched filter technique is the short sensing time
required to achieve a good detection performance. However, when the SU has poor
knowledge about the PU signal, matched filter performance degrades. Another
drawback of this technique is that it requires a dedicated receiver for every PU signal
type, resulting in high implementation complexity, and large power consumption as

various receiver algorithms need to be evaluated.

C. Cyclostationary-Based Sensing

Cyclostationary-based sensing utilizes the cyclostationary features of the PU
signal, due the periodicity of the signal or its mean, by analyzing the Cyclic
Autocorrelation Function (CAF) of the received signal. The CAF of the received

signal r(t) can be expressed as [17]:
RP) (1) = E[r(t)r*(t — v)e~/2mh1] (2.1)

where E[.] is the expectation operator,(.)* is the complex conjugation, and g is the

cyclic frequency.
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Another representation of the CAF uses the Fourier series expansion, known as the
Cyclic Spectrum Density (CSD) function:

o

StB) = ). RP@e 2t 22)

T=—o0

The CSD function has peaks when the fundamental frequency of the PU
signal equals the cyclic frequency, 8, and it has no peak when there is no PU signal,
as the noise is non-cyclostationary. The cyclostationary detector performs efficiently
at a very low SNR, since it can distinguish between the PU signal and noise. The
main drawback of this sensing technique is the computational complexity, as all

cycle frequencies need to be calculated.

D. Waveform-Based Sensing

This sensing technique takes advantage of the special patterns sent with the
PU signal such as preamble, mid-ambles, pilot patterns and spreading sequences. A
preamble is a pattern transmitted at the beginning of the data sequence, while mid-
amble is transmitted in the middle of the data sequence. These patterns are added to

the signal intentionally for synchronization and detection purposes.

Sensing is performed by correlating the received signal with these known
patterns, and comparing the output of the correlator with a certain threshold. This
method is also known as coherent sensing and can be applied on systems with known
signal patterns. It was found that waveform-based sensing outperforms energy
detector with higher reliability and shorter sensing time [22]. However, this sensing
technique is susceptible to synchronization errors, and it decreases spectrum
efficiency since longer signal patterns are required for a more accurate sensing

performance.

E. Wavelet-Based Sensing

Wavelet-based sensing uses the Wavelet transform to get time and frequency
information simultaneously about the wideband signal. Unlike the traditional Fourier
transform that provides only spectral information and works for a stationary signal.
Short Time Fourier Transform (STFT) is also used for time-frequency analysis,
however, the main problem with the STFT is the inability to obtain both high time
and frequency resolutions simultaneously due to the constant window length used in
STFT analysis.
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Wavelet transform can be used to analyze signals with different frequencies
at different resolutions and obtain high time resolutions and low frequency
resolutions at high frequencies and vice versa at low frequencies. The main idea in
wavelet-based sensing is using the wavelet transform to detect the edges in the Power
Spectral Density (PSD) function of the wideband signal. These edges carry important
information about transitions from an occupied subband to an empty subband.
Locating these edges and estimating the power between every two edges helps to
represent the wideband signal in a binary fashion and classify the subbands into
occupied and vacant. This sensing technique will be addressed in detail in chapters 5
and 6.

2.2.2 Multi-dimensional Spectrum Sensing

Spectrum sensing is about finding opportunities to allow SUs access to the
licensed spectrum. A spectrum opportunity is usually exploited in three main
dimensions: time, frequency and geographical area, i.e. it can be defined as “A band
of frequencies that are not being be used by the primary user of that band at a
particular time in a particular geographic area” [23]. However, there are other
dimensions that can be sensed to create new spectrum opportunities such as code and

angle.

Code dimension includes signals that use spread spectrum, time or frequency
hopping codes. The conventional sensing algorithms do not deal with this dimension,
which creates challenges in spectrum sensing, as mentioned in the previous section.
However, this dimension in spectrum sensing helps avoid these challenges and

increases spectrum utilization by creating new opportunities.

Angle dimension is another dimension that is not usually taken into
consideration in spectrum sensing. With new advances in antenna design such as
beamforming, multiple users can use the same frequency band at the same time
within the same geographic area. This in its turn creates new opportunities if the

angle of arrival (AoA) is estimated during sensing.

Hence, it is very important to consider all dimensions when designing sensing
algorithms, as each dimension creates new opportunities. Figure 2-4 depicts the main

spectrum space dimensions.
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Figure 2-4: Multi-dimensional spectrum space [4].

2.3 Collaborative Spectrum Sensing

Collaborative sensing has been proposed to overcome the problems facing
spectrum sensing such as, noise uncertainty, multipath fading and shadowing. It also
alleviates hidden primary user problem and decreases sensing time [4]. In
collaborative sensing multiple SUs sense the spectrum and share their sensing
information to make the final decision regarding the presence of the PU within the
frequency band. There are two approaches to perform collaborative sensing;
centralized and distributed. These two approaches are addressed in the following

sections.

2.3.1 Centralized Collaborative Sensing

In centralized sensing a central unit, called the fusion center (FC), gathers the
local sensing information from all the SUs and decides whether the PU exists or not
as shown in Figure 2-5. Different fusion algorithms can be used by the FC to
combine local sensing information such as soft (data) fusion and hard (decision)
fusion algorithms. These algorithms are investigated in detail in chapter 4. The FC

then broadcasts the final decision to all SUs, or controls the traffic directly.
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Figure 2-5: Centralized spectrum sensing.

2.3.2 Distributed Collaborative Sensing

In the case of distributed sensing, the SU receives sensing information from
other SUs within its vicinity and based on its own sensing information and the
information received from other SUs, it makes a decision regarding the presence of
the PU. The main advantage of this approach is the reduced cost, since no backbone
infrastructure (centralized fusion center) is required. However, every SU has to be
equipped with an individual sensing unit. Figure 2-6 depicts a general distributed

sensing architecture.
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Figure 2-6: Distributed spectrum sensing.
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2.3.3 External Sensing

External sensing can be considered as an alternative to centralized spectrum
sensing. In this technique, an external agent performs spectrum sensing and reports
the final decision to all the SUs. However, the difference between external sensing
and centralized sensing is that the external agent is equipped with sensing
capabilities and spectrum sensors, while the SUs do not need to have sensing

capabilities, unlike in the centralized sensing method.

This method overcomes the hidden PU problem and uncertainty due to
shadowing and fading. It is also efficient in terms of time, bandwidth and power
consumption from the SU’s point of view. Since the SUs do not have to spend time
and power in sensing as this task is performed by an external agent [24].

2.4 Wideband and Narrowband Spectrum Sensing

In narrowband sensing, conventional spectrum sensing techniques, discussed
earlier in this chapter, and collaborative sensing techniques are used. This implies
that the SU knows the frequency band over which sensing will be performed, i.e. the
radio front-end starts with a tunable bandpass filter (BPF) that scans one frequency
band at a time. TV broadcasting is an example of narrowband sensing, where the
center frequency and bandwidth of each band are pre-defined and sensing is

performed band by band.

However, when the spectrum utilization is high, wideband sensing should be
executed to explore more opportunities. In wideband sensing the SU has no
information about the PU center frequency or bandwidth, hence multiple frequency
bands should be scanned at the same time using a filterbank of parallel narrowband
BPFs implemented at the radio front-end. But this architecture requires a large
number of components and the filter range of each BPF is preset, which results in
high implementation costs and complexity.

An alternative approach for wideband sensing has been proposed based on
identifying the edges of the non-overlapping frequency bands and categorizing the
bands detected into black, gray, and white based on estimated power spectral density
(PSD) levels [25]. However, the detailed spectral shape of the wideband spectrum is

not significant for the sensing process, therefore the wideband spectrum is modeled
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as a train of consecutive frequency subbands with a smoothed PSD within each band,
but with discontinuous changes between adjacent bands. The main objective is to
identify these discontinuities within the spectrum, as they correspond to the
frequency edges used to identify the subbands. Wavelet transform has been
suggested as a powerful tool for wideband spectrum sensing, it is used to analyze
spectrum singularities and detect frequency edges. Other algorithms have been
developed for wideband spectrum sensing, these algorithms are addressed in detail in

chapter 5.

In this thesis, narrowband spectrum sensing based on energy detection will be
considered in an AWGN channel and a log-normal shadowing channel. Collaborative
sensing will be addressed to overcome the effect of shadowing using different fusion
rules that will be discussed in details in chapter 4. Also, wideband spectrum sensing
using wavelet-based edge detection will be investigated for both an AWGN channel

and a log-normal shadowing channel.
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CHAPTER 3: NARROWBAND NON-COLLABORATIVE
SPECTRUM SENSING

In this chapter narrowband spectrum sensing is addressed in a non-
collaborative mode, where the secondary user (SU) senses a predetermined
frequency band to decide on the presence of the primary user (PU). This decision is
mainly affected by the channel model between the PU and the SU. In the first part of
this chapter non-collaborative spectrum sensing in an AWGN channel is studied,
where this channel model is considered as the ideal model. In the second part, non-

collaborative sensing in a log-normal shadowing channel is investigated.

3.1 Spectrum Sensing in an AWGN Channel

An Additive White Gaussian Noise (AWGN) channel is very convenient for
modeling real communication systems, where the AWGN represents background
noise, or noise from other communication systems working in the same frequency
band. The effect of this noise on spectrum sensing performance, in terms of the
probability of detection and the probability of false alarm is explored in this section

using the energy detection technique.

3.1.1 System Model

Energy detection is known for its simplicity and low computational
complexity, therefore, it is commonly used for detecting unknown signals. A block

diagram of an energy detector is depicted in Figure 3-1:

Decision

T V — (Hy orH,)
dt >
) -

Threshold Device (A)

r(t)

BPF ()2

v
v

Figure 3-1: Energy detector block diagram.

The input signal r(t) received by the SU passes through a band-pass filter
(BPF) to eliminate the out-of-band noise at the center frequency, f., and
bandwidth, . The filtered signal then passes through a squaring device to determine

its energy, followed by an integrator over a sensing interval (0,T). Finally, the
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output of the integrator, V, is compared with the energy threshold, A,to decide

whether the PU is present, H,, or absent, H,,.

The input signal r(t) is modeled as:

r(t) = n(t) H,

r(t) =s() +n() H, (3.1)

where n(t) is the AWGN modeled as a zero-mean Gaussian random variable with
variance o2, i.e. n(t) = N(0,02), and s(t) is a PU transmitted signal (s(¢t) =0

when the PU is not transmitting).

For the purpose of detection the signal r(t) is sampled using N, samples

before processing, resulting in the discrete-time form:

T'l':Sl'+ni i:O,...,NS—l (32)

Then detection problem turns to a discrete-time binary hypothesis testing
problem, by comparing the test statistic, VV, with the energy threshold, 4. The test

statistic, I/, can be written as:

le_lj

1
=t 39
Ny L
l:

where (Ny = TW) is the time-bandwidth product that can be either an integer or a

non-integer, and W is the bandwidth of the signal.

Under the H, hypothesis, V follows a central chi-square distribution with 2N,
degrees of freedom, and a non-central chi-square distribution under the H,
hypothesis with a non-centrality parameter of 2N,y and 2N degrees of freedom [21].
Hence, V can be modeled as:

X3 Hy
} {XEZ @Ny)  H G4

In AWGN channel the spectrum sensing performance is evaluated using two

probabilities: the probability of false alarm, Pr, and the probability of detection, P,.

A high probability of detection provides high protection and less interference of the
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PU, while a low probability of false alarm results in more spectrum opportunities for
the SU, hence higher spectrum utilization, but lower protection for the PU.

The conditional probabilities, the probability of a false alarm, Pf, and the probability

of detection, P4, can be written as respectively:
Pr = P(V > A|H,) (3.5
P; =PV > A|H,) (3.6)

The probability density function (PDF) of V under the two hypotheses can be

expressed as [26]:

pNs—1 o=v/2
E e — 3.7
fV|H0(v) T'(N;)2Ms (3.7)
st—l e—(v+2Nsy)/2 Ns]/v
= - 3.8
fon, () = g ofs (M=) (38)

where T'(.) is the gamma function, and ,F;(.,.) is the confluent hyper-geometric
limit function [27].

Closed-form expressions for the probability of false alarm and the probability of
detection are given in [28]. The two probabilities can be expressed as:

A
p, = [No3) (3.9)
Ty
Pq = QNS(\/ 2y, \/z) (3.10)
where y is the SNR received at the SU, defined as y = NPW with P as the power of
0

the PU signal received at the SU, and N, is the one-sided noise power spectral
density. Ais the energy threshold, I'(.,.) is the upper incomplete gamma function,
and Qu,(.,.) is the generalized Marcum-Q function [29]. In real communication

systems the value of 4 is determined by solving (3.9) for a pre-assigned value of Py.
The probability of misdetection is defined as:

P,=1-P, (3.11)

24



3.1.2 Simulation Results in an AWGN Channel

Different factors affect spectrum sensing performance in an AWGN channel
such as the number of samples, N;, and the PU average SNR,y.In this section
sensing performance is investigated using a MATLAB simulation using the
complementary receiver operating characteristic (CROC) curves [30]. CROC is a
graphical representation of spectrum sensing performance for different values of
energy threshold. It shows the relationship between the sensitivity, represented by the
probability of misdetection, and the specificity, represented by the probability of

false alarm.

A. Effect of the Number of Samples (N)

The number of samples, N;, acquired from the signal received by the SU
affects detection of the PU. When the number of samples increases the SU collects
more information about the PU during a fixed sensing duration, T. Therefore, the
probability of false alarm decreases [31]. However, in practical situations there is a
predetermined probability of false alarm that is achieved. According to the inverse
proportionality between the probability of misdetection and the probability of false
alarm, increasing the number of samples results in a higher probability of

misdetection, as shown in Figure 3-2.
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Figure 3-2: CROC in AWGN channel for different values of N, at average SNR= 10dB.
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B. Effect of Primary User Average SNR

The SNR of the PU signal received at the SU has a major influence on the
performance of the energy detector. As the average SNR increases, the signal
becomes immune to noise and hence easier to detect. This is obvious from the results
shown in Figure 3-3, where the probability of misdetection, B,,, decreases as the
average SNR increases from 5dB to 15dB. These results prove that the energy
detector performs better at a high average SNR. Figure 3-4 further verifies this
conclusion, where the probability of detection, P;, grows as the average SNR
increases from 0dB to 20dB.
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Figure 3-3: CROC in AWGN channel for different values of average SNR, and Ny = 10.
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Figure 3-4: Probability of detection, P,, vs. average SNR for N,=10.

3.2 Spectrum Sensing in Log-normal Shadowing

In this section the effect of log-normal shadowing on spectrum sensing
performance is investigated. In a log-normal shadowing, the signal received by the
SU fluctuates randomly due to a blockage from an obstacle in the signal path as,
shown in Figure 3-5 (a). These fluctuations affect the local-mean power of the signal,
resulting in random variations of path loss at a given distance, as shown in Figure 3-5
(b). Since the location, size, and dielectric properties of the obstacle are usually
unknown, a statistical model is used to describe these fluctuations. Empirical
measurements indicate that the fluctuations in the local-mean power of the area-mean
follow log-normal distribution, which means that they follow normal distribution

when expressed in a logarithmic scale, decibel units [32].
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3.2.1 Channel Model in Log-normal Shadowing
For the SU log-normal shadowing affects the average SNR of the signal

received. Hence, the SNR,y, is modeled as a log-normal random variable with a

probability density function (PDF) expressed as [33]:
— (&l - 2
($logey — Man) >0 (3.11)

)

§
(y) = ex
F YOapV 2T P 202 4
_ 10 2 )
log.(10) * HaB and o, are the mean and the variance,

where Y~ LN(ﬂdB: UZdB)v f =

both in dB, of ¢élog,y respectively.
A log-normal distribution is usually characterized in terms of the dB-

spread, o;5. The value of g5 depends on the type of the obstacle blocking the signal
travelling from the PU to the SU. For outdoor channels the value of o,z ranges from

5 to 12dB in macrocells and 4 to 13dB in microcells [34].
Log-normal shadowing affects sensing performance in cognitive radio
networks. Due to shadowing, white spaces may result not only from the absence of
the PU, but also due to a blockage of the signal transmitted by an obstacle in the
signal path between the PU and the SU. Hence the SU has to be careful while sensing
the spectrum to avoid confusion between a white space and heavy shadowing to
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avoid interfering with the PU, while maintaining acceptable spectrum utilization

levels.

3.2.2 Spectrum Sensing in Log-normal Shadowing

In the case of log-normal shadowing, spectrum sensing problem can be formulated as

follows:

r(t) = n(t) H,

r(t) = h(t) s(t) +n(t) H; (3.12)

where h(t) is the linear channel gain between the PU and the SU.

In the presence of shadowing, the probability of false alarm, Py, is not affected,
because it is defined under the H, hypothesis, where no PU signal is transmitted. On
the other hand, the probability of detection under a log-normal shadowing, Py 04, IS

calculated by averaging P, in (3.10) over the pdf in (3.11), i.e.

Patog = f P (1 Df, () dy = f on, (VY VD, @) dy (3.13)

or

__ s (" 1\ —(§logey — Hap)®
Patog = 7= AGCADIGE dy (314

205,
The Generalized Marcum-Q function is defined as:

(o]

yNS (_y2+a2)
on (@b = [ e i @ ay (315)
b

where Iy__;(ay) is the modified Bessel function of order (N,-1), and y is a dummy

§logey—u

variable. Assuming x = e then:
dx = J dy (3.16)
yV20
and Py ;,4 Can be written as:
17 xoV2 + u 2
P = — 2exp| — ,\/7 e ™ dx 3.17
dlog \/E _L QNS \/ 4 < E > ( )
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Based on the Gauss-Hermite integration method in [35], the probability of detection

in (3.16) can be written as:

M
i i V2 +
Paiog = Z% Qn; \/2 exp (aas;—,u)ﬁ (3.18)
i=1

where M is the Hermite integration order, w;, and , «;, are the weights and abscissas

respectively [36].

The probability of misdetection in log-normal shadowing, Py, ;o4 , is defined as:

Pm,log =1- Pd,log (319)
or
M
w; aiax/f +u
Pm,log =1- z y— QNS \/2 exp <—> ) V2 (3.20)
i=1 v ¢

The newly derived expression of the probability of misdetection in (3.20) is a
closed-form expression that can be evaluated easily. The precision of this expression
Is investigated by calculating the probability of misdetection using three methods: the
Gauss-Hermite approximation in (3.20), Monte Carlo simulation for (3.13) and

numerical integration for (3.17).

Figure 3-6 and Figure 3-7 depict the CROC curves in a log-normal
shadowing channel using the three methods for average SNR = 10dB, o,z = 2dB,
and N, = 10 samples, the AWGN curve is provided as a reference. It is obvious from
the figures that spectrum sensing performance degraded due to shadowing, resulting
in a higher probability of misdetecting the PU. Also, comparing the three curves of

P09 Proves that the Gauss-Hermite approximation provides an accurate formula

for calculating the probability of misdetection in a log-normal shadowing channel.
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Figure 3-7: CROC in log-normal channel for 1000 simulation runs where N,=10,
average SNR= 10dB, and ;5 = 2dB.
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3.2.3 Simulation Results in Log-normal Shadowing

The effect of log-normal shadowing on sensing performance is investigated
in this section. There are many factors that can be a major influence on sensing
performance such as the dB-spread, o5, the PU average SNR and the number of

samples, N;.

A. Effect of dB-spread (o 45)

The severity of shadowing is represented by the value of the dB-spread, o5,
where higher values of g5 result in more intensive shadowing. As shown in
Figure 3-8, the probability of misdetection increases as the value of a5 grows from
2dB to 12dB. This is a result of the attenuation experienced by the received signal,
making it more difficult to detect. This in its turn affects sensing performance and

make the PU more susceptible to interference from the SU.
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Figure 3-8: CROC in log-normal channel for different values of dB-spread at
average SNR=10dB, N, = 10.

B. Effect of the Primary User Average SNR
In energy detection based spectrum sensing the average SNR of the PU signal

received by the SU is a major influence on sensing performance. However, due to

32



shadowing, the average power of the signal received by the SU will be attenuated,
hence the probability of misdetection will increase. This degradation in performance
grows as the average SNR of the PU signal decreases, as shown in Figure 3-9, where
the probability of misdetection increased as the average SNR decreased from 15dB
to 5dB.
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Figure 3-9: CROC in log-normal channel for different values of average SNR
at oz = 2dB, Ny = 10.
C. Effect of the Number of Samples (Ny)

As discussed previously in the AWGN channel, acquiring fewer samples
from the signal received by the SU results in a higher probability of detection for a
given probability of false alarm, as shown in Figure 3-10.
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In conclusion, a narrowband spectrum sensing model using energy detection
in a non-collaborative mode was investigated both in an AWGN channel and a log-
normal shadowing channel. It was found that the energy detector performs better at
higher average SNR values with a smaller number of samples (Ny) and vice versa. A
new closed-form expression for the probability of detection in a log-normal
shadowing channel was derived based on the Gauss-Hermite integration. This
expression proved its accuracy in calculating the probability of detection under
shadowing. Moreover, the degradation in sensing performance due to the presence of
shadowing was obvious, as the average power of the signal received is attenuated
due to signal blockage by an obstacle. The higher the value of o5, the worse the

detection of the PU, as shadowing is more severe at higher o5 values.
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CHAPTER 4: NARROWBAND COLLABORATIVE
SPECTRUM SENSING

4.1 Introduction

Collaborative spectrum sensing is addressed in this chapter, where the
secondary users (SUs) share their sensing information with each other to make
decisions about the status of the frequency band. Collaborative sensing provides a
diversity that is important to alleviate the degradation in sensing performance due to

the presence of log-normal shadowing.

Collaboration in spectrum sensing can be implemented using one of the two
main architectures: centralized or distributed. In this chapter centralized collaborative
sensing is assumed, where a central data fusion center (FC) receives sensing
information from the SUs, and makes decision about the presence of the primary user
(PU) in a certain frequency band. Two main fusion rules can be used by the FC to
combine local sensing information: hard fusion (also called decision fusion), and soft
fusion (also called data fusion).

The following scenario is considered: there are k independent and identically
distributed (i.i.d) SUs within the reception area of the PU. Without loss of generality,
all SUs are assumed to experience identical shadowing, i.e. signal statistics are
assumed to be the same for all SUs, and all control channels used for reporting
sensing information and final decisions between the SUs and the FC are assumed to

be ideal noiseless channels as shown in Figure 4-1.

Sensing Channel ;;; C“““'Ol' Channel
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Figure 4-1: Collaborative sensing scenario in a log-normal shadowing channel.
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4.2 Hard (Decision) Fusion

In hard fusion all SUs sense the same frequency band, and each SU makes its
own decision regarding the presence of the PU. All SUs then transmit their binary
local decisions (1 or 0) over a common control channel to the FC, and the FC in its
turn combines these local decisions and diffuses the final decision back to every SU.
The main advantages of using hard decision combining are reducing the
computational complexity at the FC and using low communication overheads, since
each SU transmits one-bit hard decision. There are three main decision fusion rules
that can be used to combine the local decisions at the FC: AND, OR and Majority

combining.
4.2.1 Collaborative Probability of Detection

If we assume that the FC needs m out of k SUs to decide, then the
independent local decisions of the SUs follow binomial distribution based on
Bernoulli trials. The collaborative probability of detection, C;, and the collaborative

probability of false alarm, C¢, calculated at the FC can be expressed as follows [37]:

(7) Pa't— Py (4.1)

M=

Cd:

N
3

and

¢ = Zk: (ll‘) Pt(1-p)" (4.2)
l=m

where Py and P, are defined in (3.9) and (3.10) respectively for an AWGN channel,

and Py is defined in (3.18) for a log-normal shadowing channel.

The collaborative probability of misdetection, C,,, can be written as:

Cn=1-C4 (4.3)
Based on the fusion rule used by the FC to make the final decision, the number of
SUs, m, is determined. The collaborative probability of detection can be calculated

as follows:

AND-combining: k out of k SUs are needed to decide the collaborative probability
of detection, Cg4, in (4.1):
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k

Caano = Y () PalL = P 4

=k

For k i.i.d SUs, C4 4np Can be written as:

Cd,AND = (Pd)k (4.5)

OR-combining: Here 1 out of k SUs is needed to make the collaborative decision,

i.e.

Caon = i (7R - pt = 1= () pita - Ry (4.6

=0

In the case of i.i.d users, Cy or Can be expressed as:

Caor=1- 1- Pd)k 4.7
Majority-combining: (EJ + 1)out of k SUs are required to make the decision:

k
k
Camy= ), ()P =P (4.8)
l=[§]+1

4.2.2 Simulation Results Using Hard Fusion

Figure 4-2 shows sensing performance in a collaborative mode using
different decision fusion rules. These results represent the performance in a log-
normal channel for k = 3 i.i.d SUs, average SNR = 10dB, og,;5 = 2dB,and N =
10 samples. It is obvious that using the OR-combining results in the lowest
probability of misdetection (C,,) for a fixed probability of false alarm (Cy), while
using the AND-combining results in the highest probability of misdetection. This
means that higher protection for the PU from SU interference is guaranteed using
OR-combining, since it is sufficient that one of the collaborative SUs declares the
presence of the PU in the frequency band. However, from the SU perspective, using
the AND-combining increases spectrum utilization and creates more opportunities,
because it requires that all collaborative SUs agree on the presence of the PU to

decide if a certain frequency band is busy and can’t be accessed by the SUs.
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Figure 4-2: CROC in log-normal channel using different hard fusion rules at average
SNR=10dB, g4 = 2dB, N; = 10,k = 3.

4.3 Soft (Data) Fusion

In soft (data) fusion, SUs send their measured energy, or a function of it, to
the FC to make the final decision about the presence of the PU. Different soft fusion
schemes can be used [38] such as: square-law selection (SLS), square-law combining
(SLC), maximal ratio combining (MRC) and selection combining (SC). The block
diagram of these soft fusion schemes is depicted in Figure 4-3. In this section the

SLS and SLC schemes are addressed in detail.

4.3.1 Square-Law Selection (SLS)

In the square-law selection scheme the energies measured by every SU are
sent to the FC and the SU with the highest measured energy is selected. Assuming
that k identically distributed SUs are performing sensing, then the test statistics of

the energy measured by the FC can be expressed as:

Vsis = max(Vy, Vo, ..., Vi) (4.9)
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Figure 4-3: Block diagrams of different soft fusion rules: a) SLS, b) SLC, ¢) MRC,
d) SC.

A. SLS in AWGN Channel
In a non-fading AWGN channel, the probability of false alarm, P, s, and the

probability of detection, P, 55, using the SLS scheme are given respectively as [39]:

Prsis=1—(1—P)" (4.10)
2 k
F(Ns'j)
=1-— — 411

Pras=1—1{1 A (4.11)

k
Pysis=1-— l_[ (1 — Qn, (v 2)/1"\/1)) (4.12)

i=1

Assuming k i.i.d SUs, P, ;¢ can be written as:
Pasis =1 - (1= Py, )" (4.13)
k

Pysis =1— (1 - QNS(\/Z—' \/7)) (4.14)
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where = {y;}*_, , and represents the SNR received at the SU.

B. SLS in a Log-normal Shadowing Channel
In a log-normal shadowing channel, the probability of false alarm is not affected by
shadowing, while the probability of detection is calculated using the following

formula;

o)

l
Pd.OSgLs = f Pd,SLs(Vsz» v Vi A) f]/l]/z...yk Y1, V2 s Vi) Ay1dy, - dyy (4.15)

0

For k independent SUs, P,% ¢ can be written as:

(o] (o] k
ks = f | T - en 2Vl ar
0 0 i=1
=1- f [1 - Qn,(V2vi VA, @) dv: (4.16)
i=1p
where £, (y;) is given by:
y__ ¢ —(§logeyi —pias)” 117
friri) = —— NoT 207128 ¥i=0 (4.17)

Substituting (4.12) and (4.17) in (4.16) yields the following expression for the

probability of detection in log-normal channel using the SLS scheme, P;"Sis-

k
Pcéos%s =1- 1_[ (1 — Py iog (Yi,/l))
i=1
k M
=1_1_[ 1—2—’ O Zexp< jHids ”l'd3>,\/i (4.18)
i=1 j=1\/E ’ §

For the case of k i.i.d SUs, ij’s“{s can be written as:

k
PSs=1— (1= Paoq) (4.19)

M
w;j a;o, \/7+
P;‘;‘is =1- Z\/—_ \/2 exp( J a8 : udB),\/I (4.20)
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4.3.2 Simulation Results Using SLS Scheme

Collaborative sensing performance using the SLS scheme is depicted in
Figure 4-4. The CROC curves are evaluated in a log-normal shadowing channel at
average SNR= 10dB, o,;5 = 2dBand N = 10 samples. The improvement in
sensing performance due to collaboration is obvious from the simulation results,
where the probability of misdetection, P,ﬁffw, decreases as the number of

collaborative SUs increases from k = 1 SU to k = 7 SUs.

In Figure 4-5, the probability of misdetection in a log-normal channel using
the SLS scheme, P,ffsgLS, is presented with respect to the average SNR at Pr = 0.01,

o4 = 2dB and N; = 10 samples. The probability of misdetection decreases with the
increase in the average SNR. Moreover, as the number of collaborative SUs, k,

increases the probability of misdetection decreases for a given average SNR.
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Figure 4-4: CROC in log-normal channel using SLS scheme for different values of k
at average SNR=10dB, o;5 = 2dB, N, = 10.
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4.3.3 Square-Law Combining (SLC)

In the SLC scheme, the test statistics (measured energies) of the k SUs are
combined at the FC as follows [39]:

k
VSLC = Z Vi (421)
i=1

A. SLC in AWGN Channel

In an AWGN channel, the new test statistic Vg, under the H, hypothesis is a
sum of k central chi-square variables each with 2N, degrees of freedom. Under
the H, hypothesis, it is a sum of k non-central chi-square variables each with 2N,
degrees of freedom and a non-centrality parameter of 2y;. Therefore, Vs, can be
modeled as a central chi-square variable with 2kN, degrees of freedom under H,,
and a non-central chi-square variable with 2kN, degrees of freedom and a non-

centrality parameter of 2y, under H,.i.e.
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2

X2kN H,

Voo = (4.22)
SLe {X%RN(Zyt) H;

where y, = ¥ . ;, and y;is the SNR received at the i-th SU.

The probability of false alarm, P s, ¢, and the probability of detection, Py g, ¢,

using the SLC scheme in an AWGN channel can be expressed by an analogy to
equations (3.9) and (3.10) respectively as:

A
P = M (4.23)
PR T (k)
Pysic = Qrn, (\/ ZVc,\/I) (4.24)
For k i.i.d SUs, P, 5, can be written as:
Pasic = Qun,(v/2ky, \ﬁ) (4.25)

B. SLC in Log-normal Shadowing Channel
If the SUs experience a log-normal shadowing, then the probability of

detection is calculated by averaging Py c in (4.24) over the PDF

of y, (fyt(n))-i-e-

Pcé,osch = J Pysice A fr,(ve) dye (4.26)
0

C. Sum of Log-normal Random Variables

The problem that arises here is that there is no exact closed-form expression
for the PDF of the sum of the log-normal random variables, f,, (y,). According to
[35, 40, 41] many analytical approximations have been proposed based on the
assumption that the sum of log-normal RVs is a log-normal RV with new mean and
variance. Which means that y, can be modeled as a log-normal RV with mean p; 45,
and variance a2, 45. In [41] Schwartz-Yeh presented a method for evaluating the
mean and variance of y, using exact expressions for the sum of two independent
summands. An iterative procedure for the sum of more than two summands, by
matching the moments of y; in the logarithmic domain with the moments of the

individual summands. This method is accurate in calculating the first two moments
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within the practical range of the dB-spread i.e. (2dB < g;5 < 14dB) and up to 30

summands. However, it is less accurate outside this range.

Another method for calculating g, 4z and a2, 45 is proposed in [35] using the

moment generating function (MGF). The MGF of y, is defined as:

(0]

¥y, (s) =f e f, (ve) dy, (4.27)
0

where £, (v,) is the PDF of y,:

2
—(¢lo -

J ex & ge)/zt Hean) Ye=0 (4.28)
YtOtapV2T 20 a5

fyt (ve) =

Using the Gauss-Hermite integration, the MGF of the log-normal RV y, can be

written in a series expansion form as:

M
¥, (s) = Z % exp [—s exp <\/§Ut’d3 6? * ﬂtﬂB)l (4.29)
i=1

where M is the Hermite integration order. The weights , w;, and the abscissas, «;, are
tabulated in [36].

Taking advantage of the fact that the MGF of a sum of independent RVs is the
product of their individual MGFs [33].i.e.

k
() = |9, (4.30)

The moments u; 45 and o; 4 Can be obtained by solving (4.29) numerically
by using standard functions such as fsolve in MATLAB for any pair of positive real
values of (s). The accuracy of this method increases by increasing the Hermite
integration order, M, but this will be at the cost of increasing computational
complexity. It is found that M = 12 is sufficient to accurately determine the values

of pi¢,qp and oy 4.

Following the same procedure used to derive Py ,,4 in (3.18), and using the

Schwartz-Yeh method to calculate the moments of y;, the collaborative probability
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of detection in a log-normal shadowing using the SLC scheme in (4.26) can be

written as:

M
w; a'o-tdB\/E-l'.utdB
P =) 2= Qu, \/2 exp( — ‘ >,\/Z (4.28)
i=1\/ﬁ §

The performance of this formula in (4.28) is investigated using simulation in the

following section.

4.3.4 Simulation Results Using SLC Scheme

The effect of collaboration using the SLC scheme in spectrum sensing
performance is evaluated in Figure 4-6 for average SNR= 10dB, o,z = 2dB
and Ng = 10 samples. The enhancement in performance, due to collaboration

between SUs, is obvious, where increasing the number of collaborative SUs, k,

results in a significant reduction in the probability of misdetection, P,iffw.

These results are further proven in Figure 4-7, where the probability of
misdetection, P,fffw, is plotted versus the average SNR for P, = 0.01, g4 = 2dB,

and N, = 10 samples. Higher values of y guarantee better detection of the PU,

moreover, increasing the degree of collaboration by increasing the number of
collaborative SUs, k, results in increasing the probability of detection, Péf}‘ic for a

certain value of average SNR.
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Figure 4-6: CROC in log-normal channel using SLC scheme for different values of k
at average SNR=10dB, ;5 = 2dB, Ny = 10.
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4.3.5 Comparison

In this section a comparision between the two soft fusion schemes discussed
earlier is drawn. In Figure 4-8, CROC for both the SLS and the SLC schemes is
evaluated in a log-normal channel for avearge SNR= 10dB, g,z = 2dB and N =
10 samples. It is obvious that the SLC scheme outperforms the SLS scheme by
providing lower probability of misdetection for the same number of collaborative
SUs, k. This is because the FC in the SLC scheme accumulates the energies of every
SU to make a final decision, in contrast to the SLS scheme where the energy of only

one branch is used to make the decision.

Also, the SLS scheme requires estimating the energies of each collaborative
SU to choose the branch with the maximum energy. While in the SLC scheme no
estimation is required as the energies are added together at the FC. This in its turn
gives the SLC scheme an advantage over the SLS scheme in terms comutational

complexity.

In Figure 4-9, the probability of midetection is plotted versus the dB-spread
for both the SLS and the SLC schemes at average SNR= 10dB, Pr = 0.01, k =
3 SUs, N, = 10 samples. Again it is obvious from the simulation results that the SLC
scheme outperforms the SLS scheme with less probability of misdetection at a
certain o,z value for the same number of collaborative SUs. Also, the degredation in
perfromance due to a log-normal shadowing is clear, since the probability of
misdetection increases as oz5 grows from 2dB to 12dB. However, increasing the
number of collaborative SUs, k, mitigates the effect of shadowing as discussed

earlier.

A comparison between hard fusion and soft fusion (using the SLC scheme) is
depicted in Figure 4-10 at average SNR= 10dB, o,z = 2dB, k = 3 SUs, N =
10 samples. It is obvious that the SLC scheme outperforms hard fusion rules for the
same number of collaborative SUs, by providing the lowest probability of
misdetection for a certain probability of false alarm. However, using the SLC
consumes more bandwidth, since each SU needs to send the energy measured. While
in hard fusion a one-bit binary decision is sent to the FC, resulting in less bandwidth

required and lower computational complexity at the FC.
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In conclusion, the performance of spectrum sensing is enhanced due to
collaborative sensing. Different fusion rules can be used by the fusion center to
combine the local sensing information such as, soft fusion and hard fusion
techniques. In soft fusion, the SLC scheme outperforms the SLS scheme and requires
fewer computations at the fusion center. In hard fusion, OR-combining guarantees
better protection for the PU from SU interference, while AND-combining results in
higher spectrum utilization and more spectrum opportunities. In general, soft fusion
provides better sensing performance than hard fusion, but it requires more bandwidth
overhead and higher computational complexity at the FC. A trade-off between the
available resources and the desired detection level should be evaluated when

choosing a fusion rule.
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CHAPTER 5: WIDEBAND SPECTRUM EDGE
DETECTION

5.1 Introduction

Due to the development in wireless communication, average spectrum
occupancy has increased, resulting in high spectrum scarcity. Under these
circumstances, the secondary users (SUs) need to scan larger dynamic ranges of the
frequency spectrum, up to several GHz, to explore spectrum opportunities. This leads
to wideband sensing, where multiple frequency bands are sensed at the same time. In
this case traditional spectrum sensing techniques such as energy detection, matched
filter sensing and cyclostationary-based sensing are impractical, since they are
designed for multi-band (narrowband) sensing. In narrowband sensing a tunable
bandpass filter (TBPF) is used for sensing one frequency band at a time using one of
those traditional techniques. However, this is not the case in wideband sensing, since
the SU has to scan multiple frequency bands at the same time. Moreover, the SU
usually has no information about the PU activity, such as the center frequency and
the bandwidth. In this chapter wideband sensing will be addressed, and in particular
wideband sensing using wavelet-based edge detection will be investigated.

5.2 Wideband Sensing Methods

Wideband spectrum sensing is still in its early stages of research. There are
six main wideband sensing methods discussed in the literature. They are: filter bank
detection [7, 8]; multi-resolution sampling based detection [10, 15]; multicoset
sampling based detection [11]; compressed sensing based detection [13, 15];
multirate sampling based detection [9, 42] and wavelet-based detection [14]. A brief

overview of these methods is presented in the following sections.

5.2.1 Filter Bank Detection

Boroujeny in [7] proposed a wideband sensing method based on a filter bank.
The main idea is to implement a pair of matched root-Nyquist filters at the PU
transmitter and the SU receiver, respectively, in a multicarrier cognitive radio
network. The filter bank is implemented based on a prototype filter that is used to

estimate the baseband (zeroth band). Other frequency bands are obtained by
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modulating the prototype filter, as shown in Figure 5-1. Sensing is performed in each
subcarrier through converting the corresponding spectrum portion into the baseband,
and filtering using lowpass filters as shown in Figure 5-2. The power spectral density

(PSD) of the filtered output signal in the i-th subcarrier, S,, ,,. (), can be written as:

)2 12 (5.1)
Sy ) = S + PN = 1 DI

where S,.(f;) is the PSD of the received signal r(t) in the i-th subband, and
H(eZ”ff) is assumed to be narrowband and designed as a root-Nyquist (Ny) filter.

The expression in (5.1) can be written in terms of z-transform as:

Uy (@) = S (FH@H(Z™Y) = Sp (f) Gy (2) (5.2)

where GNf(z) is called the Nyquist (Ny) filter, and N is the maximum number of

subcarriers in the filter bank. In time domain GNf(z) satisfies:

1 n=20

gn, () = {0 n = mN;,m 0 (5.3)

Assuming that v, (u) represents the correlation coefficients of y;(n) when
performing inverse z-transform on s, ,,.(z), the correlation matrix of the measured

vectors, R can be written as:

Yiyi?

Ry = Srr(fOA (5.4)
where A is the Teoplitz matrix, and each element of A is from the sequence In; (n).

It is found that S,..(f;) follows a chi-square distribution, so estimating the
degree of freedom is critical for the hypothesis test of S,.(f;). By finding the
eigenvalues of matrix A, the degree of freedom can found, and the estimated S,.-(f;)

can be obtained using observation vectors, eigenvalues and degree of freedom.

The filter bank method performs well at low PSD values, due to a better
response from the prototype filter. However, this method involves high
implementation complexity since a large number of RF components are required.

This method is not flexible because the range and number of the narrowband filters
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are preset. Moreover, it is built based on the assumption that the pair root-Nyquist
filters at the PU transmitter and the SU receiver are matched, but this is not practical

because in cognitive networks it is hard to get information about the PU.

MH(P)

Prototype filter (Oth band)

st band 2nd band ith band

w4 mif

N N N

Figure 5-1: Graphical illustration of a filter bank [7].

e 2z fit
Sampling
X(1) Lowpass Vilt) P -
filter
H(z)

Figure 5-2: Demodulation process in the i-th subcarrier [7].
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5.2.2 Multi-resolution Sampling Based Sensing

The main challenge in wideband sensing is the high sampling rate required to
sense the whole spectrum, which has to be at or above the Nyquist rate. On the other
hand, to achieve efficient sensing and high spectrum utilization, sensing should be
performed rapidly. Which means that only a limited number of samples can be

acquired from the received signal, leading to inaccurate sensing results.

To overcome this problem, sensing is divided into two stages, the first stage
Is coarse sensing and the second stage is fine sensing. This approach is known as
multi-resolution spectrum sensing (MRSS) [15], and it is used to alleviate the high

sampling requirements of wideband sensing. In the coarse sensing stage edges of the
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non-overlapping frequency bands in the wideband spectrum are detected, then
classified based on PSD level within each band into black, gray and white. Then, fine
sensing is performed to estimate the spectral shape within the white spaces, which in

turn transforms sensing to narrowband mode and reduces sampling requirements.

Figure 5-3 shows the functional block diagram of a CR access system based
on MRSS [10]. It consists of:

a) Wideband antennas:
I.  Omni-directional antenna (for spectrum sensing).
ii.  Directive antenna (for the CR link).

b) Frequency-agile RF front-end (RFE) block.

c) Dual-stage wideband spectrum sensing block.

d) Physical (PHY) layer block.

e) Medium Access Control (MAC) block.

The first step in this architecture is coarse sensing, which is performed with a
wide resolution bandwidth, to classify the frequency bands into vacant and free
bands. Sensing results are then reported to the MAC block, and fine sensing is
performed over the free bands. If the band is confirmed as unused, the MAC block
allocates this band to the CR link. Fine sensing is repeated over on another band. The
main advantage of the MRSS approach is its ability to be implemented in analogue

fashion, which provides lower power and real-time sensing processes.

‘Wideband Spectrum
Sensing
IK Coarse Sensing
LNA
Omni- l/ Fine Sensing

Directional
Antenna
Tunable Wideband Spectrum
Filter RX PHY Usage
Recognition
Spectrum
Tunable Adaptive Allocation
Signal Modulation
Directional Generation
Antenna Interference MAC
Mitigation
Power Wideband
Control Control

Figure 5-3: Functional block diagram of a CR access system architecture [10].
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5.2.3 Multicoset Sampling Based Detection

Multicoset sampling is a wideband sensing method based on a sub-Nyquist
sampling rate [11]. In this method some samples are selected from a uniform grid,
which can be obtained by uniformly sampling the signal, r(t), at a sampling rate f;
greater than the Nyquist rate. The uniform grid is divided into blocks of L
consecutive samples, and v (v < L) samples are acquired from each block while the

rest of the samples (L — v) are discarded. This method is implemented using v

sampling channels with a sampling rate % and the i-th sampling channel is offset by

%from the origin:

n .

; r{— n=mL+t meZ

ri[n] = { (fs) (5.5)
0 otherwise

where t' is the index of the i-th sample. The indices of the v samples are stored in a

constant set called a sampling pattern (C). The sampling pattern is defined as:

c={t} , o0<tl<t?<<t'<L-1 (5.6)

The discrete-time Fourier transform (DTFT) of the samples can be linked to the

unknown Fourier transform (FT) of the signal r(t) as follows:

Y(f) = PR(f) (5.7)
where ?(f) is a vector of DTFT of the measurements from the v channels, ﬁ(f) isa
vector of the FT of r(t), and @ is the measurement matrix with elements determined
by the sampling pattern C. Hence, sensing is about recovering R(f) from Y(f) by
solving (5.7). The advantage of multicoset sensing is that the sampling rate of each
sampling channel is lower than the Nyquist rate. Also, the number of samples
acquired is less than those in the Nyquist case. However, the drawbacks of this
method are requiring accurate timing offset between the sampling channels, and the

need for a large number of sampling channels to obtain accurate sensing.

5.2.4 Compressed Sensing Based Detection

Compressed sensing (CS) is a novel technique that has been suggested to
overcome the high sampling requirements of wideband sensing. Taking advantage of
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the fact that wireless signals are sparse, due to low spectrum occupancy by licensed
users, signals can be reconstructed using samples taken at a sub-Nyquist rate. In [15]
the author proposed a CS technique based on the MRSS mentioned earlier. However,
in this method the coarse sensing stage is performed using wavelet-based edge
detection to detect the frequency edges of the non-overlapping bands in the PSD of
the wideband signal. Figure 5-4 shows a block diagram of the proposed CS method.

Assume that the time required for sensing ist € [0, MT,], with T, as the
Nyquist sampling rate, and M is the number of samples required to recover the signal
without aliasing. The continuous-time signal received by the SU r(t) is converted to
a discrete signal x; of length K. The sampling process can then be expressed as

follows:
xt = STTt (58)

where S is an (M x K) projection matrix , and r; is an (M x 1) vector with samples

taken from r(t). The elements of x, are the projection of r(t) onto the basis.
Briefly, a multi-step compressed sensing is performed using the following steps:
a) A discrete signal x; is generated from r(t) using compressed random
sampling.

b) The frequency response 7¢is reconstructed from x, via a basis pursuit
technique, where rr = Fy1¢, and Fy, is the M-point unitary discrete Fourier
transform matrix.

c) A number of frequency bands N, and the frequency locations
{[f, fi+11} =g are estimated based on 7, using wavelet-based edge detection.

d) The PSD average amplitude within each band is estimated to classify the
bands into black, gray or white.

One-step compressed sensing is also proposed to reduce the implementation
complexity of coarse sensing, where the frequency band locations are detected from

x; without recovering the frequency response ry.

Other CS methods are presented in the literature. In [13, 43] the authors
suggested using an analogue-to-information converter (AIC) for compressing the

analogue signal in the analogue domain. However, the drawback of this approach is
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the high computational complexity represented by the large size of the measurement
matrix. Also, the AIC model is affected by design imperfections.

In [12] a parallel AIC model is proposed, known as a modulated wideband
converter (MWC). The advantages of this method are the reduced measurement
matrix size and robustness to design imperfections and noise. On the other hand, this
method requires large numbers of parallel sampling channels leading to an increased

computational complexity.

Decide
r(t) | compressive | *r | Spectrum Tf Wavelet | Hyo0r Hy
— . > . > . >

sampling reconstruction detection

Figure 5-4: A block diagram for compressed sensing based detection.

5.2.5 Multirate Sampling Based Detection:

This method also uses the concept of compressing the wideband signal in the
analogue domain. A sparse multiband signal can be reconstructed using
asynchronous multirate sampling (MRS) [9], or synchronous multirate sampling
(SMRS) [42]. In the MRS approach the signal can be reconstructed without
synchronization of the sampling channels. However, the signal should possess
certain properties to be reconstructed using MRS such as a minimal number of bands

or uniqueness.

In the SMRS approach, the signal is reconstructed from linear equations
relating the Fourier transform of the received signal to that of the samples. The
number of sampling channels, v, required to reconstruct a k-sparse signal is v > 2k.
However, applying the multirate sampling approach in cognitive radio networks
involves high implementation complexity due to the number of sampling channels
required, and the difficulty of having a spectrum with the special properties

mentioned earlier for the MRS.

5.2.6 Wavelet-based Detection

Wavelet-based detection is a wideband sensing approach based on edge

detection [14]. Edge detection is used to identify the irregular structure in the PSD
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function of the received wideband signal. These irregularities, also called edges,
carry information about the frequency boundaries of the non-overlapping bands.
Hence, the main goal is to identify the edges of those bands, and classify the bands
into black, gray or white, based on whether the estimated PSD level within each band

is high, medium or low.

Continuous Wavelet transform (CWT) of the PSD function of the wideband
signal is used to locate the singularities and irregularities. As shown in Figure 5-5 the
PSD is modeled as a train of consecutive frequency subbands, where the PSD is
smooth within the subbands but exhibits irregularities on the borders of any two
neighboring subbands. The first and second derivatives of the CWT of the PSD are
used to identify the edges. The local maxima of the first derivative or the zeroes of
the second derivative are used to locate the boundaries (edges) of the consecutive
subbands. The advantage of this approach is its ability to adapt to a dynamic
frequency range by controlling the wavelet smoothing function. However, the high
sampling rate analogue to digital converter (ADC) that is required to analyze

wideband signals, and the energy cost of that ADC, are concerning issues.
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Figure 5-5: Power spectral density (PSD) of the wideband spectrum of interest.

Table 5-1 summarizes the advantages and disadvantages of the wideband sensing

methods discussed above [44].
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Table 5-1: Advantages and disadvantages of different wideband sensing methods.

Sensing Method Advantages Disadvantages

Filter Bank Low sampling rate Large implementation complexity

Detection High spectral dynamic range  Not flexible as filters are preset

Multicoset Low sampling rate Requires accurate time offsets

Sampling Less measurements Requires too many sampling
channels

Compressed Low sampling rate High implementation complexity

Sensing Less processed data Matrix storage & transmission

Multirate Sampling Low sampling rate Stringent requirements on devices

Less sampling channels

Wavelet-based Flexibility in adapting to Requires high sampling rate ADC
Detection dynamic spectrum High energy consumption

5.3 System Model of Wavelet-based Detection

If we assume a wideband signal consisting of N consecutive subbands lies
within the frequency range [f;, fy] with a total bandwidth of B Hz. Frequency
locations and PSD levels for each subband need to be detected by the SU, where the
n-th subband is defined by B,: {f € By, fu-1 < f < fp},n =1,2, ---,N. The number
of subbands and the frequency locations are unknown to the SU, however, the
boundaries f, and fy are known. Also, the PSD is assumed to be smooth within the

subbands as shown in Figure 5-5.

Based on this scenario [14], the power spectral shape of each subband, S, (f), can be

defined as:
1, VfE€ERB
Sn(f) = {0 v;]: ¢ BZ (5.9)
And the PSD of the signal received by the SU, S,.(f), can be written as:
N
S (=) @S N+SuP)  fElfofi] (5.10)
n=1

where a2 is the power density within the n-th subband. The time domain signal is:
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N

r© = ) anpa(®) +w(O) (5.1)

n=1
where p,, (t) is the signal occupying B, with PSD S,,(f), and w(t) is the AWGN
with zero-mean and two-sided PSD S,,(f) = N,/2, Vf.

The continuous wavelet transform (CWT) of S,.(f) can be expressed as [14]:

Ws(sr(f)) = Sr(f) * ¢s(f) (5.12)

where * is the convolution operator, ¢,(f) is the wavelet smoothing function dilated
by a scale factor s and is defined as:
1 (f
——4(L 5.13
b == (%) (513
The scale factor s takes dyadic scales, i.e. s = 2/,j = 1,2,---,]. ¢(f) is the mother

wavelet function, usually a Gaussian or Haar wavelet.

As mentioned earlier, edges are defined using the first and second derivatives
of W,(S,-(f)), since they correspond to the local sharp variations within the PSD
function, S,.(f). The first and second derivatives of W;(S,(f))can be written

respectively as:

d dgs
W5 (D) = 5 775 (1) = () = 5, (N + (s 1) (514
d? d* s
WY (:)) = 5 g2 (5, () = 6 () = 5,(£) » (sz e ) N (619

By finding the local extrema of the Wy S,.(f), the local maxima in particular,
since they correspond to sharp variation points, or the zeros of Wy'S,.(f), frequency

edges can be realized as follows:

fo = maxima s {(Wi(S,(M)},  f € (o fi) (5.16)

fo = zeros {WY (SO} f € (o fu) (5.17)

By setting the scale factor s to the dyadic scale, only modulus maxima or

zero-crossings that propagate to larger scales are taken, while others are discarded as

noise. Moreover, multiscale wavelet products can be used to enhance multiscale

peaks due to the edges, while suppressing noise. The multiscale wavelet product of |
CWT gradients can be defined as:
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]
U(5:(N) = | [ Wi (5:9) (518)
j=1

where W, S,.(f) is defined in (5.14). Edges can be then acquired by finding the local

maxima of U;S,.(f), i.e.

fo = maxima {|U;(S, (D)}, f € (fo fi) (5.19)

After identifying the frequency edges, the PSD levels within subbands, {a2}~_,, are

estimated. The estimated PSD level within the n-th subband, B,,, can be computed as:

fn
1
= 5.20
ﬁn f;’l _fn_l 1 ST‘(f) df ( )

The estimated PSD level B, can be related to a2 as:

Bn =~ a% + Ny/2 (5.21)
where N, /2 can be estimated from any empty subband. Hence the estimated PSD of
the n-th subband can be written as:

arzl=ﬁn_mrjnﬁnl n=1,--,N (522)

According to the value of a2, detected frequency subbands can be classified to black,

gray or white. A block diagram of the wavelet-based detection approach is depicted

in Figure 5-6.
Local 3
t R S WS
ﬂ.autocorrelation r(T) FFT r(f): Wavelet : r(f) Maxima fL’

Transform :
Detection

Figure 5-6: Wavelet-based edge detection block diagram.

The pseudo code for the wavelet-based edge detection technique described above is

proposed in Algorithm 1.
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Algorithm 1: Wavelet-based Detection

Input: fo, fn, @s(f). (1)
Output: N, {fn}n=1, {@Z}n-1
R, () « E{r(O)r(t+ 1)}
S:(f) « F{R.(1)}
Ws(S:() < (Sr(f) * ds(N)
dw,S.(f)
df
{faln=1 = maxima ; {|[W(S, ()}
for i= (1) to (N) do

a<fiq

Wi (S, (f) < s

for j=(1)to(y — 1) do
Bi — Bi+hS,(a+jh)
end for
Bi — Bi+35,(a) +35,.(b)
end for
x — min{B, ),
for n=(1) to (N) do
ap < Bn—x

end for

5.4 Wavelet-based Detection in Log-normal Shadowing

The system model described in the previous section is for AWGN channel. In
this section the system model is modified to include log-normal shadowing. Log-
normal shadowing causes random variations in the average power of the signal in the
order of tens of wavelengths. The level of shadowing depends on the type of the
obstacle blocking the signal travelling from the transmitter to the receiver. It is

measured by the value of dB-spread, 0,5, as mentioned in Chapter 3.
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Log-normal shadowing results in degradation in the power magnitude, adds
more variations to the signal and leads to abrupt changes. This in its turn affects edge

detection and results in more unwanted edges.

In log-normal shadowing, the time domain signal received by the SU can be

expressed as:

N

Tiog(©) = ) @ hn (D) + W(O (5.23)

n=1

where h,,is the channel gain between the PU and SU in the n-th subband.

The PSD of the signal 1,4 (t) is:

Sriog() = ) Ha(D(@Su(N) + 50 f € lfofy] (5.24)

where H,(f) is the n-th subband impulse response. In the case of slow and flat

fading, (5.24) can be written as:

Sriog () = ) Hy@ZSu(N+Sw(H)  f Elforfil (5.25)

In the previous section a system model was built under the assumption that the
number of subbands, N, is unknown to the SU, but remains unchanged within a time
burst. However, in the presence of slow fading the number of subbands changes from
burst to burst. The effect of log-normal shadowing on edge detection will be

investigated in the next section.

5.5 Simulation Results & Discussion

In this section the performance of wavelet-based edge detection will be
investigated. The effect of certain factors on edge detection accuracy such as, the
scale factor (s), collaboration between SUs and spectrum shape will be discussed.
Also, the performance of edge detection in the presence of log-normal shadowing

will be investigated.
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5.5.1 The Effect of Scale Factor (s)

For a wideband signal with total bandwidth B = 750 MHz, located over the
frequency range [f, = 50 MHz, fy = 800 MHz], the PSD S,(f) is depicted in
Figure 5-7. Using a Gaussian mother wavelet, and scale factor over dyadic scale s =
2/,j =1,2,3,4, it is obvious that the larger the value of s, the smoother the wavelet
transform within the subbands. This means that the edges are retained at coarser
scales, while the noise is suppressed as shown in Figure 5-8. Moreover, better edge
detection is obtained using the multiscale wavelet product, where the exact edges are

kept while edges due to noise vanished as illustrated in Figure 5-9.

The histogram of the detected edges using wavelet transform is shown in
Figure 5-10 for 100 simulation runs. It can be observed that as the scale factor gets
coarser (larger), more accurate detection is obtained. Furthermore, using the

multiscale product enhances edge detection as discussed earlier.
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Figure 5-7: Power spectral density (PSD) of the received wideband signal.
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Figure 5-8: Wavelet coefficients at different scales: a)s =2, b)s =4, ¢)s =38,
d)s = 16.
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Figure 5-9: Wavelet coefficients at multiscale wavelet product.
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Figure 5-10: Histogram of the detected edges for 100 simulation runs at: a) s = 2,
b)s = 4, ¢) multiscale product s = 2: 4.
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5.5.2 Collaborative Edge Detection

In this section the system model described in section 5.3 is extended to
include collaborative edge detection, where the effect of collaboration between SUs
in wavelet-based edge detection is investigated. Assuming k collaborative SUs
where each SU performs wavelet edge detection and reports the detected edges to a
fusion center (FC), the FC then combines the information received using one of the
fusion rules, OR, AND or Majority, and takes the final decision regarding the edges
and their corresponding locations. For the wideband signal shown in Figure 5-11,
collaborative edge detection is performed using k = 5 SUs at a scale factor s = 2.
Simulation results depicted in Figure 5-12 (c) show that collaborative edge detection
using AND-combining outperforms the OR and Majority combining in terms of
accuracy, since only the exact edges are detected. While in OR-combining
(Figure 5-12 (b)) more edges are detected than detected by one SU in the non-

collaborative detection (Figure 5-12 (a)), resulting in inaccurate edge detection.
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Figure 5-11: Power spectral density (PSD) of the received wideband signal.
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Figure 5-12: Histogram of the detected edges using collaborative edge detection
for k = 5 SUs using: a) non-collaborative, b) OR (1 out of 5), ¢) AND (5 out of 5),
d) Majority (2 out of 5).

In a case of sensing the presence of a PU with a low SNR level, as in the
second subband in Figure 5-13 (a), the PU can be misdetected. Hence, using
collaborative edge detection can help overcome this problem. It is obvious from
Figure 5-14 (a) that the band occupied by the PU with low SNR, f €
[200,400]MHz, is not detected by the SU in non-collaborative edge detection.
However, in Figure 5-14 (b) this band was detected using OR-combining, while
AND-combining in Figure 5-14 (c), and Majority-combining in Figure 5-14 (d)
failed to detect this band.
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Figure 5-13: a) PSD of the received wideband signal, b) Wavelet coefficients at
scale s = 2.
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Figure 5-14: Histogram of the detected edges using collaborative edge detection
for k = 5 SUs using: a) non-collaborative, b) OR (1 out of 5), ¢) AND (5 out of 5),
d) Majority (2 out of 5).
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Figure 5-15 shows the number of detected edges within a range of +5%
around the exact edge (f = 200MHz), versus the average SNR of the PU occupying
the second subband (f € [200,400]MHz) in Figure 5-13 (a) using collaborative edge
detection for the three combining rules: OR, AND and Majority. At a scale factor of
s =2 and for k =5 collaborative SUs it can be concluded that the number of
detected unwanted edges decreases as the average SNR of the PU increases, resulting
in more accurate edge detection and hence better detection of the PUs. However, in
OR-combining the number of detected edges chosen by the FC to make the final
decision regarding the number of subbands and their boundaries, is higher than that
of both the Majority-combining and AND-combining. This means that using OR-
combining involves more computations and calculations to decide the number and

locations of the subbands within the wideband spectrum.

106 ~ r
.\\ -8=-- OR
9 ‘" C —a&— AND ]
\ .
. "\ ==@=- Majority (2 out of 5) |
\

7 \'\
n “\
48 ,
2 6 =
Ll \'\,
ERE =
5 A
BT A% N
(e o \
—— ~
© 3 ,,,,,,,,ﬁe_,_-_.e\ s
o \\ \-
= S \

2 O====-G_ &

~ N
~ ‘ \,\
1 A e 0 - - g——=—0
A VN /
-1
0} 5 10 15 20
Average SNR (dB)

Figure 5-15: Number of detected edges vs. SNR using collaborative edge detection
for k=5 SUs.

Table 5-2: Number of detected edges at different SNR values using collaborative
edge detection for k =5 SUs.

Number of Detected Edges
SNR (dB) OR Majority AND
4 9 3 0
10 2 1 1
20 1 1 1
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Figure 5-16 depicts the probability of detecting the edges within a range of
+5% around the exact edge (f = 200MHz) versus the average SNR of the PU
within the subband (f € [200,400]).
detection improved as the average SNR increased from OdB to 20dB. Moreover,

It is obvious that the probability of edge

AND-combining outperforms both OR and Majority combining in terms of the
probability of edge detection. However, AND-combining fails to detect the edges at
a low average SNR (0dB - 6dB), which proves the results shown in Figure 5-14 (c).
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Figure 5-16: Probability of edge detection vs. average SNR using collaborative edge
detection for k =5 SUs.

Table 5-3: Probability of edge detection at different SNR values using collaborative
edge detection for k =5 SUs.

Probability of Edge Detection
SNR (dB) OR Majority AND
6 0.375 0.5 0
10 0.5 1 1
20 1 1 1
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5.5.3 The Effect of Log-normal Shadowing

The presence of log-normal shadowing results in degradation in the received
average power and adds more random variations to the signal. In wideband sensing
this will lead to inaccurate edge detection, since these random variation may be
interpreted as edges. The signal transmitted by the PU experiences log-normal
shadowing due to the presence of an obstacle between this PU and the SU sensing
the spectrum. The PSD of the received signal for a PU occupying a frequency
band (f € [200,400]) and experiences log-normal shadowing ;5 = 2dB is shown
in Figure 5-17. The effect of shadowing on wavelet-based edge detection is shown in
Figure 5-18. It is obvious that the number of detected edges increased as the severity
of shadowing increased from o,z = 2dB in Figure 5-18 (b) to o4 = 12dB in
Figure 5-18 (d). These results are confirmed in Figure 5-19 where the number of
detected edges within a range of +25% around the exact edge, f € [150,250],

increases with the increase of a5 levels.
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Figure 5-17: PSD of the received wideband signal in log-normal channel for ;5 =
2dB, average SNR= 10dB.
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Table 5-4: Number of detected edges at different o5 values in log-normal channel.

O4p No. of Detected Edges
0 2
2 3
6 7
12 12

The probability of detecting the edges within a range of +5% around the
exact edge (f = 200MHz) of the subband occupied by the PU experiencing
shadowing decreases as the level of shadowing increases from 0dB to 12dB, as
shown in Figure 5-20. This is because more edges are detected at higher o5 values,
leading to misdetecting the correct edges. In summary, it can be concluded that the
presence of log-normal shadowing affects the performance of wavelet-based edge

detection.
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Figure 5-20: Probability of edge detection vs. g,z in log-normal channel (non-
collaborative edge detection) at average SNR= 10 dB, s = 2.
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Table 5-5: Probability of edge detection at different o,z values in log-normal
channel.

O4p Probability of Edge Detection
0 0.704
2 0.589
6 0.343
12 0.221

5.5.4 The Effect of Spectrum Shape

The spectrum investigated in the previous section had sharp edges. However,
in this section a spectrum with blunt envelopes (slow varying peaks) is addressed.
For the wideband signal shown in Figure 5-21, with bandwidth B = 400 MHz and
frequency range [f, = 100 MHz, fy = 500 MHz], it is obvious that higher scales
result in more accurate edge detection. The multiscale product is even better for edge
detection as shown in Figure 5-22. However comparing these results with those for
the sharp edges spectrum, it can be seen that slow varying peaks are more difficult to
identify and detect. Hence, the shape of the wideband spectrum affects the accuracy

of wavelet-based edge detection.
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Figure 5-21: PSD of the received wideband signal with blunt envelopes.
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product s = 2: 4.
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In conclusion, a wavelet-based edge detection system model for wideband
edge detection was studied using MATLAB simulation. The effect of the scale factor
of the wavelet function and spectrum shape on edge detection were considered. Also,
collaborative wideband edge detection was explored. Results indicated that better
edge detection was achieved at higher scale factor values, and the detection of the
edges could be enhanced using a multiscale wavelet product. Moreover,
collaboration between SUs in edge detection improved detection performance, and
better detection was achieved at higher average SNR levels of the primary user
occupying the wideband spectrum. The performance of this system model was also
tested under log-normal shadowing. The presence of log-normal shadowing resulted
in a degradation in edge detection performance, since shadowing reduces the average
power of the PU signal received by the SU, and at the same time it adds more

random variations to the signal, resulting in more false unwanted edges.
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CHAPTER 6: WIDEBAND SPECTRUM DETECTION

In this chapter two approaches for wideband spectrum detection will be
investigated and compared. The first approach is the tunable bandpass filter (TBPF)
filterbank in which a parallel structure of tunable narrowband bandpass filters is used
to sense the spectrum on a wideband level. The second approach is a proposed

wideband spectrum detection model using wavelet-based detection.

6.1 Problem Formulation

Assume a primary user (PU) operating over the wideband spectrum
portion f € [fy, fv], the center frequency, f., and bandwidth, B, of the PU are
unknown to the secondary user (SU). Also, they remain unchanged during the
sensing interval T, but change from one sensing interval to another as shown in
Figure 6-1. Sensing the presence of the PU will be performed using two sensing
approaches: the TBPF filterbank approach and the proposed wavelet-based detection
approach. System models and performance analysis of both approaches are addressed
and discussed in the following sections.
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Figure 6-1: Schematic illustration of the primary user activity over the wideband
spectrum.
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6.2 Wideband Spectrum Detection using TBPF Filterbank

As mentioned in chapter 5, when PU activity details such as the center
frequency and bandwidth are known to the SU, then sensing can be performed on a
narrowband basis over the frequency band. A tunable bandpass filter is set to the
center frequency and bandwidth of the PU, and the traditional sensing techniques
listed in chapter one namely, energy detection, match filter detection and

cyclostationary detection can be used to decide the status of this frequency band.

However, this is not the case in wideband sensing, where the SU needs to
sense the whole spectrum to detect the presence of the PU. In this case, multiple
frequency bands should be scanned using multiple tunable bandpass filters (TBPF)
forming a filterbank [45]. The block diagram of the TBPF approach is depicted in
Figure 6-2, the center frequency ( f., = (fu—1 + f)/2) and the bandwidth (B, =
fn — fn_1) of each tunable bandpass filter (BPF,,) are preset to scan the frequency
subband (f € [fn—1, f]) within the wideband spectrum. By switching the tunable
BPF, the operating center frequency and bandwidth can change over the wideband
spectrum (f € [f,, fv]). A schematic illustration of the sensing scenario used in this
approach is shown in Figure 6-3. Sensing is performed over fixed frequency
subbands, where one subband is scanned at a time and compared with the energy
threshold (1) to decide whether it is busy or free. A summary of spectrum sensing
using this approach is proposed in Algorithm 2. Using this architecture for wideband
spectrum detection requires large numbers of RF components, additionally, the
center frequency and bandwidth of the BPFs are preset which results in increasing

the implementation costs and complexity.
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Figure 6-2: Block diagram of wideband spectrum detection using the TBPF

filterbank approach.
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Figure 6-3: Schematic illustration of the sensing scenario using TBPF filterbank

approach.
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Algorithm 2: Wideband Spectrum Detection using TBPF Filterbank

InpUt: fO’ fN’ {fn}:}llgll’ r(t)
Output: {aZ}V_,, {P,Ln}:= )
R.(7) « E{r(Or(t + 1)}

S:(f) « F{R.(1)}
for i= (1) to (N) do

a<fiq

b < f;

for =(1)to(y — 1) do
Bi < Bi + hS,.(a+jh)
end for
Bi — Bi+35,(a) +35,.(b)
end for
x « min{B,}y-,
for n=(1) to (N) do
ap < Bn—x

if a2 > Athen

P;,=1
else
P;,=0
end if
end for

6.3 Wideband Spectrum Detection using Wavelet-based Detection

In this section a wideband spectrum detection system model is proposed. The
system model described in chapter 5 for wideband edge detection using wavelet-
based edge detection, shown in Figure 6-4, is used for detecting the edges
(irregularities) within the wideband spectrum. The results are then applied to the
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energy detector to perform spectrum detection. The exact operation is described in
Figure 6-5. In the first stage wavelet-based edge detection is performed to detect the
edges of the wideband spectrum and define the number of non-overlapping
frequency subbands (N) and their corresponding center frequency (fcn) and
bandwidth (B,,). The center frequency of the n-th subband is defined as:

= @ 6.1)

By = fo = fa-1 (6.2)

In the second stage the wideband sensing problem turns to narrowband
sensing, where the results of the first stage are applied to the energy detector and
traditional energy detection is performed on the subbands to classify them into busy
and free based on the estimated PSD level within each subband (a2). A summary of
spectrum detection using this approach was illustrated earlier in Algorithm 1, in
chapter 5. A schematic illustration of the sensing scenario used in this approach is
shown in Figure 6-6. The main advantage of using this approach for wideband
spectrum detection is its ability to adapt to a dynamic wideband frequency range.
However, the high sampling rate of ADC required to perform this technique and the

high energy consumption are drawbacks of this technique.

Local : Wavelet | ,
ﬂ}\utocorrelation R, (1) FFT Sr(f? TWthfile[ WSSr(f? Maxima f_n, — @, Based Edge f_n’
ranstorn Detection - Detection

Figure 6-4: Block diagram of the wavelet-based edge detection.

Wavelet Based Edge

Y Detection
t ~
) Bo| fim

- N

h 4 h 4

y Decide
az — (Hyor Hy)
Energy Detection > g

Threshold Device
)

Figure 6-5: Block diagram of the proposed wideband spectrum detection approach
using the wavelet-based detection.
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6.4 Simulation Results and Discussion

In this section the performance of the two approaches discussed earlier for
wideband spectrum detection is investigated. Their performance is compared in

terms of spectrum occupancy, which is an indicator for wideband spectrum detection
efficiency.

6.4.1 Spectrum Occupancy

In this section the metric spectrum occupancy is used to study the efficiency
of the wideband spectrum detection technique in detecting the presence of the PU
within the wideband spectrum. Spectrum occupancy is defined as the ratio of the
detected bandwidth occupied by the PU (B) to the total wideband bandwidth i.e.

B
Spectrum_Occupancy [PU] = B x 100% (6.3)
t

where

By =fn— fo (6.4)
1) Case One:

Consider the received PSD of the PU shown in Figure 6-7. The PU occupies a
bandwidth equal to (B = 90 MHz) with center frequency (f, = 675 MHz) and exact
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spectrum occupancy of (22.5%). The red dashed lines represents the subbands over
which the TBPF filterbank performs sensing, each subband has a bandwidth
of 80 MHz. Figure 6-8 depicts spectrum occupancy versus the probability of false

alarm (Pf) using the TBPF filterbank approach. As shown in the figure, at a low

probability of false alarm the spectrum occupancy equals (—0= 20%), which

8
400
means that the presence of the PU is detected over only one subband. While at a high

probability of false alarm, spectrum occupancy equals (% = 40%). This means that

at a low Pr the TBPF filterbank detected the PU over the fully occupied
subband (f € [640,720]), while the partially occupied subband (f € [550,640])
was declared as a free band. At a high Py both subbands were declared as busy

bands.

Figure 6-9 shows spectrum occupancy versus the probability of false alarm
using the wavelet-based detection approach. This approach gave more accurate
results than the TBPF filterbank approach, since it detected the exact spectrum
occupancy of the PU. This means that the wavelet edge detector detected the correct

edges of the PSD within the wideband spectrum.
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Figure 6-7: Received power spectral density within the wideband spectrum (case 1).
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2) Case Two:

In Figure 6-10 a PU occupying a bandwidth of (B = 20 MHz) with a center
frequency (f, = 520 MHz) and exact spectrum occupancy of (5%) is considered.
As before, spectrum occupancy versus the probability of false alarm is calculated
using the two approaches. In Figure 6-11 the TBPF filterbank approach is used, and
simulation results show that the PU was not detected at a low Py, which resulted in
0% spectrum occupancy. While at a high Py the PU was detected and the subband
(f € [480,560]) was declared as busy. However, in Figure 6-12 the wavelet-based

detection approach resulted in more accurate results.
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Figure 6-10: Received power spectral density within the wideband spectrum (case 2).
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3) Case Three (General Case):

In the previous two cases the center frequency of the PU was fixed during the
sensing interval. However, a more general case is considered here where the center
frequency of the PU is variable with a fixed bandwidth (B = 100 MHz), and fixed
average SNR of 10dB. Spectrum occupancy using both approaches is calculated over

five sensing intervals, as shown in Figure 6-13.

Figure 6-14 shows spectrum occupancy versus the probability of false alarm
using the TBPF filterbank approach. It is obvious that at a low P detected spectrum
occupancy of the PU is less than the exact one leading to higher interference for the
PU and more spectrum opportunities for the SU. While at a high Pr more spectrum
occupancy for the PU is achieved resulting in more protection form SU interference,

but less spectrum utilization for the SU.

In Figure 6-15 the wavelet-based detection approach is used, from simulation
results it can be seen that this approach was able to detect the exact occupancy of the
PU resulting in more accurate sensing results. These results proves the results

obtained in the previous two cases for a fixed center frequency.
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Figure 6-13: Received power spectral density within the wideband spectrum (case 3).
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Figure 6-14: Spectrum occupancy using TBPF filterbank (case 3).
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Figure 6-15: Spectrum occupancy using wavelet-based detection (case 3).
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It can be concluded that the proposed wideband spectrum detection approach
using wavelet-based detection outperforms the TBPF filterbank approach in terms of
spectrum occupancy. At a low Py the TBPF filterbank failed to detect the presence
of the PU over the partially occupied subbands and decided that these bands were
free, which caused interference to the PU from the SUs using these bands. At a high
Py the PU signal was detected, but this resulted in high spectrum under-utilization as
a partially occupied band is considered as busy. However, the wavelet-based
detection approach detected the PU more accurately and resulted in spectrum

occupancy close to the exact one, which provides better spectrum utilization.
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK

In this chapter, concluding remarks are made, and the results obtained are
discussed and compared. Also, recommendations for future work are suggested to

extend the work presented in this thesis.

7.1 Conclusions

In this thesis, energy based narrowband spectrum sensing in a log-normal
shadowing environment was investigated, and collaborative spectrum sensing under
shadowing using both soft fusion and hard fusion was evaluated. In addition,

wideband spectrum sensing using wavelet-based edge detection was explored.

In chapter 2, an overview of the cognitive radio concept and a summary of
different spectrum sensing techniques were presented. Collaborative spectrum
sensing models and the difference between narrowband and wideband spectrum
sensing were highlighted. In chapter 3 narrowband non-collaborative spectrum
sensing, using energy detection, was investigated in both an AWGN channel and a
log-normal shadowing channel. A closed-form expression for the probability of
detection in a log-normal shadowing channel based on the Gauss-Hermite integration
was derived, and the accuracy of this expression was tested in a MATLAB
simulation. The degradation in the sensing performance due to the presence of log-
normal shadowing was obvious. Moreover, the new expression of the probability of
detection under shadowing proved its accuracy in spectrum sensing. The effect of
different factors on spectrum sensing, such as the average SNR of the primary user,
the number of samples acquired from the signal received by the secondary user and
the level of shadowing represented by the dB-spread were studied. In general, better
detection of the primary user was achieved at a higher average of SNR values.
However, the larger the number of samples acquired during sensing, the lower the
probability of detecting the primary user in both an AWGN channel and a log-normal
channel. Moreover, severe shadowing represented by higher dB-spread values

resulted in worse sensing performance and less probability of detection.

Narrowband collaborative spectrum sensing was performed in chapter 4 to
overcome the effect of log-normal shadowing spectrum sensing. Collaborative

sensing was executed in a centralized fashion, where k spectrum sensors sense a
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certain frequency band and report their sensing information to a fusion center that
combines the received information and takes the final decision on the presence of the
primary user within that band. The fusion center combines sensing information using
either soft (data) fusion or hard (decision) fusion. In this chapter two soft fusion
schemes were investigated, the square-law selection (SLS) scheme and the square-
law combining (SLC) scheme. In addition, hard fusion using three combining rules:

AND, OR and Majority combining was analyzed.

The improvement in sensing performance due to collaboration between
secondary users was clear from the simulation results. In soft fusion, the
collaborative secondary users send their measured energies to the fusion center, and
the secondary user with the highest measured energy is chosen in the SLS scheme,
while the energies of all secondary users are added together in the SLC scheme. It
was shown that the SLC scheme outperformed the SLS scheme in terms of the
probability of detection. Also, using the SLC scheme involves less computational
complexity at the fusion center since it adds the energies of the secondary users
together, while in the SLS the energy at each secondary user should be estimated to
choose the user with the highest energy.

In hard fusion, the fusion center receives a one-bit binary decisions (1 or 0)
from each secondary user, and combines the decisions using one of the three main
combining rules; AND, OR and Majority. It was shown that OR-combining
outperformed both AND-combining and Majority-combining by providing higher
probability of detection for a certain probability of false alarm, resulting in higher
protection for the primary user from the secondary user interference. However, using
AND-combining provided more spectrum opportunities for the secondary users and
higher spectrum utilization since it resulted in higher probability of misdetecting the

primary user.

A comparison between hard fusion and soft fusion indicated that soft fusion
using the SLC scheme outperformed all hard fusion combining rules with better
probability of detection. However, using the SLC requires more bandwidth as the
secondary user sends its measured energy, while in hard fusion a one-bit binary
decision is sent to the fusion center, resulting in fewer bandwidth requirements, and

lower computational complexity at the fusion center. Therefore, a trade-off between
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the desired level of detection and the available resources should be done when

choosing a certain combining scheme.

In chapter 5 wideband spectrum sensing was investigated, and different
wideband sensing techniques were addressed. A system model for wideband
spectrum sensing using wavelet-based edge detection was studied in a MATLAB
simulation. The effect of the scale factor of the wavelet function and spectrum shape
on edge detection was considered. Also, collaborative wideband edge detection was
explored. Results indicated that better edge detection was achieved at higher scale
factor values and the detection of the edges was enhanced using multiscale wavelet
products. Moreover, collaboration between secondary users in edge detection
improved detection performance and better detection was achieved as the average
SNR of the primary user occupying the wideband spectrum increased. The
performance of this system model was also tested under log-normal shadowing. The
presence of log-normal shadowing resulted in degradation in edge detection
performance, since it reduces the average power of the primary user signal received
by the secondary user and, at the same time, it adds more random variations to the
signal resulting in more false edges.

In chapter 6 two approaches for wideband spectrum detection were
investigated and compared: the TBPF filterbank approach and the proposed approach
using wavelet-based detection. Simulation results indicated that the proposed
approach outperformed the TBPF filterbank in terms of spectrum occupancy and

utilization.

7.2 Future Work

The work done in this thesis can be extended, and some suggestions for more

research and future work are listed below.

7.2.1 Correlated Log-normal Shadowing

The centralized collaborative spectrum sensing model designed in chapter 4
in the log-normal shadowing channel was based on the assumption that the k
collaborative spectrum sensors are i.i.d, which means that they experience i.i.d same

shadowing statistics. A general system model where the spectrum sensors are not
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I.i.d can be developed. Moreover, correlated log-normal shadowing can be included
in the analysis.

7.2.2 Non-ideal Reporting Channel

The reporting channel used for communication between the spectrum sensor
and the fusion center is assumed to be a noiseless channel. However, in reality this
assumption is not accurate since this channel is subject to noise and shadowing.
Therefore, this should be taken into account by introducing the probability of error
over the reporting channel in the system design.

7.2.3 Effect of the Mother Wavelet Function

In chapter 5, the wavelet-based edge detection model used for wideband
sensing used the Gaussian mother wavelet as the smoothing function. Other types of
mother wavelet functions such as the Haar wavelet or Mexican hat wavelet can be
used to study the effect of the mother wavelet types on the performance of the edge
detection.
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