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Abstract 

The efficiency of cognitive radio networks mainly depends on the spectrum 

sensing stage, in which spectrum opportunities are exploited. However, one of the 

challenges facing spectrum sensing is the presence of fading and log-normal 

shadowing. Moreover, when the spectrum utilization is high and details regarding 

primary user activity are not available, a need to sense the whole spectrum arises. 

Hence, developing wideband spectrum sensing technique is a fundamental concern.   

In this thesis a narrowband spectrum sensing in a log-normal shadowing 

environment is addressed, a closed-form expression for the probability of detection 

under shadowing is derived. The accuracy of the expression is tested using a 

MATLAB simulation. Collaborative spectrum sensing is addressed, and expressions 

for the probability of detection and false alarm in both AWGN channels and log-

normal channels are derived for different fusion rules namely; soft fusion using 

square-law selection (SLS), square-law combining (SLC), hard fusion using OR, 

AND and Majority combining. The detection performance of these fusion rules is 

tested and compared. Simulation results showed that sensing performance is 

enhanced due to collaboration and better detection is achieved with more 

collaborative secondary users. Moreover, SLC outperforms SLS in terms of the 

probability of detection. OR-combining is found to outperform both AND-combining 

and Majority-combining from the primary user’s point of view by providing higher 

protection for the primary user from any secondary user interference; while AND-

combining is found to outperform the other two techniques, from the secondary user 

perspective, as it results in higher spectrum utilization and more spectrum 

opportunities. 

Wideband spectrum sensing using wavelet-based detection is investigated. 

The performance of this method and the effect of parameters such as the scale factor 

of the wavelet smoothing function, collaboration between secondary users in edge 

detection and the presence of log-normal shadowing is investigated and analyzed 

using MATLAB simulation. Simulation results indicate that better edge detection 

was achieved at higher scale factor values. Log-normal shadowing affected the 

accuracy of edge detection since it attenuates the average power received at the 

secondary user, and adds random variations at the same time as detecting false edges.  
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Two approaches to wideband spectrum detection are investigated and 

compared. The first approach is the tunable bandpass filter (TBPF) filterbank. The 

second approach is a proposed model using wavelet-based detection. Simulation 

results indicate that the proposed approach performed better in terms of spectrum 

occupancy and utilization as it accurately detected the primary user signal. While the 

TBPF filterbank approach failed to detect the primary user at low probabilities of 

false alarm when it partially occupied the subbands, leading to more interference for 

the primary user.  

 

Keywords: Cognitive radio, spectrum sensing, narrowband sensing, log-normal 

shadowing, collaborative sensing, soft fusion, hard fusion, wideband sensing, 

wavelet-based detection. 
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 Title and Abstract (in Arabic) 

 

استشعار الطيف الترددي للنطاق الضيق و الواسع في شبكات الراديو المعرفية في بيئة 

 التظليل اللوغاريتمي

 الملخص

يدة جدلكية من حيث تقديم خدمات أمام تطوير شبكات الاتصال اللاس تشكل ندرة الطيف الترددي عائقا  

لى ذلك فإن جدول توزيع الترددات القائم على فكرة تخصيص الترددات إضافة إ و تحسين الخدمات الموجودة. أ

تزيد من مشكلة ندرة الطيف و عدم كفاءة استخدامه. بشكل ثابت  ) الأوليين( الموجودة للمستخدمين المرخصين

 (الثانويين) غير المرخصين من خلال السماح للمستخدمين للتغلب على ذلك يلذلك تم طرح مبدأ الراديو المعرف

 .ه متاحةباستخدام الترددات المخصصة للمستخدمين الأوليين في الوقت الذي تكون في

ساسي على مرحلة استشعار الطيف الترددي، كات الراديو المعرفي تعتمد بشكل أن كفاءة و فعالية شبإ

تأثر بوجود لكن دقة استشعار الطيف تكثافة استخدام الترددات. عن ول على معلومات ي يتم خلالها الحصو الت

كذلك فإن عدم توفر معلومات كافية عن المستخدم الأولي يتطلب استشعار الطيف على التظليل اللوغاريتمي. 

 يات استشعار للنطاق الواسع ضروري.ير تقنوو لذلك فإن تط النطاق الواسع،

 باستخدام الاستشعار الفردي الطيف الترددي على النطاق الضيقالأطروحة استشعار  هذهبداية تناولت 

ار حيث تم اشتقاق معادلة لحساب احتمال استشع .الطيف  استشعارالتظليل اللوغاريتمي على دقة  تأثير درستو 

أن دقة استشعار الطيف و تم اختبار دقتها، و قد أظهرت النتائج  يتمياللوغار ولي في بيئة التظليلالمستخدم الأ

للتغلب على تأثير  المستخدم مبدأ الاستشعار التعاوني كذلك تناولتتتدنى في وجود التظليلي اللوغاريتمي. 

قبل أكثر من مستخدم ثانوي و من ثم تجميع نتائج  استشعار الطيف منيتم  التظليل اللوغاريتمي، حيث

للجمع و توجد عدة طرق مستخدمة م الأولي أو غيابه. الاستشعار لاتخاذ قرار نهائي بخصوص وجود المستخد

منها طرق التجميع اللينة و تتضمن القانون التربيعي للتجميع و القانون التربيعي  التعاوني بين نتائج الاستشعار

استخدام للاختيار، و هناك طرق التجميع القاسية. و قد أظهرت النتائج التحسن في دقة استشعار الطيف نتيجة 

تشعار التعاوني خاصة مع زيادة عدد أجهزة الاستشعار الثانوية. كما أن طرق التجميع اللينة أظهرت تفوقها الاس

 على طرق التجميع القاسية، إلا أن زيادة تكلفتها و تعقيدها تعطي الأفضلية لطرق التجميع القاسية.

باستخدام طريقة  دراسة استشعار الطيف الترددي على النطاق الواسع تمن ناحية أخرى، تمو 

فواصل بين مناطق الطيف التمثل . هذه الحواف القائمة على كشف الحواف الموجودة في الطيف المويجات

تم تفحص تأثير عدد من العوامل  قد و المستخدم من قبل المستخدم الأولي و الطيف المتاح للمستخدم الثانوي.

و كذلك وجود التظليل  مل القياس و شكل الطيفمنها عا الواسع على أداء هذه الطريقة لاستشعار الطيف

المويجات تزداد مع زيادة قيمة عامل القياس، كما  ستشعار باستخدامالاو قد أظهرت النتائج أن دقة  اللوغاريتمي.
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و يقلل  الخاطئة حيث يزيد من عدد الحواف سلبا  على دقة الاستشعار أن وجود التظليلي اللوغاريتمي يؤثر

 .ف الحواف الصحيحةاحتمالية اكتشا

و قد تم مقارنة أداء طريقتين لاستشعار الطيف الترددي على النطاق الواسع: الأولى باستخدام 

مجموعة من مرشحات تمرير الطيف، حيث يقوم كل مرشح باستشعار وجود المستخدم الأولي في جزء معين 

استشعار المستخدم الأولي في  حيث يتم ا  من الطيف الواسع. و الثانية باستخدام طريقة المويجات الموضحة سابق

أظهرت النتائج تفوق طريقة المويجات على طريقة مرشحات  قد حواف المكتشفة. ومناطق الطيف الواقعة بين ال

تمرير الطيف من خلال قدرتها على اكتشاف وجود المستخدم الأولي بدقة، بينما فشلت طريقة المرشحات في 

  بعض مناطق الطيف المستخدمة بشكل جزئي.استشعار المستخدم الأولي في 
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CHAPTER 1: INTRODUCTION 

This thesis addresses spectrum sensing in cognitive radio networks. Spectrum 

sensing is the first and most important cognitive task upon which the entire operation 

of cognitive radio relies. Sensing can be performed either on narrowband or 

wideband levels. Narrowband sensing is performed when there is enough 

information about the primary user’s signaling, center frequency and bandwidth. 

However, sensing performance on a narrowband level is affected by fading and log-

normal shadowing.  

On the other hand, wideband spectrum sensing obtains better utilization of 

the frequency spectrum, when the occupancy details of the primary users are 

unknown to cognitive network users. The design and implementation of wideband 

sensing systems are both difficult due to high implementation complexity and large 

energy consumption from high-rate analogue-to-digital converters (ADC). 

       1.1   Motivation  

Radio frequency (RF) spectrum scarcity is the main challenge facing the 

development of wireless communication networks. The introduction of new services 

that require high data rates, the spread of smartphones and social networks and the 

wish of users to stay fully connected increased the demand on frequency spectrum.  

The allocation of frequency bands is controlled by government regulators such as the 

office of communications (Ofcom) in the United Kingdom, the federal 

communications commission (FCC) in the United States [1], and the 

telecommunication regulatory authority (TRA) in the UAE. Current allocation 

policies are characterized by static frequency allocation where the frequency bands 

are assigned to licensed networks and users on a long-term basis within a certain 

geographical area. However, measurements indicate that these bands are unused by 

the licensed users for significant periods of time, resulting in spectrum under-

utilization [2]. For example experiments indicate that the maximal occupancy of the 

spectrum from 30 MHz to 3 GHz in New York city is only 13.1%, with an average 

occupancy (over six locations) of 5.2%, as was shown in Figure 1-1[3]. To overcome 

the issue of spectrum under-utilization and accommodate the growing demand, 
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cognitive radio (CR) networks were proposed. As a promising technology, cognitive 

radio networks allow unlicensed (secondary) users to access the licensed spectrum 

opportunistically without causing harmful interferences to the licensed (primary) 

users.  

To achieve this spectrum sensing defines spectrum opportunities (holes) that 

can be used for opportunistic access as shown in Figure 1-2. It is crucial to perform 

spectrum sensing efficiently and rapidly to guarantee better spectrum utilization for 

the secondary users and higher interference protection for the primary users at the 

same time. Therefore, different spectrum sensing techniques have been developed to 

perform sensing based on available information about primary user signaling [4]. 

Throughout this thesis energy detection is used for spectrum sensing because of its 

generality and simplicity. However, sensing performance is affected by fading and 

log-normal shadowing where the secondary user cannot distinguish between a faded 

band and an empty band. To alleviate this degradation in sensing performance, 

collaborative spectrum sensing is used [5, 6], in which multiple secondary users 

sense the spectrum and share their sensing information to help make a more reliable 

decisions regarding the presence of the primary user within the frequency band. 

Different fusion rules are used to combine local decisions, including soft fusion and 

hard fusion rules, and each rule is associated with a certain sensing performance 

levels. 

On the other hand, when spectrum utilization is low and information about 

the primary user is scarce, multiple frequency bands are sensed at the same time 

using wideband sensing. One of the wideband sensing approaches is the tunable 

bandpass filters (TBPF) bank, in which a parallel structure of tunable BPFs is used to 

sense multiple frequency bands at the same time with the center frequency and 

bandwidth of each BPF preset. However, this structure requires a large number of 

components resulting in high implementation complexity. Other wideband sensing 

techniques have been developed [7-15] such as the filter bank detection, multicoset 

sampling based detection, multirate sampling based detection, wavelet-based 

detection and compressed sensing (CS). In this thesis wavelet-based detection 

performs wideband sensing as it is simple and has the ability to adapt to a large 

dynamic spectrum range. 
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Figure 1-1: Spectrum occupancy measurement results averaged over six locations. 

 

Figure 1-2: Spectrum holes used for opportunistic access. 
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The idea of wavelet-based detection is to identify the irregular structure in the 

power spectral density (PSD) function of the wideband signal. These irregularities, 

also called edges, carry information about the frequency boundaries of the non-

overlapping frequency bands. Hence, the main goal is to identify the edges of those 

bands and classify the bands into black, gray, or white, based on whether the 

estimated PSD level within each band is high, medium, or low. 

The performance of this sensing technique depends on different factors such 

as the scale factor of the smoothing wavelet function, the shape of the received PSD 

and the collaboration between secondary users in edge detection. Besides, the 

presence of log-normal shadowing affects sensing results due to attenuation in the 

signal power and the addition of random variations to signal received.  

       1.2   Objectives and Contributions 

               1.2.1  Objectives  

This thesis aims to: 

1. Study the performance of narrowband spectrum sensing in a log-normal 

shadowing environment in a non-collaborative mode. 

2. Investigate the effect of collaborative sensing in a log-normal shadowing 

environment using different fusion rules. 

3. Analyze the performance of wideband spectrum sensing using wavelet-based 

detection in both an AWGN channel and a log-normal channel. 

               1.2.2  Contributions  

The contributions of this thesis are summarized as follows: 

1. A closed-form expression of the probability of detection in a log-normal 

shadowing channel is derived based on the Gauss-Hermite integration 

method. 

2. The performance of narrowband collaborative sensing in an AWGN channel 

and a log-normal channel using different fusion rules is derived. In particular, 
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soft fusion, using square-law selection (SLS); square-law combining (SLC) 

schemes and hard fusion using OR, AND and Majority combining are 

analyzed and compared under different parameters. 

3. The performance of wavelet-based edge detection in wideband sensing is 

investigated. The system model is extended to include collaborative edge 

detection. In addition, log-normal shadowing is introduced and the 

performance of edge detection in log-normal shadowing environment is 

analyzed. 

4. A wideband spectrum detection approach is proposed based on wavelet edge 

detection, and its performance is compared with the tunable bandpass filter 

filterbank approach in terms of spectrum occupancy.  

       1.3   Thesis Outline 

The remainder of this thesis is divided into six chapters that are organized as follows: 

Chapter 2 

This chapter provides an overview of the cognitive radio concept, 

functionalities, applications and challenges. Common spectrum sensing techniques 

from the literature are addressed, with the advantages and disadvantages of each 

technique discussed. Finally, definitions of collaborative spectrum sensing, 

narrowband and wideband spectrum sensing are summarized. 

Chapter 3 

This chapter derives expressions for the probabilities of detection and false 

alarm in a log-normal shadowing channel. It also investigates the performance of 

these expressions in spectrum sensing under different constraints such as the average 

SNR, number of samples and a shadowing level represented by the dB-spread. 

Chapter 4 

In this chapter expressions for the probability of detection and false alarm 

under collaborative sensing in both an AWGN channel and a log-normal shadowing 

channel are derived. Collaboration using soft fusion (SLS and SLC) and hard fusion 
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is investigated and the collaborative probabilities of detection and false alarm are 

also given. 

Chapter 5 

This chapter presents an overview of wideband spectrum sensing and 

common wideband sensing techniques, with the advantages and disadvantages of 

each technique explained. A system model for wideband sensing, using wavelet-

based detection, is investigated and the performance of this model in edge detection 

is analyzed. Also, the idea of collaborative edge detection is addressed, and the 

performance of wideband sensing using wavelet detection in a log-normal shadowing 

environment is also evaluated.  

Chapter 6 

This chapter investigates and analyzes two approaches to wideband spectrum 

detection. The first approach is the tunable bandpass filter (TBPF) filterbank in 

which a parallel structure of tunable narrowband bandpass filters is used to sense the 

spectrum on a wideband level. The second approach is a proposed wideband 

spectrum detection model using wavelet-based detection. Performance analysis of 

both approaches are studied and compared via a simulation. 

Chapter 7 

This chapter presents concluding remarks about the thesis, and provides 

suggestion to extend the work in certain directions. 
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CHAPTER 2: COGNITIVE RADIO - REVIEW 

       2.1   Introduction  

The evolution in wireless communications has introduced new services and 

applications that require high data rates and a particular quality of service (QoS). 

This resulted in dramatically increasing demand on frequency spectrum to 

accommodate these new services or to enhance existing ones. However, frequency 

spectrum is characterized by static frequency allocation schemes that assign the 

existing frequency bands only to licensed users. This is the case despite that 

measurements indicate that the spectrum is underutilized by licensed users for 

significant periods of time [2]. This aggravates spectrum scarcity and make it more 

difficult to accommodate the need for a greater spectrum. Therefore, the concept of 

cognitive radio (CR) is a promising technology to alleviate frequency spectrum 

scarcity and under-utilization by allowing unlicensed (secondary) users to access the 

spectrum when it is not being used by licensed users. In this chapter an overview of 

the cognitive radio and spectrum sensing techniques will be discussed.  

               2.1.1   Features and Functionalities 

The allocation of frequency spectrum is regulated by national regulatory 

bodies such as the Federal Communications Commission (FCC) in the United States. 

The FCC allocates spectrum to licensed users, also known as primary users (PU), 

which have the priority to use the spectrum on a long-term basis. However, this 

spectrum is under-utilized, since it is not used by the PUs for significant periods of 

time. This inefficient allocation of spectrum creates the need for new techniques that 

allows unlicensed users, also known as secondary users (SU), to access the spectrum 

whenever it is not being used by the PUs. Hence, the FCC adopted CR to overcome 

spectrum scarcity. According to the FCC; “Cognitive radio is a system that senses its 

operational electromagnetic environment and can dynamically and autonomously 

adjust its radio operating parameters to modify system operation, such as maximize 

throughput, mitigate interference, facilitate interoperability, access secondary 

markets.” [4]. 
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This definition highlights the two main characteristics of cognitive radio, 

which are cognitive capability and reconfigurability. Cognitive capability enables CR 

devices to interact with the surrounding radio environment in a real-time manner and 

be aware of signal parameters such as waveform, RF spectrum, communication 

network type/protocols, geographical information, user needs and security policies, 

etc. CR devices then adjust their radio operating parameters according to the 

information sensed to achieve optimal performance. This is known as 

reconfigurability [16]. 

These characteristics are implemented via the three main functions of the 

cognitive radio cycle shown in Figure 2-1: 

1. Spectrum sensing and analysis; 

2. Spectrum management and handoff; 

3. Spectrum allocation and sharing. 

In the spectrum sensing and analysis stage, CR detects spectrum holes, 

known as white spaces, for opportunistic access and spectrum utilization, it also 

senses PU activity to avoid causing harmful interferences due to SU transmissions. 

Then the characteristics of the frequency bands sensed such as their capacity and 

reliability are estimated and later used in decision making. 

After that the spectrum management and handoff function allows the SU to 

choose the best frequency band, or hop among multiple bands to meet QoS 

requirements. For example, when the PU reclaims its band, then the SU transmitting 

in that band has to move to another available frequency band according to the 

channel capacity, path loss, holding time, etc. 

The SU in cognitive radio networks may coexist in a certain frequency band 

with a PU or other SUs. Therefore, the need for efficient spectrum allocation and 

sharing mechanism is fundamental to protect the licensed PU from SU interference 

and to minimize the collisions and interference between SUs sharing the same 

frequency band. 
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Figure 2-1: Cognitive radio cycle [16]. 

               2.1.2   Applications 

Advances in spectrum sensing and spectrum access techniques encouraged 

many applications of cognitive radio networks in different areas. Certain applications 

are explored in this section. 

A. Cellular Networks 

Smartphones, and the spread of social networks raised user expectations of 

being fully connected. This in its turn added a burden to the already overloaded 

cellular networks. But cognitive radio applications have been introduced to help 

overcome these challenges and accommodate traffic growth. For example, indoor 

coverage is one of the challenges facing cellular networks, where the concept of 

femtocells has been proposed. The femtocell unit performs as a typical BS (eNodeB 

in LTE) with a self-deployment property, however, this property make it difficult to 

overcome femtocells interference using centralized interference management. 

The solution to this problem is using distributed spectrum planning, where 

each femtocell scans the spectrum to find available frequency bands, in order to 

maintain coverage and avoid interference with other femtocell, as shown in Figure 2-

2. 
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Figure 2-2: Femtocells interference [17]. 

B. TV White Spaces 

TV White Spaces (TVWS) are unused frequency bands located within the 

VHF and UHF portions of the frequency spectrum. In most countries this spectrum is 

not allowed for unlicensed use, but after the conversion of TV broadcasts from 

analogue to digital transmission, large parts of analogue TV channels became 

completely vacant due to the higher efficiency of digital TV (DTV).  

On the other hand, the transition to DTV leaves some channels in certain 

geographic areas unused by DTV stations due to the interference they cause to co- or 

adjacent channels. This resulted in more vacant bands that can be used by unlicensed 

users operating at a low power levels without causing interference to DTV stations. 

The FCC in the US, the Office of Communications (Ofcom) in the UK, and the 

Electronic Communications Committee (ECC) in Europe are the main regulatory 

agencies that allow unlicensed use for TV white spaces by cognitive users [1]. 

C. Public Safety Networks 

The FCC allocated a 700 MHz (698-806 MHz) frequency band for 

emergency responders (i.e. police, fire and medical services) to prevent or respond to 

emergencies. However, this spectrum is not sufficient as public safety workers are 

increasingly equipped with wireless devices such as laptops and mobile video 

cameras, to improve the efficiency of emergency responses. Moreover, responders 
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from different agencies cannot communicate during emergencies due to the use of 

multiple frequency bands, incompatible radio devices and a lack of standardization 

[1].  

To overcome these challenges cognitive radio networks have been proposed 

to utilize spectrum usage and increase the efficiency of emergency response. With 

cognitive radio, public safety workers can use other frequency bands such as TVWS 

for daily communication. Also, through spectrum sharing they can share the 

spectrum of other commercial operators in locations where public safety networks 

are unavailable, or where there is an operating public safety network but more 

capacity is needed to respond to an emergency more effectively. 

Cognitive radio applications can be used in many other areas such as smart 

grid networks, the military and wireless medical networks [1].  

               2.1.3   Challenges  

Several challenges are facing spectrum sensing in cognitive radio networks. 

Such as; hidden PU problem, spread spectrum PUs, hardware requirements and 

sensing parameters are addressed in this section.  

A. Hidden Primary User Problem 

Hidden primary user problem, shown in Figure 2-3, arises when the PU 

transmitter is located outside the SU area of coverage (AOC). In this situation the SU 

will cause unwanted interference to the PU receiver as the PU transmitted signal 

cannot be detected by the SU during spectrum scanning. The multipath fading and 

shadowing experienced by the PU are the main sources of this problem. 

Collaborative spectrum sensing is used to overcome this issue, where multiple SUs 

collaborate with each other to detect the presence of the hidden PU. 
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Figure 2-3: Hidden primary user in cognitive radio network. 

B. Spread Spectrum Primary Users 

There are two main spread spectrum technologies that can be used by the PU 

to access the frequency spectrum: frequency hopping spread spectrum (FHSS) and 

direct sequence spread spectrum (DSSS). In FHSS the PU changes its operating 

frequency according to a certain hopping sequence known by both the transmitter 

and receiver. While in DSSS the PU spreads its energy over a single frequency band. 

Detection of a PU that uses spread spectrum techniques is difficult as its 

power is distributed over a large bandwidth and looks like a background noise. 

However, knowing the hopping sequence and achieving perfect synchronization 

between the SU and the PU transmissions allows simultaneous transmission without 

causing harmful interference to the PU. 

C. Hardware Requirements 

Searching for a spectrum opportunity requires scanning wide frequency bands 

by SUs at high resolutions. This requires RF receivers with components (antennas 

and power amplifiers) tuned over a large frequency range and high speed processors 

to accommodate the excessive computational demands with minimal processing 

delay and to perform noise/interference estimations efficiently.  

Sensing architecture is another factor that should be taken into consideration. 

There are two different architectures that are implemented in cognitive radio 

networks: single-radio architecture and dual-radio architecture [18]. In a single-radio 
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architecture a limited time slot is allocated for sensing thus resulting in a limited 

sensing time, a less sensing accuracy and lower spectrum efficiency. This is the case 

since part of the time slot is used for sensing instead of data transmission. The 

advantages of this architecture are low implementation costs and simplicity. 

In a dual-radio architecture, two radio channels are used, one for data 

communication and the other for spectrum sensing. This architecture increases 

sensing accuracy and spectrum efficiency, but on the other hand it increases the 

complexity, hardware costs and power consumption.  

D. Sensing Parameters 

Sensing parameters have to be chosen carefully to guarantee interference 

protection for the PUs while achieving maximum spectrum utilization for the SUs. 

Different sensing parameters have to be taken into consideration such as sensing 

time, sensing frequency and sensing accuracy. 

Sensing time has to be selected carefully, because the licensed PU can use its 

channel anytime, and the SU should vacate this channel immediately. Hence, sensing 

time has to be sufficient to identify the presence of the PU, which adds constraints on 

the design of the sensing algorithms. 

Another important parameter is sensing frequency that determines the number 

of times spectrum sensing is performed. The value of a sensing frequency is chosen 

based on the capabilities of the cognitive radio and the temporal characteristics of the 

PU in its environment [19]. If the status of the PU changes slowly, then spectrum 

sensing can be relaxed and performed less frequently, such as with the detection of 

TVWS. Where the allocation of the TV channels is almost fixed unless a new station 

comes into operation or an existing station goes offline.  

PU interference tolerance is another factor that affects sensing frequency. For 

example, if the SU is using a public safety channel, then sensing should be 

performed more frequently and the SU should immediately vacate the channel for the 

licensed user.  
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               2.1.4   Research Areas  

The main objective of cognitive radio networks is utilizing the frequency 

spectrum, by allowing SUs to access available licensed frequency bands. However, it 

is crucial to protect the PU from any interference which might be caused by the SU. 

This adds limitations on the SU transmission power and the interference produced to 

guarantee PU protection. Hence, more research in power adaptation strategies is done 

to meet the QoS requirements of the PU and maximize both the SNR and capacity of 

the SU.  

Another field that attracts researchers is spectrum sensing. It is the first and 

most important cognitive task, since it defines the vacant frequency bands and the 

state of the channel that will carry the transmission. There are many spectrum 

sensing techniques such as energy detection, waveform detection, matched filtering, 

etc. Significant research has been carried out in this area to study these different 

techniques and optimize their parameters for efficient spectrum sensing performance. 

Research in cognitive radio networks also takes other directions i.e. energy 

efficiency, seamless spectrum handover, cross-layer design and optimized spectrum 

decision making [20]. 

       2.2   Spectrum Sensing 

Spectrum sensing is the most important function in the cognitive cycle. It 

provides the SU with the information required to access the spectrum accurately and 

efficiently at a certain time at a certain position on the spectrum. Spectrum sensing is 

performed across different dimensions including frequency, time, geographical area, 

code and angle. Significant research has been carried out in the field of spectrum 

sensing, to address the various spectrum sensing techniques, sensing dimensions and 

sensing challenges. In the following sections, a brief review of spectrum sensing 

techniques and dimensions is provided. 

               2.2.1   Spectrum Sensing Techniques 

Different spectrum sensing techniques have been proposed in the literature. In 

this section the most common sensing techniques are explained and the advantages 

and drawbacks of each technique are presented.  
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A.  Energy Detector 

Energy detection, also known as radiometry or periodogram, is the most 

common spectrum sensing technique due to its computational and implementation 

simplicity [18]. The concept of energy detection is comparing the output of the 

energy detector with a certain energy threshold that depends on the noise floor to 

determine the presence of the PU signal [21]. Information about the PU signal is not 

necessary for the energy detector to perform sensing. However, many challenges are 

faced in this technique starting for the selection of the energy threshold, the inability 

to differentiate between noise and PU interference, performance degradation at low 

signal to noise ratio and the difficulty in detecting spread spectrum PUs. More details 

about energy detection techniques are presented in chapter 3. 

B. Matched Filter Sensing 

Matched filter is the optimal spectrum sensing technique when the SU has 

information about the PU signal such as its operating frequency, bandwidth, pulse 

shaping, modulation type and frame format. The signal received is correlated with a 

known primary signal and compared to a threshold in order to detect the presence of 

the PU and maximize the SNR in the presence of additive white noise.  

The main advantage of the matched filter technique is the short sensing time 

required to achieve a good detection performance. However, when the SU has poor 

knowledge about the PU signal, matched filter performance degrades. Another 

drawback of this technique is that it requires a dedicated receiver for every PU signal 

type, resulting in high implementation complexity, and large power consumption as 

various receiver algorithms need to be evaluated. 

C. Cyclostationary-Based Sensing 

Cyclostationary-based sensing utilizes the cyclostationary features of the PU 

signal, due the periodicity of the signal or its mean, by analyzing the Cyclic 

Autocorrelation Function (CAF) of the received signal. The CAF of the received 

signal 𝑟(𝑡) can be expressed as [17]: 

 

𝑅𝑟
(𝛽)(𝜏) = 𝐸[𝑟(𝑡)𝑟∗(𝑡 − 𝜏)𝑒−𝑗2𝜋𝛽𝑡] (2.1) 

 

where 𝐸[ . ] is the expectation operator,(. )∗ is the complex conjugation, and 𝛽 is the 

cyclic frequency. 
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Another representation of the CAF uses the Fourier series expansion, known as the 

Cyclic Spectrum Density (CSD) function: 

 

𝑆(𝑓, 𝛽) = ∑ 𝑅𝑥
(𝛽)(𝜏)

∞

𝜏=−∞

𝑒−𝑗2𝜋𝑓𝑡 
 

(2.2) 

The CSD function has peaks when the fundamental frequency of the PU 

signal equals the cyclic frequency, 𝛽, and it has no peak when there is no PU signal, 

as the noise is non-cyclostationary. The cyclostationary detector performs efficiently 

at a very low SNR, since it can distinguish between the PU signal and noise. The 

main drawback of this sensing technique is the computational complexity, as all 

cycle frequencies need to be calculated. 

D. Waveform-Based Sensing 

This sensing technique takes advantage of the special patterns sent with the 

PU signal such as preamble, mid-ambles, pilot patterns and spreading sequences. A 

preamble is a pattern transmitted at the beginning of the data sequence, while mid-

amble is transmitted in the middle of the data sequence. These patterns are added to 

the signal intentionally for synchronization and detection purposes.  

Sensing is performed by correlating the received signal with these known 

patterns, and comparing the output of the correlator with a certain threshold. This 

method is also known as coherent sensing and can be applied on systems with known 

signal patterns. It was found that waveform-based sensing outperforms energy 

detector with higher reliability and shorter sensing time [22]. However, this sensing 

technique is susceptible to synchronization errors, and it decreases spectrum 

efficiency since longer signal patterns are required for a more accurate sensing 

performance. 

E. Wavelet-Based Sensing 

Wavelet-based sensing uses the Wavelet transform to get time and frequency 

information simultaneously about the wideband signal. Unlike the traditional Fourier 

transform that provides only spectral information and works for a stationary signal. 

Short Time Fourier Transform (STFT) is also used for time-frequency analysis, 

however, the main problem with the STFT is the inability to obtain both high time 

and frequency resolutions simultaneously due to the constant window length used in 

STFT analysis.  
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Wavelet transform can be used to analyze signals with different frequencies 

at different resolutions and obtain high time resolutions and low frequency 

resolutions at high frequencies and vice versa at low frequencies. The main idea in 

wavelet-based sensing is using the wavelet transform to detect the edges in the Power 

Spectral Density (PSD) function of the wideband signal. These edges carry important 

information about transitions from an occupied subband to an empty subband. 

Locating these edges and estimating the power between every two edges helps to 

represent the wideband signal in a binary fashion and classify the subbands into 

occupied and vacant. This sensing technique will be addressed in detail in chapters 5 

and 6.  

               2.2.2   Multi-dimensional Spectrum Sensing 

Spectrum sensing is about finding opportunities to allow SUs access to the 

licensed spectrum. A spectrum opportunity is usually exploited in three main 

dimensions: time, frequency and geographical area, i.e.  it can be defined as “A band 

of frequencies that are not being be used by the primary user of that band at a 

particular time in a particular geographic area” [23]. However, there are other 

dimensions that can be sensed to create new spectrum opportunities such as code and 

angle.  

Code dimension includes signals that use spread spectrum, time or frequency 

hopping codes. The conventional sensing algorithms do not deal with this dimension, 

which creates challenges in spectrum sensing, as mentioned in the previous section. 

However, this dimension in spectrum sensing helps avoid these challenges and 

increases spectrum utilization by creating new opportunities. 

Angle dimension is another dimension that is not usually taken into 

consideration in spectrum sensing. With new advances in antenna design such as 

beamforming, multiple users can use the same frequency band at the same time 

within the same geographic area. This in its turn creates new opportunities if the 

angle of arrival (AoA) is estimated during sensing.  

Hence, it is very important to consider all dimensions when designing sensing 

algorithms, as each dimension creates new opportunities. Figure 2-4 depicts the main 

spectrum space dimensions.     
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Figure 2-4: Multi-dimensional spectrum space [4]. 

       2.3  Collaborative Spectrum Sensing 

   Collaborative sensing has been proposed to overcome the problems facing 

spectrum sensing such as, noise uncertainty, multipath fading and shadowing. It also 

alleviates hidden primary user problem and decreases sensing time [4]. In 

collaborative sensing multiple SUs sense the spectrum and share their sensing 

information to make the final decision regarding the presence of the PU within the 

frequency band. There are two approaches to perform collaborative sensing; 

centralized and distributed. These two approaches are addressed in the following 

sections. 

               2.3.1   Centralized Collaborative Sensing 

In centralized sensing a central unit, called the fusion center (FC), gathers the 

local sensing information from all the SUs and decides whether the PU exists or not 

as shown in Figure 2-5. Different fusion algorithms can be used by the FC to 

combine local sensing information such as soft (data) fusion and hard (decision) 

fusion algorithms. These algorithms are investigated in detail in chapter 4. The FC 

then broadcasts the final decision to all SUs, or controls the traffic directly.  
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Figure 2-5: Centralized spectrum sensing. 

               2.3.2   Distributed Collaborative Sensing 

In the case of distributed sensing, the SU receives sensing information from 

other SUs within its vicinity and based on its own sensing information and the 

information received from other SUs, it makes a decision regarding the presence of 

the PU. The main advantage of this approach is the reduced cost, since no backbone 

infrastructure (centralized fusion center) is required. However, every SU has to be 

equipped with an individual sensing unit. Figure 2-6 depicts a general distributed 

sensing architecture. 

 

Figure 2-6: Distributed spectrum sensing. 
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               2.3.3   External Sensing 

External sensing can be considered as an alternative to centralized spectrum 

sensing. In this technique, an external agent performs spectrum sensing and reports 

the final decision to all the SUs. However, the difference between external sensing 

and centralized sensing is that the external agent is equipped with sensing 

capabilities and spectrum sensors, while the SUs do not need to have sensing 

capabilities, unlike in the centralized sensing method.  

This method overcomes the hidden PU problem and uncertainty due to 

shadowing and fading. It is also efficient in terms of time, bandwidth and power 

consumption from the SU’s point of view. Since the SUs do not have to spend time 

and power in sensing as this task is performed by an external agent [24]. 

       2.4  Wideband and Narrowband Spectrum Sensing 

In narrowband sensing, conventional spectrum sensing techniques, discussed 

earlier in this chapter, and collaborative sensing techniques are used. This implies 

that the SU knows the frequency band over which sensing will be performed, i.e. the 

radio front-end starts with a tunable bandpass filter (BPF) that scans one frequency 

band at a time. TV broadcasting is an example of narrowband sensing, where the 

center frequency and bandwidth of each band are pre-defined and sensing is 

performed band by band. 

However, when the spectrum utilization is high, wideband sensing should be 

executed to explore more opportunities. In wideband sensing the SU has no 

information about the PU center frequency or bandwidth, hence multiple frequency 

bands should be scanned at the same time using a filterbank of parallel narrowband 

BPFs implemented at the radio front-end. But this architecture requires a large 

number of components and the filter range of each BPF is preset, which results in 

high implementation costs and complexity.  

An alternative approach for wideband sensing has been proposed based on 

identifying the edges of the non-overlapping frequency bands and categorizing the 

bands detected into black, gray, and white based on estimated power spectral density 

(PSD) levels [25]. However, the detailed spectral shape of the wideband spectrum is 

not significant for the sensing process, therefore the wideband spectrum is modeled 
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as a train of consecutive frequency subbands with a smoothed PSD within each band, 

but with discontinuous changes between adjacent bands. The main objective is to 

identify these discontinuities within the spectrum, as they correspond to the 

frequency edges used to identify the subbands. Wavelet transform has been 

suggested as a powerful tool for wideband spectrum sensing, it is used to analyze 

spectrum singularities and detect frequency edges. Other algorithms have been 

developed for wideband spectrum sensing, these algorithms are addressed in detail in 

chapter 5. 

In this thesis, narrowband spectrum sensing based on energy detection will be 

considered in an AWGN channel and a log-normal shadowing channel. Collaborative 

sensing will be addressed to overcome the effect of shadowing using different fusion 

rules that will be discussed in details in chapter 4. Also, wideband spectrum sensing 

using wavelet-based edge detection will be investigated for both an AWGN channel 

and a log-normal shadowing channel.  
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CHAPTER 3: NARROWBAND NON-COLLABORATIVE 

SPECTRUM SENSING 

In this chapter narrowband spectrum sensing is addressed in a non-

collaborative mode, where the secondary user (SU) senses a predetermined 

frequency band to decide on the presence of the primary user (PU). This decision is 

mainly affected by the channel model between the PU and the SU. In the first part of 

this chapter non-collaborative spectrum sensing in an AWGN channel is studied, 

where this channel model is considered as the ideal model. In the second part, non-

collaborative sensing in a log-normal shadowing channel is investigated.  

       3.1   Spectrum Sensing in an AWGN Channel 

An Additive White Gaussian Noise (AWGN) channel is very convenient for 

modeling real communication systems, where the AWGN represents background 

noise, or noise from other communication systems working in the same frequency 

band. The effect of this noise on spectrum sensing performance, in terms of the 

probability of detection and the probability of false alarm is explored in this section 

using the energy detection technique. 

               3.1.1   System Model 

Energy detection is known for its simplicity and low computational 

complexity, therefore, it is commonly used for detecting unknown signals. A block 

diagram of an energy detector is depicted in Figure 3-1: 

 

Figure 3-1: Energy detector block diagram. 

The input signal 𝑟(𝑡) received by the SU passes through a band-pass filter 

(BPF) to eliminate the out-of-band noise at the center frequency, 𝑓𝑐, and 

bandwidth, 𝑊. The filtered signal then passes through a squaring device to determine 

its energy, followed by an integrator over a sensing interval (0, 𝑇). Finally, the 
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output of the integrator, 𝑉, is compared with the energy threshold, 𝜆, to decide 

whether the PU is present, 𝐻1, or absent, 𝐻0. 

The input signal 𝑟(𝑡) is modeled as: 

 

 𝑟(𝑡) = 𝑛(𝑡)                   𝐻0  

𝑟(𝑡) = 𝑠(𝑡) + 𝑛(𝑡)      𝐻1 
 (3.1) 

 

where 𝑛(𝑡) is the AWGN modeled as a zero-mean Gaussian random variable with 

variance 𝜎𝑛
2, i.e. 𝑛(𝑡) ≡ 𝒩(0, 𝜎𝑛

2), and 𝑠(𝑡) is a PU transmitted signal (𝑠(𝑡) = 0 

when the PU is not transmitting).  

For the purpose of detection the signal 𝑟(𝑡) is sampled using 𝑁𝑠 samples 

before processing, resulting in the discrete-time form: 

 

𝑟𝑖 = 𝑠𝑖 + 𝑛𝑖              𝑖 = 0, . . . , 𝑁𝑠 − 1 (3.2) 
 

Then detection problem turns to a discrete-time binary hypothesis testing 

problem, by comparing the test statistic, 𝑉, with the energy threshold, 𝜆. The test 

statistic, 𝑉, can be written as: 

𝑉 =
1

𝑁𝑠
∑ |𝑟𝑖|

2

⌊𝑁𝑠−1⌋

𝑖=0

 (3.3) 

 

where (𝑁𝑠 = 𝑇𝑊) is the time-bandwidth product that can be either an integer or a 

non-integer, and 𝑊 is the bandwidth of the signal. 

Under the 𝐻0 hypothesis, 𝑉 follows a central chi-square distribution with 2𝑁𝑠 

degrees of freedom, and a non-central chi-square distribution under the 𝐻1 

hypothesis with a non-centrality parameter of 2𝑁𝑠𝛾 and 2𝑁𝑠 degrees of freedom [21]. 

Hence, 𝑉 can be modeled as: 

 

𝑉 = {
𝜒2𝑁𝑠

2                      𝐻0

𝜒2𝑁𝑠

2 (2𝑁𝑠𝛾)        𝐻1

 (3.4) 

 

In AWGN channel the spectrum sensing performance is evaluated using two 

probabilities: the probability of false alarm, 𝑃𝑓, and the probability of detection, 𝑃𝑑. 

A high probability of detection provides high protection and less interference of the 
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PU, while a low probability of false alarm results in more spectrum opportunities for 

the SU, hence higher spectrum utilization, but lower protection for the PU. 

The conditional probabilities, the probability of a false alarm, 𝑃𝑓 , and the probability 

of detection, 𝑃𝑑, can be written as respectively: 

 

𝑃𝑓 = 𝑃(𝑉 > 𝜆|𝐻0) (3.5) 

𝑃𝑑 = 𝑃(𝑉 > 𝜆|𝐻1) (3.6) 
 

The probability density function (PDF) of 𝑉 under the two hypotheses can be 

expressed as [26]: 

𝑓𝑉|𝐻0
(𝑣) =

𝑣𝑁𝑠−1 𝑒−𝑣/2

𝛤(𝑁𝑠)2𝑁𝑠
 (3.7) 

𝑓𝑉|𝐻1
(𝑣) =

𝑣𝑁𝑠−1 𝑒−(𝑣+2𝑁𝑠𝛾)/2

𝛤(𝑁𝑠)2𝑁𝑠
 𝐹10 (𝑁𝑠,

𝑁𝑠𝛾𝑣

2
) (3.8) 

 

where Γ(. ) is the gamma function, and 𝐹10 (. , . ) is the confluent hyper-geometric 

limit function [27]. 

Closed-form expressions for the probability of false alarm and the probability of 

detection are given in [28]. The two probabilities can be expressed as: 

𝑃𝑓 =
𝛤(𝑁𝑠,

𝜆
2)

𝛤(𝑁𝑠)
 (3.9) 

𝑃𝑑 = 𝑄𝑁𝑠
(√2𝛾, √𝜆) (3.10) 

where 𝛾 is the SNR received at the SU, defined as 𝛾 =
𝑃

𝑁0𝑊
 with 𝑃 as the power of 

the PU signal received at the SU, and 𝑁0 is the one-sided noise power spectral 

density. 𝜆 is the energy threshold, Γ(. , . ) is the upper incomplete gamma function, 

and 𝑄𝑁𝑠
(. , . ) is the generalized Marcum-Q function [29]. In real communication 

systems the value of 𝜆 is determined by solving (3.9) for a pre-assigned value of 𝑃𝑓. 

The probability of misdetection is defined as: 

𝑃𝑚 = 1 − 𝑃𝑑  (3.11) 
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               3.1.2  Simulation Results in an AWGN Channel 

Different factors affect spectrum sensing performance in an AWGN channel 

such as the number of samples, 𝑁𝑠, and the PU average SNR, 𝛾. In this section 

sensing performance is investigated using a MATLAB simulation using the 

complementary receiver operating characteristic (CROC) curves [30]. CROC is a 

graphical representation of spectrum sensing performance for different values of 

energy threshold. It shows the relationship between the sensitivity, represented by the 

probability of misdetection, and the specificity, represented by the probability of 

false alarm. 

A. Effect of the Number of Samples (𝑵𝒔) 

The number of samples, 𝑁𝑠, acquired from the signal received by the SU 

affects detection of the PU. When the number of samples increases the SU collects 

more information about the PU during a fixed sensing duration, 𝑇. Therefore, the 

probability of false alarm decreases [31]. However, in practical situations there is a 

predetermined probability of false alarm that is achieved. According to the inverse 

proportionality between the probability of misdetection and the probability of false 

alarm, increasing the number of samples results in a higher probability of 

misdetection, as shown in Figure 3-2.  
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Figure 3-2: CROC in AWGN channel for different values of 𝑁𝑠 at average SNR= 10dB. 
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B. Effect of Primary User Average SNR  

The SNR of the PU signal received at the SU has a major influence on the 

performance of the energy detector. As the average SNR increases, the signal 

becomes immune to noise and hence easier to detect. This is obvious from the results 

shown in Figure 3-3, where the probability of misdetection, 𝑃𝑚, decreases as the 

average SNR increases from 5dB to 15dB. These results prove that the energy 

detector performs better at a high average SNR. Figure 3-4 further verifies this 

conclusion, where the probability of detection, 𝑃𝑑, grows as the average SNR 

increases from 0dB to 20dB. 
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Figure 3-3: CROC in AWGN channel for different values of average SNR, and 𝑁𝑠 = 10. 
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Figure 3-4: Probability of detection, 𝑃𝑑 , vs. average SNR for 𝑁𝑠=10. 

       3.2  Spectrum Sensing in Log-normal Shadowing 

In this section the effect of log-normal shadowing on spectrum sensing 

performance is investigated. In a log-normal shadowing, the signal received by the 

SU fluctuates randomly due to a blockage from an obstacle in the signal path as, 

shown in Figure 3-5 (a). These fluctuations affect the local-mean power of the signal, 

resulting in random variations of path loss at a given distance, as shown in Figure 3-5 

(b). Since the location, size, and dielectric properties of the obstacle are usually 

unknown, a statistical model is used to describe these fluctuations. Empirical 

measurements indicate that the fluctuations in the local-mean power of the area-mean 

follow log-normal distribution, which means that they follow normal distribution 

when expressed in a logarithmic scale, decibel units [32].  
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Figure 3-5: a) Illustration of log-normal shadowing, b) Path loss, shadowing and 

multipath fading vs. distance 

               3.2.1   Channel Model in Log-normal Shadowing 

For the SU log-normal shadowing affects the average SNR of the signal 

received. Hence, the SNR, 𝛾, is modeled as a log-normal random variable with a 

probability density function (PDF) expressed as [33]:   

𝑓𝛾(𝛾) =
𝜉

𝛾𝜎𝑑𝐵√2𝜋
𝑒𝑥𝑝

−(𝜉𝑙𝑜𝑔𝑒𝛾 − 𝜇𝑑𝐵)2

2𝜎2
𝑑𝐵

      , 𝛾 ≥ 0 (3.11) 

where 𝛾~ 𝐿𝑁(𝜇𝑑𝐵, 𝜎2
𝑑𝐵), 𝜉 =

10

𝑙𝑜𝑔𝑒(10)
 , 𝜇𝑑𝐵 and 𝜎2

𝑑𝐵 are the mean and the variance, 

both in dB, of 𝜉𝑙𝑜𝑔𝑒𝛾 respectively. 

A log-normal distribution is usually characterized in terms of the dB-

spread, 𝜎𝑑𝐵. The value of 𝜎𝑑𝐵 depends on the type of the obstacle blocking the signal 

travelling from the PU to the SU. For outdoor channels the value of 𝜎𝑑𝐵 ranges from 

5 to 12dB in macrocells and 4 to 13dB in microcells [34]. 

Log-normal shadowing affects sensing performance in cognitive radio 

networks. Due to shadowing, white spaces may result not only from the absence of 

the PU, but also due to a blockage of the signal transmitted by an obstacle in the 

signal path between the PU and the SU. Hence the SU has to be careful while sensing 

the spectrum to avoid confusion between a white space and heavy shadowing to 
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avoid interfering with the PU, while maintaining acceptable spectrum utilization 

levels. 

               3.2.2  Spectrum Sensing in Log-normal Shadowing 

In the case of log-normal shadowing, spectrum sensing problem can be formulated as 

follows: 

 𝑟(𝑡) = 𝑛(𝑡)                            𝐻0  

𝑟(𝑡) = ℎ(𝑡) 𝑠(𝑡) + 𝑛(𝑡)      𝐻1 
 (3.12) 

where ℎ(𝑡) is the linear channel gain between the PU and the SU. 

In the presence of shadowing, the probability of false alarm, 𝑃𝑓, is not affected, 

because it is defined under the 𝐻0 hypothesis, where no PU signal is transmitted. On 

the other hand, the probability of detection under a log-normal shadowing, 𝑃𝑑,𝑙𝑜𝑔, is 

calculated by averaging 𝑃𝑑 in (3.10) over the 𝑝𝑑𝑓 in (3.11), i.e. 

𝑃𝑑,𝑙𝑜𝑔 = ∫ 𝑃𝑑 (𝛾, 𝜆)𝑓𝛾

∞

0

(𝛾) 𝑑𝛾 = ∫ 𝑄𝑁𝑠
(√2𝛾,√𝜆)𝑓𝛾

∞

0

(𝛾) 𝑑𝛾 (3.13) 

or 

𝑃𝑑,𝑙𝑜𝑔 =
𝜉

𝜎𝑑𝐵√2𝜋
∫ 𝑄𝑁𝑠

(√2𝛾, √𝜆) (
1

𝛾
) 𝑒𝑥𝑝

−(𝜉𝑙𝑜𝑔𝑒𝛾 − 𝜇𝑑𝐵)2

2𝜎𝑑𝐵
2  

∞

0

𝑑𝛾 (3.14) 

The Generalized Marcum-Q function is defined as: 

𝑄𝑁𝑠
(𝑎, 𝑏) = ∫

𝑦𝑁𝑠

𝑎𝑁𝑠−1
𝑒

(−
𝑦2+𝑎2

2
)

∞

𝑏

𝐼𝑁𝑠−1(𝑎𝑦) 𝑑𝑦 (3.15) 

where 𝐼𝑁𝑠−1(𝑎𝑦)  is the modified Bessel function of order (𝑁𝑠-1), and y is a dummy 

variable. Assuming 𝑥 =
𝜉𝑙𝑜𝑔𝑒𝛾−𝜇

√2𝜎
, then: 

𝑑𝑥 =  
𝜉

𝛾√2𝜎
𝑑𝛾 (3.16) 

and 𝑃𝑑,𝑙𝑜𝑔 can be written as:  

𝑃𝑑,𝑙𝑜𝑔 =
1

√𝜋
∫ 𝑄𝑁𝑠

(√2 𝑒𝑥𝑝 (
𝑥𝜎√2 + 𝜇

𝜉
) , √𝜆)

∞

−∞

 𝑒−𝑥2
 𝑑𝑥 (3.17) 
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Based on the Gauss-Hermite integration method in [35], the probability of detection 

in (3.16) can be written as: 

𝑃𝑑,𝑙𝑜𝑔 = ∑
𝑤𝑖

√𝜋

𝑀

𝑖=1

 𝑄𝑁𝑠
(√2 𝑒𝑥𝑝 (

𝑎𝑖𝜎√2 + 𝜇

𝜉
) , √𝜆) (3.18) 

where M is the Hermite integration order, 𝑤𝑖, and , 𝛼𝑖, are the weights and abscissas 

respectively [36]. 

The probability of misdetection in log-normal shadowing, 𝑃𝑚,𝑙𝑜𝑔 , is defined as: 

𝑃𝑚,𝑙𝑜𝑔 = 1 − 𝑃𝑑,𝑙𝑜𝑔 (3.19) 

or 

𝑃𝑚,𝑙𝑜𝑔 = 1 − ∑
𝑤𝑖

√𝜋

𝑀

𝑖=1

 𝑄𝑁𝑠
(√2 𝑒𝑥𝑝 (

𝑎𝑖𝜎√2 + 𝜇

𝜉
) , √𝜆) (3.20) 

 

The newly derived expression of the probability of misdetection in (3.20) is a 

closed-form expression that can be evaluated easily. The precision of this expression 

is investigated by calculating the probability of misdetection using three methods: the 

Gauss-Hermite approximation in (3.20), Monte Carlo simulation for (3.13) and 

numerical integration for (3.17). 

Figure 3-6 and Figure 3-7 depict the CROC curves in a log-normal 

shadowing channel using the three methods for average SNR = 10dB, 𝜎𝑑𝐵 = 2dB, 

and 𝑁𝑠 = 10 samples, the AWGN curve is provided as a reference. It is obvious from 

the figures that spectrum sensing performance degraded due to shadowing, resulting 

in a higher probability of misdetecting the PU. Also, comparing the three curves of 

𝑃𝑚,𝑙𝑜𝑔 proves that the Gauss-Hermite approximation provides an accurate formula 

for calculating the probability of misdetection in a log-normal shadowing channel. 
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Figure 3-6: CROC in log-normal channel for 10 simulation runs where 𝑁𝑠 = 10, 

average SNR= 10𝑑𝐵, and 𝜎𝑑𝐵 = 2dB.  

 

Figure 3-7: CROC in log-normal channel for 1000 simulation runs where 𝑁𝑠=10, 

average SNR= 10dB, and 𝜎𝑑𝐵 = 2dB. 
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               3.2.3  Simulation Results in Log-normal Shadowing 

The effect of log-normal shadowing on sensing performance is investigated 

in this section. There are many factors that can be a major influence on sensing 

performance such as the dB-spread, 𝜎𝑑𝐵, the PU average SNR and the number of 

samples, 𝑁𝑠. 

A. Effect of dB-spread (𝝈𝒅𝑩) 

The severity of shadowing is represented by the value of the dB-spread, 𝜎𝑑𝐵, 

where higher values of 𝜎𝑑𝐵  result in more intensive shadowing. As shown in  

Figure 3-8, the probability of misdetection increases as the value of 𝜎𝑑𝐵 grows from 

2dB to 12dB. This is a result of the attenuation experienced by the received signal, 

making it more difficult to detect. This in its turn affects sensing performance and 

make the PU more susceptible to interference from the SU. 

 

 Figure 3-8: CROC in log-normal channel for different values of dB-spread at 

average SNR=10dB, 𝑁𝑠 = 10. 
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In energy detection based spectrum sensing the average SNR of the PU signal 
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shadowing, the average power of the signal received by the SU will be attenuated, 

hence the probability of misdetection will increase. This degradation in performance 

grows as the average SNR of the PU signal decreases, as shown in Figure 3-9, where 

the probability of misdetection increased as the average SNR decreased from 15dB 

to 5dB.  

 

Figure 3-9: CROC in log-normal channel for different values of average SNR 

at 𝜎𝑑𝐵 = 2dB, 𝑁𝑠 = 10. 

C. Effect of the Number of Samples (𝑵𝒔)  

As discussed previously in the AWGN channel, acquiring fewer samples 

from the signal received by the SU results in a higher probability of detection for a 

given probability of false alarm, as shown in Figure 3-10. 
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Figure 3-10: CROC in log-normal channel for different values of  𝑁𝑠 at average 

SNR=10dB, 𝜎𝑑𝐵 = 2dB. 

In conclusion, a narrowband spectrum sensing model using energy detection 

in a non-collaborative mode was investigated both in an AWGN channel and a log-

normal shadowing channel. It was found that the energy detector performs better at 

higher average SNR values with a smaller number of samples (𝑁𝑠) and vice versa. A 

new closed-form expression for the probability of detection in a log-normal 

shadowing channel was derived based on the Gauss-Hermite integration. This 

expression proved its accuracy in calculating the probability of detection under 

shadowing. Moreover, the degradation in sensing performance due to the presence of 

shadowing was obvious, as the average power of the signal received is attenuated 

due to signal blockage by an obstacle. The higher the value of 𝜎𝑑𝐵, the worse the 

detection of the PU, as shadowing is more severe at higher 𝜎𝑑𝐵 values. 
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CHAPTER 4: NARROWBAND COLLABORATIVE 

SPECTRUM SENSING 

       4.1   Introduction  

Collaborative spectrum sensing is addressed in this chapter, where the 

secondary users (SUs) share their sensing information with each other to make 

decisions about the status of the frequency band. Collaborative sensing provides a 

diversity that is important to alleviate the degradation in sensing performance due to 

the presence of log-normal shadowing. 

Collaboration in spectrum sensing can be implemented using one of the two 

main architectures: centralized or distributed. In this chapter centralized collaborative 

sensing is assumed, where a central data fusion center (FC) receives sensing 

information from the SUs, and makes decision about the presence of the primary user 

(PU) in a certain frequency band. Two main fusion rules can be used by the FC to 

combine local sensing information: hard fusion (also called decision fusion), and soft 

fusion (also called data fusion). 

The following scenario is considered: there are 𝑘 independent and identically 

distributed (i.i.d) SUs within the reception area of the PU. Without loss of generality, 

all SUs are assumed to experience identical shadowing, i.e. signal statistics are 

assumed to be the same for all SUs, and all control channels used for reporting 

sensing information and final decisions between the SUs and the FC are assumed to 

be ideal noiseless channels as shown in Figure 4-1. 

 

Figure 4-1: Collaborative sensing scenario in a log-normal shadowing channel. 
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       4.2  Hard (Decision) Fusion 

In hard fusion all SUs sense the same frequency band, and each SU makes its 

own decision regarding the presence of the PU. All SUs then transmit their binary 

local decisions (1 or 0) over a common control channel to the FC, and the FC in its 

turn combines these local decisions and diffuses the final decision back to every SU. 

The main advantages of using hard decision combining are reducing the 

computational complexity at the FC and using low communication overheads, since 

each SU transmits one-bit hard decision. There are three main decision fusion rules 

that can be used to combine the local decisions at the FC: AND, OR and Majority 

combining. 

               4.2.1   Collaborative Probability of Detection 

If we assume that the FC needs 𝑚 out of 𝑘 SUs to decide, then the 

independent local decisions of the SUs follow binomial distribution based on 

Bernoulli trials. The collaborative probability of detection, 𝐶𝑑, and the collaborative 

probability of false alarm, 𝐶𝑓, calculated at the FC can be expressed as follows [37]: 

𝐶𝑑 = ∑ (
𝑘

𝑙
)𝑃𝑑

𝑙(1 − 𝑃𝑑)
𝑘−𝑙

𝑘

𝑙=𝑚

 (4.1) 

and  

𝐶𝑓 = ∑ (
𝑘

𝑙
)𝑃𝑓

𝑙(1 − 𝑃𝑓)
𝑘−𝑙

𝑘

𝑙=𝑚

 

 

(4.2) 

 

where 𝑃𝑓 and 𝑃𝑑 are defined in (3.9) and (3.10) respectively for an AWGN channel, 

and 𝑃𝑑 is defined in (3.18) for a log-normal shadowing channel. 

The collaborative probability of misdetection, 𝐶𝑚, can be written as: 

𝐶𝑚 = 1 − 𝐶𝑑 (4.3) 

Based on the fusion rule used by the FC to make the final decision, the number of 

SUs, 𝑚, is determined. The collaborative probability of detection can be calculated 

as follows: 

AND-combining: 𝑘 out of 𝑘 SUs are needed to decide the collaborative probability 

of detection, 𝐶𝑑, in (4.1): 
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𝐶𝑑,𝐴𝑁𝐷 = ∑(
𝑘

𝑙
)𝑃𝑑

𝑙(1 − 𝑃𝑑)
𝑘−𝑙

𝑘

𝑙=𝑘

 (4.4) 

For 𝑘 i.i.d SUs, 𝐶𝑑,𝐴𝑁𝐷  can be written as: 

𝐶𝑑,𝐴𝑁𝐷 = (𝑃𝑑)
𝑘 (4.5) 

OR-combining: Here 1 out of 𝑘 SUs is needed to make the collaborative decision, 

i.e. 

𝐶𝑑,𝑂𝑅 = ∑(
𝑘

𝑙
)𝑃𝑑

𝑙(1 − 𝑃𝑑)
𝑘−𝑙

𝑘

𝑙=1

 =  1 − (
𝑘

𝑙
) 𝑃𝑑

𝑙(1 − 𝑃𝑑)
𝑘−𝑙|

𝑙=0
 (4.6) 

In the case of i.i.d users, 𝐶𝑑,𝑂𝑅 can be expressed as: 

𝐶𝑑,𝑂𝑅 = 1 − (1 − 𝑃𝑑)
𝑘 (4.7) 

Majority-combining: (⌊
𝑘

2
⌋ + 1)out of 𝑘 SUs are required to make the decision: 

𝐶𝑑,𝑀𝐴𝐽 = ∑ (
𝑘

𝑙
)𝑃𝑑

𝑙(1 − 𝑃𝑑)
𝑘−𝑙

𝑘

𝑙=⌊
𝑘
2
⌋+1

 (4.8) 

               4.2.2  Simulation Results Using Hard Fusion  

Figure 4-2 shows sensing performance in a collaborative mode using 

different decision fusion rules. These results represent the performance in a log-

normal channel for 𝑘 = 3 i.i.d SUs, average SNR = 10dB ,  𝜎𝑑𝐵 = 2dB, and 𝑁𝑠 =

10 samples. It is obvious that using the OR-combining results in the lowest 

probability of misdetection (𝐶𝑚) for a fixed probability of false alarm (𝐶𝑓), while 

using the AND-combining results in the highest probability of misdetection. This 

means that higher protection for the PU from SU interference is guaranteed using 

OR-combining, since it is sufficient that one of the collaborative SUs declares the 

presence of the PU in the frequency band. However, from the SU perspective, using 

the AND-combining increases spectrum utilization and creates more opportunities, 

because it requires that all collaborative SUs agree on the presence of the PU to 

decide if a certain frequency band is busy and can’t be accessed by the SUs. 
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Figure 4-2: CROC in log-normal channel using different hard fusion rules at average 

SNR=10dB, 𝜎𝑑𝐵 = 2dB,𝑁𝑠 = 10, 𝑘 = 3. 

       4.3  Soft (Data) Fusion 

In soft (data) fusion, SUs send their measured energy, or a function of it, to 

the FC to make the final decision about the presence of the PU. Different soft fusion 

schemes can be used [38] such as: square-law selection (SLS), square-law combining 

(SLC), maximal ratio combining (MRC) and selection combining (SC). The block 

diagram of these soft fusion schemes is depicted in Figure 4-3. In this section the 

SLS and SLC schemes are addressed in detail. 

               4.3.1  Square-Law Selection (SLS)  

In the square-law selection scheme the energies measured by every SU are 

sent to the FC and the SU with the highest measured energy is selected. Assuming 

that 𝑘 identically distributed SUs are performing sensing, then the test statistics of 

the energy measured by the FC can be expressed as: 

𝑉𝑆𝐿𝑆 = 𝑚𝑎𝑥(𝑉1, 𝑉2, . . . , 𝑉𝑘 ) (4.9) 
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Figure 4-3: Block diagrams of different soft fusion rules: a) SLS, b) SLC, c) MRC, 

d) SC.  

A. SLS in AWGN Channel 

In a non-fading AWGN channel, the probability of false alarm, 𝑃𝑓,𝑆𝐿𝑆, and the 

probability of detection, 𝑃𝑑,𝑆𝐿𝑆,  using the SLS scheme are given respectively as [39]: 

𝑃𝑓,𝑆𝐿𝑆 = 1 − (1 − 𝑃𝑓)
𝑘
 (4.10) 

𝑃𝑓,𝑆𝐿𝑆 = 1 − (1 −
𝛤(𝑁𝑠,

𝜆
2)

𝛤(𝑁𝑠)
)

𝑘

 (4.11) 

𝑃𝑑,𝑆𝐿𝑆 = 1 − ∏(1 − 𝑄𝑁𝑠
(√2𝛾𝑖, √𝜆))  

𝑘

𝑖=1

 (4.12) 

Assuming 𝑘 i.i.d SUs, 𝑃𝑑,𝑆𝐿𝑆 can be written as: 

𝑃𝑑,𝑆𝐿𝑆 = 1 − (1 − 𝑃𝑑(𝛾, 𝜆))
𝑘
 (4.13) 

𝑃𝑑,𝑆𝐿𝑆 = 1 − (1 − 𝑄𝑁𝑠
(√2𝛾,√𝜆))

𝑘

 (4.14) 
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where = {𝛾𝑖}𝑖=1
𝑘  , and represents the SNR received at the SU. 

B. SLS in a Log-normal Shadowing Channel 

In a log-normal shadowing channel, the probability of false alarm is not affected by 

shadowing, while the probability of detection is calculated using the following 

formula: 

𝑃𝑑,𝑆𝐿𝑆
𝑙𝑜𝑔

= ∫ 𝑃𝑑,𝑆𝐿𝑆(𝛾1, 𝛾2, … , 𝛾𝑘, 𝜆)

∞

0

𝑓𝛾1𝛾2…𝛾𝑘
(𝛾1, 𝛾2, … , 𝛾𝑘) 𝑑𝛾1𝑑𝛾2 …𝑑𝛾𝑘 (4.15) 

For 𝑘 independent SUs, 𝑃𝑑,𝑆𝐿𝑆
𝑙𝑜𝑔

 can be written as:   

𝑃𝑑,𝑆𝐿𝑆
𝑙𝑜𝑔

= 1 − ∫ …

∞

0

∫ ∏[1 − 𝑄𝑁𝑠
(√2𝛾𝑖, √𝜆)]𝑓𝛾𝑖

(𝛾𝑖) 𝑑𝛾𝑖  

𝑘

𝑖=1

∞

0

  

= 1 − ∏∫[1 − 𝑄𝑁𝑠
(√2𝛾𝑖, √𝜆)]𝑓𝛾𝑖

(𝛾𝑖) 𝑑𝛾𝑖

∞

0

  

𝑘

𝑖=1

 (4.16) 

where 𝑓𝛾𝑖
(𝛾𝑖) is given by: 

𝑓𝛾𝑖
(𝛾𝑖) =

𝜉

𝛾𝑖𝜎𝑖,𝑑𝐵√2𝜋
𝑒𝑥𝑝

−(𝜉𝑙𝑜𝑔𝑒𝛾𝑖 − 𝜇𝑖,𝑑𝐵)
2

2𝜎2
𝑖,𝑑𝐵

      , 𝛾𝑖 ≥ 0 (4.17) 

  

Substituting (4.12) and (4.17) in (4.16) yields the following expression for the 

probability of detection in log-normal channel using the SLS scheme, 𝑃𝑑,𝑆𝐿𝑆
𝑙𝑜𝑔

:  

𝑃𝑑,𝑆𝐿𝑆
𝑙𝑜𝑔

= 1 − ∏(1 − 𝑃𝑑,𝑙𝑜𝑔(𝛾𝑖, 𝜆))

𝑘

𝑖=1

  

= 1 − ∏(1 − ∑
𝑤𝑗

√𝜋

𝑀

𝑗=1

 𝑄𝑁𝑠
(√2 𝑒𝑥𝑝 (

𝑎𝑗𝜇𝑖,𝑑𝐵√2 + 𝜇𝑖,𝑑𝐵

𝜉
) , √𝜆))

𝑘

𝑖=1

 (4.18) 

For the case of 𝑘 i.i.d SUs, 𝑃𝑑,𝑆𝐿𝑆
𝑙𝑜𝑔

 can be written as:  

𝑃𝑑,𝑆𝐿𝑆
𝑙𝑜𝑔

= 1 − (1 − 𝑃𝑑,𝑙𝑜𝑔)
𝑘
 (4.19) 

𝑃𝑑,𝑆𝐿𝑆
𝑙𝑜𝑔

= 1 − (1 − ∑
𝑤𝑗

√𝜋

𝑀

𝑗=1

 𝑄𝑁𝑠
(√2 𝑒𝑥𝑝 (

𝑎𝑗𝜎𝑑𝐵√2 + 𝜇𝑑𝐵

𝜉
) , √𝜆))

𝑘

 (4.20) 
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               4.3.2  Simulation Results Using SLS Scheme  

Collaborative sensing performance using the SLS scheme is depicted in 

Figure 4-4. The CROC curves are evaluated in a log-normal shadowing channel at 

average SNR= 10dB, 𝜎𝑑𝐵 = 2dB and 𝑁𝑠 = 10 samples. The improvement in 

sensing performance due to collaboration is obvious from the simulation results, 

where the probability of misdetection, 𝑃𝑚,𝑆𝐿𝑆
𝑙𝑜𝑔

, decreases as the number of 

collaborative SUs increases from 𝑘 = 1 SU to 𝑘 = 7 SUs.   

In Figure 4-5, the probability of misdetection in a log-normal channel using 

the SLS scheme, 𝑃𝑚,𝑆𝐿𝑆
𝑙𝑜𝑔

, is presented with respect to the average SNR at 𝑃𝑓 = 0.01,

𝜎𝑑𝐵 = 2dB and 𝑁𝑠 = 10 samples. The probability of misdetection decreases with the 

increase in the average SNR. Moreover, as the number of collaborative SUs, 𝑘, 

increases the probability of misdetection decreases for a given average SNR. 

 

Figure 4-4: CROC in log-normal channel using SLS scheme for different values of 𝑘 

at average SNR=10dB, 𝜎𝑑𝐵 = 2dB,𝑁𝑠 = 10. 
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Figure 4-5: 𝑃𝑚,𝑆𝐿𝑆
𝑙𝑜𝑔

 vs. the average SNR in log-normal channel using SLS scheme 

at 𝑃𝑓 = 0.01, 𝜎𝑑𝐵 = 2dB, 𝑁𝑠 = 10. 

               4.3.3  Square-Law Combining (SLC)  

In the SLC scheme, the test statistics (measured energies) of the 𝑘 SUs are 

combined at the FC as follows [39]: 

𝑉𝑆𝐿𝐶 = ∑𝑉𝑖

𝑘

𝑖=1

 (4.21) 

A. SLC in AWGN Channel 

In an AWGN channel, the new test statistic 𝑉𝑆𝐿𝐶 under the 𝐻0 hypothesis is a 

sum of 𝑘 central chi-square variables each with 2𝑁𝑠 degrees of freedom. Under 

the 𝐻1 hypothesis, it is a sum of 𝑘 non-central chi-square variables each with 2𝑁𝑠 

degrees of freedom and a non-centrality parameter of 2𝛾𝑖. Therefore, 𝑉𝑆𝐿𝐶 can be 

modeled as a central chi-square variable with 2𝑘𝑁𝑠 degrees of freedom under 𝐻0, 

and a non-central chi-square variable with 2𝑘𝑁𝑠 degrees of freedom and a non-

centrality parameter of 2𝛾𝑡 under 𝐻1.i.e. 
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𝑉𝑆𝐿𝐶 = {
𝜒2𝑘𝑁

2                  𝐻0

𝜒2𝑘𝑁
2 (2𝛾𝑡)       𝐻1

 (4.22) 

where 𝛾𝑡 = ∑ 𝛾𝑖
𝑘
𝑖=1 , and 𝛾𝑖is the SNR received at the i-th SU.  

The probability of false alarm, 𝑃𝑓,𝑆𝐿𝐶 , and the probability of detection, 𝑃𝑑,𝑆𝐿𝐶 , 

using the SLC scheme in an AWGN channel can be expressed by an analogy to 

equations (3.9) and (3.10) respectively as: 

𝑃𝑓,𝑆𝐿𝐶 =
𝛤 (𝑘𝑁𝑠,

𝜆
2)

𝛤(𝑘𝑁𝑠)
 (4.23) 

𝑃𝑑,𝑆𝐿𝐶 = 𝑄𝑘𝑁𝑠
(√2𝛾𝑡, √𝜆) (4.24) 

For 𝑘 i.i.d SUs, 𝑃𝑑,𝑆𝐿𝐶 can be written as: 

 𝑃𝑑,𝑆𝐿𝐶 = 𝑄𝑘𝑁𝑠
(√2𝑘𝛾, √𝜆) (4.25) 

B. SLC in Log-normal Shadowing Channel 

If the SUs experience a log-normal shadowing, then the probability of 

detection is calculated by averaging 𝑃𝑑,𝑆𝐿𝐶 in (4.24) over the PDF 

of 𝛾𝑡  (𝑓𝛾𝑡
(𝛾𝑡)).i.e. 

𝑃𝑑,𝑆𝐿𝐶
𝑙𝑜𝑔

= ∫ 𝑃𝑑,𝑆𝐿𝐶(𝛾𝑡, 𝜆)

∞

0

𝑓𝛾𝑡
(𝛾𝑡) 𝑑𝛾𝑡 (4.26) 

C. Sum of Log-normal Random Variables 

The problem that arises here is that there is no exact closed-form expression 

for the PDF of the sum of the log-normal random variables, 𝑓𝛾𝑡
(𝛾𝑡). According to 

[35, 40, 41] many analytical approximations have been proposed based on the 

assumption that the sum of log-normal RVs is a log-normal RV with new mean and 

variance. Which means that 𝛾𝑡 can be modeled as a log-normal RV with mean 𝜇𝑡,𝑑𝐵, 

and variance 𝜎2
𝑡,𝑑𝐵. In [41] Schwartz-Yeh presented a method for evaluating the 

mean and variance of 𝛾𝑡 using exact expressions for the sum of two independent 

summands. An iterative procedure for the sum of more than two summands, by 

matching the moments of 𝛾𝑡  in the logarithmic domain with the moments of the 

individual summands. This method is accurate in calculating the first two moments 
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within the practical range of the dB-spread i.e. (2𝑑𝐵 ≤ 𝜎𝑑𝐵 ≤ 14𝑑𝐵) and up to 30 

summands. However, it is less accurate outside this range. 

Another method for calculating  𝜇𝑡,𝑑𝐵 and 𝜎2
𝑡,𝑑𝐵 is proposed in [35] using the 

moment generating function (MGF). The MGF of 𝛾𝑡 is defined as: 

Ψ𝛾𝑡
(𝑠) = ∫ 𝑒−𝑠𝛾𝑡

∞

0

𝑓𝛾𝑡
(𝛾𝑡) 𝑑𝛾𝑡 (4.27) 

where 𝑓𝛾𝑡
(𝛾𝑡) is the PDF of 𝛾𝑡: 

                  𝑓𝛾𝑡
(𝛾𝑡) =

𝜉

𝛾𝑡𝜎𝑡,𝑑𝐵√2𝜋
𝑒𝑥𝑝

−(𝜉𝑙𝑜𝑔𝑒𝛾𝑡 − 𝜇𝑡,𝑑𝐵)
2

2𝜎2
𝑡,𝑑𝐵

      , 𝛾𝑡 ≥ 0 (4.28) 

Using the Gauss-Hermite integration, the MGF of the log-normal RV 𝛾𝑡 can be 

written in a series expansion form as: 

Ψ𝛾𝑡
(𝑠) = ∑

𝑤𝑖

√𝜋

𝑀

𝑖=1

𝑒𝑥𝑝 [−𝑠 𝑒𝑥𝑝 (
√2𝜎𝑡,𝑑𝐵𝛼𝑖 + 𝜇𝑡,𝑑𝐵

𝜉
)] (4.29) 

where M is the Hermite integration order. The weights , 𝑤𝑖, and the abscissas, 𝛼𝑖, are 

tabulated in [36]. 

Taking advantage of the fact that the MGF of a sum of independent RVs is the 

product of their individual MGFs [33].i.e. 

Ψ𝛾𝑡
(𝑠) = ∏Ψ𝛾𝑖

(𝑠)          

𝑘

𝑖=1

 (4.30) 

The moments 𝜇𝑡,𝑑𝐵 and 𝜎𝑡,𝑑𝐵 can be obtained by solving (4.29) numerically 

by using standard functions such as fsolve in MATLAB for any pair of positive real 

values of (𝑠). The accuracy of this method increases by increasing the Hermite 

integration order, 𝑀, but this will be at the cost of increasing computational 

complexity. It is found that 𝑀 = 12 is sufficient to accurately determine the values 

of 𝜇𝑡,𝑑𝐵 and 𝜎𝑡,𝑑𝐵. 

Following the same procedure used to derive 𝑃𝑑,𝑙𝑜𝑔 in (3.18), and using the 

Schwartz-Yeh method to calculate the moments of 𝛾𝑡, the collaborative probability 
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of detection in a log-normal shadowing using the SLC scheme in (4.26) can be 

written as: 

𝑃𝑑,𝑆𝐿𝐶
𝑙𝑜𝑔

= ∑
𝑤𝑖

√𝜋

𝑀

𝑖=1

 𝑄𝑘𝑁𝑠
(√2 𝑒𝑥𝑝 (

𝑎𝑖𝜎𝑡,𝑑𝐵√2 + 𝜇𝑡,𝑑𝐵

𝜉
) , √𝜆) (4.28) 

The performance of this formula in (4.28) is investigated using simulation in the 

following section. 

               4.3.4  Simulation Results Using SLC Scheme 

The effect of collaboration using the SLC scheme in spectrum sensing 

performance is evaluated in Figure 4-6 for average SNR= 10dB, 𝜎𝑑𝐵 = 2dB 

and  𝑁𝑠 = 10 samples. The enhancement in performance, due to collaboration 

between SUs, is obvious, where increasing the number of collaborative SUs, 𝑘, 

results in a significant reduction in the probability of misdetection, 𝑃𝑚,𝑆𝐿𝐶
𝑙𝑜𝑔

.  

These results are further proven in Figure 4-7, where the probability of 

misdetection, 𝑃𝑚,𝑆𝐿𝐶
𝑙𝑜𝑔

, is plotted versus the average SNR for 𝑃𝑓 = 0.01, 𝜎𝑑𝐵 = 2dB, 

and  𝑁𝑠 = 10 samples. Higher values of 𝛾 guarantee better detection of the PU, 

moreover, increasing the degree of collaboration by increasing the number of 

collaborative SUs, 𝑘, results in increasing the probability of detection, 𝑃𝑑,𝑆𝐿𝐶
𝑙𝑜𝑔

 for a 

certain value of average SNR.   
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Figure 4-6: CROC in log-normal channel using SLC scheme for different values of 𝑘 

at average SNR=10dB, 𝜎𝑑𝐵 = 2dB,𝑁𝑠 = 10. 

 

Figure 4-7: 𝑃𝑚,𝑆𝐿𝐶
𝑙𝑜𝑔

 vs. the average SNR in log-normal channel using SLC scheme 

at 𝑃𝑓 = 0.01, 𝜎𝑑𝐵 = 2dB, 𝑁𝑠 = 10. 
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               4.3.5  Comparison 

In this section a comparision between the two soft fusion schemes discussed 

earlier is drawn. In Figure 4-8, CROC for both the SLS and the SLC schemes is 

evaluated in a log-normal channel for avearge SNR= 10dB , 𝜎𝑑𝐵 = 2dB and 𝑁𝑠 =

10 samples. It is obvious that the SLC scheme outperforms the SLS scheme by 

providing lower probability of misdetection for the same number of collaborative 

SUs, 𝑘. This is because the FC in the SLC scheme accumulates the energies of every 

SU to make a final decision, in contrast to the SLS scheme where the energy of only 

one branch is used to make the decision. 

Also, the SLS scheme requires estimating  the energies of each collaborative 

SU to choose the branch with the maximum energy. While in the SLC scheme no 

estimation is required as the energies are added together at the FC. This in its turn 

gives the SLC scheme an advantage over the SLS scheme in terms comutational 

complexity.  

In Figure 4-9, the probability of midetection is plotted versus the dB-spread 

for both the SLS and the SLC schemes at average SNR= 10dB, 𝑃𝑓 = 0.01, 𝑘 =

3 SUs, 𝑁𝑠 = 10 samples. Again it is obvious from the simulation results that the SLC 

scheme outperforms the SLS scheme with less probability of misdetection at a 

certain 𝜎𝑑𝐵 value for the same number of collaborative SUs. Also, the degredation in 

perfromance due to a log-normal shadowing is clear, since the probability of 

misdetection increases as 𝜎𝑑𝐵 grows from 2dB to 12dB. However, increasing the 

number of collaborative SUs, 𝑘, mitigates the effect of shadowing as discussed 

earlier. 

A comparison between hard fusion and soft fusion (using the SLC scheme) is 

depicted in Figure 4-10 at average SNR= 10dB, 𝜎𝑠𝐵 = 2dB, 𝑘 = 3 SUs,  𝑁𝑠 =

10 samples. It is obvious that the SLC scheme outperforms hard fusion rules for the 

same number of collaborative SUs, by providing the lowest probability of 

misdetection for a certain probability of false alarm. However, using the SLC 

consumes more bandwidth, since each SU needs to send the energy measured. While 

in hard fusion a one-bit binary decision is sent to the FC, resulting in less bandwidth 

required and lower computational complexity at the FC. 
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Figure 4-8: CROC in log-normal channel for both SLC and SLS schemes at average 

SNR=10dB , 𝜎𝑑𝐵 = 2dB,𝑁𝑠 = 10. 

 

Figure 4-9: 𝑃𝑚 vs. 𝜎𝑑𝐵 for both SLC and SLS schemes at average SNR=10dB, 𝑃𝑓 =

0.01, 𝑁𝑠 = 10, 𝑘 = 3. 
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Figure 4-10: Comparison between hard fusion and soft fusion (using SLC) at average 

SNR=10dB, 𝜎𝑑𝐵 = 2 dB, 𝑘 = 3,𝑁𝑠 = 10. 

In conclusion, the performance of spectrum sensing is enhanced due to 

collaborative sensing. Different fusion rules can be used by the fusion center to 

combine the local sensing information such as, soft fusion and hard fusion 

techniques. In soft fusion, the SLC scheme outperforms the SLS scheme and requires 

fewer computations at the fusion center. In hard fusion, OR-combining guarantees 

better protection for the PU from SU interference, while AND-combining results in 

higher spectrum utilization and more spectrum opportunities. In general, soft fusion 

provides better sensing performance than hard fusion, but it requires more bandwidth 

overhead and higher computational complexity at the FC. A trade-off between the 

available resources and the desired detection level should be evaluated when 

choosing a fusion rule. 
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CHAPTER 5: WIDEBAND SPECTRUM EDGE 

DETECTION 

       5.1  Introduction  

Due to the development in wireless communication, average spectrum 

occupancy has increased, resulting in high spectrum scarcity. Under these 

circumstances, the secondary users (SUs) need to scan larger dynamic ranges of the 

frequency spectrum, up to several GHz, to explore spectrum opportunities. This leads 

to wideband sensing, where multiple frequency bands are sensed at the same time. In 

this case traditional spectrum sensing techniques such as energy detection, matched 

filter sensing and cyclostationary-based sensing are impractical, since they are 

designed for multi-band (narrowband) sensing. In narrowband sensing a tunable 

bandpass filter (TBPF) is used for sensing one frequency band at a time using one of 

those traditional techniques. However, this is not the case in wideband sensing, since 

the SU has to scan multiple frequency bands at the same time. Moreover, the SU 

usually has no information about the PU activity, such as the center frequency and 

the bandwidth. In this chapter wideband sensing will be addressed, and in particular 

wideband sensing using wavelet-based edge detection will be investigated.  

       5.2  Wideband Sensing Methods 

Wideband spectrum sensing is still in its early stages of research. There are 

six main wideband sensing methods discussed in the literature. They are: filter bank 

detection [7, 8]; multi-resolution sampling based detection [10, 15]; multicoset 

sampling based detection [11]; compressed sensing based detection [13, 15]; 

multirate sampling based detection [9, 42] and wavelet-based detection [14]. A brief 

overview of these methods is presented in the following sections. 

               5.2.1  Filter Bank Detection  

Boroujeny in [7] proposed a wideband sensing method based on a filter bank. 

The main idea is to implement a pair of matched root-Nyquist filters at the PU 

transmitter and the SU receiver, respectively, in a multicarrier cognitive radio 

network. The filter bank is implemented based on a prototype filter that is used to 

estimate the baseband (zeroth band). Other frequency bands are obtained by 
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modulating the prototype filter, as shown in Figure 5-1. Sensing is performed in each 

subcarrier through converting the corresponding spectrum portion into the baseband, 

and filtering using lowpass filters as shown in Figure 5-2. The power spectral density 

(PSD) of the filtered output signal in the i-th subcarrier, 𝑆𝑦𝑖,𝑦𝑖
(𝑓), can be written as: 

𝑆𝑦𝑖𝑦𝑖
(𝑓) = 𝑆𝑟𝑟(𝑓 + 𝑓𝑖)|𝐻(𝑒2𝜋𝑗𝑓)|

2
≈ 𝑆𝑟𝑟(𝑓𝑖)|𝐻(𝑒2𝜋𝑗𝑓)|

2
 

(5.1) 

 
 

where 𝑆𝑟𝑟(𝑓𝑖) is the PSD of the received signal 𝑟(𝑡) in the i-th subband, and 

𝐻(𝑒2𝜋𝑗𝑓) is assumed to be narrowband and designed as  a root-Nyquist (𝑁𝑓) filter. 

The expression in (5.1) can be written in terms of z-transform as: 

 

ψ𝑦𝑖𝑦𝑖
(𝑧) = 𝑆𝑟𝑟(𝑓𝑖)𝐻(𝑧)𝐻(𝑧−1) = 𝑆𝑟𝑟(𝑓𝑖)𝐺𝑁𝑓

(𝑧) (5.2) 
 

where  𝐺𝑁𝑓
(𝑧) is called the Nyquist (𝑁𝑓) filter, and 𝑁𝑓 is the maximum number of 

subcarriers in the filter bank. In time domain 𝐺𝑁𝑓
(𝑧)  satisfies: 

 

𝑔𝑁𝑓
(𝑛) = {

1 𝑛 = 0           
0        𝑛 = 𝑚𝑁𝑓 , 𝑚 ≠ 0 (5.3) 

 

Assuming that 𝜓𝑦𝑖𝑦𝑖
(𝑢) represents the correlation coefficients of 𝑦𝑖(𝑛) when 

performing inverse z-transform on ψ𝑦𝑖𝑦𝑖
(𝑧), the correlation matrix of the measured 

vectors, 𝐑𝑦𝑖𝑦𝑖
, can be written as: 

 

𝐑𝑦𝑖𝑦𝑖
= 𝑆𝑟𝑟(𝑓𝑖)𝐀 (5.4) 

 

where 𝐀 is the Teoplitz matrix, and each element of 𝐀 is from the sequence 𝑔𝑁𝑓
(𝑛). 

It is found that 𝑆𝑟𝑟(𝑓𝑖) follows a chi-square distribution, so estimating the 

degree of freedom is critical for the hypothesis test of 𝑆𝑟𝑟(𝑓𝑖). By finding the 

eigenvalues of matrix 𝐀, the degree of freedom can found, and the estimated 𝑆𝑟𝑟(𝑓𝑖) 

can be obtained using observation vectors, eigenvalues and degree of freedom. 

The filter bank method performs well at low PSD values, due to a better 

response from the prototype filter. However, this method involves high 

implementation complexity since a large number of RF components are required. 

This method is not flexible because the range and number of the narrowband filters 
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are preset. Moreover, it is built based on the assumption that the pair root-Nyquist 

filters at the PU transmitter and the SU receiver are matched, but this is not practical 

because in cognitive networks it is hard to get information about the PU.   

 

Figure 5-1: Graphical illustration of a filter bank [7]. 

 

Figure 5-2: Demodulation process in the i-th subcarrier [7]. 

               5.2.2   Multi-resolution Sampling Based Sensing 

The main challenge in wideband sensing is the high sampling rate required to 

sense the whole spectrum, which has to be at or above the Nyquist rate. On the other 

hand, to achieve efficient sensing and high spectrum utilization, sensing should be 

performed rapidly. Which means that only a limited number of samples can be 

acquired from the received signal, leading to inaccurate sensing results. 

To overcome this problem, sensing is divided into two stages, the first stage 

is coarse sensing and the second stage is fine sensing. This approach is known as 

multi-resolution spectrum sensing (MRSS) [15], and it is used to alleviate the high 

sampling requirements of wideband sensing. In the coarse sensing stage edges of the 
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non-overlapping frequency bands in the wideband spectrum are detected, then 

classified based on PSD level within each band into black, gray and white. Then, fine 

sensing is performed to estimate the spectral shape within the white spaces, which in 

turn transforms sensing to narrowband mode and reduces sampling requirements. 

Figure 5-3 shows the functional block diagram of a CR access system based 

on MRSS [10]. It consists of: 

a) Wideband antennas:  

i. Omni-directional antenna (for spectrum sensing).  

ii. Directive antenna (for the CR link). 

b) Frequency-agile RF front-end (RFE) block. 

c) Dual-stage wideband spectrum sensing block. 

d) Physical (PHY) layer block. 

e) Medium Access Control (MAC) block. 

The first step in this architecture is coarse sensing, which is performed with a 

wide resolution bandwidth, to classify the frequency bands into vacant and free 

bands. Sensing results are then reported to the MAC block, and fine sensing is 

performed over the free bands. If the band is confirmed as unused, the MAC block 

allocates this band to the CR link. Fine sensing is repeated over on another band. The 

main advantage of the MRSS approach is its ability to be implemented in analogue 

fashion, which provides lower power and real-time sensing processes. 

 

Figure 5-3: Functional block diagram of a CR access system architecture [10]. 
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               5.2.3   Multicoset Sampling Based Detection 

Multicoset sampling is a wideband sensing method based on a sub-Nyquist 

sampling rate [11]. In this method some samples are selected from a uniform grid, 

which can be obtained by uniformly sampling the signal, 𝑟(𝑡), at a sampling rate 𝑓𝑠 

greater than the Nyquist rate. The uniform grid is divided into blocks of L 

consecutive samples, and 𝑣 (𝑣 < 𝐿) samples are acquired from each block while the 

rest of the samples (𝐿 − 𝑣) are discarded. This method is implemented using 𝑣 

sampling channels with a sampling rate 
𝑓𝑠

𝐿
, and the i-th sampling channel is offset by 

𝑡𝑖

𝑓𝑠
 from the origin: 

𝑟𝑖[𝑛] = {
𝑟 (

𝑛

𝑓𝑠
)          𝑛 = 𝑚𝐿 + 𝑡𝑖   𝑚 ∈ ℤ

0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.5) 

where  𝑡𝑖 is the index of the i-th sample. The indices of the 𝑣 samples are stored in a 

constant set called a sampling pattern (𝐶). The sampling pattern is defined as: 

𝐶 = {𝑡𝑖}
𝑖=1

𝑣
,       0 ≤ 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑣 ≤ 𝐿 − 1 (5.6) 

The discrete-time Fourier transform (DTFT) of the samples can be linked to the 

unknown Fourier transform (FT) of the signal 𝑟(𝑡) as follows: 

𝑌⃗ (𝑓) = 𝛷𝑅⃗ (𝑓) (5.7) 

where  𝑌⃗ (𝑓) is a vector of DTFT of the measurements from the 𝑣 channels, 𝑅⃗ (𝑓) is a 

vector of the FT of  𝑟(𝑡), and 𝛷 is the measurement matrix with elements determined 

by the sampling pattern 𝐶. Hence, sensing is about recovering 𝑅⃗ (𝑓) from 𝑌⃗ (𝑓) by 

solving (5.7). The advantage of multicoset sensing is that the sampling rate of each 

sampling channel is lower than the Nyquist rate. Also, the number of samples 

acquired is less than those in the Nyquist case. However, the drawbacks of this 

method are requiring accurate timing offset between the sampling channels, and the 

need for a large number of sampling channels to obtain accurate sensing. 

               5.2.4  Compressed Sensing Based Detection 

Compressed sensing (CS) is a novel technique that has been suggested to 

overcome the high sampling requirements of wideband sensing. Taking advantage of 



 

55 

 

the fact that wireless signals are sparse, due to low spectrum occupancy by licensed 

users, signals can be reconstructed using samples taken at a sub-Nyquist rate. In [15] 

the author proposed a CS technique based on the MRSS mentioned earlier. However, 

in this method the coarse sensing stage is performed using wavelet-based edge 

detection to detect the frequency edges of the non-overlapping bands in the PSD of 

the wideband signal. Figure 5-4 shows a block diagram of the proposed CS method. 

Assume that the time required for sensing is 𝑡 ∈ [0,𝑀𝑇𝑜], with 𝑇𝑜 as the 

Nyquist sampling rate, and 𝑀 is the number of samples required to recover the signal 

without aliasing. The continuous-time signal received by the SU  𝑟(𝑡) is converted to 

a discrete signal 𝑥𝑡  of length 𝐾. The sampling process can then be expressed as 

follows: 

𝑥𝑡 = 𝑆𝑇𝑟𝑡 (5.8) 
 

where S  is an (𝑀 × 𝐾) projection matrix , and 𝑟𝑡 is an (𝑀 × 1) vector with samples 

taken from 𝑟(𝑡). The elements of 𝑥𝑡 are the projection of 𝑟(𝑡) onto the basis. 

Briefly, a multi-step compressed sensing is performed using the following steps: 

a) A discrete signal 𝑥𝑡   is generated from 𝑟(𝑡) using compressed random 

sampling. 

b) The frequency response 𝑟𝑓 is reconstructed from 𝑥𝑡 via a basis pursuit 

technique, where 𝑟𝑓 = F𝑀𝑟𝑡, and F𝑀 is the M-point unitary discrete Fourier 

transform matrix.  

c) A number of frequency bands N, and the frequency locations 

{[𝑓𝑖 , 𝑓𝑖+1]}𝑖=0
𝑁−1are estimated based on r̂𝑓 using wavelet-based edge detection.  

d) The PSD average amplitude within each band is estimated to classify the 

bands into black, gray or white. 

One-step compressed sensing is also proposed to reduce the implementation 

complexity of coarse sensing, where the frequency band locations are detected from 

𝑥𝑡 without recovering the frequency response r𝑓.  

Other CS methods are presented in the literature. In [13, 43] the authors 

suggested using an analogue-to-information converter (AIC) for compressing the 

analogue signal in the analogue domain. However, the drawback of this approach is 
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the high computational complexity represented by the large size of the measurement 

matrix. Also, the AIC model is affected by design imperfections. 

In [12] a parallel AIC model is proposed, known as a modulated wideband 

converter (MWC). The advantages of this method are the reduced measurement 

matrix size and robustness to design imperfections and noise. On the other hand, this 

method requires large numbers of parallel sampling channels leading to an increased 

computational complexity. 

 

Figure 5-4: A block diagram for compressed sensing based detection.  

               5.2.5  Multirate Sampling Based Detection: 

This method also uses the concept of compressing the wideband signal in the 

analogue domain. A sparse multiband signal can be reconstructed using 

asynchronous multirate sampling (MRS) [9], or synchronous multirate sampling 

(SMRS) [42]. In the MRS approach the signal can be reconstructed without 

synchronization of the sampling channels. However, the signal should possess 

certain properties to be reconstructed using MRS such as a minimal number of bands 

or uniqueness.  

In the SMRS approach, the signal is reconstructed from linear equations 

relating the Fourier transform of the received signal to that of the samples. The 

number of sampling channels, 𝑣, required to reconstruct a k-sparse signal is 𝑣 ≥ 2𝑘. 

However, applying the multirate sampling approach in cognitive radio networks 

involves high implementation complexity due to the number of sampling channels 

required, and the difficulty of having a spectrum with the special properties 

mentioned earlier for the MRS. 

               5.2.6  Wavelet-based Detection 

Wavelet-based detection is a wideband sensing approach based on edge 

detection [14]. Edge detection is used to identify the irregular structure in the PSD 
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function of the received wideband signal. These irregularities, also called edges, 

carry information about the frequency boundaries of the non-overlapping bands. 

Hence, the main goal is to identify the edges of those bands, and classify the bands 

into black, gray or white, based on whether the estimated PSD level within each band 

is high, medium or low.  

Continuous Wavelet transform (CWT) of the PSD function of the wideband 

signal is used to locate the singularities and irregularities. As shown in Figure 5-5 the 

PSD is modeled as a train of consecutive frequency subbands, where the PSD is 

smooth within the subbands but exhibits irregularities on the borders of any two 

neighboring subbands. The first and second derivatives of the CWT of the PSD are 

used to identify the edges. The local maxima of the first derivative or the zeroes of 

the second derivative are used to locate the boundaries (edges) of the consecutive 

subbands. The advantage of this approach is its ability to adapt to a dynamic 

frequency range by controlling the wavelet smoothing function. However, the high 

sampling rate analogue to digital converter (ADC) that is required to analyze 

wideband signals, and the energy cost of that ADC, are concerning issues. 

 

Figure 5-5: Power spectral density (PSD) of the wideband spectrum of interest. 

Table 5-1 summarizes the advantages and disadvantages of the wideband sensing 

methods discussed above [44]. 
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Table 5-1: Advantages and disadvantages of different wideband sensing methods. 

Sensing Method Advantages Disadvantages 

Filter Bank 

Detection 

 

Low sampling rate 

High spectral dynamic range 

 

Large implementation complexity 

Not flexible as filters are preset 

 

Multicoset 

Sampling 

 

 

Low sampling rate 

Less measurements 

 

 

Requires accurate time offsets 

Requires too many sampling 

channels 

 

Compressed 

Sensing 

 

Low sampling rate 

Less processed data 

 

High implementation complexity 

Matrix storage & transmission 

 

Multirate Sampling 

 

 

Low sampling rate 

Less sampling channels 

 

Stringent requirements on devices 

 

 

Wavelet-based 

Detection 

 

Flexibility in adapting to 

dynamic spectrum 

 

Requires high sampling rate ADC 

High energy consumption  

 

 

       5.3  System Model of Wavelet-based Detection 

If we assume a wideband signal consisting of 𝑁 consecutive subbands lies 

within the frequency range [𝑓0, 𝑓𝑁] with a total bandwidth of 𝐵 Hz. Frequency 

locations and PSD levels for each subband need to be detected by the SU, where the 

n-th subband is defined by 𝐵𝑛: {𝑓 ∈ 𝐵𝑛, 𝑓𝑛−1 < 𝑓 < 𝑓𝑛}, 𝑛 = 1, 2, ⋯ ,𝑁. The number 

of subbands and the frequency locations are unknown to the SU, however, the 

boundaries 𝑓0 and 𝑓𝑁 are known. Also, the PSD is assumed to be smooth within the 

subbands as shown in Figure 5-5. 

Based on this scenario [14], the power spectral shape of each subband, 𝑆𝑛(𝑓), can be  

defined as: 

𝑆𝑛(𝑓) = {
1, ∀𝑓 ∈ 𝐵𝑛

0, ∀𝑓 ∉ 𝐵𝑛
 (5.9) 

 

And the PSD of the signal received by the SU, 𝑆𝑟(𝑓), can be written as: 

𝑆𝑟(𝑓) = ∑ 𝑎𝑛
2

𝑁

𝑛=1

𝑆𝑛(𝑓) + 𝑆𝑤(𝑓)             𝑓 ∈ [𝑓0, 𝑓𝑁] (5.10) 

where 𝑎𝑛
2  is the power density within the n-th subband. The time domain signal is: 
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𝑟(𝑡) = ∑ 𝑎𝑛

𝑁

𝑛=1

𝑝𝑛(𝑡) + 𝑤(𝑡) (5.11) 

where 𝑝𝑛(𝑡) is the signal occupying 𝐵𝑛 with PSD 𝑆𝑛(𝑓), and 𝑤(𝑡) is the AWGN 

with zero-mean and two-sided PSD 𝑆𝑤(𝑓) = 𝑁0/2, ∀𝑓.  

The continuous wavelet transform (CWT) of 𝑆𝑟(𝑓) can be expressed as [14]: 

𝒲𝑠(𝑆𝑟(𝑓)) = 𝑆𝑟(𝑓) ∗ 𝜙𝑠(𝑓) (5.12) 

where * is the convolution operator, 𝜙𝑠(𝑓) is the wavelet smoothing function dilated 

by a scale factor 𝑠 and is defined as: 

𝜙𝑠(𝑓) =
1

𝑠
 𝜙 (

𝑓

𝑠
) (5.13) 

The scale factor 𝑠 takes dyadic scales, i.e. 𝑠 = 2𝑗 , 𝑗 = 1, 2,⋯ , 𝐽. 𝜙(𝑓) is the mother 

wavelet function, usually a Gaussian or Haar wavelet. 

As mentioned earlier, edges are defined using the first and second derivatives 

of 𝒲𝑠(𝑆𝑟(𝑓)), since they correspond to the local sharp variations within the PSD 

function, 𝑆𝑟(𝑓). The first and second derivatives of  𝒲𝑠(𝑆𝑟(𝑓)) can be written 

respectively as: 

𝒲𝑠
′(𝑆𝑟(𝑓)) = 𝑠

𝑑

𝑑𝑓
(𝑆𝑟(𝑓) ∗ 𝜙𝑠)(𝑓) = 𝑆𝑟(𝑓) ∗ (𝑠

𝑑𝜙𝑠

𝑑𝑓
) (𝑓) (5.14) 

𝒲𝑠
′′(𝑆𝑟(𝑓)) = 𝑠2

𝑑2

𝑑𝑓2
(𝑆𝑟(𝑓) ∗ 𝜙𝑠)(𝑓) = 𝑆𝑟(𝑓) ∗ (𝑠2

𝑑2𝜙𝑠

𝑑𝑓2
) (𝑓) (5.15) 

By finding the local extrema of the 𝒲𝑠
′𝑆𝑟(𝑓), the local maxima in particular, 

since they correspond to sharp variation points, or the zeros of 𝒲𝑠
′′𝑆𝑟(𝑓), frequency 

edges can be realized as follows: 

𝑓𝑛 = maxima 𝑓 {|𝒲𝑠
′(𝑆𝑟(𝑓))|},         𝑓 ∈ (𝑓0, 𝑓𝑁) (5.16) 

𝑓𝑛 = zeros 𝑓 {|𝒲𝑠
′′(𝑆𝑟(𝑓))|},           𝑓 ∈ (𝑓0, 𝑓𝑁) (5.17) 

By setting the scale factor 𝑠 to the dyadic scale, only modulus maxima or 

zero-crossings that propagate to larger scales are taken, while others are discarded as 

noise. Moreover, multiscale wavelet products can be used to enhance multiscale 

peaks due to the edges, while suppressing noise. The multiscale wavelet product of 𝐽 

CWT gradients can be defined as: 
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𝑈𝐽(𝑆𝑟(𝑓)) = ∏𝒲
𝑠=2𝑗
′

𝐽

𝑗=1

(𝑆𝑟(𝑓)) (5.18) 

 

where  𝒲𝑠
′𝑆𝑟(𝑓) is defined in (5.14). Edges can be then acquired by finding the local 

maxima of 𝑈𝐽𝑆𝑟(𝑓), i.e.  

𝑓𝑛 = maxima 𝑓{|𝑈𝐽(𝑆𝑟(𝑓))|},         𝑓 ∈ (𝑓0, 𝑓𝑁) (5.19) 

After identifying the frequency edges, the PSD levels within subbands, {𝑎𝑛
2}𝑛=1

𝑁 , are 

estimated. The estimated PSD level within the n-th subband, 𝐵𝑛, can be computed as: 

𝛽𝑛 =
1

𝑓𝑛 − 𝑓𝑛−1
 ∫ 𝑆𝑟(𝑓)

𝑓𝑛

𝑓𝑛−1

𝑑𝑓 (5.20) 

The estimated PSD level 𝛽𝑛 can be related to 𝑎𝑛
2  as: 

𝛽𝑛 ≈ 𝑎𝑛
2 + 𝑁0/2 (5.21) 

where 𝑁0/2 can be estimated from any empty subband. Hence the estimated PSD of 

the n-th subband can be written as: 

𝑎̂𝑛
2 = 𝛽𝑛 − min

𝑛
𝛽𝑛 ,          𝑛 = 1,⋯ , 𝑁 (5.22) 

According to the value of 𝑎̂𝑛
2 , detected frequency subbands can be classified to black, 

gray or white. A block diagram of the wavelet-based detection approach is depicted 

in Figure 5-6. 

 

Figure 5-6: Wavelet-based edge detection block diagram. 

The pseudo code for the wavelet-based edge detection technique described above is 

proposed in Algorithm 1. 
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Algorithm 1: Wavelet-based Detection 

Input: 𝒇𝟎, 𝒇𝑵,  𝝓𝒔(𝒇), 𝒓(𝒕) 

Output:  N, {𝒇𝒏}𝒏=𝟏
𝑵−𝟏, {𝒂𝒏

𝟐}𝒏=𝟏
𝑵  

𝑹𝒓(𝝉) ← 𝑬{𝒓(𝒕)𝒓(𝒕 + 𝝉)} 

𝑺𝒓(𝒇) ← 𝓕{𝑹𝒓(𝝉)} 

𝓦𝒔(𝑺𝒓(𝒇)) ← (𝑺𝒓(𝒇) ∗ 𝝓𝒔(𝒇)) 

𝓦𝒔
′ (𝑺𝒓(𝒇)) ← 𝒔

𝒅𝓦𝒔𝑺𝒓(𝒇)

𝒅𝒇
 

{𝒇𝒏}𝒏=𝟏
𝑵−𝟏 = 𝐦𝐚𝐱𝐢𝐦𝐚 𝒇 {|𝓦𝒔

′ (𝑺𝒓(𝒇))|} 

for i= (1) to (N) do 

      𝒂 ← 𝒇𝒊−𝟏 

      𝒃 ← 𝒇𝒊 

      𝒉 =
𝒃−𝒂

𝒚
 

     𝜷𝒊 = 𝟎 

     for  j= (1) to (𝒚 − 𝟏) do 

           𝜷𝒊 ← 𝜷𝒊 + 𝒉𝑺𝒓(𝒂 + 𝒋𝒉) 

    end for 

    𝜷𝒊 ← 𝜷𝒊 +
𝒉

𝟐
𝑺𝒓(𝒂) +

𝒉

𝟐
𝑺𝒓(𝒃) 

end for 

𝒙 ← 𝐦𝐢𝐧
𝒏

{𝜷𝒏}𝒏=𝟏
𝑵  

for n= (1) to (𝑵) do 

      𝒂𝒏
𝟐 ← 𝜷𝒏 − 𝒙 

end for 

 

       5.4  Wavelet-based Detection in Log-normal Shadowing 

The system model described in the previous section is for AWGN channel. In 

this section the system model is modified to include log-normal shadowing. Log-

normal shadowing causes random variations in the average power of the signal in the 

order of tens of wavelengths. The level of shadowing depends on the type of the 

obstacle blocking the signal travelling from the transmitter to the receiver. It is 

measured by the value of dB-spread, 𝜎𝑑𝐵, as mentioned in Chapter 3. 
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Log-normal shadowing results in degradation in the power magnitude, adds 

more variations to the signal and leads to abrupt changes. This in its turn affects edge 

detection and results in more unwanted edges. 

In log-normal shadowing, the time domain signal received by the SU can be 

expressed as: 

𝑟𝑙𝑜𝑔(𝑡) = ∑ 𝑎𝑛

𝑁

𝑛=1

ℎ𝑛(𝑡)𝑝𝑛(𝑡) + 𝑤(𝑡) (5.23) 

where ℎ𝑛is the channel gain between the PU and SU in the n-th subband. 

The PSD of the signal 𝑟𝑙𝑜𝑔(𝑡) is: 

𝑆𝑟,𝑙𝑜𝑔(𝑓) = ∑ 𝐻𝑛(𝑓)(𝑎𝑛
2𝑆𝑛(𝑓))

𝑁

𝑛=1

+ 𝑆𝑤(𝑓)             𝑓 ∈ [𝑓0, 𝑓𝑁] (5.24) 

where 𝐻𝑛(𝑓) is the n-th subband impulse response. In the case of slow and flat 

fading, (5.24) can be written as: 

𝑆𝑟,𝑙𝑜𝑔(𝑓) = ∑ 𝐻𝑛 𝑎𝑛
2

𝑁

𝑛=1

𝑆𝑛(𝑓) + 𝑆𝑤(𝑓)             𝑓 ∈ [𝑓0, 𝑓𝑁] (5.25) 

In the previous section a system model was built under the assumption that the 

number of subbands, 𝑁, is unknown to the SU, but remains unchanged within a time 

burst. However, in the presence of slow fading the number of subbands changes from 

burst to burst. The effect of log-normal shadowing on edge detection will be 

investigated in the next section.  

       5.5  Simulation Results & Discussion 

In this section the performance of wavelet-based edge detection will be 

investigated. The effect of certain factors on edge detection accuracy such as, the 

scale factor (𝑠), collaboration between SUs and spectrum shape will be discussed. 

Also, the performance of edge detection in the presence of log-normal shadowing 

will be investigated. 
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               5.5.1  The Effect of Scale Factor (𝒔)  

For a wideband signal with total bandwidth 𝐵 = 750 𝑀𝐻𝑧, located over the 

frequency range [𝑓0 = 50 𝑀𝐻𝑧, 𝑓𝑁 = 800 𝑀𝐻𝑧], the PSD 𝑆𝑟(𝑓) is depicted in 

Figure 5-7. Using a Gaussian mother wavelet, and scale factor over dyadic scale 𝑠 =

2𝑗 , 𝑗 = 1, 2, 3, 4, it is obvious that the larger the value of 𝑠, the smoother the wavelet 

transform within the subbands. This means that the edges are retained at coarser 

scales, while the noise is suppressed as shown in Figure 5-8. Moreover, better edge 

detection is obtained using the multiscale wavelet product, where the exact edges are 

kept while edges due to noise vanished as illustrated in Figure 5-9. 

The histogram of the detected edges using wavelet transform is shown in 

Figure 5-10 for 100 simulation runs. It can be observed that as the scale factor gets 

coarser (larger), more accurate detection is obtained. Furthermore, using the 

multiscale product enhances edge detection as discussed earlier.  

 

          Figure 5-7: Power spectral density (PSD) of the received wideband signal. 
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Figure 5-8: Wavelet coefficients at different scales: a) s = 2, b) s = 4, c) s = 8, 
d) s = 16. 
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Figure 5-9: Wavelet coefficients at multiscale wavelet product. 
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Figure 5-10: Histogram of the detected edges for 100 simulation runs at: a) s = 2, 

b)s = 4, c) multiscale product s = 2: 4. 
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               5.5.2  Collaborative Edge Detection 

In this section the system model described in section 5.3 is extended to 

include collaborative edge detection, where the effect of collaboration between SUs 

in wavelet-based edge detection is investigated. Assuming 𝑘 collaborative SUs 

where each SU performs wavelet edge detection and reports the detected edges to a 

fusion center (FC), the FC then combines the information received using one of the 

fusion rules, OR, AND or Majority, and takes the final decision regarding the edges 

and their corresponding locations. For the wideband signal shown in Figure 5-11, 

collaborative edge detection is performed using 𝑘 = 5 SUs at a scale factor 𝑠 = 2. 

Simulation results depicted in Figure 5-12 (c) show that collaborative edge detection 

using AND-combining outperforms the OR and Majority combining in terms of 

accuracy, since only the exact edges are detected. While in OR-combining 

(Figure 5-12 (b)) more edges are detected than detected by one SU in the non-

collaborative detection (Figure 5-12 (a)), resulting in inaccurate edge detection. 

 

            Figure 5-11: Power spectral density (PSD) of the received wideband signal. 
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Figure 5-12: Histogram of the detected edges using collaborative edge detection 

for  𝑘 = 5 SUs using: a) non-collaborative, b) OR (1 out of 5), c) AND (5 out of 5), 

d) Majority (2 out of 5). 

In a case of sensing the presence of a PU with a low SNR level, as in the 

second subband in Figure 5-13 (a), the PU can be misdetected. Hence, using 

collaborative edge detection can help overcome this problem. It is obvious from 

Figure 5-14 (a) that the band occupied by the PU with low SNR, 𝑓 ∈

[200,400]MHz, is not detected by the SU in non-collaborative edge detection. 

However, in Figure 5-14 (b) this band was detected using OR-combining, while 

AND-combining in Figure 5-14 (c), and Majority-combining in Figure 5-14 (d) 

failed to detect this band. 
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Figure 5-13: a) PSD of the received wideband signal, b) Wavelet coefficients at 

scale s = 2. 

 

Figure 5-14: Histogram of the detected edges using collaborative edge detection 

for  𝑘 = 5 SUs using: a) non-collaborative, b) OR (1 out of 5), c) AND (5 out of 5), 

d) Majority (2 out of 5). 
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Figure 5-15 shows the number of detected edges within a range of ±5% 

around the exact edge (𝑓 = 200𝑀𝐻𝑧), versus the average SNR of the PU occupying 

the second subband (𝑓 ∈ [200,400]MHz) in Figure 5-13 (a) using collaborative edge 

detection for the three combining rules: OR, AND and Majority. At a scale factor of 

𝑠 = 2 and for 𝑘 = 5 collaborative SUs it can be concluded that the number of 

detected unwanted edges decreases as the average SNR of the PU increases, resulting 

in more accurate edge detection and hence better detection of the PUs. However, in 

OR-combining the number of detected edges chosen by the FC to make the final 

decision regarding the number of subbands and their boundaries, is higher than that 

of both the Majority-combining and AND-combining. This means that using OR-

combining involves more computations and calculations to decide the number and 

locations of the subbands within the wideband spectrum. 

 

Figure 5-15: Number of detected edges vs. SNR using collaborative edge detection 

for k = 5 SUs. 

Table 5-2: Number of detected edges at different SNR values using collaborative 

edge detection for k = 5 SUs. 
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Figure 5-16 depicts the probability of detecting the edges within a range of 

±5% around the exact edge (𝑓 = 200𝑀𝐻𝑧) versus the average SNR of the PU 

within the subband (𝑓 ∈ [200,400]). It is obvious that the probability of edge 

detection improved as the average SNR increased from 0dB to 20dB. Moreover, 

AND-combining outperforms both OR and Majority combining in terms of the 

probability of edge detection. However, AND-combining fails to detect the edges at 

a low average SNR (0dB - 6dB), which proves the results shown in Figure 5-14 (c). 

 

Figure 5-16: Probability of edge detection vs. average SNR using collaborative edge 

detection for k = 5 SUs. 

Table 5-3: Probability of edge detection at different SNR values using collaborative 

edge detection for k = 5 SUs. 

SNR (dB) 
Probability of Edge Detection 
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20 1 1 1 
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               5.5.3  The Effect of Log-normal Shadowing 

The presence of log-normal shadowing results in degradation in the received 

average power and adds more random variations to the signal. In wideband sensing 

this will lead to inaccurate edge detection, since these random variation may be 

interpreted as edges. The signal transmitted by the PU experiences log-normal 

shadowing due to the presence of an obstacle between this PU and the SU sensing 

the spectrum. The PSD of the received signal for a PU occupying a frequency 

band (𝑓 ∈ [200,400]) and experiences log-normal shadowing 𝜎𝑑𝐵 = 2dB is shown 

in Figure 5-17. The effect of shadowing on wavelet-based edge detection is shown in 

Figure 5-18. It is obvious that the number of detected edges increased as the severity 

of shadowing increased from 𝜎𝑑𝐵 = 2dB in Figure 5-18 (b) to 𝜎𝑑𝐵 = 12dB in 

Figure 5-18 (d). These results are confirmed in Figure 5-19 where the number of 

detected edges within a range of ±25% around the exact edge, 𝑓 ∈ [150,250], 

increases with the increase of 𝜎𝑑𝐵 levels. 

 

Figure 5-17: PSD of the received wideband signal in log-normal channel for 𝜎𝑑𝐵 =

2dB, average SNR= 10𝑑𝐵. 
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Figure 5-18: Histogram of the detected edges in log-normal channel for 10 

simulation runs for different values of 𝜎𝑑𝐵: a) AWGN, b) 𝜎𝑑𝐵 = 2dB, c) 𝜎𝑑𝐵 = 6dB, 

d) 𝜎𝑑𝐵 = 12dB. 

 

         Figure 5-19: Number of detected edges vs. 𝜎𝑑𝐵 in log-normal channel. 
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Table 5-4: Number of detected edges at different 𝜎𝑑𝐵 values in log-normal channel. 

𝝈𝒅𝑩 No. of Detected Edges 

0 2 

2 3 

6 7 

12 12 
 

The probability of detecting the edges within a range of ±5% around the 

exact edge (𝑓 = 200𝑀𝐻𝑧) of the subband occupied by the PU experiencing 

shadowing decreases as the level of shadowing increases from 0dB to 12dB, as 

shown in Figure 5-20. This is because more edges are detected at higher 𝜎𝑑𝐵 values, 

leading to misdetecting the correct edges. In summary, it can be concluded that the 

presence of log-normal shadowing affects the performance of wavelet-based edge 

detection. 

 

Figure 5-20: Probability of edge detection vs. 𝜎𝑑𝐵 in log-normal channel (non-

collaborative edge detection) at average SNR= 10 𝑑𝐵, s = 2. 
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Table 5-5: Probability of edge detection at different 𝜎𝑑𝐵 values in log-normal 

channel.  

𝝈𝒅𝑩 Probability of Edge Detection 

0 0.704 

2 0.589 

6 0.343 

12 0.221 
 

               5.5.4  The Effect of Spectrum Shape  

The spectrum investigated in the previous section had sharp edges. However, 

in this section a spectrum with blunt envelopes (slow varying peaks) is addressed. 

For the wideband signal shown in Figure 5-21, with bandwidth 𝐵 = 400 𝑀𝐻𝑧 and 

frequency range [𝑓0 = 100 𝑀𝐻𝑧, 𝑓𝑁 = 500 𝑀𝐻𝑧], it is obvious that higher scales 

result in more accurate edge detection. The multiscale product is even better for edge 

detection as shown in Figure 5-22. However comparing these results with those for 

the sharp edges spectrum, it can be seen that slow varying peaks are more difficult to 

identify and detect. Hence, the shape of the wideband spectrum affects the accuracy 

of wavelet-based edge detection. 

 

      Figure 5-21: PSD of the received wideband signal with blunt envelopes. 
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Figure 5-22: Wavelet coefficients at different scales: a) s = 2, b) s = 4, c) multiscale 

product s = 2: 4. 
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In conclusion, a wavelet-based edge detection system model for wideband 

edge detection was studied using MATLAB simulation. The effect of the scale factor 

of the wavelet function and spectrum shape on edge detection were considered. Also, 

collaborative wideband edge detection was explored. Results indicated that better 

edge detection was achieved at higher scale factor values, and the detection of the 

edges could be enhanced using a multiscale wavelet product. Moreover, 

collaboration between SUs in edge detection improved detection performance, and 

better detection was achieved at higher average SNR levels of the primary user 

occupying the wideband spectrum. The performance of this system model was also 

tested under log-normal shadowing. The presence of log-normal shadowing resulted 

in a degradation in edge detection performance, since shadowing reduces the average 

power of the PU signal received by the SU, and at the same time it adds more 

random variations to the signal, resulting in more false unwanted edges.  
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CHAPTER 6: WIDEBAND SPECTRUM DETECTION 

In this chapter two approaches for wideband spectrum detection will be 

investigated and compared. The first approach is the tunable bandpass filter (TBPF) 

filterbank in which a parallel structure of tunable narrowband bandpass filters is used 

to sense the spectrum on a wideband level. The second approach is a proposed 

wideband spectrum detection model using wavelet-based detection.  

       6.1  Problem Formulation 

Assume a primary user (PU) operating over the wideband spectrum 

portion 𝑓 ∈ [𝑓0, 𝑓𝑁], the center frequency, 𝑓𝑐, and bandwidth, 𝐵, of the PU  are 

unknown to the secondary user (SU). Also, they remain unchanged during the 

sensing interval 𝑇, but change from one sensing interval to another as shown in 

Figure 6-1. Sensing the presence of the PU will be performed using two sensing 

approaches: the TBPF filterbank approach and the proposed wavelet-based detection 

approach. System models and performance analysis of both approaches are addressed 

and discussed in the following sections. 

 

Figure 6-1: Schematic illustration of the primary user activity over the wideband 

spectrum. 
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       6.2  Wideband Spectrum Detection using TBPF Filterbank 

As mentioned in chapter 5, when PU activity details such as the center 

frequency and bandwidth are known to the SU, then sensing can be performed on a 

narrowband basis over the frequency band. A tunable bandpass filter is set to the 

center frequency and bandwidth of the PU, and the traditional sensing techniques 

listed in chapter one namely, energy detection, match filter detection and 

cyclostationary detection can be used to decide the status of this frequency band. 

However, this is not the case in wideband sensing, where the SU needs to 

sense the whole spectrum to detect the presence of the PU. In this case, multiple 

frequency bands should be scanned  using multiple tunable bandpass filters (TBPF) 

forming a filterbank [45]. The block diagram of the TBPF approach is depicted in 

Figure 6-2, the center frequency ( 𝑓𝑐,𝑛 = (𝑓𝑛−1 + 𝑓𝑛)/2) and the bandwidth (𝐵𝑛 =

𝑓𝑛 − 𝑓𝑛−1) of each tunable bandpass filter (BPF𝑛) are preset to scan the frequency 

subband (𝑓 ∈ [𝑓𝑛−1, 𝑓𝑛]) within the wideband spectrum. By switching the tunable 

BPF, the operating center frequency and bandwidth can change over the wideband 

spectrum (𝑓 ∈ [𝑓0, 𝑓𝑁]). A schematic illustration of the sensing scenario used in this 

approach is shown in Figure 6-3. Sensing is performed over fixed frequency 

subbands, where one subband is scanned at a time and compared with the energy 

threshold (𝜆) to decide whether it is busy or free. A summary of spectrum sensing 

using this approach is proposed in Algorithm 2. Using this architecture for wideband 

spectrum detection requires large numbers of RF components, additionally, the 

center frequency and bandwidth of the BPFs are preset which results in increasing 

the implementation costs and complexity. 
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Figure 6-2: Block diagram of wideband spectrum detection using the TBPF 

filterbank approach. 

 

 

Figure 6-3: Schematic illustration of the sensing scenario using TBPF filterbank 

approach.  
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Algorithm 2: Wideband Spectrum Detection using TBPF Filterbank 

Input: 𝒇𝟎, 𝒇𝑵, {𝒇𝒏}𝒏=𝟏
𝑵−𝟏, 𝒓(𝒕) 

Output:  {𝒂𝒏
𝟐}𝒏=𝟏

𝑵 , {𝑷𝒅,𝒏}𝒏=𝟏

𝑵
 

𝑹𝒓(𝝉) ← 𝑬{𝒓(𝒕)𝒓(𝒕 + 𝝉)} 

𝑺𝒓(𝒇) ← 𝓕{𝑹𝒓(𝝉)} 

for i= (1) to (N) do 

      𝒂 ← 𝒇𝒊−𝟏 

      𝒃 ← 𝒇𝒊 

      𝒉 =
𝒃−𝒂

𝒚
 

     𝜷𝒊 = 𝟎 

     for  j= (1) to (𝒚 − 𝟏) do 

           𝜷𝒊 ← 𝜷𝒊 + 𝒉𝑺𝒓(𝒂 + 𝒋𝒉) 

    end for 

    𝜷𝒊 ← 𝜷𝒊 +
𝒉

𝟐
𝑺𝒓(𝒂) +

𝒉

𝟐
𝑺𝒓(𝒃) 

end for 

𝒙 ← 𝐦𝐢𝐧
𝒏

{𝜷𝒏}𝒏=𝟏
𝑵  

for n= (1) to (𝑵) do 

      𝒂𝒏
𝟐 ← 𝜷𝒏 − 𝒙 

      if  𝒂𝒏
𝟐 ≥ 𝝀 then  

          𝑷𝒅,𝒏 = 𝟏 

     else 

         𝑷𝒅,𝒏 = 𝟎 

     end if            

end for 

 

       6.3  Wideband Spectrum Detection using Wavelet-based Detection 

In this section a wideband spectrum detection system model is proposed. The 

system model described in chapter 5 for wideband edge detection using wavelet-

based edge detection, shown in Figure 6-4, is used for detecting the edges 

(irregularities) within the wideband spectrum. The results are then applied to the 



 

82 

 

energy detector to perform spectrum detection. The exact operation is described in 

Figure 6-5. In the first stage wavelet-based edge detection is performed to detect the 

edges of the wideband spectrum and define the number of non-overlapping 

frequency subbands (𝑁) and their corresponding center frequency (𝑓𝑐,𝑛) and 

bandwidth (𝐵𝑛). The center frequency of the n-th subband is defined as: 

𝑓𝑐,𝑛 =
𝑓𝑛−1 + 𝑓𝑛

2
 (6.1) 

𝐵𝑛 = 𝑓𝑛 − 𝑓𝑛−1 (6.2) 

In the second stage the wideband sensing problem turns to narrowband 

sensing, where the results of the first stage are applied to the energy detector and 

traditional energy detection is performed on the subbands to classify them into busy 

and free based on the estimated PSD level within each subband (𝑎𝑛
2). A summary of 

spectrum detection using this approach was illustrated earlier in Algorithm 1, in 

chapter 5. A schematic illustration of the sensing scenario used in this approach is 

shown in Figure 6-6. The main advantage of using this approach for wideband 

spectrum detection is its ability to adapt to a dynamic wideband frequency range. 

However, the high sampling rate of ADC required to perform this technique and the 

high energy consumption are drawbacks of this technique. 

 

Figure 6-4: Block diagram of the wavelet-based edge detection.  

 

 

Figure 6-5: Block diagram of the proposed wideband spectrum detection approach 

using the wavelet-based detection. 
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Figure 6-6: Schematic illustration of the sensing scenario using wavelet-based 

detection approach. 

       6.4  Simulation Results and Discussion 

In this section the performance of the two approaches discussed earlier for 

wideband spectrum detection is investigated. Their performance is compared in 

terms of spectrum occupancy, which is an indicator for wideband spectrum detection 

efficiency. 

               6.4.1  Spectrum Occupancy 

In this section the metric spectrum occupancy is used to study the efficiency 

of the wideband spectrum detection technique in detecting the presence of the PU 

within the wideband spectrum. Spectrum occupancy is defined as the ratio of the 

detected bandwidth occupied by the PU (𝐵) to the total wideband bandwidth i.e. 

𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚_𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 [𝑃𝑈] =
𝐵

𝐵𝑡
× 100% (6.3) 

where  

𝐵𝑡 = 𝑓𝑁 − 𝑓0 (6.4) 

1) Case One: 

Consider the received PSD of the PU shown in Figure 6-7. The PU occupies a 

bandwidth equal to (𝐵 = 90 𝑀𝐻𝑧) with center frequency (𝑓𝑐 = 675 𝑀𝐻𝑧) and exact 
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spectrum occupancy of (22.5%). The red dashed lines represents the subbands over 

which the TBPF filterbank performs sensing, each subband has a bandwidth 

of 80 𝑀𝐻𝑧. Figure 6-8 depicts spectrum occupancy versus the probability of false 

alarm (𝑃𝑓) using the TBPF filterbank approach. As shown in the figure, at a low 

probability of false alarm the spectrum occupancy equals (
80

400
= 20%), which 

means that the presence of the PU is detected over only one subband. While at a high 

probability of false alarm, spectrum occupancy equals (
160

400
= 40%). This means that 

at a low 𝑃𝑓 the TBPF filterbank detected the PU over the fully occupied 

subband (𝑓 ∈ [640,720]), while the partially occupied subband (𝑓 ∈ [550,640]) 

was declared as a free band. At a high 𝑃𝑓 both subbands were declared as busy 

bands.  

Figure 6-9 shows spectrum occupancy versus the probability of false alarm 

using the wavelet-based detection approach.  This approach gave more accurate 

results than the TBPF filterbank approach, since it detected the exact spectrum 

occupancy of the PU. This means that the wavelet edge detector detected the correct 

edges of the PSD within the wideband spectrum. 

 

Figure 6-7: Received power spectral density within the wideband spectrum (case 1). 

400 450 500 550 600 650 700 750 800
0

2

4

6

8

10

12

14

Frequency (MHz)

 S
r (

f)
 (

 W
a

tt 
/ 
H

z
 )



 

85 

 

 

Figure 6-8: Spectrum occupancy using TBPF filterbank (case 1).  

 

Figure 6-9: Spectrum occupancy using wavelet-based detection (case 1). 
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2) Case Two: 

In Figure 6-10 a PU occupying a bandwidth of (𝐵 = 20 𝑀𝐻𝑧) with a center 

frequency (𝑓𝑐 = 520 𝑀𝐻𝑧) and exact spectrum occupancy of (5%) is considered. 

As before, spectrum occupancy versus the probability of false alarm is calculated 

using the two approaches. In Figure 6-11 the TBPF filterbank approach is used, and 

simulation results show that the PU was not detected at a low 𝑃𝑓, which resulted in 

0% spectrum occupancy. While at a high 𝑃𝑓 the PU was detected and the subband 

(𝑓 ∈ [480,560]) was declared as busy. However, in Figure 6-12 the wavelet-based 

detection approach resulted in more accurate results. 

 

Figure 6-10: Received power spectral density within the wideband spectrum (case 2). 
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Figure 6-11: Spectrum occupancy using TBPF filterbank (case 2).  

 

Figure 6-12: Spectrum occupancy using wavelet-based detection (case 2). 
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3) Case Three (General Case): 

In the previous two cases the center frequency of the PU was fixed during the 

sensing interval. However, a more general case is considered here where the center 

frequency of the PU is variable with a fixed bandwidth (𝐵 = 100 𝑀𝐻𝑧), and fixed 

average SNR of 10dB. Spectrum occupancy using both approaches is calculated over 

five sensing intervals, as shown in Figure 6-13.  

Figure 6-14 shows spectrum occupancy versus the probability of false alarm 

using the TBPF filterbank approach. It is obvious that at a low 𝑃𝑓 detected spectrum 

occupancy of the PU is less than the exact one leading to higher interference for the 

PU and more spectrum opportunities for the SU. While at a high 𝑃𝑓 more spectrum 

occupancy for the PU is achieved resulting in more protection form SU interference, 

but less spectrum utilization for the SU.  

In Figure 6-15 the wavelet-based detection approach is used, from simulation 

results it can be seen that this approach was able to detect the exact occupancy of the 

PU resulting in more accurate sensing results. These results proves the results 

obtained in the previous two cases for a fixed center frequency.  

 

Figure 6-13: Received power spectral density within the wideband spectrum (case 3). 
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Figure 6-14: Spectrum occupancy using TBPF filterbank (case 3). 

 

Figure 6-15: Spectrum occupancy using wavelet-based detection (case 3). 
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It can be concluded that the proposed wideband spectrum detection approach 

using wavelet-based detection outperforms the TBPF filterbank approach in terms of 

spectrum occupancy. At a low  𝑃𝑓 the TBPF filterbank failed to detect the presence 

of the PU over the partially occupied subbands and decided that these bands were 

free, which caused interference to the PU from the SUs using these bands. At a high 

 𝑃𝑓 the PU signal was detected, but this resulted in high spectrum under-utilization as 

a partially occupied band is considered as busy. However, the wavelet-based 

detection approach detected the PU more accurately and resulted in spectrum 

occupancy close to the exact one, which provides better spectrum utilization. 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK  

In this chapter, concluding remarks are made, and the results obtained are 

discussed and compared. Also, recommendations for future work are suggested to 

extend the work presented in this thesis. 

       7.1   Conclusions  

In this thesis, energy based narrowband spectrum sensing in a log-normal 

shadowing environment was investigated, and collaborative spectrum sensing under 

shadowing using both soft fusion and hard fusion was evaluated. In addition, 

wideband spectrum sensing using wavelet-based edge detection was explored. 

In chapter 2, an overview of the cognitive radio concept and a summary of 

different spectrum sensing techniques were presented. Collaborative spectrum 

sensing models and the difference between narrowband and wideband spectrum 

sensing were highlighted. In chapter 3 narrowband non-collaborative spectrum 

sensing, using energy detection, was investigated in both an AWGN channel and a 

log-normal shadowing channel. A closed-form expression for the probability of 

detection in a log-normal shadowing channel based on the Gauss-Hermite integration 

was derived, and the accuracy of this expression was tested in a MATLAB 

simulation. The degradation in the sensing performance due to the presence of log-

normal shadowing was obvious. Moreover, the new expression of the probability of 

detection under shadowing proved its accuracy in spectrum sensing. The effect of 

different factors on spectrum sensing, such as the average SNR of the primary user, 

the number of samples acquired from the signal received by the secondary user and 

the level of shadowing represented by the dB-spread were studied. In general, better 

detection of the primary user was achieved at a higher average of SNR values. 

However, the larger the number of samples acquired during sensing, the lower the 

probability of detecting the primary user in both an AWGN channel and a log-normal 

channel. Moreover, severe shadowing represented by higher dB-spread values 

resulted in worse sensing performance and less probability of detection. 

Narrowband collaborative spectrum sensing was performed in chapter 4 to 

overcome the effect of log-normal shadowing spectrum sensing. Collaborative 

sensing was executed in a centralized fashion, where 𝑘 spectrum sensors sense a 
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certain frequency band and report their sensing information to a fusion center that 

combines the received information and takes the final decision on the presence of the 

primary user within that band. The fusion center combines sensing information using 

either soft (data) fusion or hard (decision) fusion. In this chapter two soft fusion 

schemes were investigated, the square-law selection (SLS) scheme and the square-

law combining (SLC) scheme. In addition, hard fusion using three combining rules: 

AND, OR and Majority combining was analyzed. 

The improvement in sensing performance due to collaboration between 

secondary users was clear from the simulation results. In soft fusion, the 

collaborative secondary users send their measured energies to the fusion center, and 

the secondary user with the highest measured energy is chosen in the SLS scheme, 

while the energies of all secondary users are added together in the SLC scheme. It 

was shown that the SLC scheme outperformed the SLS scheme in terms of the 

probability of detection. Also, using the SLC scheme involves less computational 

complexity at the fusion center since it adds the energies of the secondary users 

together, while in the SLS the energy at each secondary user should be estimated to 

choose the user with the highest energy. 

In hard fusion, the fusion center receives a one-bit binary decisions (1 or 0) 

from each secondary user, and combines the decisions using one of the three main 

combining rules; AND, OR and Majority. It was shown that OR-combining 

outperformed both AND-combining and Majority-combining by providing higher 

probability of detection for a certain probability of false alarm, resulting in higher 

protection for the primary user from the secondary user interference. However, using 

AND-combining provided more spectrum opportunities for the secondary users and 

higher spectrum utilization since it resulted in higher probability of misdetecting the 

primary user. 

A comparison between hard fusion and soft fusion indicated that soft fusion 

using the SLC scheme outperformed all hard fusion combining rules with better 

probability of detection. However, using the SLC requires more bandwidth as the 

secondary user sends its measured energy, while in hard fusion a one-bit binary 

decision is sent to the fusion center, resulting in fewer bandwidth requirements, and 

lower computational complexity at the fusion center. Therefore, a trade-off between 
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the desired level of detection and the available resources should be done when 

choosing a certain combining scheme. 

In chapter 5 wideband spectrum sensing was investigated, and different 

wideband sensing techniques were addressed. A system model for wideband 

spectrum sensing  using wavelet-based edge detection was studied in a MATLAB 

simulation. The effect of the scale factor of the wavelet function and spectrum shape 

on edge detection was considered. Also, collaborative wideband edge detection was 

explored. Results indicated that better edge detection was achieved at higher scale 

factor values and the detection of the edges was enhanced using multiscale wavelet 

products. Moreover, collaboration between secondary users in edge detection 

improved detection performance and better detection was achieved as the average 

SNR of the primary user occupying the wideband spectrum increased. The 

performance of this system model was also tested under log-normal shadowing. The 

presence of log-normal shadowing resulted in degradation in edge detection 

performance, since it reduces the average power of the primary user signal received 

by the secondary user and, at the same time, it adds more random variations to the 

signal resulting in more false edges.  

In chapter 6 two approaches for wideband spectrum detection were 

investigated and compared: the TBPF filterbank approach and the proposed approach 

using wavelet-based detection. Simulation results indicated that the proposed 

approach outperformed the TBPF filterbank in terms of spectrum occupancy and 

utilization. 

       7.2  Future Work 

The work done in this thesis can be extended, and some suggestions for more 

research and future work are listed below. 

               7.2.1  Correlated Log-normal Shadowing 

The centralized collaborative spectrum sensing model designed in chapter 4 

in the log-normal shadowing channel was based on the assumption that the 𝑘 

collaborative spectrum sensors are i.i.d, which means that they experience i.i.d same 

shadowing statistics. A general system model where the spectrum sensors are not 



 

94 

 

i.i.d can be developed. Moreover, correlated log-normal shadowing can be included 

in the analysis.  

               7.2.2  Non-ideal Reporting Channel 

The reporting channel used for communication between the spectrum sensor 

and the fusion center is assumed to be a noiseless channel. However, in reality this 

assumption is not accurate since this channel is subject to noise and shadowing. 

Therefore, this should be taken into account by introducing the probability of error 

over the reporting channel in the system design. 

               7.2.3   Effect of the Mother Wavelet Function 

In chapter 5, the wavelet-based edge detection model used for wideband 

sensing used the Gaussian mother wavelet as the smoothing function. Other types of 

mother wavelet functions such as the Haar wavelet or Mexican hat wavelet can be 

used to study the effect of the mother wavelet types on the performance of the edge 

detection. 
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