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معادلات فضـاء الحالـة عشوائية اللاخطية باستخدام-المولدات الشبه تمثيل  
 

 ملخص 

على المصفوفات  التمثيلالبحث تمثيل للمولدات الشبه عشوائية اللاخطية باستخدام معادلات فضاء الحالة . يعتمد هذا  فكرة
حيث يتم توليد المتتابعة باستخدام المصفوفات و ليس كما هو متعارف عليه عند توليد متتابعات المولدات باستخدام 
مسجلات الإزاحة. كما تم تقديم خوارزميات لانواع مختلفة من المولدات الشبه عشوائية اللاخطية و استخراج متتابعاتها. 

 لين لتوضيح هذا التمثيل.علاوة على ذلك تم اعطاء مثا
   
 Abstract  

The idea of research is a representation of the nonlinear pseudo-random generators using state-space 

equations that is not based on the usual description as shift register synthesis but in terms of matrices. 

Different types of nonlinear pseudo-random generators with their algorithms have been applied in order to 

investigate the output pseudo-random sequences. Moreover, two examples are given for conciliated the 

results of this representation.  

 

 

 

1. INTRODUCTION 

Pseudo-random generators (PRG) are used as 

spectrum modulations for direct sequence spread 

spectrum design for digital communication system, 

in wireless technique and as a key in encryption to 

produce the ciphertext in cipher systems. The 

sequence appears random in nature but in reality, it 

is deterministic and available to the privileged users 

[1].  

The state space equations SSE has emerged in the 

last fifty years in the field of control theory. This 

method uses vector and matrices for system 

representation, so it permits a simple notation that is 

easily accepted and processed by digital computer 

[2]. In this work the nonlinear PRGs were viewed 

using SSEs.  

 

2. Pseudo-Random Generators PRG 

2.1 Nonlinear Feedback Shift Register (NLFSR) 

Generators [3,4] 

A NLFSR of length n is commonly used for 

producing PR-sequence. It is made up of two parts:  

shift registers (SR) and a feedback function. The SR 

is a storage element of a sequence of (n) bits. These 

(n) binary storage are called the stages of the SR. 

The algorithm is shown below.  

 

NLFSR Algorithm  

Step 1 

Input :-     

(1) The length (n) of the NLFSR. 

(2) The initial state of the  NLFSR  as  

     [s0 s1 . . . sn-1]. 

(3) The  nonlinear feedback function  

      f (sk, sk+1,…,sk+ n-1). 

Step 2 

Set  k = 0  

Step 3 
Shift the bits in the register by one position to the left 

and calculate the  feedback bit sk+ n  from  the 

nonlinear  function   f (sk, sk+1,…,sk+ n-1). 

Step 4 

Set a new state [sk+1 sk+2 . . . sk+n] of  NLFSR. 

Step 5 

If the new state is equal to the initial state then : 

a)  Stop 

b)  Print  the output   sk  , ,2,1,0k  

of  NLFSR. 

c)  Print  the period  (k+1)  of the sequence 

of  NLFSR. 

else 

 a)   k = k+1 

 b)  go to (step 3). 
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Example 
Consider the following NLF function (3-stage): 

f (sk ,sk+1 ,sk+2 )= sk+sk+1+sk+1.sk+2+1   

with initial state 101. The output sequence can be 

generated by applying NLFSR algorithm the 

produced sequence is : 10100011  . 

2.2  Hadmard Generator HG [5,6] 

A nonlinear generator consists of two LFSRs, one 

with (n-stage ) and the other with (m-stage) where 

the  gcd (m,n) =1  and each of which produces a 

sequence with maximal period. The two LFSR’s are 

combined with nonlinear function “AND” to 

produce a nonlinear sequence with period ((2n-1)
(2m-1)) as illustrated in figure (1). 

   

Figure(1) Hadmard generator. 

 

 

 

Hadmard Algorithm  

Step 1: 

Input:    

(1) The (n,m) stages of two LFSR’s. 

(2) The initial states of them . 

(3)  The coefficients of the linear feedback 

functions of them . 

Step 2: 

Use (step 1) and call LFSR algorithm to find their 

sequences. 

Step 3: 

Combine the two linear sequences in (step 2) with 

“AND” function to produce the Hadmard 

sequence . 

 

3.  State - Space Equations SSE [7,8,9,10]  

The SSE of the linear system is: 
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Where A is ( nn ) matrix, B is the ( mn )  

input matrix, C is the  np  output matrix and D 

is the  mp  transmission matrix. 

A mathematical model of a nonlinear system was 

described using SSE as follows: 
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where xk  is the state of the system, uk  is the input 

of the system and yk  is the output of the system. 

 

4. SSE of Non-Linear PRG: 

If we have NLFSR n-stage with nonlinear feedback 

function  f (sk , sk+1 ,…, sk+n-1 ) , where sk+n = f (sk , 

sk+1 ,…, sk+ n-1 ), k = 0,1,2,... ; then the nonlinear 

SSE can be derived using Eq.(2) as: 

x (k+1) = f (x (k) )                …(3) 
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where , 
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=f(x(k))                                                             …(5)  

while the output equation of the nonlinear state 

space model is 

 

 

 

,2,1,0,))(()()( 1  kkxhkxsky k
.

                                             …(6) 

When the nonlinear PRG is constructed from a 

nonlinear combination of two or more LFSR’s, the 

state space model can be derived as follows 

Let x1, x2,…, xj  be  j  LFSR’s ,  j >1 with  n1, 

n2 ,…,nj  stages and  f1(x), f2(x),…, fj (x) 

characteristic polynomials respectively , where : 

 
 

 

 

 
                                  Linear sequence               

       

                Nonlinear sequence 

   

          Linear sequence 

      

AND 

m-stage  shift register 

 with linear feedback 

function .   

n-stage  shift register  

with linear feedback 

function .   
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The linear recursion relations of the above LFSR’s 

are : 
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                 …(8) 

where  k = 0,1,2,…    . 

 The state variables are: 
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 From Eq.(8) and Eq.(9) the SSE is 

)()1( kxAkx                                        …(10) 

where  x (k) , k ≥ 0  is the state vector : 
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and A  is )()( 2121 jj nnnnnn   ) 

matrix  
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The nonlinear output equation of SSE can be 

obtained by using Eq.(2)  
  ,2,1,0,)()()()())(()( 1111 121211

  
kkxkxkxkxkxhky

jnnnnnn
     

                                                                       …(11) 

5.  Test Examples 

Example (1) 

Retrieval the example in section (2.1). To represent 

the NLFSR by using SSE, use Eq.(5) and Eq.(6):  
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f (x(k)) 

 ))(()()( 1 kxhkxky  . 

Example (2) : 

Consider HG with two LFSRs 

1)( 3

1  xxxf  with initial state 100  , 

and   1)( 2

2  xxxf with initial state 10   . 

By applying Hadmard algorithm, the following 

nonlinear sequence with period )12()12( 23   is 

obtained : 
 )(HadmardSeq 100101100000101001001 

Use Eq.(10) and Eq.(11) to represent HG by using 

SSE  

)()1( kxAkx   
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and the output is ))(()()()( 41 kxhkxkxky  . 

Conclusion 

State space models have been derived to 

represent PRG’s. From solving some test examples, 

the following points are included: 

1- State space model represent nonlinear PRG’s in 

a simplified mathematical way using matrices of 

first-order difference equations.  
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2- State space model of PRG gives rapid generation 

because its simple logic where it is computed 

easily in digital computer.  
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