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Abstract Comparison, division, and sign detection are considered to be complicated op-

erations in a residue number system (RNS). A straightforward solution is to

convert RNS numbers into binary formats and then perform complicated op-

erations using conventional binary operators. If efficient circuits are provided

for comparison, division, and sign detection, the application of RNS can be

extended to those cases that include these operations.

For RNS comparison in three-moduli set τ = {2n−1, 2n+k, 2n+1}, (0 ≤ k ≤ n),

we have found only one hardware realization. In this paper, an efficient

RNS comparator is proposed for moduli set τ , which employs a sign-detection

method and operates more efficiently than its counterparts. The proposed sign

detector and comparator utilize dynamic range partitioning (DRP), which has

been recently presented for unsigned RNS comparison. The delay and cost of

the proposed comparator are lower than the previous works, which makes it

appropriate for RNS applications with limited delay and cost.
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1. Introduction

A number X in a residue number system (RNS) with k moduli {m1,m2, · · ·,mk} is

represented by set of residues {x1, x2, · · ·, xk}, where xi = |X|mi
denotes the remain-

der of integer division X/mi. If the moduli are pair-wise prime, dynamic range M is

maximized (i.e., M = Πk
i=1mi). In RNS, operations like addition, subtraction, and

multiplication are performed in k parallel independent channels, which makes it a

promising candidate for applications that use frequent add/multiply operations such

as finite impulse response digital filters [4], data transmission [1], cryptography [18],

and image processing [28]. Furthermore, digital signal processing (DSP) has employed

RNS due to such properties as carry-free operations, parallelism, and modularity [2].

Recently, RNS has been used to achieve the energy-efficient hardware implementation

of neural networks for inference computations [16,17].

Since RNS is a non-weighted number system; comparison, division, sign, and over-

flow detection have difficulties. Difficult operations are often required for several

nonlinear procedures, such as median and rank-order filtering [20]. Several RNS com-

parison [3,5,10,12,13,20,22–24,27], sign-detection [9], and division [25] methods have

been proposed over the past two decades. As regarding the role of comparison in other

complicated operations such as division, sign, and overflow detection, it is expected

that a cost-effective and high-speed implementation of the comparison will assist in

improving other complicated operations. Moreover, the RNS comparators used in

some applications such as video coding [19] and deep neural networks [17] lead to

better results than a binary number system.

Besides popular moduli set {2n±1, 2n}, several three-moduli sets with dynamic ranges

of more than 3n-bit have been reported in the relevant literature (along with their

reverse converters) [6, 7, 14, 15]. Moduli set τ = {2n − 1, 2n+k, 2n + 1} has efficient

balanced arithmetic operations, with a (3n + k)-bit dynamic range and efficient re-

verse converter [8]. Besides the general methods for RNS comparison, there is only

one comparator that is designed specifically for this moduli set [20]. By considering

the efficiency of the dynamic range partitioning method for unsigned number com-

parison (as is experienced in several three-moduli sets), we are motivated to apply

this method for sign detection and signed number comparison to moduli set τ . In this

paper, we propose a signed number comparator for moduli set τ by employing the

DRP method. With analytical evaluations, we show that the proposed DRP-based

signed integer comparator outperforms other previous methods [8,20]. The work of [8]

only provides a reverse converter for moduli set τ , so we have augmented its converter

with a normal binary comparator.

The rest of this paper is organized as follows. Section 2 reviews a number of efficient

RNS comparison methods in the literature. In Sections 3 and 4, the proposed signed

RNS comparator for moduli set τ are described (along with its implementation de-

tails). Section 5 provides a comparison of the proposed comparator with the existing

schemes presented in [20] and [8]. Finally, we draw our conclusions based on the

obtained results in Section 6.
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2. Background material

Here, we first describe the representation of signed numbers in RNS and then review

some previous RNS comparison schemes. The dynamic range of representing numbers

in an arbitrary moduli set (i.e.,[0,M)) is partitioned into two nearly equal parts to

provide negative numbers. [0, [M/2]) and [[M/2],M) are considered to be positive

and negative intervals, respectively, where the absolute value of negative number X

is M −X. The sign of an RNS number X can be detected as follows:

sign(X)=

{
0 if 0 ≤ X < [M/2]

1 if [M/2] ≤ X < M .

Example: Consider moduli set {3, 4, 5} with M = 60. X = (1, 2, 3) = 58 >

[ 60/2] ; therefore, X is a negative number. The absolute value of X equals M −X =

60− 58 = 2; since X is negative, we have X = (1, 2, 3) = −2.

Several approaches have attempted to develop RNS comparison methods (mostly for

unsigned numbers) [3,5,10,12,22–24,27]. Some other works compared signed numbers

from a different perspective in which the dynamic range included both positive and

negative numbers [13,20].

The straightforward technique utilizes a reverse convertor to convert RNS operands

to binary and then compares them with a normal comparator. Such convertors are

usually based on Chinese remainder theorem (CRT) [21] or mixed-radix conversion

(MRC) [21]. Subsequently, there are some other comparators [2, 12, 24, 27] that do

not convert numbers completely and compare operands during the reverse-conversion

process.

In [10], a method for non-modular operations in RNS by summation sets of floating-

point numbers is proposed; however, this method is efficient only on modern massively

parallel general-purpose computing platforms such as GPU-based systems.

The authors of [13] proposed a fast signed number comparator for three four-moduli

sets based on the simple quantization method. Such a method exploits the unique

number theoretic properties of the moduli.

Some other methods have proposed the diagonal function [3, 5] to compare RNS

numbers. A diagonal number based on (1) is assigned to each number in the dynamic

range. For comparing two operands X and Y , D(X) and D(Y ) are computed; the

result of comparison is then determined by comparing D(X) and D(Y ). Like CRT,

this method is based on modular operations in a large modulo SQ, where SQ =

Σn
i=1(M/mi), and the values of µi satisfy |µimi|SQ = 1.

D(x) = |µ1x1 + µ2x2 + · · ·+ µnxn|SQ
(1)

The works of [22, 23] compare unsigned RNS numbers via DRP in moduli sets

{2n, 2n ± 1} and {2n, 2n − 1, 2n+1 − 1}. Partitioning the dynamic range of an ar-

bitrary three-moduli set (such as {m1,m2,m3}) produces m1 partitions of a size of

m2 ×m3 that are assigned to a primary integer identifier in [0,m1). Likewise, each

partition is divided into m2 partitions of a size of m3, with a corresponding secondary
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integer identifier in [0,m2). On the other hand, there are exactly one primary integer

identifier and one secondary integer identifier for each operand regarding the RNS

comparison. Therefore, the comparison operation can be reduced to comparing their

primary and secondary integer identifiers (represented by p1(X) and p2(X)) in (2)

and (3), respectively, as well as the modulo-m3 residues.

Equations (2) and (3) (which are borrowed from [22]) show how the DRP components

of an operand X = (x1, x2, x3) can be derived from the corresponding RNS residues,

where x23 = |X|m2m3 ,M1 = m2m3, and the multiplicative inverse of |A−1|B satisfies

|A×A−1|B = 1.

p2(X) = ||m−1
3 |m2

(x2 − x3)|m2
, (2)

p1(X) = ||M−1
1 |m1

(x1 − x23)|m1
(3)

The only comparator for moduli set τ is proposed in [20], which compares signed

numbers. This comparator is based on an optimized version of MRC for sign identi-

fication and performs the comparison through utilizing the sign bits of the operands

as well as their difference. The authors of [20] assumed that the inputs of the com-

parison method are two RNS numbers with two extra bits that identify their signs.

Such a comparator can be used in an architecture that, after performing any RNS

operations, the sign of the result is detected and stored. For multiplication/division

operations, the sign of the result is identified with a simple XOR gate in parallel with

the multiplication/division computation and does not cause any overhead. Unlike

multiplication/division, the sign of the addition/subtraction result is identified by

comparing the result with [M/2] (via MRC digits). Therefore, the adder and sub-

tractor should be augmented with the comparator.

To capture the overhead cost of the sign-detection circuit after each RNS operation,

we have synthesized a modular addition with or without the sign identification circuit

regarding moduli set τ for n = 8 and k = 0 via TSMC 90-nm standard CMOS tech-

nology by Synopsys Design Compiler for delay constraints in a range of 0.7 − 2.0ns

with 0.1−ns intervals. The power measures are illustrated by the curves in Figure 1.
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The delay of the addition in moduli set τ with and without the sign-detection

circuit is 1.6 and 0.7ns, respectively. Augmenting the sign-detection circuit after each

addition/subtraction causes up to twice the delay and power dissipation than simple

addition/subtraction. Such a growth in the power and delay is in contrast with the

strength points of RNS, which makes it an appropriate candidate for applications

with repeated usage of addition and multiplication operations.

3. Proposed DRP-based signed integer comparator

The proposed comparator is presented as Algorithm 1. First, the signs of the operands

are identified; then, if their signs are identical, the comparison operation is performed

by comparing their corresponding DRP components. The E, G, and L values in this

function denote the equality of the inputs, X > Y , and X < Y , respectively. In the

following, the proposed sign-detection method is first explained; it is based on the

DRP method [16]. Then, the computation of the DRP components in moduli set τ

are designated.

Algorithm 1: Signed number comparison in moduli set τ

1. function comparison (inputs: X : (x1, x2, x3),Y : (y1, y2, y3), output: Comp )

2. if sign(X) = sign(Y )

3. if (p1(X) > p1(Y )) then Comp = G // X > Y

4. else if (p1(X) < p1(Y )) then Comp = L // X < Y

5. else if (p2(X) > p2(Y )) then Comp = G // X > Y

6. else if (p2(X) < p2(Y )) then Comp = L // X < Y

7. else Comp = E // X = Y

8. else if sign(X) = 0 then Comp = G // X > Y

9. else Comp = L // X < Y

10. return Comp

11. end function

3.1. Sign detection

Let the m1 = 2n+k, m2 = 2n − 1, and m3 = 2n + 1 DRP method described in (2)

and (3) splits the dynamic range into 2n+k equal partitions in the moduli set τ (each

of which contains consecutive numbers – see Table 1). Each number in the dynamic

range belongs to exactly one partition. In each row of Table 1, a partition of the

dynamic range with its primary and secondary integer identifiers (i.e., p1(X) and

p2(X)) are presented, where M1 = M/m1 = 22n− 1. As shown in Table 1, the values

of p2(X) are different in each subset of the dynamic range that has a unique p1(X).

For example, the values of p2(X) for the first row of Table 1 with p1(X) = 0 are

presented in Table 2.

In moduli set τ , [0, 2n+k−1(22n − 1)) and [2n+k−1(22n − 1), 2n+k(22n − 1)) are the

intervals for the positive and negative numbers, respectively. As was proven in The-

orem 1, the sign of an RNS number X = (x1, x2, x3) is identified by the value of
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p1(X). Theorem 1: An RNS number X in moduli set τ is negative if and only if

p1,n+k−1 = 1, where p1(X) = p1,n+k−1 · · · p1,0.
Proof: p1,n+k−1 = 1 indicates that p1(X) ≥ 2n+k−1. Equation (4) describes

X in terms of DRP components, where p1(X) ∈ [0, 2n+k), M1 = 22n − 1, and

x23 = |X|22n−1 ∈ [0, 22n − 1).

X = p1(X)M1 + x23 = p1(X)(22n − 1) + x23 (4)

Based on (4) and assuming p1(X) < 2n+k−1, this entails X < 2n+k−1(22n − 1) + x23,

which shows that X > 0. With similar explanations, it is clear that p1(X) ≥ 2n+k−1

leads to X ≥ 2n+k−1(22n − 1), which indicates that X is negative.

Table 1
p1(X) values for moduli set τ

subset of dynamic range p1(X) p2(X)

[0,M1) 0 [0, 2n − 1)

[M1, 2M1) 1 [0, 2n − 1)

... ... ...

[2nM1, (2
n + 1)M1) 2n [0, 2n − 1)

... ... ...

[(2n+k − 1)M1, 2
n+kM1) 2n+k − 1 [0, 2n − 1)

Table 2
values of p1(X) and p2(X) for 0 ≤ X < (22n − 1)

subset of dynamic range p1(X) p2(X)

[0,m3) 0 0

[m3, 2m3) 0 1

... ... ...

[(2n − 2)m3, (2
n − 1)m3) 0 2n − 2

3.2. Computation of DRP components

p1(X) and p2(X) are investigated for moduli set τ . The multiplicative inverses that

are required for the DRP components are represented via Properties 1 and 2. Based

on (2), (3), and Properties 1 and 2, p1(X) and p2(X) are described in (5) and (6).

Property 1: |(2n + 1)−1|2n−1 = 2n−1

Property 2: |(22n − 1)−1|2n+k = −1

p1(X) = ||(22n − 1)−1|2n+k(x1 − x23)|2n+k = |x23 − x1|2n+k (5)

p2(X) = ||(2n + 1)−1)|2n−1(x2 − x3)|2n−1 = |2n−1(x2 − x3)|2n−1 (6)
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4. Implementation

The actual delay and cost of the proposed comparison method directly depend on the

complexity of the p1(X) and p2(X) generators. In this section, we provide implemen-

tation details for generating p1(X) and p2(X). To drive the implementation-friendly

equations for the DRP components (in consideration of x3 = 2n+1−1−x3), p2(X) can

be simplified to (7). Given that |2n−1x2 +2n−1x3 − 2n−1|2n−1 = |U + V |2n−1, U and

V are obtained through a modulo(2n − 1) carry save adder (CSA), where U + V = w

and w = wnwn−1 · · ·w0. Equation (8) is obtained by the well-known property of the

modulo 2n − 1 arithmetic (i.e., |2nwn|2n−1 = wn). Table 3 illustrates weighted-bit

arrangements for the three terms of p2(X), where U = un−1 · · · u0, V = vn−1 · · · v0
and bn−1 · · · b0, cn · · · c0 represent x2 and x3, respectively.

p2(X) = |2n−1x2 + 2n−1(x3 − 2n+1 + 1)|2n−1

= |2n−1x2 + 2n−1x3 − 2n−1|2n−1 (7)

= |U + V |2n−1 = w − 2nwn + wn (8)

Table 3
Bit organization of p2(X)

2n−1 ... 21 20 Component

b0 ... b2 b1 |2n−1x2|2n−1

c0 ... c2 c1 |2n−1x3|2n−1

cn ... 1 1 | − 2n−1|2n−1

un−1 ... u1 u0 U

vn−1 ... v1 v0 V

By the use of a new CRT [26] and (8), we replace x23 with x3+(2n+1)|U+V |2n−1

in (5), which leads to (9), where x1 = 2n+k − 1− x1. The bit organization of p1(X)

is illustrated in Table 4, where an+k−1 · · · a0 represents x1.

p1(X) = |x3 + (2n + 1)|2n−1(x2 − x3)|2n−1 − x1|2n+k

= |x3 + (2n + 1)|U + V |2n−1 − x1|2n+k

= |x3 + (2n + 1)(w − 2nwn + wn)− x1|2n+k

= |x3 + 2nw + w + wn − x1|2n+k

= |x3 + (2n + 1)w + wn + x1 + 1|2n+k

= |x3 + (2n + 1)(U + V ) + wn + x1 + 1|2n+k (9)
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Table 4
Bit organization of p1(X)

2n+k−1 ... 2n 2n−1 2n−2 .... 20

cn cn−1 cn−2 ... c0
uk−1 ... u0 un−1 un−2 ... u0

vk−1 ... v0 vn−1 vn−2 ... v0
an+k−1 ... an an−1 an−2 ... a0

1

wn

The value of p2(X) is achieved after the n-bit modulo (2n − 1) CSA, whose output

(i.e., U and V ) feed an n-bit modular adder. The implementation of p1(X) includes

an array of 4
2C(4 : 2compressor) to reduce the number of operands that exclude wn

to two. Two adders regarding the two possible values of wn received the outputs

of 4
2C (as shown in Figure 2). To obtain p1(X), the output of these two adders is

multiplexed through wn. In another realization (NewRed.), two (n+k)-bit adders are

reduced to one (n+ k)-bit adder – the carry of which is wn, where Red. indicates the

reduced version of the proposed architecture.

n-bit modulo                 CSA

(n+k)-bit            

(n+k)-bit Adder

Modulo                   adder

(n+k)-bit Adder

Figure 2. Proposed architecture of p1(X) and p2(X) generators for the moduli set τ

4.1. Parallel prefix realization

In the high-speed design of the proposed comparator (called NewPPA), the two simple

(n+k)-bit adders of Figure 2 can be replaced by one parallel prefix adder (PPA) [11],

which includes a carry input (as shown in Figure 3). In the PPA shown in Figure 2, the

carry generation signal gi and carry propagation signal pi for each position i ∈ (0, n+k]
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for two inputs u = un+k−1 · · · u0 and v = vn+k−1 · · · v0 are computed as follows:

gi = ui ∧ vi, pi = ui ∨ vi

Using gi and pi, group propagate Pi:j and group generate Gi:j are computed by

indicating the carry generation and propagation ability within positions j to i, where

j < i, Gi:0 = Gi, and Pi;0 = Pi. After the computation of carries ci, sum bits si can

be computed in a straightforward way as

hi = ui ⊕ vi, si = hi ⊕ ci.

On the other hand, the prefix design of PPA can be extended to achieve the sum

of two operands and a carry input (i.e., wn) (as shown in Figure 3). Therefore, the

critical delay path (CDP) of this design consists of an array of CSA, an n-bit modular

adder, one-stage PPA, and an XOR array. Figure 3 depicts the required PPA for

generating p1(X) in the aforementioned design.

k-bit CSA

2-Level n-bit Module                 CSA

Module                Adder

(n+k)-bit Parallel Prefix Adder

p g h p g h p g h p g h

Parallel Prefix Computation

...

...

Figure 3. PPA architecture of adder in NewPPA, which includes carry as input (i.e., wn)

An evaluation of the proposed designs is discussed in the next section. If the

operands have different signs, a final comparison of the two operands (X = (x1, x2, x3)

and Y = (y1, y2, y3)) is accomplished through feeding set of operands [p1(X), p1(Y )],
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[p2(X), p2(Y )], [x3, y3] into three different comparators. In other words, the final

comparison operation can be reduced to primarily comparing p1(X) and p1(Y ). In

the event of p1(X) = p1(Y ), a comparison of p2(X) and p2(Y ) can lead to the overall

comparison result unless they are also equal; in such a case, a comparison of the

modulo-(2n + 1) residues yields the final result.

5. Discussion

The proposed comparator method in this paper includes p1(X) and p2(X) genera-

tors followed by three comparators. Based on the p1(X) generator, three different

implementations (namely, New, NewRed., and NewPPA) are proposed. New is ex-

actly based on Figure 2, while NewRed. and NewPPA eliminate the multiplexer that

selects the desired p2(x). In addition, the two (n + k)-bit adders compound into an

(n+k)-bit PPA and an (n+k)-bit carry ripple adder (CRA) to save costs in NewRed.

and NewPPA, respectively.

As discussed in Section 2, the comparator of [20] is applicable to the architectures

that have a sign-detection circuit after each operation (which leads to extra power

consumption). Therefore, we assume that, in the comparator of [20], the signs of

the operands are computed like their difference, which leads to triple the same hard-

ware or execution time. Here, we compare three different proposed schemas with the

straightforward comparator and the comparator of [20]. The straightforward com-

parator includes the best RNS reverse converter [8] for moduli set τ and a normal

binary comparator.

In Tables 5 and 6, the number of different components within the CDP and all of

the components in each design are illustrated, respectively. Based on the components

of each design in Table 5, the comparators of [8, 20] have more components within

the CDP, which leads to more delay than the proposed architectures. Indeed, the

comparators of [8,20] have three different adders, while New and NewPPA have only

two adders within the CDP.

Table 5
Number of components within CDP

Method CSA
CRA PPA

n-bit n+ k-bit 3n+ k-bit n+ k-bit

New 3 2

NewRed. 1 1 2

NewPPA 2 1 1

[20] 3 2 1

[8] 1 2 1

The total delays and costs of the proposed architectures as well as those of [8,20]

are described in Table 7. The maximum and minimum total cost of the τ -comparators

belong to the comparators of [20] and [8], respectively. The comparator of [8] has less
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cost than the proposed comparators; however, its delay is drastically greater than the

others. The delay comparison is based on gate counting within the CDP, where the

delay of a simple two-input gate (i.e., AND, OR, NAND, and NOR) is denoted by

△G [11]. An n-bit CRA or CSA have a 2n△G delay and 7n#G cost, while an n-bit

PPA has a (2logn+ 3)△G delay and (1.5nlog(n+ 1) + 5n)#G cost.

Table 6
Number of components in different comparators

Method Simple Gate
CSA CRA PPA

k-bit n-bit n+ k-bit n-bit n+ k-bit 3n+ k-bit n-bit n+ k-bit

New log(3n+ k) 2 4 4 5

NewRed. log(3n+ k) 2 3 4 5

NewPPA log(3n+ k) 2 3 2 5 2

[20] 3log(3n+ k) 3 3 6 6 3 3

[8] 12k + 2n 4 4 1

Table 7
Total delay and cost in RNS comparators

Method Total delay (△G) Total cost (#G)

New 4n+ 4k + 12 95n+ 63k + log(3n+ k)

NewRed. 6n+ 4k + 4 88n+ 56k + log(3n+ k)

NewPPA 4n+ 2k + 8 91n+ 63k + 3nlogn+ log(3n+ k)

[20] 4(n+ k) + 2log(n+ k) + 15 135n+ 99k + log(3n+ k) + 4.5n(log(n) + log(n+ k))

[8] 10n+ 2k + 4 79n+ 19k

In order to find better insights into the merits of the proposed architectures, the

total delay and cost of each design are compared via the plots of Figures 4 and 5 for

n = 8, 16, where k ≤ n. As shown in Figures 4 and 5, the cost of the comparator

of [20] and the delay of [8] are each more than twice as much as those in the proposed

architectures. Based on the plots in Figure 4, the delay of the two proposed architec-

tures (New and NewPPA) are less than the comparators of [8] and [20]. In addition,

this confirms the superiority of the NewPPA in terms of delay with increased k. In

conclusion, the best previous τ -comparator [20] has more delay and cost as compared

to the proposed method. The lower cost of the straightforward comparator [8] is

achieved at a cost of much more delay. The considerably high delay of [8] (which

is in contrast to the RNS properties) makes it inefficient for RNS applications. The

performances of the proposed architectures are better than their counterparts; among

the three proposed architectures, NewRed. and NewPPA have less cost and less delay,

respectively.
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6. Conclusion

Because of the costly and time-consuming comparison operation in a residue number

system, the most common applications that use this system feature comparison-free
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computations. However, some research efforts have been ongoing in order to realize

efficient comparators to widen the application of this number system. Moduli set τ is

an extension of popular moduli set {2n − 1, 2n, 2n + 1}, whose reverse converter has

been appeared in the relevant literature.

Dynamic range partitioning with partitioning the dynamic range to several in-

tervals helps to facilitate complicated operations. With the use of DRP components,

the proposed comparator identified the sign of the operands and compared them. An

evaluation of the proposed designs and the best previous comparator showed that the

proposed reduced design has less delay and that the proposed parallel prefix design

has less cost for n = 8 and n = 16.
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