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Abstract— Feature engineering and selection is a critical step 
in the implementation of any machine learning system.  In 
application areas such as intrusion detection for cybersecurity, 
this task is made more complicated by the diverse data types and 
ranges presented in both raw data packets and derived data fields.  
Additionally, the time and context specific nature of the data 
requires domain expertise to properly engineer the features while 
minimizing any potential information loss.  Many previous efforts 
in this area naively apply techniques for feature engineering that 
are successful in image recognition applications.  In this work, we 
use network packet dataflows from the Defense Research and 
Engineering Network (DREN) and the Engineer Research and 
Development Center’s (ERDC) high performance computing 
systems to experimentally analyze various methods of feature 
engineering. The results of this research provide insight on the 
suitability of the features for machine learning based 
cybersecurity applications.  

Keywords—artificial intelligence, machine learning, feature 
engineering, cybersecurity 

I. INTRODUCTION 
A key function of network security includes continually 

monitoring the computer network to detect when unauthorized 
and unauthenticated access to secure information has occurred. 
The monitoring of network traffic and host logs may find 
evidence of malicious activity (i.e., an attack) that can then be 
raised as a network security incident. Malicious actors pose 
considerable threats against these computer networks by their 
continued attempts to exploit potential vulnerabilities. To detect 
malicious activity in near real-time, intrusion detection systems 
(IDS) are commonly used to alert cybersecurity analysts who 
then take appropriate action against the alerts. Two broad classes 
of intrusion detection methods include knowledge-based 
detection (e.g., use of signatures to match traffic to a list of 
known-malicious byte patterns) and behavior-based detection 
(e.g., flagging traffic that deviates from “normal” as anomalous, 
with the assumption it is then malicious) [1]. Regardless of the 
method used, analysts are frequently overwhelmed by the deluge 
of alerts (both false and true positives) and suffer from alert 
fatigue.  As a result, machine learning is applied to the alert 
stream in hopes of reducing analyst workload through removal 
of false positives in the data stream. 

More recently, machine learning (ML) is a data-driven 
artificial intelligence paradigm that has been used to improve 
upon the limitations of these intrusion detection methods, as 
well as in other cybersecurity applications. One of the main 
difficulties in applying ML to the intrusion detection problem is 

that network traffic cannot be used directly as ML algorithm 
input. Feature vectors constructed/engineered from the network 
traffic must be used. Thus, feature engineering 
(extraction/encoding) and selection is a critical task to use ML 
for intrusion detection. This task is complicated by the diverse 
data types and ranges presented in both raw data packets and 
derived data packets [2].  Additionally, the time and context 
specific nature of the data requires domain expertise to properly 
engineer the features while minimizing any potential 
information loss. 

The aim of this research is to identify experimentally which 
feature engineering techniques work best for cybersecurity 
related data, particularly network flow data. Due to the high-
dimensional feature space of feature engineered network traffic 
data, high performance computing systems are employed for the 
experimental design and execution. The current literature relies 
on anecdotal, best practices-based methods for this domain, 
whereas quantitative results over a large test framework will 
improve the state-of-the-art for the field.  This work does not 
attempt to solve the challenge of feature selection which uses the 
product of our work as its input.  The remainder of the paper is 
organized as follows: a review of related works is examined in 
section II, whereas section III details feature engineering 
experimentation. Results are presented in section IV, and 
conclusions, limitations, and future work are described in 
section V. 

II. RELATED WORKS 
To effectively apply Machine Learning for intrusion 

detection or other network security applications, feature 
engineering and selection serves as an essential data 
preprocessing step to transform network traffic data into useful 
feature vectors that optimize detection performance. Typically, 
a combination of domain knowledge and automated methods is 
used to clean, engineer, reduce, and select the most useful 
features.  

In fields other than intrusion detection, some work has been 
done to compare engineering techniques, though most work 
focuses on feature selection.  Work done in [3] examines the 
effects of various transformation techniques on numerical 
features.  The authors define a feature representation named the 
Quantile Sketch Array that enables their system to predict the 
ability of a feature transformation to improve classification 
accuracy.  The work performed in [4] examines different 
engineering techniques to improve fraud detection in credit card 
environments.  Here they experiment with a variety of methods 
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that incorporate user behavior using variable time windows and 
other methods.  Both studies differ from our work in the domain 
and the types of data that are engineered. 

In terms of data cleaning and engineering, several studies 
have performed normalization, encoding and other 
transformation techniques (indicator variables, conditional 
probabilities, etc.) to convert network traffic attributes into data 
that is useable in machine learning algorithms [5]–[10].  

In [5], [7], [8] the authors use Z-score standardization on 
numeric values in the KDD’99 dataset.  For discrete and 
categorical data, [5] and [2] use one-hot encoding.  The 
challenge with this method is feature explosion resulting in large 
input matrices.  The authors in [5] and [6] use frequency 
information about the data to encode these values.  This results 
in more compact feature sets but relies heavily on the quality of 
the underlying samples in comparison to the population.  Davis 
[2] extracts embedded features from string data transforming it 
into three values: string length, information entropy, and 
unigrams (frequency vector of ASCII values).  In all of these 
works, no other engineering techniques are considered and thus, 
the appropriateness of them is not evaluated. 

The authors in [9] and [11] do a limited experiment on 
feature engineering methods for specific fields using the 
KDD’99 dataset.  The work in [9] compares three engineering 
techniques to an ‘arbitrary’ technique that is equivalent to label 
encoding.  They use indicator variables (one-hot encoding), 
conditional probabilities (N-dimensional probability vector), 
and a separability split value (tree-based method) for 
comparisons.  They show that all three of the techniques are 
more accurate than the one-hot technique but do not show the 
superiority of any of the three.  Their work is limited in 
comparison to ours in that they only experiment on three 
categorical fields: protocol, service, and flag.   

The authors in [11] perform a comparison of engineering 
techniques on IPv4 addresses.  Here, they compare a 32-bit 
vector representation, a 4-octet representation, and an extended-
octet representation (method where cross-octet information is 
incorporated) in a machine learning application.  They use a self-
created dataset of benign and malicious websites to test their 
methods.  They do not compare their methods against standard 
techniques such as one-hot encoding nor do they incorporate 
other features into their malicious website detection system. 

Experiments were done in [12] to determine how ten 
numerical engineering techniques (e.g., counts, logarithms, 
square roots, and polynomials) effect the accuracy of four 
classifiers.  The results indicated that neural networks and SVM 
classifiers benefited from certain techniques and the gradient 
boosting algorithms and Random Forest algorithms benefited 
from similar techniques.  Our work differs from this research 
through the expansion to categorical and textual features and our 
use of a novel dataset. 

Work beyond feature engineering has been done by many to 
perform feature selection.  Principal component analysis has 
been commonly used for data reduction to alleviate the curse of 
dimensionality [6], [10], [13], [14].  In terms of feature selection, 
for example, Li et al. [15] used a modified random mutation hill 
climbing algorithm, whereas Chebrolu et al. [16] used a Markov 

blanket model. Feature selection is an important component of 
machine learning systems; however, this work relies on well-
engineered features to produce reliable results.  

III. FEATURE ENGINEERING EXPERIMENTS 
The data used in this work was collected from real network 

traffic on the U.S. Department of Defense (DoD) Defense 
Research and Engineering Network (DREN) using the compute 
resources available at the U.S. Army Corps of Engineers’ 
Engineer Research and Development Center (ERDC).  ERDC’s 
HACSAW API allows researchers to query the Cybersecurity 
Environment for Detection, Analysis, and Reporting (CEDAR) 
[17] database containing processed dataflows of DREN traffic 
to include live traffic.   

The database was queried to obtain 250,000 unique entries 
for our training set and 25,000 unique entries for our test set 
from http alert data.  HTTP traffic was chosen due to the 
prevalence of this type of traffic in the database.  The alert data 
entries are those marked as entries requiring expert review by 
the network’s Zeek (formerly Bro) intrusion detection system 
[18].  Each entry contains 68 fields reported by the Zeek tool and 
includes a label (normal versus bad) created by the subject 
matter expert who reviewed the alert.  This raw data was 
processed to drop 52 of the fields (administrative in nature such 
as notes, owner) leaving 16 fields per entry.  Table I contains the 
fields and descriptions remaining in the data sets. 

  Using CEDAR’s JupyterLab notebook interface, the data 
set was feature engineered to create a baseline solution to use for 
comparison with other engineering techniques.  The methods 
chosen to engineer the baseline solution were chosen to model 
commonly used techniques such as those found in [17].  For the 
fields connection, country codes, severity, and method, scikit-
learn’s [19] label encoding was used to create unique code 
identifiers for each of the entries in those fields.  Integer fields 
(request and response body lengths) were scaled using a 
MinMaxScaler to the range [0,1].  The origin host, response host 
and port fields were converted to bit vectors similar to the 
technique in [11] to keep the number of feature columns small, 
maintain information contained in the associated data structure, 
and handle values not seen in the training set.  The port fields 
were converted to a 16-bit value to contain all possible values 0-
65535.  The origin host and response host fields were converted 
to 128-bit fields to handle the IPv4 and IPv6 addresses found in 
the data set.  The origin org and response org fields were 
binarized to indicate either internal or external traffic.  The user 
agent field was parsed to extract the operating system (os) and 
browser.  These two new fields replaced the user agent string in 
the data set after label encoding the resulting data.  The host field 
was binned into 11 frequently used top-level domains (e.g., .mil, 
.com, .edu) and an other category for low frequency domains 
(e.g., .bit, .info, .ua).   These bins were then label encoded in the 
final data set.   

Next, we considered different methods of feature 
engineering the fields of the data set.  In each experimental 
variation, only one field was altered to isolate the effects of the 
change compared to the baseline solution.  The variations were 
not compared exhaustively due to the large number of 
perturbations and the resulting computing resources that would 
require.  For the user agent field, we tested three alternate 
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engineering methods.  We examined two alternate engineering 
techniques for the connection, country code, origin/response 
host, and port fields.   For the http method, body length, severity, 
and origin/response org fields we used one alternate method.  
The number of variations examined depended on the nature of 
the data and how it could be manipulated without losing 
information. 

Table I. HTTP Alert Data Set Fields 

Field Example Data

connection open, close, none 

host my.connection.edu 

origin host, response host 192.168.0.1 

origin host country code, response 
host country code 

US 

origin host org external, internal 

origin port, response port 12345 

response host org ca.hostconn-0031.host.edu

method GET, POST 

request body length, response body 
length 

10 

user_agent Mozilla/5.0[en](X11,U;OpenVAS-
VT 8.0.9) 

severity H, M, L 

status (i.e., label) normal, bad 

The user agent field had the most opportunity to experiment 
with feature engineering techniques given the information 
contained in its text strings.  The first technique used was to 
binarize the field into entries with the term ‘bot’ and those 
without.  The resulting values were then one-hot encoded 
resulting in two output features. The premise is that http traffic 
generated by a bot may be more likely to be malicious.  The next 
technique was to binarize entries based upon the browser used 
in the traffic. Traffic using a commercial browser in the set 
[Chrome, IE, Firefox, Safari, Edge, Android, Mobile Safari] 
were grouped while all other browsers were placed an ‘other’ 
group.  The resulting field was then made one-hot to create two 
features.  Finally, the last technique used one-hot encoding on 
the extracted operating system field (e.g., Windows, Mac OS X, 
iOS) that resulted in 12 new feature columns.     

For the connection field, the experimental techniques used 
were one-hot encoding and binarization.  The increase in the 
number of data set columns with one-hot encoding is limited due 
to the fixed size of the data in that field and is thus not onerous 
(columns increased by 15).  The other technique binarized the 
connections into NONE versus all others.  This presumed that 
connections with a NONE status were malformed and therefore 
indicative of malicious behavior. 

The origin and response country code field used one-hot 
encoding and binning as alternative engineering methods.  The 
one-hot encoding resulted in 178 new feature columns.  This is 
an increase of 59% in the number of features.  Certainly, the 
number of countries is relatively stable and fixed so feature 
growth is not a huge concern.  The other technique used first 

binned the entries into one of the 17 most frequently used codes 
based on the dataset or into an ‘other’ bin.  The results were then 
encoded using one-hot encoding to create 18 new feature 
columns.  This technique was a compromise between 
information contained in the country code and the number of 
columns introduced in the data set. 

For the origin and response host fields, experiments were 
done using one-hot encoding and creating sixteen 8-bit integers.  
One-hot encoding of the IP addresses is a common technique but 
suffers from feature explosion and a resulting high-
dimensionality problem.  IPv4 addresses have over 4 billion 
possible values and thus the ability to model all of them is 
limited.  Additionally, addresses not seen during model training 
cause problems with predictions by the trained model.  IPv6 
addresses complicate this further given their 228 possible values.  
An alternative method proposed in [11] treats each ‘quad’ or 
octet of the address as an integer or in the case of IPv6 addresses, 
two integers.  Using this method, each IP address is parsed into 
sixteen 8-bit integers [0,255]. This method uses only 32 features 
compared to the 256 required in the baseline encoding while 
maintaining some network information contained in the IP 
address structure.   

The port field was altered using one-hot encoding and 
binning.  Similar to the IP data, one-hot encoding can expand 
the number of columns dramatically.  In this case, the number of 
features grew to 48,306 from 300.  This is problematic as it 
caused one of the classifier algorithms to not converge and 
predictions based on unseen ports would be problematic.  The 
other technique used binned the origin port into four bins.  The 
bin cutoffs (frequency based) were: 0.0, 0.30, 0.50, 0.75, and 
1.0.  This resulted in port numbers binned with the following 
cutoffs:  0, 38534, 48201, 55940, and 65535.  The output feature 
indicated in which bin the port was located.  The response port 
was binarized to indicate either port 80 or not.  Port 80 is the 
expected response port as the data set is comprised of http traffic. 

The http method, severity, and origin/response org fields all 
used one-hot encoding for their alternate engineering method.  
The http method and severity fields are limited in their allowed 
values and therefore the growth in feature columns is small.  The 
origin org field is limited to two values (internal, external) and 
thus converts easily to one-hot encoding.  The response org field 
is more variable and thus results in a large growth of output 
feature columns once one-hot encoding is applied based upon 
the data set used for training.  For our experiments, the number 
of columns expanded by 228 after the encoding. 

The last alternate engineering technique applied was to the 
body length field.  To determine if large outliers in the data were 
affecting the results, the scikit-learn [19] RobustScaler was 
applied to the data without centering.  This method removes the 
median from the data and scales the data according to the 
quantile range.   

IV. RESULTS 
The project baseline and all the alternate engineering 

techniques were evaluated against multiple classifiers.  All of 
the classifiers used are from scikit-learn’s API.  Table II shows 
the classifiers and any non-default settings utilized.   The Voting 
Ensemble classifier uses the Random Forest, Multi-layer 
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Perceptron, Complement Naïve Bayes, Gradient Boosting, 
Logistic Regression, and Linear Discriminant Analysis 
classifiers for its sub-models.  

Table II. Scikit-Learn Classifiers Used for Evaluation 

Classifier Non-default Settings

Random Forrest (RF) n_estimators=300, 
criterion=entropy 

Multi-layer Perceptron (MLP)  

Complement Naïve Bayes – (CNB)  

Gradient Boosting (GB)  

Logistic Regression (LR)  

Linear Discriminant Analysis (LDA) solver='lsqr', shrinkage='auto'

Quadratic Discriminant Analysis (QDA) reg_param=0.7 

Gaussian Bayes (GaB)  

Bagging (Bag)  

Decision Tree (DT)  

Voting Ensemble (VE) voting='soft' 

As discussed in the previous section, the choice of feature 
engineering technique can affect the number of output features 
in the data set.  Table III shows the relationship between the 
technique and the number of features.  Of note, some of the 
classifiers did not converge during training due to the large 
number of features (ex. port one-hot encoding).  

Given these results, we used the Voting Ensemble Classifier 
accuracy results to select the ‘best’ technique for each of the 
features.  The techniques used were: connection binarize/one-
hot; host top-level domain; http method one-hot; port binning; 
severity one-hot; user-agent ‘bot’ detection binary/one-hot; 
origin/response host sixteen x 8-bit ints; and org one-hot.  For 
the remaining features, the techniques in the project baseline 
were used (country code label encoding; length MinMaxScaler).  
The results of this ‘Best Technique’ method is shown by the line 
plot in Figure 1.  Though the ‘Best Technique” method generally 
resulted in better accuracy than average, it is not supreme.  Of 
note though, this method dramatically improved the accuracy of 
the QDA, Bagging, and DT classifiers.  

Figure 1 shows the classification accuracy results of the 
experimental feature engineering techniques for the eleven 
classifiers examined.  The distribution of the data reveals that 
many of the classifiers perform similarly across the range of 
feature engineering techniques evaluated.  No one technique or 
classifier resulted in supremacy.  The best engineering method 
varied by classifier.  

 From these results, we identified that certain classifiers 
perform poorly for this type of data.  Except for the ‘Best 
Technique’ method, the average accuracy of the Quadratic 

Discriminant Analysis, Gaussian Bayes, Bagging, and Decision 
Tree classifiers is 23.1% lower than the remaining classifiers.  
As a result, it is recommended that IDS developers do not use 
these classifiers for their products.   

 Figure 2 shows how each feature engineering technique 
performed against the eleven classifiers in terms of accuracy.  As 
shown, the performance is similar with the best accuracies 
ranging between 72% and 83%.  The exception is the ‘Best 
Technique’ whose distribution across the classifiers is tighter 
and has a higher average accuracy.  

 The execution times for each of the classifiers except for the 
MLP classifier is fairly uniform except when the number of 
feature columns grows rapidly.  As expected, the predictors run 
much slower when the large number of features encountered in 
the one-hot encoding of the port and origin/response host fields.  
The execution times of the classifiers are shown in Figure 3. 

       Table III. Number of Features by Engineering Technique 

Feature Engineering 
Technique 

Number of Features 

  Baseline 300 

Connection binarize 300 

one-hot 315 

Country Code binning 334 

one-hot 478 

Host top-level domain 300 

one-hot 4288 

Http method one-hot 306 

Body length robust scaler 300 

Port one-hot 48306 

binning 270 

Severity one-hot 303 

User Agent os one-hot 312 

browser binarize/one-
hot 

301 

‘bot' detection 
binary/one-hot 

300 

origin/response host 
(IP addr) 

Sixteen x 8-bit 
integers 

108 

one-hot 8318 

Org one-hot 528 
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Figure 1. Classifier Average Accuracy Across All Engineering Techniques. 

 
 

 
Figure 2. Feature Engineering Techniques versus the Classification Accuracy of Experimental Classifiers. 
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Figure 3. Classifier Prediction Execution Times versus Number of Features

V.  CONCLUSIONS 
 Feature engineering network datasets is challenging.  
Methods used in the image recognition and other common 
domains do not readily transfer to this domain.  In this work, we 
presented experimental results for a variety of feature 
engineering techniques against a variety of ML-based 
classifiers.  Though a combination of ‘best techniques’ resulted 
in good performance against the experimental techniques, no 
black box type feature engineering solution was discovered that 
improves the detection rate of malicious traffic. 

 Future work in this area includes testing these techniques 
against other datasets and other traffic flows in this dataset (e.g., 
dns, connection).  Additionally, it would be valuable to explore 
feature engineering techniques against the raw network data to 
evaluate its effectiveness without the reliance on the underlying 
IDS and netflow algorithm.  Finally, comparative work using 
unsupervised learning techniques on this data would be valuable 
to understand how to engineer features that have large ranges 
such as IP addresses. 
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