
United States Military Academy United States Military Academy

USMA Digital Commons USMA Digital Commons

ACI Journal Articles Army Cyber Institute

12-9-2019

Intelligent Feature Engineering for Cybersecurity Intelligent Feature Engineering for Cybersecurity

Paul Maxwell
Army Cyber Institute

Elie Alhajjar
Army Cyber Institute

Nathaniel D. Bastian
Army Cyber Institute

Follow this and additional works at: https://digitalcommons.usmalibrary.org/aci_ja

 Part of the Artificial Intelligence and Robotics Commons, Databases and Information Systems

Commons, Digital Communications and Networking Commons, Electrical and Computer Engineering

Commons, Information Security Commons, OS and Networks Commons, and the Theory and Algorithms

Commons

Recommended Citation Recommended Citation
P. Maxwell, E. Alhajjar and N. D. Bastian, "Intelligent Feature Engineering for Cybersecurity," 2019 IEEE
International Conference on Big Data (Big Data), 2019, pp. 5005-5011, doi: 10.1109/
BigData47090.2019.9006122

This Article is brought to you for free and open access by the Army Cyber Institute at USMA Digital Commons. It
has been accepted for inclusion in ACI Journal Articles by an authorized administrator of USMA Digital Commons.
For more information, please contact thomas.lynch@westpoint.edu.

https://digitalcommons.usmalibrary.org/
https://digitalcommons.usmalibrary.org/aci_ja
https://digitalcommons.usmalibrary.org/aci
https://digitalcommons.usmalibrary.org/aci_ja?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thomas.lynch@westpoint.edu

978-1-7281-0858-2/19/$31.00 © 2019 IEEE

Intelligent Feature Engineering for Cybersecurity

Paul Maxwell
Army Cyber Institute

United States Military Academy
West Point, NY

paul.maxwell@westpoint.edu

Elie Alhajjar
Army Cyber Institute

United States Military Academy
West Point, NY

elie.alhajjar@westpoint.edu

Nathaniel D. Bastian
Army Cyber Institute

United States Military Academy
West Point, NY

nathaniel.bastian@westpoint.edu

Abstract— Feature engineering and selection is a critical step
in the implementation of any machine learning system. In
application areas such as intrusion detection for cybersecurity,
this task is made more complicated by the diverse data types and
ranges presented in both raw data packets and derived data fields.
Additionally, the time and context specific nature of the data
requires domain expertise to properly engineer the features while
minimizing any potential information loss. Many previous efforts
in this area naively apply techniques for feature engineering that
are successful in image recognition applications. In this work, we
use network packet dataflows from the Defense Research and
Engineering Network (DREN) and the Engineer Research and
Development Center’s (ERDC) high performance computing
systems to experimentally analyze various methods of feature
engineering. The results of this research provide insight on the
suitability of the features for machine learning based
cybersecurity applications.

Keywords—artificial intelligence, machine learning, feature
engineering, cybersecurity

I. INTRODUCTION
A key function of network security includes continually

monitoring the computer network to detect when unauthorized
and unauthenticated access to secure information has occurred.
The monitoring of network traffic and host logs may find
evidence of malicious activity (i.e., an attack) that can then be
raised as a network security incident. Malicious actors pose
considerable threats against these computer networks by their
continued attempts to exploit potential vulnerabilities. To detect
malicious activity in near real-time, intrusion detection systems
(IDS) are commonly used to alert cybersecurity analysts who
then take appropriate action against the alerts. Two broad classes
of intrusion detection methods include knowledge-based
detection (e.g., use of signatures to match traffic to a list of
known-malicious byte patterns) and behavior-based detection
(e.g., flagging traffic that deviates from “normal” as anomalous,
with the assumption it is then malicious) [1]. Regardless of the
method used, analysts are frequently overwhelmed by the deluge
of alerts (both false and true positives) and suffer from alert
fatigue. As a result, machine learning is applied to the alert
stream in hopes of reducing analyst workload through removal
of false positives in the data stream.

More recently, machine learning (ML) is a data-driven
artificial intelligence paradigm that has been used to improve
upon the limitations of these intrusion detection methods, as
well as in other cybersecurity applications. One of the main
difficulties in applying ML to the intrusion detection problem is

that network traffic cannot be used directly as ML algorithm
input. Feature vectors constructed/engineered from the network
traffic must be used. Thus, feature engineering
(extraction/encoding) and selection is a critical task to use ML
for intrusion detection. This task is complicated by the diverse
data types and ranges presented in both raw data packets and
derived data packets [2]. Additionally, the time and context
specific nature of the data requires domain expertise to properly
engineer the features while minimizing any potential
information loss.

The aim of this research is to identify experimentally which
feature engineering techniques work best for cybersecurity
related data, particularly network flow data. Due to the high-
dimensional feature space of feature engineered network traffic
data, high performance computing systems are employed for the
experimental design and execution. The current literature relies
on anecdotal, best practices-based methods for this domain,
whereas quantitative results over a large test framework will
improve the state-of-the-art for the field. This work does not
attempt to solve the challenge of feature selection which uses the
product of our work as its input. The remainder of the paper is
organized as follows: a review of related works is examined in
section II, whereas section III details feature engineering
experimentation. Results are presented in section IV, and
conclusions, limitations, and future work are described in
section V.

II. RELATED WORKS
To effectively apply Machine Learning for intrusion

detection or other network security applications, feature
engineering and selection serves as an essential data
preprocessing step to transform network traffic data into useful
feature vectors that optimize detection performance. Typically,
a combination of domain knowledge and automated methods is
used to clean, engineer, reduce, and select the most useful
features.

In fields other than intrusion detection, some work has been
done to compare engineering techniques, though most work
focuses on feature selection. Work done in [3] examines the
effects of various transformation techniques on numerical
features. The authors define a feature representation named the
Quantile Sketch Array that enables their system to predict the
ability of a feature transformation to improve classification
accuracy. The work performed in [4] examines different
engineering techniques to improve fraud detection in credit card
environments. Here they experiment with a variety of methods

2019 IEEE International Conference on Big Data (Big Data)

978-1-7281-0858-2/19/$31.00 ©2019 IEEE 5005

Authorized licensed use limited to: West Point Military Academy. Downloaded on September 15,2021 at 21:03:24 UTC from IEEE Xplore. Restrictions apply.

that incorporate user behavior using variable time windows and
other methods. Both studies differ from our work in the domain
and the types of data that are engineered.

In terms of data cleaning and engineering, several studies
have performed normalization, encoding and other
transformation techniques (indicator variables, conditional
probabilities, etc.) to convert network traffic attributes into data
that is useable in machine learning algorithms [5]–[10].

In [5], [7], [8] the authors use Z-score standardization on
numeric values in the KDD’99 dataset. For discrete and
categorical data, [5] and [2] use one-hot encoding. The
challenge with this method is feature explosion resulting in large
input matrices. The authors in [5] and [6] use frequency
information about the data to encode these values. This results
in more compact feature sets but relies heavily on the quality of
the underlying samples in comparison to the population. Davis
[2] extracts embedded features from string data transforming it
into three values: string length, information entropy, and
unigrams (frequency vector of ASCII values). In all of these
works, no other engineering techniques are considered and thus,
the appropriateness of them is not evaluated.

The authors in [9] and [11] do a limited experiment on
feature engineering methods for specific fields using the
KDD’99 dataset. The work in [9] compares three engineering
techniques to an ‘arbitrary’ technique that is equivalent to label
encoding. They use indicator variables (one-hot encoding),
conditional probabilities (N-dimensional probability vector),
and a separability split value (tree-based method) for
comparisons. They show that all three of the techniques are
more accurate than the one-hot technique but do not show the
superiority of any of the three. Their work is limited in
comparison to ours in that they only experiment on three
categorical fields: protocol, service, and flag.

The authors in [11] perform a comparison of engineering
techniques on IPv4 addresses. Here, they compare a 32-bit
vector representation, a 4-octet representation, and an extended-
octet representation (method where cross-octet information is
incorporated) in a machine learning application. They use a self-
created dataset of benign and malicious websites to test their
methods. They do not compare their methods against standard
techniques such as one-hot encoding nor do they incorporate
other features into their malicious website detection system.

Experiments were done in [12] to determine how ten
numerical engineering techniques (e.g., counts, logarithms,
square roots, and polynomials) effect the accuracy of four
classifiers. The results indicated that neural networks and SVM
classifiers benefited from certain techniques and the gradient
boosting algorithms and Random Forest algorithms benefited
from similar techniques. Our work differs from this research
through the expansion to categorical and textual features and our
use of a novel dataset.

Work beyond feature engineering has been done by many to
perform feature selection. Principal component analysis has
been commonly used for data reduction to alleviate the curse of
dimensionality [6], [10], [13], [14]. In terms of feature selection,
for example, Li et al. [15] used a modified random mutation hill
climbing algorithm, whereas Chebrolu et al. [16] used a Markov

blanket model. Feature selection is an important component of
machine learning systems; however, this work relies on well-
engineered features to produce reliable results.

III. FEATURE ENGINEERING EXPERIMENTS
The data used in this work was collected from real network

traffic on the U.S. Department of Defense (DoD) Defense
Research and Engineering Network (DREN) using the compute
resources available at the U.S. Army Corps of Engineers’
Engineer Research and Development Center (ERDC). ERDC’s
HACSAW API allows researchers to query the Cybersecurity
Environment for Detection, Analysis, and Reporting (CEDAR)
[17] database containing processed dataflows of DREN traffic
to include live traffic.

The database was queried to obtain 250,000 unique entries
for our training set and 25,000 unique entries for our test set
from http alert data. HTTP traffic was chosen due to the
prevalence of this type of traffic in the database. The alert data
entries are those marked as entries requiring expert review by
the network’s Zeek (formerly Bro) intrusion detection system
[18]. Each entry contains 68 fields reported by the Zeek tool and
includes a label (normal versus bad) created by the subject
matter expert who reviewed the alert. This raw data was
processed to drop 52 of the fields (administrative in nature such
as notes, owner) leaving 16 fields per entry. Table I contains the
fields and descriptions remaining in the data sets.

 Using CEDAR’s JupyterLab notebook interface, the data
set was feature engineered to create a baseline solution to use for
comparison with other engineering techniques. The methods
chosen to engineer the baseline solution were chosen to model
commonly used techniques such as those found in [17]. For the
fields connection, country codes, severity, and method, scikit-
learn’s [19] label encoding was used to create unique code
identifiers for each of the entries in those fields. Integer fields
(request and response body lengths) were scaled using a
MinMaxScaler to the range [0,1]. The origin host, response host
and port fields were converted to bit vectors similar to the
technique in [11] to keep the number of feature columns small,
maintain information contained in the associated data structure,
and handle values not seen in the training set. The port fields
were converted to a 16-bit value to contain all possible values 0-
65535. The origin host and response host fields were converted
to 128-bit fields to handle the IPv4 and IPv6 addresses found in
the data set. The origin org and response org fields were
binarized to indicate either internal or external traffic. The user
agent field was parsed to extract the operating system (os) and
browser. These two new fields replaced the user agent string in
the data set after label encoding the resulting data. The host field
was binned into 11 frequently used top-level domains (e.g., .mil,
.com, .edu) and an other category for low frequency domains
(e.g., .bit, .info, .ua). These bins were then label encoded in the
final data set.

Next, we considered different methods of feature
engineering the fields of the data set. In each experimental
variation, only one field was altered to isolate the effects of the
change compared to the baseline solution. The variations were
not compared exhaustively due to the large number of
perturbations and the resulting computing resources that would
require. For the user agent field, we tested three alternate

5006

Authorized licensed use limited to: West Point Military Academy. Downloaded on September 15,2021 at 21:03:24 UTC from IEEE Xplore. Restrictions apply.

engineering methods. We examined two alternate engineering
techniques for the connection, country code, origin/response
host, and port fields. For the http method, body length, severity,
and origin/response org fields we used one alternate method.
The number of variations examined depended on the nature of
the data and how it could be manipulated without losing
information.

Table I. HTTP Alert Data Set Fields

Field Example Data

connection open, close, none

host my.connection.edu

origin host, response host 192.168.0.1

origin host country code, response
host country code

US

origin host org external, internal

origin port, response port 12345

response host org ca.hostconn-0031.host.edu

method GET, POST

request body length, response body
length

10

user_agent Mozilla/5.0[en](X11,U;OpenVAS-
VT 8.0.9)

severity H, M, L

status (i.e., label) normal, bad

The user agent field had the most opportunity to experiment
with feature engineering techniques given the information
contained in its text strings. The first technique used was to
binarize the field into entries with the term ‘bot’ and those
without. The resulting values were then one-hot encoded
resulting in two output features. The premise is that http traffic
generated by a bot may be more likely to be malicious. The next
technique was to binarize entries based upon the browser used
in the traffic. Traffic using a commercial browser in the set
[Chrome, IE, Firefox, Safari, Edge, Android, Mobile Safari]
were grouped while all other browsers were placed an ‘other’
group. The resulting field was then made one-hot to create two
features. Finally, the last technique used one-hot encoding on
the extracted operating system field (e.g., Windows, Mac OS X,
iOS) that resulted in 12 new feature columns.

For the connection field, the experimental techniques used
were one-hot encoding and binarization. The increase in the
number of data set columns with one-hot encoding is limited due
to the fixed size of the data in that field and is thus not onerous
(columns increased by 15). The other technique binarized the
connections into NONE versus all others. This presumed that
connections with a NONE status were malformed and therefore
indicative of malicious behavior.

The origin and response country code field used one-hot
encoding and binning as alternative engineering methods. The
one-hot encoding resulted in 178 new feature columns. This is
an increase of 59% in the number of features. Certainly, the
number of countries is relatively stable and fixed so feature
growth is not a huge concern. The other technique used first

binned the entries into one of the 17 most frequently used codes
based on the dataset or into an ‘other’ bin. The results were then
encoded using one-hot encoding to create 18 new feature
columns. This technique was a compromise between
information contained in the country code and the number of
columns introduced in the data set.

For the origin and response host fields, experiments were
done using one-hot encoding and creating sixteen 8-bit integers.
One-hot encoding of the IP addresses is a common technique but
suffers from feature explosion and a resulting high-
dimensionality problem. IPv4 addresses have over 4 billion
possible values and thus the ability to model all of them is
limited. Additionally, addresses not seen during model training
cause problems with predictions by the trained model. IPv6
addresses complicate this further given their 228 possible values.
An alternative method proposed in [11] treats each ‘quad’ or
octet of the address as an integer or in the case of IPv6 addresses,
two integers. Using this method, each IP address is parsed into
sixteen 8-bit integers [0,255]. This method uses only 32 features
compared to the 256 required in the baseline encoding while
maintaining some network information contained in the IP
address structure.

The port field was altered using one-hot encoding and
binning. Similar to the IP data, one-hot encoding can expand
the number of columns dramatically. In this case, the number of
features grew to 48,306 from 300. This is problematic as it
caused one of the classifier algorithms to not converge and
predictions based on unseen ports would be problematic. The
other technique used binned the origin port into four bins. The
bin cutoffs (frequency based) were: 0.0, 0.30, 0.50, 0.75, and
1.0. This resulted in port numbers binned with the following
cutoffs: 0, 38534, 48201, 55940, and 65535. The output feature
indicated in which bin the port was located. The response port
was binarized to indicate either port 80 or not. Port 80 is the
expected response port as the data set is comprised of http traffic.

The http method, severity, and origin/response org fields all
used one-hot encoding for their alternate engineering method.
The http method and severity fields are limited in their allowed
values and therefore the growth in feature columns is small. The
origin org field is limited to two values (internal, external) and
thus converts easily to one-hot encoding. The response org field
is more variable and thus results in a large growth of output
feature columns once one-hot encoding is applied based upon
the data set used for training. For our experiments, the number
of columns expanded by 228 after the encoding.

The last alternate engineering technique applied was to the
body length field. To determine if large outliers in the data were
affecting the results, the scikit-learn [19] RobustScaler was
applied to the data without centering. This method removes the
median from the data and scales the data according to the
quantile range.

IV. RESULTS
The project baseline and all the alternate engineering

techniques were evaluated against multiple classifiers. All of
the classifiers used are from scikit-learn’s API. Table II shows
the classifiers and any non-default settings utilized. The Voting
Ensemble classifier uses the Random Forest, Multi-layer

5007

Authorized licensed use limited to: West Point Military Academy. Downloaded on September 15,2021 at 21:03:24 UTC from IEEE Xplore. Restrictions apply.

Perceptron, Complement Naïve Bayes, Gradient Boosting,
Logistic Regression, and Linear Discriminant Analysis
classifiers for its sub-models.

Table II. Scikit-Learn Classifiers Used for Evaluation

Classifier Non-default Settings

Random Forrest (RF) n_estimators=300,
criterion=entropy

Multi-layer Perceptron (MLP)

Complement Naïve Bayes – (CNB)

Gradient Boosting (GB)

Logistic Regression (LR)

Linear Discriminant Analysis (LDA) solver='lsqr', shrinkage='auto'

Quadratic Discriminant Analysis (QDA) reg_param=0.7

Gaussian Bayes (GaB)

Bagging (Bag)

Decision Tree (DT)

Voting Ensemble (VE) voting='soft'

As discussed in the previous section, the choice of feature
engineering technique can affect the number of output features
in the data set. Table III shows the relationship between the
technique and the number of features. Of note, some of the
classifiers did not converge during training due to the large
number of features (ex. port one-hot encoding).

Given these results, we used the Voting Ensemble Classifier
accuracy results to select the ‘best’ technique for each of the
features. The techniques used were: connection binarize/one-
hot; host top-level domain; http method one-hot; port binning;
severity one-hot; user-agent ‘bot’ detection binary/one-hot;
origin/response host sixteen x 8-bit ints; and org one-hot. For
the remaining features, the techniques in the project baseline
were used (country code label encoding; length MinMaxScaler).
The results of this ‘Best Technique’ method is shown by the line
plot in Figure 1. Though the ‘Best Technique” method generally
resulted in better accuracy than average, it is not supreme. Of
note though, this method dramatically improved the accuracy of
the QDA, Bagging, and DT classifiers.

Figure 1 shows the classification accuracy results of the
experimental feature engineering techniques for the eleven
classifiers examined. The distribution of the data reveals that
many of the classifiers perform similarly across the range of
feature engineering techniques evaluated. No one technique or
classifier resulted in supremacy. The best engineering method
varied by classifier.

 From these results, we identified that certain classifiers
perform poorly for this type of data. Except for the ‘Best
Technique’ method, the average accuracy of the Quadratic

Discriminant Analysis, Gaussian Bayes, Bagging, and Decision
Tree classifiers is 23.1% lower than the remaining classifiers.
As a result, it is recommended that IDS developers do not use
these classifiers for their products.

 Figure 2 shows how each feature engineering technique
performed against the eleven classifiers in terms of accuracy. As
shown, the performance is similar with the best accuracies
ranging between 72% and 83%. The exception is the ‘Best
Technique’ whose distribution across the classifiers is tighter
and has a higher average accuracy.

 The execution times for each of the classifiers except for the
MLP classifier is fairly uniform except when the number of
feature columns grows rapidly. As expected, the predictors run
much slower when the large number of features encountered in
the one-hot encoding of the port and origin/response host fields.
The execution times of the classifiers are shown in Figure 3.

 Table III. Number of Features by Engineering Technique

Feature Engineering
Technique

Number of Features

 Baseline 300

Connection binarize 300

one-hot 315

Country Code binning 334

one-hot 478

Host top-level domain 300

one-hot 4288

Http method one-hot 306

Body length robust scaler 300

Port one-hot 48306

binning 270

Severity one-hot 303

User Agent os one-hot 312

browser binarize/one-
hot

301

‘bot' detection
binary/one-hot

300

origin/response host
(IP addr)

Sixteen x 8-bit
integers

108

one-hot 8318

Org one-hot 528

5008

Authorized licensed use limited to: West Point Military Academy. Downloaded on September 15,2021 at 21:03:24 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Classifier Average Accuracy Across All Engineering Techniques.

Figure 2. Feature Engineering Techniques versus the Classification Accuracy of Experimental Classifiers.

5009

Authorized licensed use limited to: West Point Military Academy. Downloaded on September 15,2021 at 21:03:24 UTC from IEEE Xplore. Restrictions apply.

Figure 3. Classifier Prediction Execution Times versus Number of Features

V. CONCLUSIONS
 Feature engineering network datasets is challenging.
Methods used in the image recognition and other common
domains do not readily transfer to this domain. In this work, we
presented experimental results for a variety of feature
engineering techniques against a variety of ML-based
classifiers. Though a combination of ‘best techniques’ resulted
in good performance against the experimental techniques, no
black box type feature engineering solution was discovered that
improves the detection rate of malicious traffic.

 Future work in this area includes testing these techniques
against other datasets and other traffic flows in this dataset (e.g.,
dns, connection). Additionally, it would be valuable to explore
feature engineering techniques against the raw network data to
evaluate its effectiveness without the reliance on the underlying
IDS and netflow algorithm. Finally, comparative work using
unsupervised learning techniques on this data would be valuable
to understand how to engineer features that have large ranges
such as IP addresses.

ACKNOWLEDGMENT
The authors would like to thank R. Agrawal and C. Lorenzen

for their assistance and feedback on this work.

REFERENCES
[1] H. Debar, M. Dacier, and A. Wespi, “Towards a

Taxonomy of Intrusion Detection Systems,” Computer
Networks, vol. 31, no. 8, pp. 805–822, 1999.

[2] J. Davis, “Machine Learning and Feature Engineering for
Computer Network Security,” Queensland University of
Technology, 2017.

[3] F. Nargesian, H. Samulowitz, U. Khurana, E. B. Khalil,
and D. Turaga, “Learning Feature Engineering for
Classification,” in Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence,
Melbourne, Australia, 2017, pp. 2529–2535.

[4] A. Correa Bahnsen, D. Aouada, A. Stojanovic, and B.
Ottersten, “Feature engineering strategies for credit card
fraud detection,” Expert Systems with Applications, vol.
51, pp. 134–142, Jun. 2016.

[5] P. Laskov, P. Dussel, C. Schafer, and K. Rieck,
“Learning intrusion detection: supervised or
unsupervised?,” Image Analysis and Processing (ICIAP
2005), pp. 50–57, 2005.

[6] Y. Bouzida, F. Cuppens, N. Cuppens-Boulahia, and S.
Gombault, “Efficient intrusion detection using principal
component analysis.,” Proceedings of the Third
Conference on Security and Architectures Research,
2004.

[7] Y. Li and L. Guo, “An active learning based tcm-knn
algorithm for supervised network intrusion detection.,”
Computers & Security, vol. 26, no. 7–8, pp. 459–467,
2007.

[8] Y. Li, B. Fang, and Y. Chen, “Network anomaly
detection based on tcm-knn algorithm.,” in Proceedings
of the 2nd ACM symposium on Information, Computer
and Communications Security, 2007.

5010

Authorized licensed use limited to: West Point Military Academy. Downloaded on September 15,2021 at 21:03:24 UTC from IEEE Xplore. Restrictions apply.

[9] E. Hernandez-Pereira, J. A. Suarez-Romero, O. Fontenla-
Romero, and A. Alonso-Betanzos, “Conversion methods
for symbolic features: A comparison applied to an
intrusion detection problem,” Expert Systems with
Applications, vol. 36, no. 7, pp. 10612–10617, 2009.

[10] X. Xu, “Adaptive intrusion detection based on machine
learning: feature extraction, classifier construction and
sequential pattern prediction.,” International Journal of
Web Services Practices, vol. 2, no. 1–2, pp. 49–58, 2006.

[11] D. Chiba, K. Tobe, T. Mori, and S. Goto, “Detecting
Malicious Websites by Learning IP Address Features,” in
2012 IEEE/IPSJ 12th International Symposium on
Applications and the Internet, Izmir, Turkey, 2012, pp.
29–39.

[12] J. Heaton, “An Empirical Analysis of Feature
Engineering for Predictive Modeling,” in Proceedings of
the IEEE SoutheastCon 2016, Norfolk, VA, 2016, p. 6.

[13] W. Wang and R. Battiti, “Identifying intrusions in
computer networks with principal component analysis.,”
in The First International Conference on Availability,
Reliability and Security (ARES), 2006.

[14] M. L. Shyu, S. C. Chen, K. Sarinnapakorn, and L. W.
Chang, “A novel anomaly detection scheme based on

principal component classier.,” in Proceedings of the
IEEE Foundations and New Directions of Data Mining
Workshop, 2003.

[15] Y. Li, J. Wang, Z. Tian, T. Lu, and C. Young, “Building
lightweight intrusion detection system using wrapper-
based feature selection mechanisms.,” Computers &
Security, vol. 28, no. 6, pp. 466–475, 2009.

[16] S. Chebrolu, A. Abraham, and J. P. Thomas, “Feature
deduction and ensemble design of intrusion detection
systems.,” Computers & Security, vol. 24, no. 4, pp. 295–
307, 2005.

[17] C. Lorenzen, R. Agrawal, and J. King, “Determining
Viability of Deep Learning on Cybersecurity Log
Analytics,” in 2018 IEEE International Conference on
Big Data (Big Data), Seattle, WA, USA, 2018, pp. 4806–
4811.

[18] “The Zeek Network Security Monitor.” [Online].
Available: https://www.zeek.org/. [Accessed: 26-Aug-
2019].

[19] F. Pedregosa et al., “Scikit-learn: Machine Learning in
Python,” Machine Learning in Python, p. 6.

5011

Authorized licensed use limited to: West Point Military Academy. Downloaded on September 15,2021 at 21:03:24 UTC from IEEE Xplore. Restrictions apply.

	Intelligent Feature Engineering for Cybersecurity
	Recommended Citation

	Intelligent Feature Engineering for Cybersecurity

