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Abstract

Cancer and cardiovascular disease are the most significant causes of morbidity and mortality worldwide. Although the cancer 
survival rate has increased due to improved treatment approaches, especially targeted therapy, some side effects such as 
cardiotoxicity decrease the efficiency of the clinical outcome. Radiation therapy and chemotherapy have a long-established 
history of potential cardiotoxic effects. A new multi-disciplinary and translational field known as cardio-oncology has been 
developed for the identification, prevention, and treatment of cardiovascular dysfunctions associated with cancer treatment 
approaches. One of the important tools for detecting and monitoring cardiotoxic effects is non-invasive nuclear cardiac imag-
ing techniques. Cardiac nuclear imaging modalities especially recent findings positron emission tomography (PET) tracers 
have a quintessential role in the early detection of cardiovascular disorders. Moreover, comprehensive studies are required 
to investigate novel nuclear medicine treatment approaches such as peptide receptor radionuclide therapy (PRRT), fibroblast 
activation protein (FAP), and chemokine receptor (CXCR) targeting probes for possible cardiac side effects that play important 
roles in the treatment of malignancies.
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Background

Cancer and cardiovascular disease are the most significant 
causes of morbidity and mortality worldwide [1]. Significant ad-
vances have been made in the early detection, treatment, and 
long-term survival of cancer patients. Importantly, each new ther-
apeutic development has encountered specific challenges such 
as multi-organ adverse events [2]. Therefore, cardiovascular 

diseases and malignancies may coexist in these patients because 
of using combination treatment approaches in molecular oncology 
for better patient management [3]. 

Cardiotoxicity as acute and occasionally lethal cardiac 
events (chronic) related to cancer therapeutic methods occurs ei-
ther during or immediately following treatment in patients exposed 
to mediastinal radiation therapy (RT) and anti-cancer drugs as well 
as decreases the efficiency of the patient’s health outcomes.  
It is categorized into different subtypes (Type I and II) includ-
ing cardiomyopathy, thrombosis, hypertension, left ventricular 
dysfunction, QT prolongation, oedema, arrhythmias, metabolic 
abnormalities, and capillary leak syndrome, which might lead to 
cardiovascular abnormalities, especially in elderly patients with 
pre-existing cardiovascular disease [4–9]. Some chemother-
apy agents such as vinblastine, anthracyclines, ramucirumab, 
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trastuzumab, cyclophosphamide, and 5-fluorouracil, can increase 
the risk of cardiovascular diseases in patients with different malig-
nancies (breast, sarcoma, lung, bladder, gastric, prostate, leukae-
mia, lymphoma, etc.) [10]. Moreover, there are different reasons for 
radiation-induced cardiovascular dysfunction such as damage to 
cardiomyocytes as well as stimulating an inflammatory process in 
cardiac cells leading to the acceleration of atherosclerosis [11]. 

Cardio-oncology is a multidisciplinary clinical approach that 
improves awareness of monitoring and treatment methods in pa-
tients with cardiovascular complications related to cancer treatment 
[12]. According to The American Society of Echocardiography and 
the European Association of Cardiovascular Imaging, cardiotoxicity 
defines as a 10–15% early reduction in global longitudinal strain 
index [13].

One of the important tools for early detection and monitoring 
cardiotoxic effects are non-invasive imaging techniques. These 
techniques also give opportunities for the classification of ther-
apeutic choices to improve patient management. Among these 
techniques, cardiac nuclear imaging modalities including planar 
multi-gated acquisition or multi-gated radionuclide angiography 
(MUGA), single-photon emission computed tomography (SPECT), 
and PET scans have demonstrated a significant role in the de-
tection, screening during treatment, and monitoring of cancer 
treatment-related cardiotoxicities [14, 15].

Heretofore, chemotherapeutic agents were extensively as-
sessed for cancer-therapy-related cardiotoxicity [9, 16]. On the 
other hand, recent developments in the field of nuclear medicine 
resulting in the introduction of new treatment modalities along with 
other common approaches require extensive investigations for 
probable side effects, including cardiotoxicity.

In this state-of-the-art review, the authors briefly present cancer 
treatment techniques that may induce cardiotoxicity and discuss nu-
clear cardiac imaging modalities used for detecting cardiotoxicity 
related to cancer treatment. New treatment modalities in the field 
of nuclear medicine are also evaluated in terms of potential car-
diotoxic effects.

Cancer treatment approaches inducing 
cardiotoxicity

One of the unexpected  adverse  events of mediastinal RT 
is cardiotoxicity. The most important risk factors for radiation-as-
sociated heart failure include a delivered dose of more than 30–35 
Gray (Gy), hyper-fractionated regimens including multiple dose 
fractions per day, exposure of an extensive volume of the heart to 
radiation, younger age, long-term survival, and some other patient 
characteristics such as obesity, family history of heart problems, 
diabetes, inactive lifestyle, dyslipidaemias, hypertension, and 
smoking [17]. Radiation-induced heart disease commonly occurs in 
patients with Hodgkin lymphoma, lung cancer, and breast cancer 
involving cardiac structures [18]. For many years, Hodgkin lympho-
ma patients used a traditional radiation therapy technique, known 
as the mantle technique, that induced cardiac disease and cardio-
toxicity [19]. However, more developments resulted in less cardiac 
exposure to ionizing radiation, but cardiotoxicity remains a major 
concern in Hodgkin lymphoma [20]. Moreover, radiation therapy, 
as an adjuvant or neoadjuvant technique, has been used in more 

than 50% of patients with breast cancer. In a meta-analysis carried 
out in 2005, the researchers found that cardiovascular-related 
mortality increased significantly (27%) in patients with combined 
treatment modalities including surgery and radiation therapy ver-
sus surgery as the only treatment modality [21]. Advanced modal-
ities of high-precision RT techniques including intensity-modulated 
radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), 
helical tomotherapy, prone and isocentric lateral decubitus (ILD) 
positions, breath-hold techniques, and proton therapy result in 
dose homogeneity, less cardiac exposure, and delivering lower 
doses to the heart and reduce adverse effects. The suitable se-
lection of these techniques (alone or in combination) is based on 
the patient’s characteristics, RT regions, and accessibility [22–33]. 
Although long-term follow-ups are needed to confirm the definitive 
role of these new techniques, clinical findings have been confirmed 
the positive effects of new radiation therapy techniques resulting 
in more precise treatment plans and decreased life-threatening 
effects including cardiotoxicity [34, 35].

Additionally, cardiac dysfunctions occur in a significant propor-
tion of patients who receive chemotherapy. The pathophysiology 
of chemotherapeutic drug-induced cardiotoxicity is complex that 
involves multiple biochemical pathways and results in considera-
ble efforts that have been made for early detection of cardiotoxic 
events. The most common drug classes that induce cardiotoxicity 
are anthracyclines (such as doxorubicin), alkaline agents (such 
as cyclophosphamide, ifosfamide), antimetabolite agents (such 
as 5-Fluorouracil (5-FU), and vinblastine [36]. Cardiac abnormal-
ities mostly reduce left ventricular ejection fraction (LVEF) in more 
than 20% of the patients, which may not be detected until the final 
chemotherapy session [37, 38].

Monoclonal antibodies were developed as a basis for biolog-
ical therapeutics for many cancers by Kohler and Milstein [39]. 
The main strategy of these drugs is anti-angiogenic treatment 
methods involving many factors such as vascular endothelial 
growth factor (VEGF). Bevacizumab, trastuzumab, ramucirum-
ab, interleukin-2 (IL-2), and interferon-Alpha (INF) are the most 
common biological treatment agents for cancer patients that may 
cause cardiovascular toxicity (Tab. 1) [36, 40–43]. Some stud-
ies reported significant cardiotoxicity induced by bevacizumab 
in patients with breast cancer, renal cell carcinoma, and glioma 
[44–47]. Trastuzumab regimen is another monoclonal antibody 
that blocks the human epidermal growth factor receptor-2 (HER2 
or ErbB2) in breast and gastric cancers including HER-2 positive 
receptors. In addition to improved disease-free survival, this drug 
induces acute cardiac disorders such as congestive heart failure 
and LV dysfunction as well as result in partial impairment in mito-
chondrial function and increased levels of oxidative stress (Fig. 1) 
[43, 48, 49].

Systematic studies and evidence-based recommendations are 
required to determine the early biomarkers of toxicity, risk-as-
sessment models, monitoring, survivorship, prognostication of 
cardiotoxicity, and suitable treatment options for elderly people with 
malignancy that receive potentially cardiotoxic regimens.

Specifically, non-invasive and cost-effective diagnostic 
tools such as imaging have a high priority in detecting early cardi-
ovascular disorders and play an important role in risk stratification 
and accurate management of elderly patients with cancer.
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Nuclear cardiac imaging in cardio-oncology

Cardio-oncology balances correct patient-centred treatment 
procedures and cardiovascular disorders. Therefore, it needs a mul-
ti-disciplinary team including cardiologists, oncologists, and nuclear 
medicine specialists for the best efficiency in understanding, treat-
ing, and preventing cardiovascular disease [10, 50]. 

Non-invasive cardiovascular imaging modalities with their 
versatility have caused a revolution in this field. There are many 
imaging techniques, but the most common practical procedures are 
two-dimensional echocardiography and multi-gated acquisition im-
aging, which evaluate resting left ventricle ejection fraction. Nuclear 
medicine using different radiotracers has a long history in the identi-
fication and management of myocardial cardiotoxicity (Tab. 2) [15].

Table 1. Common anticancer agents with potential cardiotoxicity

Agent Drug class Cancer clinical use Type of cardiotoxicity

Doxorubicin Anthracyclines (Chemotherapeutic agent) Breast, sarcoma, lung, bladder, gastric, 

prostate, leukemia, lymphoma, others

LV dysfunction

Cyclophosphamide Alkylating (Chemotherapeutic agent) Sarcoma, SCT, lymphoma, myeloma, breast Myopericarditis, arrhythmias

Ifosfamide Alkylating (Chemotherapeutic agent) Testicular, sarcoma, lymphoma Arrhythmias, LV dysfunction

5-Fluorouracil (5-FU) Antimetabolites (Chemotherapeutic agent) Colon, pancreatic, breast, head and neck Coronary vasospasm, ischemia, arrhythmias

Vinblastine Antimicrotubule (Chemotherapeutic agent) Lymphoma, testicular, lung, melanoma Ischemia,

hypertension

Bevacizumab Antibody VEGF (Biologic agents) Colon, rectal, cervical, glioblastoma, 

ovarian, renal, endometrial, sarcoma

Hypertension, LV

dysfunction

Trastuzumab Antibody HER-2 (Biologic agents) Breast, gastric, gastro-esophageal LV dysfunction

Ramucirumab Antibody VEGFR-2 (Biologic agents) Colon, rectal, gastric, lung Hypertension, thromboembolism

Interleukin-2 (IL-2) Immune agent Melanoma, renal Capillary leak syndrome, hypotension, 

myocardial toxicity

Interferon-Alpha (INF) Immune agent Melanoma, renal, lymphoma Arrhythmias, ischemia

Figure 1. Trastuzumab is directed against the extracellular part of HER2 in HER-2 positive breast cancer patients. This agent causes the 
phosphorylation of tyrosine 845 (Y845) and 1248 (Y1248) at HER-1 and HER-2, respectively. This process activates the Erk/mTOR/ Ulk1 
signalling cascade that inhibits autophagy in the primary cardiomyocytes. Subsequently, autophagy inhibition increases the intracellular level of 
reactive oxygen species (ROS) leading to oxidative stress in cardiomyocytes, resulting in apoptosis or necrosis of cardiomyocytes. Additionally, 
trastuzumab alters ultrastructural formation, and also expression profile of genes and DNA repair. These structural and genetic changes increase 
myocardial increased myocardial oxidative and nitrative stress and potentially activates apoptotic pathways in cardiomyocytes
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[99mTc]Multi-Gated Acquisition Scan (MUGAs)

A multi-gated acquisition scan is reproducible and pro-
vides the most accurate radionuclide ventriculography to visualize 
the cardiac blood pool. [99mTc]erythrocyte camera scintigraphy, 
also known as equilibrium radionuclide angiocardiography, as-
sesses cardiac blood pool and its function for treatment response 
and collects prognostic information for patients with cardiac 
haemorrhage. One of the accepted cost-effective methods for 
cardiac monitoring of patients undergoing trastuzumab treatment 
is MUGAs. The results of the MUGA scan indicate cardiotoxicity if 
the LEVF decreases more than 10% (to a final ejection fraction of 
less than 50%) [51].

A study by Schwartz et al found the superiority of MUGA for 
monitoring cardiotoxicity and identifying cognitive heart failure in 
cancer survivors [52]. Additionally, MUGA is considered a promising 
choice for detecting the asymptomatic reduction of LVEF.

A serial cross-sectional study compared the use of three 
conventional cardiac imaging methods for chemotherapy-relat-
ed cardiotoxicity. The major disadvantages of MUGA were high 
radiation exposure and the inability to provide information about 
the right ventricular, valvular, or pericardial disease [13]. The use 
of the MUGA scan decreased between 2011 and 2014 and two 
imaging methods including echo and cardiovascular magnetic 
resonance imaging were used instead. These results may be due 
to increased knowledge of patients and physicians about radiation 
risks associated with serial radionuclide ventriculography scans. 
Moreover, the findings of serial radionuclide ventriculography are 
similar to the findings of echocardiography and cardiac magnetic 
resonance imaging [53].

Single-photon emission computed 
tomography (SPECT)

Three-dimensional gated blood pool SPECT is similar to the 
previous method, but it has the potential to differentiate cardiac 
chambers better than planar radionuclide ventriculography. Auto-
matic measurement of the LVEF by [99mTc]gated blood-pool SPECT 
(GBPS) provides accurate segmental wall motion analysis and 
estimates the cavity volume in a single examination [54, 55]. Nev-
ertheless, there is a good agreement in the rough calculation of 
LVEF between MUGA and GBPS methods [56].

Anthracycline drugs are used to treat many different malignan-
cies such as lymphoma, leukaemia, myeloma, breast carcinoma, 
lung, ovarian, and gastric. They are also induced cardiotoxicity 
inducing cardiomyopathy, valvular heart disease, coronary heart 
disease, and heart failure [57, 58]. Two important mechanisms cor-
related with anthracycline-cardiotoxicity are mitochondrial dys-
function and elevated oxidative stress [58, 59]. [99mTc]Sestamibi 
SPECT imaging is important in vivo molecular scan approach that 
enables interrogation of mitochondrial dysfunction and detection 
of doxorubicin-induced cardiotoxicity [60]. 

Moreover, myocardial abnormalities can be detected through 
123I-labeled metaiodobenzylguanidine ([123I]MIBG) scan before 
causing permanent excessive left ventricular impairment. [123I]MIBG 
is a norepinephrine analog radiotracer. This radiotracer shows ap-
propriate reproducibility and sensitivity for the evaluation of myo-
cardial adrenergic disorders. 

In a study using myocardial perfusion imaging with [123I]MIBG 
and [123I]BMIPP for patients undergoing anthracycline treatment 
agents, the results showed early detection of anthracycline-related 

Table 2. Important radiotracers in cardiac nuclear imaging for cardiotoxicity

Imaging modality Radiotracer Advantages Disadvantages

Planar MUGA Scintigraphy [99mTc]erythrocyte Superior accuracy and highly reproducibility 

versus 2D echo

Limited structural and functional information 

beyond LVEF/radiation exposure

SPECT [111In]antimyosin

[123I]MIBG

[99mTc]Sestamibi

[111In]Tz

[99mTc]annessin V

[123I]BMIP

[99mTc]tetrofosmin

Well-validated accuracy/Reproducibility/

High sensitivity and specificity/No inter- and 

intra-observer variability

Low sensitivity of EF for early diagnosis/ 

/less information about diastolic function

PET [18F]FDG

[11C]HED

[11C]phenylephrine

[18F]FDA

[18F]MitoPhos

[18F]12

[18F]DHMT

[68Ga]Galmydar

[11C]HED

[11C]EPI

[11C]CGP12177

[11C]CGP12388

[11C]GB67

Quantification/

Sensitivity/

Reproducibility/

3-dimensional pharmacokinetic analysis

Spatial resolution/

Myocardial metabolic and perfusion 

evaluation

Limited availability/

High cost

https://en.wikipedia.org/wiki/Scintigraphy
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cardiotoxicity through [123I]MIBG. Early diagnosis results in a lower 
incidence and intensity of heart damage in these patients [61–63]. 

Indium-111 labelled antimyosin antibody as the main marker 
of myocardial cell necrosis has been introduced for direct visual-
ization of myocyte damage. The myocardial uptake of this radio-
tracer correlates with the LVEF decrease in patients treated with 
an anthracycline. Additionally, 111In-antimyosin SPECT imaging can 
identify cardiotoxicity associated with anthracycline chemotherapy 
regimens in breast cancer patients as well as the doxorubicin reg-
imen in leukaemia, lymphoma, and other solid tumours [64–66]. 

Several preclinical results using the [99mTc]Annexin V scan 
confirmed the significant role of this radiotracer in the detection of 
myocardial apoptosis. [99mTc]Annexin V scintigraphy successfully 
detected apoptotic cells in myocarditis, acute myocardial infarction, 
the curative effect of anti-apoptosis medications in heart ischemia 
patients, unstable atherosclerotic plaque, cardiac transplant 
rejection, and a cardiotoxicity-related anthracycline [67–72]. Ad-
ditional clinical studies are needed to assess the common use of 
this radiotracer, especially for early detection of myocardial damage 
associated with anticancer drugs.

Long-chain fatty acids, as a vital nutrient for the myocardi-
um, are metabolized by β-oxidation. These fatty acids or related 
analogues can be used in specific imaging probes ([123I]labelled 
fatty acids) to assess oxidative differentiation in multiple cardiac 
diseases [73]. Nevertheless, this radiotracer has not been used 
in SPECT imaging due to its instability in vivo. Therefore, novel 
tracers such as 1231-15-(p-iodophenyl)-3-methyl pentadecanoic 
acid (BMIPP) have emerged, which have demonstrated promising 
results in nuclear cardiology [74, 75]. 

Some studies examined 111In-DTPA-trastuzumab imaging tech-
niques to visualize the human epidermal growth factor receptor 2 
(HER2) expressed by myocytes in breast cancer patients. Trastu-
zumab has been used as a monoclonal antibody to bind to HER2 
for curative purposes. This radiotracer has been used to detect 
patients potentially subject to trastuzumab-related cardiotoxicity. 
This technique may be helpful, especially in patients with high-risk 
cardiac failure [76–80]. Regardless of the predictive role of this ra-
diotracer, the data are limited, and this method has not yet been 
used in conventional clinical practice.

 Positron emission tomography (PET) 

More common imaging procedures, such as computed tomog-
raphy (CT) scan, nuclear magnetic resonance (NMR), and magnetic 
resonance imaging (MRI), define anatomic and physiological func-
tional properties; nonetheless, they cannot determine the autoge-
netic myocardial biochemistry. Positron emission tomography (PET) 
assesses both myocardial metabolism and perfusion with a better 
resolution and higher sensitivity [81, 82]. Moreover, PET myocardial 
tracers provide an extensive and detailed evaluation of early and 
reversible cardiotoxic effects of anticancer treatment regimens. The 
uptake of fluorine-18-fluorodeoxyglucose ([18F]FDG) increases in 
cardiomyocytes before the LVEF decrease in patients treated with 
anthracyclines [83]. 

Reactive oxygen species (ROS) have been involved in cell 
signalling, homeostasis. However, a high number of ROS caus-
es pathogenesis of a high number of human diseases and drug tox-
icities, so the development of imaging tools that able to characterize 

ROS biology in vivo has been recently considered and turned into 
a big challenge [84]. The 18F-12 microPET imaging of the heart in 
mice with Doxorubicin-induced cardiac inflammation indicated 
2-fold higher oxidation of this tracer compared to the control group. 
These findings showed that compound 12 is a suitable PET tracer 
for in vivo imaging of ROS [85]. Another PET tracer that evaluated 
superoxide production for early detection of doxorubicin-induced 
cardiotoxicity is 18F-DHMT. This tracer detected excessive pro-
duction of reactive oxygen species before a decrease in LVEF 
that may give a good chance for early cardiotoxicity detection in 
patients with malignancies [86]. Moreover, [68Ga]Galmydar is also 
evaluated as a potential radiotracer to monitor Doxorubicin-induced 
cardiomyopathy in different situations. MicroPET/CT scan showed 
a high-resolution non-invasive assessment of metabolic chang-
es related to Doxorubicin treatment using 68Ga-Galmydar at the 
earliest stages. Single-cell imaging and quantitative biodistribution 
demonstrated that Galmydar localized precisely in mitochondria of 
treated cells with Doxorubicin [87].

18F-MitoPhos as radiolabelled lipophilic cations was used 
for early detection of imaging cardiotoxicity in acute doxorubicin 
in the rat model. [18F]MitoPhos PET imaging demonstrated ap-
propriate pharmacokinetic parameters for cardiac imaging and 
was introduced as a promising radiopharmaceutical for imaging 
chemotherapy-induced cardiotoxicity [88].

It has been recently demonstrated that [82Rb]PET imaging could 
be a potential radiotracer for quantitative assessment of the myo-
cardial blood flow in patients that are at high risk for anthracycline 
cardiotoxicity [15, 89]. Several studies are investigating nuclear car-
diac imaging for the early detection of cardiotoxicity-related cancer 
therapy modalities. Important radiotracers used for investigating 
cardiotoxicity in cardiac nuclear imaging are summarized in Table 2.

Can treatment nuclear medicine 
modalities stimulate cancer therapy-
related cardiotoxicity?

Another important modality for the treatment of malignan-
cies is using injectable radiopharmaceuticals, which, similar to 
other treatment methods, require the assessment of possible side 
effects including cardiotoxicity. 

One of the important approaches in nuclear medicine is ther-
anostics, which combines diagnostic imaging and therapeutic 
methods through labelling the same molecule or the same agent 
with distinct radionuclides. More knowledge in genomics led to de-
tecting theranostic biomaterials to diagnosis and treatment of ma-
lignancies along with molecular imaging tools. Cancer lesions are 
heterogeneous and therefore common treatment approaches may 
not provide favourable results. Nevertheless, these lesions can be 
detected through theranostics. Therefore, this characteristic can 
be used to determine which patient will benefit from therapy and 
which patient may not receive conventional treatments.

Theranostics is currently considered as the recommended 
modality not only for diagnosis and treatment of malignancies but 
also for staging, follow-up, monitoring response to treatment, and 
restaging. An important characteristic of this approach is delivering 
high doses to tumours while sparing non-targeted tissues. 

Different theranostic probes have been developed from clinical 
experiments of radioactive iodine for evaluation of physiologic 
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metabolism and thyroid disorders to recent applications in neu-
roendocrine tumours and prostate cancer. Some pairs of radionu-
clides that have been used in theranostics include diagnostic gam-
ma or positron emission radionuclides such as 123I (t1/2 = 13.22 h), 
124I (t1/2 = 4.2 d), 68Ga (t1/2 = 68 min), 99mTc (t1/2 = 6h), 111In (t1/2 = 2.81 
d), and therapeutic high-dose radioactive materials such as 177Lu 
(t1/2 = 6.71 d) and 90Y (t1/2 = 64.02 h). Therapeutic radionuclides emit 
beta and alpha particles, causing damage to double-stranded DNA 
and death in cancer cells. The most common available pairs of 
theranostic radiopharmaceuticals include [68Ga]PSMA/[177Lu]PSMA 
for prostate cancer and [68Ga]DOTATATE/[177Lu]DOTATATE for 
neuroendocrine (NETs) (Fig. 2 and 3). 

Theranostics is a form of systemic endo-radiotherapy that de-
livers toxic radiation to target cells but some side effects including 
severe hematotoxicity and nephrotoxicity have been reported. 
Many studies evaluated early and late side effects of radioligand 
therapy, especially peptide receptor radioligand therapy (PRRT), 
and found that side effects were almost entirely limited, predicta-
ble, and/or reversible [90–96]. Nonetheless, a recent case-report 
study found cardiotoxicity related PRRT in patients with metastatic 
neuroendocrine tumours.

Different radiotracers have been used in nuclear medicine to 
visualize and treat neuroendocrine tumours. These tumours devel-
op in many tissues including the lungs, stomach, small intestine, 
appendix, colorectal tissue, and heart [97–99]. Somatostatin 
analogues are an inseparable component of diagnostic and treat-
ment policies in metastatic carcinoid tumours. Neuroendocrine 
tumours have the potential to be targeted with radiopeptides due 
to peptide receptor expression. Peptide receptor radionuclide 
therapy using [90Y]DOTATAC and [177Lu]DOTATATE have successful 
results in the treatment of inoperative and metastases liver cancers. 
PRRT can cause renal or haematological adverse effects, but the 
timely application of appropriate precautionary measures and safe 
dose administration decrease these toxicities [100, 101].

More than 50% of patients with advanced carcinoid tumours are 
prone to carcinoid heart disease [102]. At the time of carcinoid 
cardiac metastases, due to the expression of somatostatin recep-
tors in the cardiac tissue (sst1, sst2, sst4, and sst5), caution should 
be practised to target neuroendocrine tumour cells with somato-
statin-radioisotope compounds. [177Lu]DOTATATE is confirmed 
as an effective option in inoperative metastases of neuroendocrine 
tumours with symptomatic cardiovascular impairment [103]. 

In a case report study, a 51-year-old-man was diagnosed 
with neuroendocrine tumour lesions and received somatostatin 
analogue therapy. After a while, a [68Ga]DOTATATE scan was used 
to evaluate the patient. Imaging demonstrated that metastatic le-
sions spread in the axial skeleton, liver, and spleen as well as the 
right and even the left myocardium. The ejection fraction was normal 
(62%) in the beginning. After receiving two cycles of [177Lu]labeled 
PRRT, an echocardiogram showed a serious decrease in the left 
ventricular systolic function and left ventricular ejection fraction 
(34%). Therefore, PRRT stopped but it started again because the 
cardiac function continued to decline. In this case, the cardiac 
function was normal before treatment, but the patient developed 
cardiotoxicity after treatment due to the delivery of the radioactive 
isotope to metastatic lesions. This cardiotoxic effect should be 
considered as a precaution in a patient with neuroendocrine tumour 
and cardiac metastases receiving PRRT [104].

Moreover, recent advances in nuclear medicine imaging 
and therapy have shown that fibroblast activation protein (FAP) 
and chemokine receptor (CXCR) are promising targets for nu-
clear-labelled tumour probes. Different reports have indicated 
an effective role of [68Ga]pentixafor chemokine-directed imaging 
in some solid tumours such as glioblastoma, ovarian cancer, renal 
cell cancer, small cell lung cancer, and adrenocortical carcino-
ma. However, a study by Vag et al. questioned its possibility in 
other tumours including pancreatic cancer, sarcoma, and breast 
cancer [105–109]. 

Figure 2. A 68-year-old man with metastatic neuroendocrine tumours refractory to chemotherapy presented for PRRT. Pre-treatment FDG PET 
(A) showed no abnormal radiotracer uptake, while all lesions in the liver and mid-abdomen revealed significant SSTR expression on pre-treatment 
68Ga-DOTATATE PET/CT (B). The patients underwent 3 cycles of PRRT (22.2 GBq). The post-treatment scintigraphy after the 1st cycle (C) 
indicated intensive uptake of radiotracer in the above regions, which decreased significantly in number and size in post-treatment scintigraphy after 
the 3rd cycle (D, E)
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177Lu-pentixather has demonstrated outstanding CXCR4-tar-
geting properties and a favourable pharmacokinetic profile. Addi-
tionally, [68Ga]pentixafor/177Lu-pentixather based CXCR4-targeted 
theranostic approach delivers high doses to the tumour sparing 
healthy non-targeted cells [110]. Several malignant cells includ-
ing head and neck, breast, lung, pancreatic, and oesophageal, 
colorectal cancer have a high uptake of [68Ga]FAPI that can be 
used for non-invasive molecular imaging,  locating the primary 
site of unknown malignancies, and staging of tumours. On the 
other hand, [68Ga]FAPI tracers contain universal DOTA chelators. 
This property makes it possible to label the ligand with a suitable 
therapeutic radionuclide for a theranostic approach [106, 111].

However, although no life-threatening side effects have been re-
ported for these radioligands, concise studies should be performed 
to evaluated probable side effects and cardiotoxicity.

Conclusion

Cardio-oncology as a multi-modality approach has become 
a valuable strategy for improving treatment outcome and patient 
management through screening cardiotoxicity during cancer 
treatment. Several studies investigated cancer treatment cardiot-
oxicity in chemotherapy and external radiation therapy. In addition 
to the significant role of nuclear cardiac imaging procedures for 
early detection of cardiovascular changes, it is required to perform 
more comprehensive studies to investigate cancer treatment op-
tions such as PRRT, fibroblast activation protein, and chemokine 
receptor targeting probes for possible cardiac side effects that play 
important roles in the treatment of malignancies. Finally, it is required 
to establish a network of collaboration between oncologists, nuclear 
medicine specialists, and cardiologists to obtain optimal patient 
outcomes and decrease life-threatening cardiotoxicity.
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