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Abstract  

Background: The relation between cardiac motion artefact (CMA) in optical coherence 

tomography (OCT) and the phases of cardiac cycle is unclear. 

Methods: Optical coherence tomography pullbacks containing metallic stents were co-

registered with angiography and retrospectively analyzed. The beginning of three 



phases, namely ejection, rapid-inflow and diastasis, was identified in angiography. 

Rotation, shortening, elongation and repetition were qualitatively labelled as CMA 

artefacts. Platforms with coaxial longitudinal connectors (ML8 and Magmaris) entered a 

quantitative sub-study, consisting of measuring the length of their connector at the 

beginning of each phase. 

Results: A total of 261 stents (127 patients) were analyzed, including 105 stents for 

quantitative sus-tudy. CMA was detected in 61 (23.4%) stents: rotation in 6 (2.3%), 

shortening in 50 (19.2%), elongation in 51 (19.5%) and repetition in 12 (4.6%). 

Shortening was always observed during ejection phase, while elongation and repetition 

were always observed during rapid-inflow. Rotation occurred in both ejection and rapid-

inflow phases, while no artefact was reported during diastasis. Longitudinal connectors 

measured in early ejection phase and in early rapid-inflow phase were shorter and 

longer, respectively, than those measured in diastasis, irrespective of the presence of 

CMA in the qualitative assessment.  

Conclusions: Cardiac motion artefact is prevalent in OCT studies, but shortening and 

elongation of vascular structures occur during early ejection and during early rapid-

inflow, respectively, to a greater or lesser extent in all cases. Diastasis is free of CMA 

and hence the period in which longitudinal measurements can be more accurately 

quantified. 

Key words: tomography, optical coherence, artefact, percutaneous coronary 

intervention, coronary heart disease, stents 

 

 

Introduction 

Cardiac motion artefact (CMA) has been described in three-dimensional (3D) 

optical coherence tomography (OCT) as the longitudinal distortion of coronary 

structures due to systo-diastolic movements over the cardiac cycle [1, 2]. Albeit the 

pullback speed in OCT is even and constant, the relative speed of the optical catheter 

with respect to the coronary artery changes over the cardiac cycle, thus causing 

longitudinal distortion to the 3D-OCT reconstruction [1–3]. Previous pioneer studies on 

CMA have described three subtypes of CMA artefact: rotation, elongation and 

repetition, linking them to the early ejection phase of systole, because the contraction of 

the vessel moved the vascular structures in the same direction as the catheter pullback, 



thus reducing the relative pullback speed and subsequently elongating or even 

duplicating some imaged elements [2]. Nonetheless, these pioneer descriptions of CMA 

were performed on systems without co-registration, neither with electrocardiogram 

(ECG) nor with angiography. Therefore, this plausible hypothesis has never been 

verified hitherto. 

Co-registration of OCT with coronary angiography is currently widely available, 

thus enabling a detailed analysis of the longitudinal distortion caused by the different 

phases of the cardiac cycle. Revisiting this phenomenon on the light of co-registered 

OCT studies, especially involving imaging of intracoronary stents, might challenge 

previous conceptions about CMA. Based on the observation of co-registered 3D-OCT 

studies, we propose four different subtypes of CMA artefact, namely rotation, 

shortening, elongation and repetition (Fig. 1). The current study is aimed to explore the 

association between the different subtypes of CMA artefact to each specific phase of the 

cardiac cycle (Fig. 2). 

 

Methods 

 Consecutive patients undergoing OCT of a coronary artery previously treated 

with implantation of a metallic stent, either durable or bioresorbable, in any of the 3 

participating centers (Klinikum Frankfurt Oder, Germany; DRK Klinikum Westend, 

Berlin, Germany and Campo de Gibraltar Health Trust, Algeciras, Spain) between 01-

03-2016 and 01-08-2019 were retrospectively included into the study. Exclusion criteria 

were: 1) previous treatment of the target vessel with non-metallic bioresorbable 

scaffolds alone; 2) overlapping stents or multiple stent layers leaving < 5mm monolayer 

segment; 3) poor OCT quality for the analysis due to non-uniform rotational distortion 

(NURD), suboptimal vessel flushing, incomplete purge of the optic catheter or other 

artefacts and 4) severe stent distortion due to longitudinal stress or collapse of the 

lumen, leaving < 5 mm of stent structurally preserved and suitable for analysis; 5) 

missing co-registration with angiography. All OCT studies were acquired with a 

DragonflyTM catheter and an ILUMIEN OPTIS system (Abbott, St. Paul, Minnesota, 

USA), with a rotation speed of 180 Hz and a pullback speed of 18 mm/s or 36 mm/s, 

resulting in longitudinal resolutions of 0.1 and 0.2 mm, respectively, calculated as 

pullback speed (mm/s) divided by rotation speed (Hz or s–1 or cross-sections/s). All 



cases were acquired with non-occlusive technique [4] and automatic contrast injection, 

calculating the contrast volume by a validated formula to optimise the image quality 

with a minimal amount of dye [5]. Clinical information about patients and procedures 

was retrospectively collected from clinical recordings at each center.  

 The study complied with the principles of good clinical practice and with the 

Declaration of Helsinki for investigation in human beings. The study protocol was 

approved by the corresponding institutional review boards. 

 

Phases of the cardiac cycle using angiographic co-registration 

Since co-registration with ECG was not available, the different phases of the 

cardiac cycle had to be approximated by means of co-registration with coronary 

angiography, similarly to previous studies [6]. Three different moments of the cardiac 

cycle were identified in angiography by analysing the movement of the coronary 

vessels: beginning of the ejection phase, beginning of the rapid-inflow phase and 

beginning of diastasis (Fig. 2). The beginning of the ejection phase was identified as the 

first angiographic frame showing longitudinal contraction of the coronary vessels. The 

beginning of the rapid-inflow phase was identified as the first angiographic frame 

showing distension of the coronary vessels after systole. Finally, the beginning of 

diastasis was identified as the first angiographic frame in which the coronary arteries 

reached their maximal expansion during diastole, before the atrial contraction. 

These three landmarks divide the cardiac cycle into three periods: 1) systolic 

period, encompassing the ejection phase, but also the isovolumic relaxation phase of 

diastole, 2) the rapid-inflow period, and 3) the diastasis period, encompassing diastasis, 

but also atrial contraction and isovolumic contraction phase of systole (Fig. 3). 

 

Qualitative assessment of cardiac motion artefact 

Optical coherence tomography raw data were evaluated by two independent 

analysts, blinded to each other results, using an Ilumien Optis workstation (Abbott, St. 

Paul, Minnesota, USA) equipped with longitudinal view, automatic strut detection and 

3D-OCT. Both analysts knew in full detail the structural design of the stent platforms 



imaged in the study, as previously described [7]. After identification of the stented 

segment and the corresponding analysable monolayer (in case of overlapping), selecting 

the most appropriate cropping plane, the analysts qualitatively assessed the presence of 

CMA on the longitudinal view or in 3D-OCT, as any of the following four types of 

distortion: rotation, shortening, elongation and repetition (Fig. 1). The analysis on the 

longitudinal view required the use of automatic strut detection, while it was optional on 

3D-OCT [7].  

Rotation was defined as twisting of the stent structure around its longitudinal 

axis in the longitudinal view or in the 3D reconstruction. Shortening and elongation 

were defined as any modular element of the stent appearing relatively shorter or longer, 

respectively, than the average length of identical modular elements in the longitudinal 

view or in the 3D reconstruction (Fig. 1). Repetition was defined as substantial 

distortion of the stent structure due to repeated scanning of the same elements 

backwards and forward again (Fig. 4).  

The analysts annotated the period of the cycle, as defined by angiography, in 

which CMA was detected. Due to the methodological difficulties to identify atrial 

contraction using angiography, this phase of the cycle was excluded from the analysis, 

by disregarding any artefact observed in the second half of the diastasis period defined 

by angiography. 

 

Quantitative assessment of cardiac motion artefact 

Quantification was restricted to only two different stent platforms: ML8-Vision-

Xience and Magmaris platforms [7], because their design contains longitudinal 

connectors, aligned in parallel to the longitudinal axis of the stent, thus enabling more 

accurate length measurements than other stent designs. The analysts measured the 

length of the first longitudinal connector imaged in its full length in the systolic period, 

the rapid-inflow period and the diastasis period, defined by the co-registered 

angiography, using the longitudinal view (Fig. 5), thus corresponding to the early 

ejection phase, the early rapid-inflow phase and the diastasis phase of the cardiac cycle, 

respectively. Stents with repetition artefact, with suboptimal longitudinal reconstruction 



of the stent or with insufficient length as to show a measurable longitudinal connector in 

at least two different phases of the cycle were excluded from the quantitative analysis. 

 

Statistical analysis 

Descriptive statistics of continuous variables were reported as mean ± standard 

deviation (SD) if they followed a Gaussian distribution or as median (quartiles) if 

differently distributed, while those of categorical variables were presented as counts 

(percentages). The length of the longitudinal connectors at different cardiac phases were 

compared with Student’s t-test for paired measurements; dichotomous and categorical 

variables were compared with Pearson’s chi-square or with Fisher’s exact test if the 

expected count was < 5 in any cell. Subgroup analysis stratified by pullback speed was 

performed. Interobserver reproducibility was reported as kappa coefficient for the 

qualitative assessment and as intraclass correlation coefficient for the absolute 

measurement (ICCa) for the quantitative assessment.  

All analysis was performed with IBM SPSS 24.0 software package (SPSS Inc., 

Chicago, Illinois). 

 

Results 

 A total of 193 patients underwent OCT studies in the enrolling centres during 

the study period. Sixty-six patients (68 studies) were excluded: 40 because no stent was 

imaged in the OCT study (58.8%), 22 (32.4%) because only non-metallic BRS were 

implanted in the intervention, 3 (4.4%) due to incomplete blood clearance, 2 (2.9%) due 

to severe stent distortion and 1 (1.5%) due to NURD. During the analysis 19 stents were 

excluded due to multilayer (6), overlap with < 5mm of monolayer (5), co-registration 

missing (3), suboptimal vessel flushing (3), incomplete purge of the optic catheter (1) or 

NURD (1). A total of 127 patients, 132 procedures, 152 lesions, 166 pullbacks and 261 

stents were finally analysed (Fig. 6).  

 

Descriptive statistics of the sample 



Tables 1 and 2 present the descriptive statistics of the sample. Most stents were 

implanted in the left anterior descending (41.0%) or the right coronary artery (30.3%). 

Different types of stents were imaged and analyzed in this study (Table 2), but the most 

common platforms were ML8-Vision-Xience (71 Xience, 27.2%; 2 Vision, 0.8%; 

Abbott Vascular, Santa Clara, CA) and Magmaris (55 Magmaris, 21.1%; Biotronik AG, 

Bülach, CH). Ninety-nine (37.9%) stents were implanted more than 3 months prior to 

the OCT study and 62 (23.9%) presented in-stent restenosis as anatomic substrate for 

the clinical symptoms. Most studies (87.7%) were acquired at a pullback speed of 18 

mm/s. 

 

Qualitative assessment 

Cardiac motion artefact was identified in 61 (23.4%) stents, corresponding to 6 

(2.3%) cases of rotation, 50 (19.2%) cases of shortening, 51 (19.5%) cases of elongation 

and 12 (4.6%) cases of repetition (Table 3). The incidence of cardiac motion artefact 

was significantly higher at low pullback speed (18 mm/s: 25.3%) than at high pullback 

speed (36 mm/s: 9.4%). In the subgroup analysis, both shortening and elongation 

occurred more frequently at low pullback speed. Repetition was only observed at 18 

mm/s, with low incidence (5.2%). Rotation was observed at both pullback speeds, with 

low incidence and without significant differences. 

Shortening was only detected during the systolic period, while elongation and 

repetition were only detected during the rapid-inflow period. Rotation, however, was 

detected during the systolic period (3 cases, 50%), the rapid-inflow period (1 case, 

16.7%) or in both periods (2 cases, 33.3%). No artefact was reported during the 

diastasis period (Table 3). 

 Reproducibility was excellent for repetition (kappa 1.000; 95% confidence 

interval [CI] 0.999–1.000) and moderate for other artefacts: shortening (kappa 0.469; 

95% CI 0.347–0.591), elongation (kappa 0.534; 95% CI 0.420–0.648), rotation (kappa 

0.606; 95% CI 0.288–0.924). 

 

Quantitative analysis 



For the quantitative analysis, 73 stents with a ML8/Vision/Xience platform and 

55 with a Magmaris platform were available. The analysts excluded 23 stents due to 

insufficient analysable length (11), repetition artefact (10) or suboptimal stent 

reconstruction in the longitudinal view (2), resulting in 105 devices finally analysed in 

the quantitative sub-study: 57 ML8/Vision /Xience and 48 Magmaris. 

For both stent platforms, the longitudinal connector was significantly shorter 

during the early ejection phase than in diastasis and significantly longer during the early 

rapid-inflow-phase than in diastasis (p < 0.0001 for all comparisons; Table 4). The 

variability of the measurement was minimal during diastasis (SD 0.06 mm for 

ML8/Vision/Xience and 0.05 mm for Magmaris) and maximal during the early rapid-

inflow-phase (SD 0.41 mm for ML8/Vision/Xience and 0.45 mm for Magmaris). In all 

the individual stents analysed, the measurement of the longitudinal connector during the 

early ejection phase was ≤ than the measurement in diastasis, while the measurement 

during the early rapid-inflow phase was ≥ than in diastasis (Fig. 7), irrespective of the 

detection of CMA by the analyst (Table 4). 

The reproducibility of quantitative measurements was very good: ICCa 0.898 

(95% CI 0.853–0.930) for the early ejection phase; ICCa 0.893 (95% CI 0.845–0.926) 

for the early rapid-inflow phase and ICCa 0.911 (95% CI 0.844–0.946) for diastasis. 

 

Discussion 

The main findings of the current study can be summarised as follows: 1) Four 

different types of distortion can be described as part of cardiac motion artefact, namely 

rotation, shortening, elongation and repetition, affecting both the 3D-OCT 

reconstruction and the longitudinal view (Fig. 1); 2) All of them, except rotation, occur 

more frequently at low pullback speed than at high pullback speed; 3) Shortening occurs 

at the early ejection phase of systole, while elongation and repetition occur at the early 

rapid-inflow phase of diastole; rotation, however, has been reported at both the ejection 

and the rapid-inflow phases; 4) Diastasis is the phase of the cycle with least cardiac 

motion artefact and with least variability in longitudinal measurements; 5) Repetition is 

easily recognisable by trained analysts, with excellent reproducibility, but shortening 

and elongation occur in every OCT pullback to a greater or lesser extent, so the 



threshold for their identification is highly subjective, thus resulting in poorer 

reproducibility. 

To the best of our knowledge, this is the largest study specifically dedicated to 

the analysis of CMA to date. Its results shed some light about the mechanism for the 

formation of the different subtypes of CMA. Previous studies had intuitively suggested 

that rotation, elongation and repetition occurred during the early ejection phase [1, 2], 

but these pioneering analyses were performed without co-registration with angiography. 

Indeed, some groups have suggested ECG-triggered OCT acquisition, excluding early 

systole, improving image quality, but disregarding potential distortion occurring in 

diastole [3]. The results of the current analysis, specifically focused on CMA using co-

registration with angiography, demonstrate that cardiac structures appear indeed 

shortened during the early ejection phase. Conversely, elongation and repetition are 

solidly associated to the early rapid-inflow phase. This mechanism might be best 

understood with the abstract concept of relative pullback speed [3], that might be 

defined as (pullback + catheter speed) – tissue speed, taking as positive; the movement 

towards the guiding catheter and as negative; the movement fleeing away from the 

guiding catheter (Fig. 8). During diastasis, both the catheter and the tissue of the artery 

remain static, so the pullback speed is the only force to consider. At the early ejection 

phase, the vascular structures move towards the guiding catheter, as hypothesised by 

previous studies [1, 2], but the optical catheter is also displaced in the same direction 

and more intensely, because it accumulates the propelling force along the whole vessel. 

As a result, the relative pullback speed of the optical catheter over the vascular 

structures experiences a net increase, so the imaged elements appear shortened on OCT 

(Fig. 8). Conversely, at the early rapid-inflow phase, both the vascular structures and the 

optical catheter move backwards, but the latter more intensely, following the reverse 

reasoning, so the relative pullback speed experiences a net reduction and the imaged 

structures will appear elongated (Fig. 8). In extreme cases, if the relative pullback speed 

came to become negative, then the optical catheter would scan some vascular segments 

backwards and then forward again during diastole, thus creating the repetition artefact 

(Figs. 4, 8). Supplementary Video 1 documents the backward movement of the optical 

source in a paradigmatic case of repetition artefact, using zoomed co-registration with 

angiography. 



Rotation is often described in both systole and diastole within the same pullback 

and also has poor reproducibility. This could be explained because rotation artefactis 

very often coupled with a sudden change in the direction of the vessel centreline during 

systole, subsequently corrected to the original direction during diastole, so stent 

structures are not properly rotated, but they simply follow the changing orientation of 

the vessel. The examples of rotation provided by previous studies [1, 2] and Figure 2 

exemplify this phenomenon, that might be caused by an eccentric catheter that suddenly 

changes its position in the lumen cross-section during the early-ejection phase and 

recovers its original position during the early rapid-inflow phase, thus creating a typical 

C-shaped pseudo-curvature in the longitudinal view of OCT, with apparent rotation at 

the beginning of both systole and diastole [1, 2] (Fig. 2). This introduces some 

ambiguity in the definition of rotation used in the current analysis and in previous 

studies, this might partially explain the poor reproducibility. The present sample, 

although large, is insufficient to properly verify this observation, as only 6 cases of 

rotation were described. A specific analysis would be required in the future. 

The poor reproducibility of the qualitative assessment of all subtypes of cardiac 

motion artefact, except repetition, advises against its appraisal as part of OCT studies 

and therefore against its request during the peer-review process, as the results would be 

highly variable and unlikely to add meaningful information. Conversely, quantitative 

measurements show excellent reproducibility irrespective of the phase of the cardiac 

cycle.  

The presence of shortening and elongation to a greater or lesser extent in every 

OCT pullback points out the potential inaccuracy of all OCT parameters involving 

longitudinal measurements, like stent volume, neointimal volume [8, 9], volume of 

incomplete stent apposition [9, 10] or any measurement of length, as the same structure 

measured at the early rapid-inflow phase would be slightly longer than that measured 

during the early ejection phase. Likewise, CMA might interfere with the evaluation of 

longitudinal stress in vivo. The magnitude and relevance of this potential source of 

inaccuracy must be defined in future studies. Nonetheless, the minimal variability and 

excellent reproducibility of quantitative measurements during diastasis make an 

eventual automatic correction of this bias technically feasible in future software 

developments.  



 

Limitations of the study 

This is a retrospective offline analysis performed on standard real-world OCT 

acquisitions by trained analysts. However, the possibility of selection bias and all the 

intrinsic limitations to retrospective designs cannot be completely ruled out. 

This study was performed with angiographic co-registration, as a best 

approximation to the cardiac cycle currently available. Co-registration with ECG or 

with the pressure waves in the polygraph would enable a more refined and accurate 

delimitation of the phases, in particular the atrial contraction, often elusive to detect in 

angiography and is therefore excluded from the current analysis. Atrial contraction was 

encompassed at the end of the diastasis period in the current analysis, and disregarded in 

both the qualitative and quantitative studies. More refined studies on the topic might be 

performed in the future if ECG or polygraph co-registration were available. 

 

Conclusions 

 Cardiac motion artefact occurs in up to 23.4% of imaged stents, but shortening 

of vascular structures during the early ejection phase of systole and elongation-

repetition during the early rapid-inflow phase of diastole occur to a greater or lesser 

extent in all cases. Diastasis is free of cardiac motion artefacts and hence the period in 

which longitudinal measurements can be more consistently quantified. 
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Table 1. Descriptive statistics of patients, intervention and lesions. 

Data presented as counts (percent), mean (standard deviation) or median (P25–P75). CABG — coronary 
artery bypass grafting; CHD — coronary heart disease; GFR — glomerular filtration rate; LVEF — left 
ventricular ejection fraction; MI — myocardial infarction; NSTEMI — non-ST-segment elevation 
myocardial infarction; OAD — oral antidiabetics; PCI — percutaneous coronary intervention; STEMI — 
ST-segment elevation myocardial infarction 

Patient level N = 127 
Male 99 (78.0) 
Age [years] 67.2 (58.5–75.3) 
Body mass index [kg/m2] (SD) 28.7 (4.7) 
Cardiovascular risk factors:  

Hypertension 103 (81.1) 
Hypercholesterolemia 64 (50.4) 
Diabetes mellitus:  
 Type 2 on OAD 
 Type 2 insulin-requiring 

38 (29.9) 
11 (8.7) 

Smoking:  
 Previous smoker 
 Current smoker 

26 (20.5) 
28 (22.0) 

Family history of CHD 6 (4.7) 
Previous MI 53 (41.7) 
Previous revascularization:  

PCI 
CABG 

80 (63.0) 
9 (7.1) 

GFR (Cockroft-Gault) [mL/min] 87.7 (48.5) 
Serum hemoglobin [g/dL] 13.5 (1.7) 
LVEF [%] 60 (12) 
Procedural variables N = 132 
Syntax score 13.7 (8.6) 
Contrast volume [mL] 232 (106) 
Fluoroscopy time [min] 20.8 (15.8) 
Clinical indication:  

Stable coronary disease 
Unstable angina 
NSTEMI 
STEMI 

98 (74.2) 
15 (11.4) 
18 (13.6) 
1 (0.8) 

Lesions N = 152 
Calcification:  

None to little 
Moderate to severe 

130 (85.5) 
22 (14.5) 

Diameter stenosis [%] 72.2 (15.9) 



Table 2. Descriptive statistics of the analyzed stents. 

Stents analyzed N = 261 
Coronary artery:  

Left main 
Left anterior descending 
Diagonal 
Circumflex 
Obtuse marginal 
Right coronary artery 
Posterolateral 

10 (3.8) 
107 (41.0) 
12 (4.6) 
42 (16.1) 
9 (3.4) 
79 (30.3) 
2 (0.8) 

Type of stent implanted:  
Xience 
Magmaris 
Biofreedom 
Resolute Integrity 
Orsiro 
Coroflex 
Promus Element 
Bioss-Lim C 
ML Rx Pixel 
Resolute Onyx 
Driver 
Taxus Liberté 
Biomatrix 
ML Zeta 
Vision 
Biodivysio 
Alex Plus 
Cypher 
Taxus Express 
Costar 

71 (27.2) 
55 (21.1) 
23 (8.8) 
19 (7.3) 
17 (6.5) 
14 (5.4) 
12 (4.6) 
10 (3.8) 
9 (3.4) 
7 (2.7) 
6 (2.3) 
4 (1.5) 
3 (1.1) 
2 (0.8) 
2 (0.8) 
2 (0.8) 
2 (0.8) 
1 (0.4) 
1 (0.4) 
1 (0.4) 

Timing of implant:  
Recently implanted (< 3 months) 
Late implanted (≥ 3 months) 

162 (62.1) 
99 (37.9) 

Immediately post-implant 141 (54.0) 
Time from stent implantation [months]* 25.3 (7.4–78.0) 
In-stent restenosis 62 (23.8) 
Mehran’s type**:  

Ia 
Ib 
Ic 
Id 

1 (1.6) 
3 (4.8) 
11 (17.7) 
0 (0.0) 



II 
III 
IV 

27 (43.6) 
18 (29.0) 
2 (3.2) 

Overlap 119 (45.6) 
Pullback speed:  

18 mm/s 
36 mm/s 

229 (87.7) 
32 (12.3) 

Data presented as counts (percent) or median (P25–P75). *For the group of late implanted stents; **For the 
subgroup with in-stent restenosis. 

  



Table 3. Cardiac motion artefact, stratified by pullback (PB) speed and relation with the 

period of cardiac cycle (as defined by co-registration with angiography). 

 
Total (n = 

261) 

PB speed 

P 

Period 

18 mm/s 

(n = 229) 

36 mm/s 

(n = 32) 

Systolic Rapid-

inflow 

Diastasis 

Cardiac motion artefact 61 (23.4) 58 (25.3) 3 (9.4) 0.046    

Rotation  

Shortening 

Elongation 

Repetition 

6 (2.3) 

50 (19.2) 

51 (19.5) 

12 (4.6) 

4 (1.7) 

50 (21.8) 

49 (21.4) 

12 (5.2) 

2 (6.3) 

0 (0.0) 

2 (6.3) 

0 (0.0)  

0.160 

0.003 

0.043 

0.371 

5 (1.9) 

50 (19.2) 

0 (0.0) 

0 (0.0) 

3 (1.1) 

0 (0.0) 

51 (19.5) 

12 (4.6) 

0 (0.0) 

0 (0.0) 

0 (0.0) 

0 (0.0) 

  



Table 4. Quantitative analysis of cardiac motion artefact (CMA), stratified by stent 

platform. Analysis in the whole sample (upper rows) and in the subgroup in which no 

CMA was detected in the qualitative analysis. 

 Length of longitudinal connector [mm]   

 
Early ejection 

phase 

Early rapid-

inflow phase 
Diastasis 

Ejection 

vs. 

diastasis 

Rapid-

inflow vs. 

diastasis 

 Mean SD Mean SD Mean Mode SD P P 

ML8/Vision/Xience 

(n = 57) 
1.13 0.20 1.89 0.41 1.43 1.40 0.06 < 0.0001 < 0.0001 

Magmaris (n = 48) 0.85 0.16 1.58 0.45 1.13 1.10 0.05 < 0.0001 < 0.0001 

Subgroup no CMA          

ML8/Vision/Xience 

(n = 36) 
1.21 0.12 1.68 0.21 1.42 1.40 0.05 < 0.0001 < 0.0001 

Magmaris (n = 35) 0.88 0.14 1.44 0.33 1.13 1.10 0.05 < 0.0001 < 0.0001 
Data presented as count (percent) of stents that were correctly identified. SD — standard deviation 

  



 

Figure 1. Four different subtypes of cardiac motion artefact are considered in the 

current study. Rotation (A), defined as twisting of the stent structure around its 

longitudinal axis in the longitudinal view or in the three-dimensional (3D) 

reconstruction. Notice the longitudinal connector of the ML8/Vision/Xience platform 

(white line), changing direction and misaligning with the vessel longitudinal axis (red 

dotted lines). Shortening (B) and elongation (C), defined as any modular element of the 

stent appearing relatively shorter (B, dotted arrows) or longer (C, dotted arrows), 

respectively, than the average length of identical modular elements in the longitudinal 

view or in the 3D reconstruction (B, C, white lines). Repetition (D), defined as 

substantial distortion of the stent structure due to repeated scanning of the same 

elements backwards (red dotted arrow) and forward again (orange arrow).  

 

  



Figure 2. Correspondence of cardiac motion artefact with the phases of the cardiac cycle. All subtypes of 
cardiac motion artefact were detected on the early ejection-phase of systole (shortening, rotation) or in the 
early rapid-inflow phase of diastole (elongation, repetition, rotation). Elongation and repetition have been 
observed in some cases during the atrial contraction. The rest of the phases in the cardiac cycle are free of 
cardiac motion artefact.  



 

Figure 3. Approximation to the cardiac cycle phases using angiographic co-registration. 

Beginning of the ejection phase (A, D): First frame showing contraction of the coronary 

vessels. Beginning of the rapid-inflow phase (B): First frame showing distension of the 

coronary vessels after systole. Beginning of diastasis (C): First frame in which the 

coronary arteries have reached their maximal expansion during diastole, before the atrial 

contraction. These three landmarks divide the cardiac cycle into three periods: 1) 

systolic period (A–B, red stripe), encompassing the ejection phase + isovolumic 

relaxation phase; 2) rapid-inflow period (B–C, dark green stripe), corresponding to the 

rapid-inflow phase, and 3) diastasis period (C–D, light green stripe), encompassing 

diastasis, atrial contraction and isovolumic contraction. 

 



Figure 4. Mechanism of the repetition artefact. The upper panel show the structure of a 

Magmaris scaffold. During the optical coherence tomography (OCT) scanning (white 

arrows), at the early rapid-inflow phase of diastole, the relative pullback speed of the 

optical source in relation to the tissue can be reversed and take negative values, thus 



resulting in backward scanning of previously imaged elements (red dotted arrow), that 

are re-imaged forward again at subsequent phases of the cycle, as soon as the relative 

pullback speed becomes positive again. As a result, some segments are scanned three 

times (forth-back-forth). Since OCT displays the scanning as a continuous image in the 

same direction (mid-panel), every change in the direction of scanning produces a 

specular pattern of the previously imaged elements, resulting in the typical 

kaleidoscopic images of the repetition artefact (lower panel).  

 

 

  



 

Figure 5. Quantitative measurements. The longitudinal connector of the ML8-Vision-

Xience platform (left) and of the Magmaris platform (right) was measured in the 

longitudinal view. The example shows measurement of the first connector in diastasis 

period, defined by angiography. It is important to measure at initial parts of the period 

to avoid atrial and isovolumic contraction, occuring at the final part of the angiographic 

period. 

 

  



 

Figure 6. Study flow-chart; OCT — optical coherence tomography; NURD — non-

uniform rotational distortion. 

 

  



 

Figure 7. Per stent individual measurements of the longitudinal connector in different 

phases of the cardiac cycle. In practically all cases and for both platforms, the 

measurements were minimal at the early-ejection phase and maximal at the early rapid-

inflow phase. The variability was maximal at the early rapid-inflow and minimal in 

diastasis. 

  



 

Figure 8. Mechanism of the different subtypes of cardiac motion artefact. At the early 

ejection phase, vascular structures and optical catheter move towards the guiding 

catheter, but the optical catheter moves faster, because it accumulates the propelling 

force along the whole vessel, resulting in increased relative pullback speed and 

shortening of the imaged structures. Conversely, at the early rapid-inflow phase, both 

the vascular structures and the optical catheter move backward, but the latter moves 

faster, following the reverse reasoning. The relative pullback speed is hence reduced, 

resulting in elongation of the imaged structures. In extreme cases, if the relative 

pullback speed became negative, backwards optical scanning would occur, thus creating 

the repetition artefact; PB — pullback; relative PB speed = (PB + catheter speed) – 

tissue speed 

  



Central illustration. Zoomed correspondence of cardiac motion artefact with the 

phases of the cardiac cycle. All subtypes of cardiac motion artefact were detected on the 

early ejection-phase of systole (shortening, rotation) or in the early rapid-inflow phase 

of diastole (elongation, repetition, rotation). Elongation and repetition have been 

observed in some cases during the atrial contraction. The rest of the phases in the 

cardiac cycle are free of cardiac motion artefact. 

 


