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Abstract 



Background: Measurements of fractional flow reserve (FFR) and/or coronary flow reserve 

(CFR) are widely used for hemodynamic characterization of coronary lesions. The frequent 

combination of the epicardial and microvascular disease may indicate a need for complex 

hemodynamic evaluation of coronary lesions. This study aims at validating the calculation of 

CFR based on a simple hemodynamic model to detailed computational fluid dynamics (CFD) 

analysis. 
Methods: Three-dimensional (3D) morphological data and pressure values from FFR 

measurements were used to calculate the target vessel. Nine patients with one intermediate 

stenosis each, measured by pressure wire, were included in this study. 
Results: A correlation was found between the determined CFR from simple equations and from a

steady flow simulation (r = 0.984, p < 10−5). There was a significant correlation between the CFR 

values calculated by transient and steady flow simulations (r = 0.94, p < 10−3). 

Conclusions: Feasibility was demonstrated of a simple hemodynamic calculation of CFR based 

on 3D-angiography and intracoronary pressure measurements. A simultaneous determination of 

both the FFR and CFR values provides the capability to diagnose microvascular dysfunction: the 

CFR/FFR ratio characterizes the microvascular reserve.

Key words: coronary flow reserve, fractional flow reserve, three-dimensional 

reconstruction, coronary flow reserve, microvascular function

Introduction

Measurements of fractional flow reserve (FFR) and/or coronary flow reserve (CFR) are 

widely used for hemodynamic characterization of coronary stenosis. An FFR value of 0.80, 

calculated as the mean distal and proximal coronary pressure in hyperemia, is the threshold below

which percutaneous coronary intervention (PCI) and stent implantation are recommended [1–4]. 

Multiple clinical studies demonstrated that FFR is a consistent metric to support decision-making 

in treatment options during heart catheterization [1–4]. However, despite the highly significant 

difference between the PCI and the medical therapy groups in the primary endpoint [5], the risk 

assessment potential of FFR on the natural history can be interpreted to be limited. Therefore, the 

need for a more complex hemodynamic evaluation of coronary lesions is warranted. 



Coronary flow reserve is defined as the ratio of a cycle-averaged coronary flow rate in the 

stenosed artery segment during maximum vasodilation and the resting condition. A threshold of 

hemodynamic significance is proposed at coronary lesions with CFR < 2.0. In contrast to FFR 

that addresses the hemodynamic consequences of focal stenosis of the conductance vessels, CFR 

could be the subject of processes that involve the entire coronary artery system. Thus CFR can 

also be impaired due to microvascular dysfunction originating from atherosclerotic or non-

atherosclerotic processes [6–11]. CFR was an independent factor of mortality in patients with 

suspected coronary artery disease, providing incremental risk stratification over clinical variables 

and perfusion imaging [12, 13]. 

Despite the correlation between CFR and FFR, a relevant discrepancy between these two 

parameters may occur, reflecting distinct aspects of the coronary pathophysiology [14]. These 

differences underline the importance of a comprehensive description of stenosis physiology by 

both the pressure and flow characteristics [15]. 

The resistance of the microvascular system is the ratio of the distal coronary pressure 

divided by the distal coronary flow. During maximal vasodilation, the hyperemic (minimal) 

resistance of the microcirculation can be characterized by the thermodilution method by 

calculating the index of microcirculatory resistance (IMR): IMR = mean transit time × distal 

coronary pressure.

While the IMR is influenced significantly by the perfused myocardial mass [7–10], the 

Doppler flow velocity measurement shows the hyperemic microvascular resistance (HMR) 

without this limitation but with the laborious technical problems of the Doppler measurement. In 

cases when both the FFR and the CFR can be determined, the CFR/FFR ratio will provide useful 

information about microvascular resistance; < 2 value indicates microvascular dysfunction [16].

The microvasculature has become focused on the pathogenesis of coronavirus disease 2019 

(COVID-19)-related cardiovascular involvement. The role of microvascular injury has arisen 

both in the acute phase and in the post-COVID cardiac syndrome provoked by possible immune-

mediated mechanisms [17, 18].

Such a diagnostic approach that can provide information on the microvasculature without 

having to apply further invasive device testing during a routine FFR measurement may serve as 

good guidance for follow-up on COVID-19-related microvascular abnormalities [19]. 



The present study aims at establishing a clinically applicable method for simultaneous CFR

determination during a routine FFR measurement. We have developed a simple three-

dimensional (3D) angiography- and intracoronary pressure measurement-based hemodynamic 

calculations which do not require the time-consuming modeling of the flow. In this paper, this 

simple method was validated by the results of detailed unsteady and steady-state modeling of the 

flow using a finite volume method that solves the Navier-Stokes and continuity equations.

Methods

Study population

Nine patients (4 males, 5 females) who underwent invasive pressure wire measurement 

were selected for this retrospective study from 20 consecutive patients with stable coronary artery

disease. Inclusion criteria were single well-defined intermediate stenosis (40–70% diameter 

stenosis by visual assessment) in a main branch of the coronary system with a diameter > 2 mm, 

appropriate angiographic views for 3D reconstructions, and good quality hyperemic and resting 

pressure traces with checking for pressure drift by the pullback of the pressure sensor at the end 

of the procedure. In addition, patients with an acute coronary syndrome left main coronary artery 

stenosis, ostial stenosis, previous coronary artery bypass graft surgery, or diffuse coronary artery 

disease were excluded. Segment detection, 3D reconstruction, and pressure measurement of 1 

case are presented in Figure 1. 

Detection of more than 2 mmHg drift at the end of the measurement was also an exclusion 

criterion. Among the 20 screened patients, 5 cases did not have appropriate angiograms for 3D 

coronary artery reconstruction from two angiographic views (with at least 25° difference), and in 

6 cases more than 2 mmHg drift was detected and was a cause for exclusion. The remaining 9 

patients were analyzed.

The present study was performed in concordance with the ethical standards laid down in the

1964 Declaration of Helsinki and its later amendments and approved by the Hungarian Office of 

Health Authorisation and Administrative Procedures (Project identification number: 

44270/2013/OTIG). Patient characteristics can be found in Table 1.

Fractional flow reserve measurement



Fractional flow reserve measurements were performed using a pressure-sensor guidewire 

via a 6 French (F) guiding catheter. First, the target artery was passed with an intracoronary 

pressure wire (RADI Medical, Uppsala, Sweden). After calibrating the wire, pressures were 

equalized with the sensor positioned at the level of the catheter tip. The sensor was then advanced

through the coronary stenosis and measurements were performed approximately 2 cm distal to 

the lesion. 150–200 µg intracoronary adenosine was administered, and the ratio of the distal 

coronary pressure (pd) and the aortic pressure (pa) gave the FFR (Fig. 1B, left-hand side, green 

line). The resting pressure ratio was measured after the disappearance of the adenosine effect 

(defined by returning to the same pressure trace as before the adenosine injection) (Fig. 1B, right-

hand side).

Three-dimensional quantitative coronary reconstruction

The invasive coronary angiography was followed by offline 3D angiographic 

reconstruction using validated software (e.g., QAngio XA Research Edition 1.0, Medis Specials 

bv, Leiden) [28–31]. During the automatic reconstructions, two angiographic recordings of good 

quality were used with at least 25° difference in angle. A target vessel segment in 3D, starting 

from the coronary orifice to the location of the pressure wire sensor, was generated for further 

analysis. Subsequent to the 3D reconstruction, parameters required for the computations, 

including the proximal reference cross-sectional area, the average stenotic area, the distal 

reference area, the length of the proximal reference area, the stenotic area, the distal reference 

area, as well as the minimal lumen area were calculated using the aforementioned software. The 

average cross-sections are determined automatically by the angiographic software based on 

volume equivalence; i.e., the cross-sections are computed by dividing the segment volume by its 

length. 

The software evaluates the short-axis diameter (Fig. 1A, blue curve) and the reference 

diameter curve (Fig. 1A, dashed green curve) to find the above measurements. The short-axis 

diameter curve is based on the ellipses along the centerline that defines the entire 3D 

reconstruction. The reference diameter curve is a linear approximation for a hypothetical healthy 

vessel. At first, the algorithm finds the minimal lumen area (MLA), marked with a red vertical 

line, this is the smallest cross-sectional area in the stenosed segment. Then the software finds the 

intersection between the short-axis diameter curve (blue) and the reference diameter curve 



(dashed green), both proximally and distally from the position of the MLA. These proximal and 

distal positions (marked with green vertical lines) are the boundaries of the stenosed segment. 

The Ap (proximal), As (stenosis), and Ad (distal) cross-sectional areas are calculated accordingly.

Description of the simple method for the calculation of CFRModel (CFRM)

A flow resistance caused by an obstacle in a flow manifests itself in a pressure drop. As 

discussed above, the pressure drop, in general, has a linear term (as a function of the velocity or 

the flow rate), representing viscous friction losses (fQ), and a quadratic term which represents 

separation losses (sQ2). The method called the “simple model” used here is the reformulation of 

the similar methods in [14, 15, 20, 21] (Fig. 2):

∆ pt=∆ pviscprox
+∆ pviscsten

+∆ psep+∆ pviscdist
=f prox Q+f stenQ+sQ2

+ f dist Q

Q is the volumetric flow rate; ∆pt is the total pressure drop; ∆pvisc(i) are the friction-related 

pressure losses, respectively for the proximal, stenotic, and distal part; and ∆psep is the separation-

related pressure loss term of the idealized stenosis. Thus, fi is the linear coefficient in the viscous 

pressure loss terms, and s is the quadratic coefficient in the separation-related pressure loss term. 

A simple model, shown in Figure 2, consists of three segments: the proximal, the stenotic, and 

the distal segment. All three parts are straight, cylindrical, rigid-walled tube sections. The length 

of the stenotic segment, denoted by Ls in the model, is defined in Figure 1 as the segment where 

the red real diameter curve deviates from the blue reference diameter curve at more than a certain

threshold. The steps of the volumetric flow determination are described in the patent of the 

method: https://patents.google.com/patent/WO2019175612A2/en.

Computational fluid dynamics (CFD) calculation for CFR

Computational fluid dynamics techniques to study coronary artery disease is a widely used 

and quickly advancing research tool [22] used in pre- [23–26] and post-stent-treatment analysis

[27]. After 3D reconstruction by QAngio XA, the geometries were imported to MeshLab [28] for 

further pre-processing to have a smooth surface for the CFD analysis. The software package 

https://patents.google.com/patent/WO2019175612A2/en


ANSYS 18.2. (ANSYS Inc. Canonsburg, USA) was used for the 3D CFD analysis [29, 30] using 

the CFX numerical solver. 

The measured aorta and distal pressure profiles were imposed on the inlet and outlet in 

unsteady simulations, respectively. CFRunsteady (CFRU) was calculated as the ratio of flow rates 

computed from resting and hyperemic conditions. The unsteady flow results were averaged 

within one heart cycle, and the CFRsteady (CFRS) was calculated from these data.

Using the ANSYS software, all numerical meshes consisted of about 1.5 to 2 million 

numerical cells consisting mostly of linear tetrahedral cells and 5 prismatic layers adjacent to the 

wall for better near-wall resolution (see the inset image in Figure 3). In the present simulations, 

the blood was assumed to be an incompressible Newtonian fluid, and the vessel walls to be rigid. 

The density and viscosity were set to be 1055 kg/m3 and 3.5 mPas, respectively.

The setup of the steady-state simulations was as follows: the spatial discretization scheme 

was set to high resolution, which uses a blending function between first-order and second-order 

discretization according to the computation demands. The criterion 10−6 was set for the residuals, 

and the flow rate was monitored for convergence. A cycle-averaged pressure was calculated in 

the aorta and at the distal point in the coronary artery after the stenosis from the invasive pressure

measurements. Since the flow rate is independent of the absolute pressure level, and depends 

only on the pressure difference, the difference of the two-cycle-averaged pressures were imposed 

as total pressure at the inlet to drive the flow within the vessel section, and zero pa static pressure 

at the outlet. To obtain the ∆p(Q) relationship and eventually the f and s coefficients, a set of 5 

steady-state simulations were carried out with increasing inlet pressure values, including those 

corresponding to the resting and hyperemic conditions. A parabolic curve was fitted on these 5 

(∆p, Q) points, and the coefficients f and s were determined from the curve fitting. The measured 

aorta and distal pressure profiles were imposed on the inlet and outlet in the unsteady 

simulations, respectively. CFRunsteady (CFRU) was calculated as the ratio of flow rates computed 

from the resting and hyperemic conditions. 

Because the pressure detection in the aorta using a fluid-filled system, and in the coronary 

artery, is based on electrical conduction, the time signal of the pressure wire is shifted in time 

(comes earlier) relative to the aortic pressure trace. This 2–5 ms shift is corrected before being 

used in the CFD simulations. A second-order backward Euler method was chosen for the 

temporal discretization scheme with adaptive time stepping to fulfill the CFL criterion of 1.0. 



Three cycles were simulated, and only the last cycle was post-processed to exclude any form of 

the initial transient. The unsteady flow results were then averaged within that one last heart cycle,

and the CFRsteady (CFRS) was calculated from these data. 

Results

In Table 2 a summary of the computed CFR values is reported. 

The correlation between the CFR was determined by the simple equations and from the 

steady flow simulation (CFRM−CFRS) was excellent (r = 0.984, p < 10−5). Table 2. also shows 

that the correlation between the results of the steady and the cycle-averaged unsteady simulations

(CFRS−CFRU) remained good and significant, with a Pearson correlation coefficient of 0.94 and 

(p < 0.001). Finally, the correlation between the model values and unsteady simulations 

(CFRM−CFRU) remained pleasant (r = 0.876, p < 10−2).

Figure 4 shows the scatter plots of the comparisons and their corresponding Bland-Altman 

analysis for the simple method, steady and unsteady state simulations. The Bland-Altman 

analysis of the above-demonstrated methods did not systematically skew the values in the 

investigated range.

The CFRM/FFR was derived as an analogue to the microvascular reserve characterizing the

microvascular state [16]. Values below 2.0 indicate a microvascular dysfunction. All 5 of those 

patients with CFRM/FFR < 2 had clinical evidence for microvascular disease (Table 2). 

The overall pressure loss (∆pt, the sum effect of the friction- (fQ) and separation- (sQ2) 

related pressure loss types) of each case, derived by the simple model, is smaller than that 

calculated by CFD simulation. In Figure 5, flow rate as a function of the pressure-drop (Q(∆p)), 

the diagram is shown containing three cases with decreasing resistances. The solid and dashed 

curves are defined by the simple model and the CFD simulations, respectively. The lowest 

resistance (lowest f and s coefficients) was obtained for Case 8 by the simple model (the solid 

blue steep curve in Figure 5), rendering the flow rate calculation to be quite sensitive. 

While the actual numerical values of the quadratic losses are rather underestimated by the 

simple model because of the fact that vessel tortuosity and lesion eccentricity could be the 

sources for separation-related losses but these are not incorporated into the simple model yet, the 

difference between the CFR values is small, being that the CFR is a ratio-type variable. 



The present results for unsteady and steady flow simulations are in line with earlier studies

[31, 32], that also relied on using pressure histories.

Discussion

Morris et al. [33] recently published a method for absolute flow calculation using similar 

pressure input data for fluid dynamic computation by ANSYS software (QCFD), this is  the 

simplified method used herein. However, our simple method only requires an Excel sheet for the 

flow calculations, and — according to available research, the first one of its kind — furthermore, 

it is, to a large extent, automated and requires only a couple of minutes to perform the whole 

procedure.

The full 3D CFD simulations using the programs mentioned above are computationally 

demanding and need professional pre-processing. The pre-processing and meshing take around 

half an hour. In contrast, the set-up and the computation of the steady-state and unsteady analysis 

takes around one hour and two days, respectively, utilizing a four-core 16 GB RAM computer. 

This time span makes it unrealistic to use this workflow outside the framework of clinical 

research. On the other hand, the proposed method with a simplified calculation of the CFR 

requires the most detailed possible data and shows results comparable to that of detailed CFD 

modeling. Therefore, this simple calculation method seems suitable for clinical applications that 

offer a more comprehensive evaluation than FFR measurement alone.

Apart from its small sample size and retrospective nature, some further limitations of the 

present study should be mentioned. First, the blood is a suspension of particles and the blood 

plasma, and on a microscopic level, it behaves like a non-Newtonian fluid; however, in the 

present CFD simulations, a Newtonian approach was used. This approximation is widely 

accepted and used by the hemodynamic research community.

The CFD simulations used “single tube” 3D reconstructions discarding side branches of 

the main segments. In this way, the same volumetric flow rate in the reconstructed coronary 

artery was assumed, not considering flow losses through side branches. Others showed that 

excluding side branches significantly affects calculating flow rates but can still be used to 

calculate a ratio-type value [34].



Conclusions

It was demonstrated herein, that during a routine FFR investigation, the measured 

intracoronary pressure data and 3D reconstructed coronary angiography offer a feasible means of 

calculating the volumetric flow rate and the CFR. The flow calculation needs very little time and 

can provide online comprehensive flow-pressure relation. Validation of the current simple 

calculation technique has been carried out for coronary lesions of a small-sized patient population

in a widely accepted finite volume solver ANSYS CFX. 

The CFR and FFR (CFR/FFR) relation will be an indicator of microvascular function 

analog to microvascular resistance reserve. In the current study, some patients showed markedly 

low CFR values. Among them, most had stenotic aortic valves. This observation is in line with 

the earlier data showing that CFR values in patients with severe aorta stenosis are radically 

reduced despite visually intermediate coronary lesions [35, 36].

According to these values, the clinical decision-making on medical therapy or 

percutaneous/surgical revascularization could be guided more precisely. The CFR results from 

simplified calculations show strong agreement with those from steady flow simulations and thus 

may be accurate enough for clinical applications. For a comparison of the results a larger size 

study with established clinical flow investigation, e.g., by intracoronary Doppler wire 

measurements, is planned. 
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two green lines, marked by shaded green color; B. Sample pressure trace after intracoronary 

adenosine injection. Red line: proximal (aortic) instantaneous pressure trace, red dashed line: 

moving average of the proximal pressure, blue line: instantaneous pressure trace distally to the 

coronary stenosis, blue dashed line: moving average of the distal pressure, green line: the ratio of 

the average distal and the proximal pressure (FFR); min — minimum; max — maximum; 3D — 

https://www.ncbi.nlm.nih.gov/pubmed/28169057
http://dx.doi.org/10.1016/j.ijcard.2017.01.150
https://www.ncbi.nlm.nih.gov/pubmed/18974370
http://dx.doi.org/10.1152/japplphysiol.00049.2008
https://www.ncbi.nlm.nih.gov/pubmed/32151377
http://dx.doi.org/10.1016/j.jbiomech.2020.109698
https://www.ncbi.nlm.nih.gov/pubmed/32666101
http://dx.doi.org/10.1093/cvr/cvaa220
https://www.ncbi.nlm.nih.gov/pubmed/30382522
http://dx.doi.org/10.1007/s13239-018-00388-w


three-dimensional; D — diameter; mm — millimeter; MLA — minimal lumen area; Hgmm — 

millimeter of mercury; pa mean — mean pressure value in the proximal lumen area; pd mean — mean 

pressure value in the distal lumen area; FFR — fractional flow reserve; s — second.



Figure 2. The simplified model of the target vessel is based on the 3D-QCA geometry; CFR — 

coronary flow reserve; MLA — minimal lumen area; A’d — post-stenotic vessel area-averaged on

the segment 5 mm away from the stenotic segment; Ap — proximal cross-sectional area; Lp — 

length of the proximal segment; As — cross-sectional area of the stenosed segment; Ls — length 

of the stenosis; Ad — cross-sectional area of the distal segment; Ld — length of the distal 

segment; Pa — aortic pressure; Pd — pressure distal to the stenosis; Qhyper — flow rate under 

hyperemia; Qrest — flow rate at rest; ∆pv,prox — friction-related pressure loss in the proximal 

segment; ∆pv,sten — friction-related pressure loss in the stenosis; ∆pv,dist — friction-related pressure

loss distal to the stenosis; ∆pv,sep — separation-related pressure loss; ksep — correction for the 

entrance effects detailed in equation (6) [19] 



Figure 3. Sample display of the velocity field near the stenosis in the hyperemic and resting 
condition at the time instant of the highest velocity (case no. 5). The inset figure shows a sample 
cross-section of the mesh in the stenotic segment.

Figure 4. Correlations between the models and their corresponding Bland-Altman plots. 
Correlation coefficients can be found on the bottom of Table 3; CFRS — coronary flow reserve 
with steady calculation by ANSYS; CFRU — coronary flow reserve with unsteady calculation by 
ANSYS; CFRM — coronary flow reserve calculated with the simple model.



Figure 5. Flow rate as a function of the pressure difference Q(∆p). Three distinct cases that 

represent the lowest (blue), middle (green) and largest (red) resistances in the studied population. 

The solid and dashed line depicts the curve defined by the simple model and steady CFD 

simulations by ANSYS, respectively. The marked points on each curve are the solutions of the 

flow equations by substituting the pressure drop of the given case from the resting and hyperemic

condition; CFD — computational fluid dynamics calculation by ANSYS; Q — flow rate; mL/s 

— milliliter/second; CFR — coronary flow reserve; Δp — pressure loss; mmHg — millimeter of 

mercury.



Table 1. Patient characteristics.

Characteristics, Unit Data

General

Number of patients, 

Female, n

9

5

Mean age (SD), years (years) 68.8 (8.2)

CAD risk factors

Hypertonia, n (%) 9 (100)

Diabetes mellitus, n (%) 5 (55)

Hyperlipidemia, n (%) 2 (22)

Chronic renal failure, n (%) 2 (22)

Cardiovascular conditions

Aortic valve stenosis, n (%) 3 (33)

Previous ACS, n (%) 2 (22)

Interrogated coronary artery

LAD, n (%) 6 (66)

LCx, n (%) 1 (11)

RCA, n (%) 3 (33)

FFR measurement

FFR (SD), mean value (mean 
value)

0.76 (0.14)

n — number; SD — standard deviation; CAD — chronic coronary artery disease; ACS — acute 
coronary syndrome; FFR — fractional flow reserve; LAD — left anterior descending coronary 
artery; LCx — left circumflex coronary artery; RCA — right coronary artery



Table 2. Calculated coronary flow reserve (CFR) values with the all three methods. CFRM/FFR 

was calculated based on [16].

Case CFRM CFRS CFRU CFRM/FFR

1 1.14 1.14 1.15 2.59

2* 1.61 1.52 1.46 1.89

3** 1.27 1.32 1.02 1.74

4** 1.31 1.30 1.34 1.58

5* 1.33 1.35 1.42 1.92

6** 1.08 1.08 1.06 1.46

7 1.84 1.74 1.61 2.16

8 2.67 2.70 3.27 3.22

9 2.41 2.11 1.77 2.73

Average (SD) 1.63 (0.57) 1.58 (0.52) 1.57 (0.68) 2.14 (0.59)

Correlation analysis: r P

CFRM−CFRS 0.984 p < 10−5

CFRM−CFRU 0.876 p < 10−2

CFRS−CFRU 0.940 p < 10−3

*Patient with previous acute coronary syndrome, FFR was measured in the culprit vessel; 
**Patients with severe aortic valve stenosis; FFR — fractional flow reserve; SD — standard 
deviation; CFRS — coronary flow reserve with steady calculation by ANSYS; CFRU — coronary 
flow reserve with unsteady calculation by ANSYS; CFRM — coronary flow reserve calculated 
with simple model; r — Pearson correlation coefficient 


