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ABSTRACT 

 
Obsolescence is an unavoidable reality in manufacturing systems and supply chain environments 

as systems are needed to be sustained for longer and longer periods of time. These extended life 

cycle products include airplanes, ships, industrial equipment, medical equipment, and military 

systems. The United States military has coined this issue as Diminishing Manufacturing Sources 

and Material Shortages (DMSMS). Research shows that the main areas of concern for 

obsolescence are cost optimization, obsolescence management, system life cycle, design/system 

refresh planning, architecture/open systems, and end-of-life (EOL) predictions. This effort 

suggests a need for a more effective management approach to tackling obsolescence with an 

emphasis on proactive management. The goal of this research was to create an obsolescence 

management framework for the purpose of managing obsolescence issues with military based 

systems. This research shows the potential for using machine learning as a life cycle forecasting 

tool over traditional data mining tools. The results for this small-scale case study show promising 

results for a larger scale experiment. Another powerful proactive strategy using machine learning 

is building technology refresh cycles into a system based on obsolescence risk levels. Some key 

areas of focus for a strong framework are funding for a robust DMSMS team, a robust supply 

chain, system design that factors in obsolescence risk, and consistent communication with all 

parties involved. It is imperative to develop an effective and data-driven approach to 

communicating obsolescence impacts to leadership to ensure successful mitigation of 

obsolescence issues. Some post-case tools and strategies include utilizing sustainment, 

production, and technology refresh roadmaps, along with employing data driven metrics to 

provide key information to leadership and demonstrate value to the customer. This study 
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demonstrates opportunities and challenges for entities dealing with component obsolescence, 

methods for minimizing the issues that go along with it, and identifies best practices for 

obsolescence management. 

 

Keywords: Mitigating obsolescence; obsolescence; Diminishing Manufacturing Sources and 

Material Shortages (DMSMS); design refresh; component; system life cycle; life cycle 

forecasting; obsolescence management framework; machine learning. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Introduction 

 

Obsolescence is an area of product sustainment that has the greatest impact on technologies with 

long system life cycles. The United States military refers to this issue as Diminishing 

Manufacturing Sources and Material Shortages (DMSMS).  Technologies that have long 

sustainment life cycles are typically the most impacted by obsolescence. These include airplanes, 

ships, industrial equipment, medical equipment, and military systems which are slow in the 

implementation of new technology and leading-edge technology often because of the expenses 

and length of time that accompanies the development of a new product (Sandborn P. , 2011).  

 

The type of obsolescence that this dissertation focuses on will be based on natural market drivers 

and how machine learning can be used in forecasting tools. The goal is to discuss the current 

practices in DMSMS, future research in component obsolescence involving machine learning, 

and creating a best practices framework for mitigating obsolescence in military-based systems.  

Significantly more research needs to be done in proactively managing obsolescence to reduce the 

impact it has on a system. The more obsolescence is understood by companies, the longer a 

product can be sustained, thus bringing overall costs down and keeping the customer satisfied. 
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1.2 Obsolescence Background 

 

Current research shows that most of obsolescence management today is reactive based, meaning 

that problems are managed once they occur using a set of mitigation tactics that include last-

time-buy (LTB), aftermarket sources, substitute parts, emulated parts, salvaged parts, and 

thermal uprating (Sandborn P. , 2011). Most companies have a DMSMS team that handles the 

entire obsolescence process from product discontinuation notice (PDN) to the final resolution. 

However, once the part is obsolete the main solutions are to find a substitute or to perform an 

LTB. There is no more opportunity for being proactive, which is what this research places 

emphasis on. You must be purely reactive, but even that is an artform to be appreciated and 

having an extremely efficient reactive obsolescence mitigation process will always be crucial to 

the success of a company’s product. 

 

A big factor in your decision making depends on the life cycle stage of the product a company 

has developed for the customer. Your final solutions are going to be tailored differently for a 

product that is either still in the design phase, is in production, or is purely in its sustainment 

phase. Typically, the product is in the production and/or sustainment phases, which is where 

obsolesce has the greatest impact. Figure 1 depicts a basic current process for obsolescence 

management. Once the team identifies a component as obsolete, the best mitigation approaches 

are brought forth and ultimately executed through management. 
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Figure 1: A Typical Obsolescence Management Process 

When key obsolescence metrics are conveyed in an effective manner, leadership can make 

informed decisions and have a timeline for what steps need to be taken to avoid an obsolescence 

impact. Therefore, understanding the data early is vitally important for full risk mitigation of an 

obsolescence issue. Typically, you need leadership buy-in after you have collected and analyzed 

all of your data and you are down to three options: pay for a redesign now because there are 

enough parts on the shelf, perform a LTB with enough parts to last until a redesign, or perform a 

LTB with enough parts to last until your system’s out-of-service date.   
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It is imperative to develop an effective and data-driven approach to communicating obsolescence 

impacts to leadership to ensure successful mitigation of obsolescence issues. Leadership needs to 

see their options in a quick, clear, and concise manner, that has the data analytics to back it up. 

Information is only valuable when it permits communication between those involved in decision 

making so constructive action can take place. More information is not necessarily better 

communication, so converting the information into a format that reduces its bulk and targets only 

the key aspect of an issue is important (Sanderlin, 1982). Leadership does not have time for their 

DMSMS team to explain every detail in its most raw form, nor are they going to understand it. 

However, the team must be able to back up their answers and be able to model out new solutions 

on the fly based on management’s needs. 

 

Figure 2 shows all the parties impacted by obsolescence and the strong relationships needed 

between the DMSMS team and all those groups. If an individual sector is not on board, things 

can fall through the cracks and timelines can be missed, resulting in a missed LTB date. All 

parties are equally important, but properly communicating needs with suppliers is often 

overlooked and is sometimes the easiest path forward to resolving a company’s obsolescence 

issue. 
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Figure 2: Parties impacted by obsolescence 

 

The defense industry does not have market share majority over the supply chain for commercial-

off-the-shelf (COTS) electronic components. COTS are becoming obsolete at an increasingly 

fast pace due to rapid changes in technology. Therefore, it is desirable to make partnering 

agreements with suppliers to ensure the continuous support and provision of critical components 

(Rojo, 2010). Achieving long term system availability that leverages COTS technology requires 

having efficacious relationships within the supply chain. It is essential that you work closely with 

suppliers to develop life cycle management plans to keep your systems up to date with active 

components, instead of waiting for obsolescence events to happen (Instruments, 2011). 
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On a component level, partnering agreements between two companies rarely exist, unless it 

makes financial sense for the manufacturer to continue building and selling a specific component 

to just a few companies. Is their purchasing volume going to be enough to even keep that product 

line profitable? Most likely not. However, it is still important to have a strong relationship with 

your suppliers, because often, especially if enough business in done with them in general, they 

may offer a company what is known as a lifeboat agreement. These are agreements that say the 

manufacturer will continue to produce a component for a specified extended amount of time until 

your company can develop a redesign or secure funding to perform an LTB. Figure 3 depicts 

many different obsolescence mitigation strategies, many of which are of the non-modeling type. 
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Figure 3: Obsolescence mitigation strategies (Rojo, 2010) 

Technology refreshes are a useful way to help mitigate obsolescence issues by building in design 

refreshes to a system’s lifecycle as a form of obsolescence management. According to Zheng 

(2015) there are a variety of ways to replace components at design refreshes. A component that 

is projected to be obsolete at a future time can be proactively substituted at any possible design 

refresh before it is obsolete, or it can be reactively replaced at the earliest design refresh once it 

is already obsolete (Zheng, Terpenny, & Sandborn, 2015). Figure 4 shows the optimal design 

refresh plan for components with projected obsolescence dates. The chart shows that even 



    

8 
 

though planned designed refreshes can be put in place, reactive approaches will still be necessary 

when a component becomes obsolete between a refresh cycle. 

 

Figure 4: Optimal design refresh plan (Zheng, Terpenny, & Sandborn, 2015) 

Having an open system architecture is one of the ways to break the dependence of systems on 

specific COTS technologies through “loose” coupling between applications and the underlying 

infrastructure of the platform (D.J.Jibb & J.B.Walker, 2000). The military is the largest holder of 

long-term assets. Being the sector that is affected the most by obsolescence issues, they are the 

ones who have named this issue the DMSMS problem (Feng, 2007). Much of the defense 

industry produces systems or parts that have strict requirements and are proprietary to the 

company itself or classified by the government, making open system architectures difficult to 

accomplish. Even though the United States Department of Defense has begun using open system 

architecture in limited cases, more research is needed to protect against security concerns using 

strict interface definition and control (Tokar, 2017).    
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1.3 Machine Learning Overview 

 

The term artificial intelligence originates from the Dartmouth Conferences in 1956 when a group 

of computer scientists first defined the term and was the catalyst to propel the hypothetical 

concept into reality (Ongsulee, 2017).  According to Bini (2018), artificial intelligence is the 

study of intelligent agents, which are devices that observe their environment and make decisions 

to maximize their chance of success at some goal. Some examples of artificial intelligence that 

we see in our everyday lives are, Apple's Siri, Amazon's Alexa, and natural language processing 

technology used to translate languages in Google Translate (Bini, 2018). Artificial intelligence 

makes use of the availability of graphics processing units that use efficient parallel processing of 

large amounts of data from various sources ranging from images, video, audio, text, transactions, 

and geospatial data (Ongsulee, 2017). Figure 5 shows a pictographic timeline of the invention 

time periods for artificial intelligence, machine learning, and deep learning. 

 

Figure 5: Timeline of Artificial Intelligence, Machine Learning, and Deep Learning (M, 2018) 
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Artificial intelligence is a broader concept than machine learning, which addresses the use of 

computers to mimic the cognitive functions of humans. (M, 2018).  Machine learning is a subset 

of artificial intelligence and is a method of training algorithms so that they learn how to make 

decisions (Garbade, 2018). It is a scientific discipline that addresses how systems can be 

programmed to automatically learn and to improve with experience. To make this happen, the 

algorithms are developed to discover knowledge from specific data and experience, using 

statistical and computational principles (Intelligence, 2011). Ongsullee (2017) states that 

machine learning is related to and often compared to computational statistics, which also focuses 

on prediction-making using computers. It utilizes mathematical optimization, which delivers 

methods, theory, and application domains to the field (Ongsulee, 2017).  

 

The three forms of machine learning are supervised, unsupervised, and semi-supervised. 

Brownlee (2016) states that with supervised learning, all data is labeled, and the algorithms learn 

and make their output predictions from the input data. Unsupervised learning is unlabeled, and 

the algorithms learn to categorize from the input data. With semi-supervised learning, some data 

is labeled but the majority is not, and it contains a combination of supervised and unsupervised 

techniques (Brownlee, 2016). Figure 6 shows a flowchart for the supervised machine learning 

process. Supervised learning is the method that will be used in this research as the data being 

used for the regression and classification analytics will be labeled. 
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Figure 6: Supervised Machine Learning flowchart (Butest, 2010) 

The model must first be trained to learn the mapping function using known information. These 

input attributes of a training data set have a known expected output value. This is essentially 

giving the model the questions and the answers to begin with. Once the model is trained, the 

mapping function should be able to calculate at such a high level that when you input new data 

with unknown outcomes, you can predict the output value for that data. Machine learning has 

gained popularity in many application fields because it can process large data sets with many 

applications from creating better recommendation systems on Netflix, facial recognition in 

pictures, and even cancer prediction and prognosis (Jennings, 2016). The entire field of artificial 
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intelligence, encompassing machine and deep learning, will continue to grow and evolve as the 

demand for big data analytics continues to increase year after year. 

There are a large variety of algorithms, and they all have their own special characteristics. Some 

are linear, some are nonlinear, and some can be a combination of both. Linear algorithms include 

logistic and linear regression. Support vector machines are unique in the sense that they can use 

what is known as a kernel to use a linear classifier to solve a non-linear problem. It involves 

converting linearly inseparable data to linearly separable ones. The kernel function removes the 

need to define large amounts of features and instead defines a single kernel function to compute 

similarity between prediction possibilities (Afonja, 2017).  

 

Figure 7: Linear vs Nonlinear problems (Afonja, 2017) 
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Figure 7 above shows a visual difference between trying to solve a linear problem on the left and 

a nonlinear problem on the right. According to Auret & Aldrich (2012), nonlinear models 

include artificial neural networks and random forests and they do not have the basic type of 

influence analysis as with linear models. Interactions and transformations of variables are 

accounted for and when variables change, the response will not necessarily change at a 

proportionate rate, for all possible values of all other variables. These unique correlations and 

interactions of variables can make interpretation of influence more difficult (Auret & Aldrich, 

2012). 

 

In machine learning, variables are called features and are the measurable characteristics or 

factors of an object being studied. Feature selection methods are used to identify and remove 

irrelevant and redundant variables from data that do not contribute to the accuracy of a predictive 

model or could decrease the accuracy of the model (Brownlee, An Introduction to Feature 

Selection, 2014). There are many feature selection techniques, but some common ones are filter 

methods, wrapper methods and embedded methods. Filter methods compare the relationship 

between features and the output to compute the importance of features, wrapper methods 

generate models with subsets of features and calculate their performances, and embedded 

methods utilize the insights provided by various machine learning models such as linear 

regression and random forest (Asaithambi, 2018). Figure 8 shows the basic feature selection flow 

chart for forward selection, which is a wrapper method algorithm that uses cross-validation for 

estimating the accuracy of a feature subset until the optimal subset is chosen (Hall, 1999). 
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Figure 8: Forward selection decision flow chart example (Asaithambi, 2018) 

The models primarily use heuristic approaches to evaluate the effects of individual features 

corresponding to each category to obtain an optimal feature subset (Cai, Luo, Wang, & Yang, 

2018). Often it is unknown which variables in the data are going to be the most important, so 

using machine learning itself to help determine key attributes is extremely useful. The features in 

an original set can be placed into the four categories of completely irrelevant and noisy features, 

weakly relevant and redundant features, weakly relevant and non-redundant features, and 

strongly relevant features (Cai, Luo, Wang, & Yang, 2018).  
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One non-machine learning obsolescence study using linear regression found configurable logic 

blocks, maximum logic gates, logic cells, and maximum user input/out performance to be the 

most relevant model variables for Field Programmable Gate Array (FPGA) integrated circuits 

(Gao, Liu, & Wang, 2011). Using these approaches to classify features based on significance, 

therefore knowing what the important component attributes to look for are, will make it easier to 

acquire additional data and process it through the models in an accurate and efficient manner. 

 

1.4 Common Machine Learning Practices 
 

Machine learning is a tool that has already been used in a wide variety of industrial engineering 

studies. One study by (Candanedo, Feldheim, & Deramaix, 2018) was able to use the linear 

regression and random forest algorithms to predict missing data. Two regression models were 

trained to predict the average indoor temperature of a home using different sample sizes for the 

training set to detect differences in the error of the training and testing sets and how they respond 

as the sample size increases. The predictor variables, or features, for the models were outdoor 

temperature, humidity, windspeed, visibility pressure, temperature dew point, and total 

electricity use. The study determined the optimal sample size for the trained linear regression 

model was about 15,300 and random forest was about 27,300, with random forest having a 

smaller root mean square error. If the study were done using different models, the learning 

curves would display similar behavior and have specific optimal sample sizes of their own 

(Candanedo, Feldheim, & Deramaix, 2018). 

 



    

16 
 

When it comes to this research, there too may be instances of missing or incomplete data. 

Machine learning can help accurately fill in those gaps. Figure 9 shows how random forest 

regression models were able to reconstruct indoor temperate data with high accuracy. 

 

 

Figure 9: Machine Learning reconstructing missing data (Candanedo, Feldheim, & Deramaix, 

2018) 
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Studies have been performed using deep learning, a specialized subset of machine learning, for 

prevalent topics in processing traffic data including transportation network representation, 

forecasting for traffic flow, traffic signal control, automatic vehicle detection, traffic incident 

processing, forecasting travel demands, autonomous driving and driver behaviors (Nguyen, Kieu, 

Wen, & Cai, 2018).  At present, according to Gao & Sun (2018), a series of traffic flow 

forecasting methods have been proposed and applied, such as time series-based algorithms, 

nonparametric methods, local regression models and so on. Although these methods do improve 

the prediction performance to some extent, most of them only predict one link’s unidirectional 

traffic flow at a time. This study was able to use neural networks to take the relevance of 

adjacent links into account and found out that 21 out of 31 road links had multilink predictions 

outperform single-link predictions resulting in improvements in short-term traffic flow 

forecasting (Gao & Sun, 2010).  

 

A case study by Priorea et al. (2018) was done on job sequencing and job routing for flexible 

manufacturing systems using Support Vector Machines, Inductive Learning, Backpropagation 

Neural Networks, and Case-Based Reasoning using ensemble methods of Boosting, Bagging, and 

Stacking methods. Ensemble methods are procedures that combine multiple different models to 

improve results. Figure 10 shows a conceptual evolution of modeling methods for scheduling these 

systems. The models looked at arrival of parts, the relative workload, the due date, along with 

other features to calculate the best dispatching rule for each state (Priorea, Ponteb, Puentea, & 

Gómez, 2018). 
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Figure 10: Approaches for scheduling of flexible manufacturing systems (Priorea, Ponteb, 

Puentea, & Gómez, 2018) 
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Machine learning has been used in various other applications with concepts that can be used for 

predicting obsolescence. A study by Kilham et al. (2018) used Logistic Regression, 

Classification and Regression Trees, and Random Forest algorithms to project large-scale forest 

growth and timber inventory estimates. In this study, the Logistic Regression models achieved 

higher overall classification accuracies, but tended to underestimate or overestimate the number 

of harvest shares for several subsets of the data. The Classification and Regression Trees models 

did a better job at estimating the harvest shares based on actual data from the National Forest 

Inventory (Kilham, Kändler, Hartebrodt, Stelzer, & Schraml, 2018). Table 1 and Figure 11 show 

the results for the classification accuracy and the number of harvest shares, respectively. 

 

Table 1: Algorithm classification accuracy. Adapted and modified from (Kilham, Kändler, 

Hartebrodt, Stelzer, & Schraml, 2018) 

Method 
Classification 

Accuracy 
Precision Sensitivity Specificity 

Cohen's 

Kappa 

Logistic Regression 

(MK) 
0.670 0.737 0.747 0.536 0.280 

Logistic Regression 

(YI) 
0.642 0.773 0.618 0.684 0.280 

CART and Random 

Forest 
0.639 0.719 0.709 0.516 0.220 

CART and random 

prediction 
0.586 0.676 0.667 0.444 0.110 

CART: Classification and Regression Trees; MK: Max Kappa; YI: Youden Index 
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Figure 11: Shares of harvest plots algorithm accuracy (Kilham, Kändler, Hartebrodt, Stelzer, & 

Schraml, 2018) 

Another study by Curtis et al. (2017) was conducted to predict waiting times for nonscheduled 

patients and delayed times for scheduled patients for various services at a radiology facility. The 

ten machine learning algorithms used were Neural Network, Random Forest, Support Vector 

Machine, Elastic Net, Multivariate Adaptive Regression Splines, K-th Nearest Neighbor, 

Gradient Boosting Machine, Bagging, Classification and Regression Tree, and Linear 

Regression. The two models that consistently performed the best and had the lowest root mean 

square error and highest R^2 were Gradient Boosting Machine and Elastic Net as depicted in 

Figure 12 (Curtis, Liu, Bollerman, & Pianykh, 2017). 
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Figure 12: Lowest Root Mean Square Error and highest R^2 (Curtis, Liu, Bollerman, & 

Pianykh, 2017) 

 

 

The above examples are all ways that industrial engineers and others alike are already 

performing research using machine learning approaches and should continue to do so in the 

future. Not only does machine learning show promise for predicting product discontinuation 

dates and creating obsolescence risk profiles, but it has also shown great use for interpreting 

missing data, traffic pattern and flow forecasting, and manufacturing job sequencing and routing.  

This research will be of value to anyone who is studying any sort of classification or predictive 

regression methods. An ancillary goal to this doctoral study is to help educate the industrial 

engineering research communities on various machine learning algorithms, performing in a 

multitude of big data situations, that can be beneficial and useful in their research endeavors.  
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This research shows great promise that machine learning can be used as a prediction tool, based 

on various input variables. Tailoring the inputs specifically to electrical components should be 

possible to predict a product discontinuation date with high accuracy, even with the human factor 

of a manufacturer deciding to discontinue a part for any reason at any time. It is important to 

note that most studies use a wide variety of algorithms for testing purposes. When conducting the 

experimental side for future research, the plan is to do the same as you do not know which model 

will be the most accurate until you test it. 

 

 

1.5 Problem Statement 

 

Research suggests a need for an effective managerial framework to tackling obsolescence. When 

it comes to forecasting obsolescence, today’s best tools use traditional algorithms that analyze 

inputs using defined logic but are only as good as the logic provided. 

 

1.6 Goal Statement 
 

The aim of this research is to determine if machine learning predictive algorithms can accurately 

predict the product discontinuation date and availability status by a manufacturer and provide a 

framework for obsolescence management in military systems driven by best practices.  
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1.7 Research Questions 
 

• Can machine learning algorithms be used to accurately forecast electrical component 

obsolescence? 

• If the question above is true, which variables carry the most influence? 

• What tools and strategies can be implemented to create an effective obsolescence 

management framework? 

 

1.8 Potential Contributions to the Body of Knowledge 

 

This goal of this research is to create an obsolescence management framework for anyone in the 

field of managing obsolescence issues with military based systems. This research could show the 

potential for using machine learning as a life cycle forecasting tool over traditional data mining 

tools. Machine learning could prove to be useful in the selection of components for system 

designs and creating BOM risk profiles. Another contribution the framework could provide is a 

clear path on how to find a solution to problems as the occur and how to manage these newly 

mitigated obsolescence issues.  

1.9 Document Distribution 

 

1. Chapter 1 is the introduction of this dissertation and covers a background on 

obsolescence, machine learning, the problem statement, the goal statement, research 

questions, and the potential contribution to the body of knowledge. 
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2. Chapter 2 is the Literature Review and covers obsolescence consequences, current 

practices, future practices, and the knowledge gap. 

3. Chapter 3 is the methodology and covers the aims, data collection, framework 

development, algorithm selection, feature selection, Random Forest model validation, 

and framework validation. 

4. Chapter 4 is the Initial Experiments and includes the case study and the related code for 

the Random Forest model. 

5. Chapter 5 is the Results and Discussion and examines the classification and regression 

results from the Random Forest model. 

6. Chapter 6 is the Best Practices Framework and discusses the pre-case, open case, post-

case, and best practices portions of the obsolescence management framework. This 

framework also includes the benefits of using machine learning for DMSMS forecasting.   

7. Chapter 7 is the Concluding Remarks and includes the dissertation conclusion, 

contributions to the body of knowledge, and the challenges, limitations, and future 

research possibilities. 
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CHAPTER 2 LITERATURE REVIEW 
 

2.1 Introduction 

 

The UCF library electronic database was the source for researching background information on 

the topic of forecasting obsolescence. The searches resulted in 24,692 titles initially identified, 

91 abstracts being read, 71 full text articles read for review, and 55 articles used in the Literature 

Review. Figure 13 below depicts an overview of the article selection process. It should be noted 

that there is not an abundant amount of scholarly information available on the topic of 

component obsolescence as it is still an area of product sustainment that is working to gain 

traction in industry.  

 

Figure 13: Literature Review article selection process overview 

UCF Library Electronic Database

24,692 Titles Identified for Review Using 
Inclusion & Exclusion Criteria

91 Abstracts Read

71 Full Text Articles Read Based on Review 
Scope

55 Articles Included in Literature Review
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The aim of this research is to conduct an all-inclusive investigation on past studies of DMSMS, 

the issues involved, and tactics for mitigation. One of the toughest obstacles that face the supply 

chain industry today, stated by Amankwah-Amoah (2017), is the ability to procure obsolete 

components and the process for managing obsolescence while dealing with an evolving 

competitive environment. This issue is inflated when parts or components with short life cycles 

are employed in products with long life cycles such as capital-intensive military and electronic 

equipment (Amankwah-Amoah, 2017).  

 

According to Underwood (2011), since the 1970’s, the ever-expanding commercial markets 

surpassed the needs of the military and companies were no longer manufacturing military 

specific components. This has forced the military to utilize Commercial-off-the-Shelf (COTS) 

parts and thus be at the mercy of the demand of the electronics market (Underwood, 2011). In 

1975 the military controlled approximately 17% of the electrical component market share and by 

1995 it controlled less than 1% (Bell, 1998).  
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This research is exploring the various consequences, mitigation strategies, management 

techniques, and possible future areas of research in the field of obsolescence. A deep dive into 

the literature, as depicted in Figure 14 below, shows that the main areas of concern for 

obsolescence are cost optimization, obsolescence management, system life cycle, design/system 

refresh planning, architecture/open systems, and end-of-life predictions. It should be noted that 

in the End-of-Life (EOL) predictions category, of the six articles, there was only one article that 

proposed the idea of machine learning.  

 

Figure 14: Literature Keywords & Main Topics 
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Of the 55 articles reviewed, 45% came from the academia sector, 35% from the industry sector, 

and 20% were from government sources. While most articles from all three sectors placed 

emphasis on life cycle or obsolescence management and minimizing costs, the academic sector 

had many articles focusing on forecasting techniques and looking towards future improvements. 

Some of these topics included forecasting design refresh points and predicting obsolescence 

dates. Figure 15 below depicts the sector of literature reviewed by count. 

 

 

Figure 15: Sector of literature reviewed by count 

Obsolescence studies are largely research areas for of citations, bibliometrics, scientometrics and 

infometrics (Mulla, 2013). DMSMS management is important because it guards programs from 

issues that can be caused by low-volume market demand, changing science or technology, 

deviations to detection limits, toxicity values, or chemical and material regulation changes, 

which can greatly affect the Depart of Defense’s (DoD) supply chain (Office D. S., 2016). 

25
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ACADEMIA INDUSTRY GOVERNMENT

Sector of Literature Reviewed 
by Count
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Since 2003, the Government-Industry Data Exchange Program built by the United States 

Department of Defense has been releasing information about DMSMS once a week rather than 

once a month, which shows that this issue is becoming more and more important for cost 

effective sustainment (Meng, Thörnberg, & Olsson, 2014). A key concern that the Navy has is 

being left behind as manufacturers introduce new products based on new technology and 

discontinue production and support of older items included in the initial designs of the various 

electronics systems (Office U. S., 2010). A greater emphasis on taking a proactive approach to 

the issue needs to take place rather than waiting for the problem to occur and then acting. 

 

Systemic obsolescence is intentionally making a product obsolete by making it too difficult to 

continue using it, and programmed obsolescence is the intentional restriction of the use a product 

that requires the consumer to acquire a replacement (Shaffer, 2015). There are various 

assessments of product obsolescence that influence the decision of the manufacturer and the 

issue can be interpreted from an instrumental and consequentialist standpoint (Echegaray, 2016).  
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The components of the sustainment dominated systems typically go through the six life cycle 

phases of introduction, growth, maturity, decline, phaseout and discontinuance (Rojo, 2010). 

Once a part is discontinued by a manufacturer, your product is no longer functional, and it is up 

to a company’s DMSMS team to take a proactive approach to try and catch issues ahead of time 

before a component’s EOL reaches. Typically, a manufacturer will do this due to lack of market 

demand for that product line or the company may be having issues finding raw material to build 

the component. The customers are then given a defined window of time to perform what is 

known as an LTB. Customers will then internally decide if they would like to try and find a 

different supplier or determine if an alternate part that still performs to all their customer’s 

requirements. If neither of those options are available, then they must perform a last-time-buy 

and purchase enough parts until they can perform a redesign of their product. Figure 16 below 

depicts a product’s life cycle curve used for forecasting. 
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Figure 16: Life cycle forecast using Gaussian trend curve. Adapted and modified from (Soloman, 

2000) 

Soloman (2000) states that the introduction stage of a product’s life cycle usually experiences 

high production costs that are created from costly designs, poor yield, constant modifications, 

everchanging rates in production, and improper production equipment. The growth stage shows 

an increase in sales that may validate the need to develop dedicated production equipment, which 

progresses the rate of production. Maturity of the part life cycle is represented by large amounts 

of sales. Decline shows slowing of demand and normally decreasing profit margin. The phase-

out stage is when the manufacturer sets a production discontinuation date for a component. The 

obsolescence phase is when the manufacturer completely stops production of the component. It 

is possible that the component may still be available for procurement if the production line has 

excess components remain at an aftermarket source (Soloman, 2000). 
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As indicated by Sait (2016), a survey was directed via Automation Research Corporation (ARC) 

Advisory Group to analyze the best practices of the automation industry for managing the life 

cycle of process automation systems from start to finish. At the conclusion of the study, it was 

determined that the best practice for reducing the risk of automation obsolescence is to not 

through the procurement of proprietary solution but rather by incorporating multioperation 

COTS, open source, or technologies with more than one supplier into the system (Sait, 2016).  

 

According to Fossum (1986), three major deficiencies exist in the study of skills obsolescence. 

The imprecision in its definition, there is no guiding model to suggest important variables and 

potential processes in its development, and a failure to use a multidisciplinary approach in 

explaining its development (Fossum, 1986). “The very pace of the evolution of these 

technologies creates a novel dilemma: what should I purchase, and when should I purchase it, 

given that I know that a better product, with more—and more powerful—features, will be 

coming out in just a few months?” (Sparrow, 2015, p. 232). Supporting and maintaining the 

machinery that contains end of life components often is difficult and expensive, which influences 

the reliability and safety of the product (Gao, Liu, & Wang, 2011). With that said, any type of 

mechanism that allows companies to upgrade their capabilities and counter obsolescence is 

considered valuable (Jain, 2015).  
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2.2 Obsolescence Consequences 
 

Electronic component obsolescence is one of the largest technical risks a system can face 

regarding their operational uptime and maintainability (A. Meyer, 2003). Various mitigation 

techniques can be implemented, but they all affect reliability, maintainability, and cost of a 

system (Tomczykowski, 2003). When selecting new components for design, their reliability and 

maintainability must be taken into consideration. When left unchecked, obsolescence can put 

entire product lines out of commission due to an inability to manufacture new products or repair 

existing ones which has an excessive impact on business continuity (Nishant Verma, 2015). The 

following examples paint a picture of the financial risk and impact of component obsolescence 

on various sectors in the military and related environments: 

• “Obsolescence is also very expensive, costing the US Navy (USN) hundreds of millions of 

dollars each year” (A. Meyer, 2003). 

• “The Deputy Under Secretary of Defense for Logistics (USA) indicates that the average cost to 

redesign a (single) circuit card to eliminate obsolete components is $250,000” (A. Meyer, 2003). 

• “The (USA) Air Force is reprogramming $81 million for the F-22 program to purchase obsolete 

or soon-to-be out-of-production parts and to redesign assemblies to accept commercial parts” (A. 

Meyer, 2003). 

• “An avionics manufacturer for the commercial airlines spent $600,000 to replace an obsolete 

Intel chip” (A. Meyer, 2003). 

• “The F-16 program has spent $500 million to redesign an obsolete radar” (A. Meyer, 2003). 
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Not every one of these situations could have been avoided but overlooking DMSMS issues for too 

long only makes the problem worse. On any program, one of the main goals is to minimize costs. 

This is where having a robust obsolescence management team in place can be used to avoid these 

extra expenses.  

 

Complicating the issue even more is that most military based systems require the use of 5-volt 

logic devices while the commercial industry is quickly moving away from 5-volt logic and towards 

3.3 volts and lower (Glum, 2000).  According to Tomczykowski, as technology continues to 

advance, digital designers can create higher densities at faster speeds with lower voltages. The 

main benefits include lower operating temperatures, speed, and size in low power commercial 

products, but this movement will catalyze a further increase in obsolescence for the DoD, airlines, 

and others alike (Tomczykowski, 2003). Before the year 1999, the procurement life for these 

components was decreasing as industry was shifting to 3.3 volts and lower components. However, 

as seen in Figure 17 below, 5 volt components introduced to the market after 1999 have been 

seeing slight increases in procurement life as manufacturers of these parts are seeking out platforms 

that are either slowly transitioning or not at all moving towards applications that utilize lower 

voltages (Sandborn P. , 2011). 
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Figure 17: 5V Bias Logic Parts (Sandborn P. , 2011) 

Obsolesce can also pose an impact to the reliability and maintainability of a system. The 

Government-Industry Data Exchange Program (GIDEP) is a voluntary data exchange agreement 

between the US government and industries that provides critical DMSMS information which has 

impacts on system reliability life cycle cost (Underwood, 2011). Tomczykowski (2003) states 

that if not proactively managed, DMSMS could lead to higher operational downtime and 

decreased reliability if certain mitigation solutions are not thoroughly investigated. The solutions 

that require the highest reliability and maintainability considerations include reclamation, 

aftermarket, and emulation due to potential defects or variations in manufacturing processes 

(Tomczykowski, 2003).  
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2.3 Current Practices 

Most of DMSMS management today is reactive based which means that the management 

process starts once discontinuance occurs using various mitigation techniques such as: last-time-

buy, aftermarket sources, substitute parts, emulated parts, salvaged parts, and thermal uprating 

(Sandborn P. , 2011). Conventionally speaking, according to Zheng (2015), efforts to mitigate 

the effects of DMSMS have been reactive in nature. This reactive DMSMS management method 

brings forth faster, but more expensive, solution paths with desirable short-term wins to avoid 

having an irreparable or producible system, but it overlooks the long-term solution paths that 

could reduce or prevent future DMSMS issues (Zheng, Terpenny, & Sandborn, 2015).  
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However, merely replacing obsolete components with updated components is not always feasible 

because of high re-engineering costs and system requalification and recertification costs (Zheng, 

Terpenny, & Sandborn, 2015).  Strong long-term management of DMSMS in systems required 

the problem to be addressed on reactive, proactive, and strategic levels of management. (Zheng, 

Terpenny, & Sandborn, 2015).  Reactive mitigation approaches involve the use of alternate or 

substitute parts, aftermarket sources, lifetime buys, thermal uprating of parts, and emulated parts 

(Konoza, 2014). On the other hand, proactive management involves part criticality analysis, 

critical spare part stocking, maintenance planning, and strategic solutions include planning 

design refreshes based on forecasted part obsolescence (Konoza, 2014). A strategic proactive 

obsolescence approach consists of an LTB quantity, timeframes for redesigning, and determining 

which components should be replaced during the redesign periods (Meng, Thörnberg, & Olsson, 

2014). 

According to Solomon (2000), “Uprating is becoming a common mitigation approach because 

the obsolete part is often the “MIL-SPEC” part while the commercial version of the part 

continues to exist. In some cases, the best obsolescence mitigation approach for OEMs who need 

a broader environmental range part (often automotive, avionics, and military) is to “uprate” the 

commercial version of the part” (Soloman, 2000).  
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Using a component with a higher industry wide demand such as a commercial grade piece may 

help with EOL issues, but government and system requirements may call for higher 

specifications that only industrial or military grade components may have. Even with that said, 

the defense industry has less control over the supply chain for commercial off-the-shelf 

electronic components. These components are being discontinued at a progressively fast rate. 

Hence, it is worthwhile to create strong relationships with suppliers to increase the time of 

support and provision of critical components (Rojo, 2010). 

 

2.3.1 Reactive Measures 

 

A strong obsolesce management program is going to consist of both reactive and proactive 

measures. These measures include decisions made after the part is obsolete and actions taken 

prior to minimize risk or get ahead of the issue altogether. Many mitigation solutions can be used 

in conjunction with one another and fall into the reactive category. 

 

 

2.3.1.1 Existing Stock 

 

When there are already enough parts in stock to last the remainder of a system’s life, no further 

action is required to mitigate the obsolescence problem. If the amount of existing stock will only 

partially fulfill the required needs, an additional mitigation will be needed such as a substitute 

part or LTB. 
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2.3.1.2 Reclamation 

 

This is the use of a component from non-repairable systems or subassemblies also known as 

cannibalization.  This option is not recommended by the Defense Reutilization and Marketing 

Service (DRMS) and should be used as a last resort due to potential reliability impacts from the 

reuse of components (Tomczykowski, 2003). 

 

2.3.1.3 Alternate or Simple Substitute 

 

This is the use of a different component that has the same form, fit, and function of the existing 

component. It can meet or exceed the requirements of the existing component in use that has 

gone obsolete.  These components can also come from an aftermarket source where 

manufacturers are authorized by the original equipment manufacturer (OEM) to reproduce 

obsolete components using existing wafer and die (Tomczykowski, 2003). 

 

2.3.1.4 Complex Substitute 

 

This is the replacement of the obsolete component with one that has different specifications but 

does not require modification of the source product or the next-higher assembly (NHA) (Office 

D. S., 2016). These components can also come through emulation where the component is 

replaced with another that emulates it.  (Tomczykowski, 2003). This type of substitute must be 

thoroughly tested. 



    

40 
 

2.3.1.5 Last-Time-Buy and Bridge Buy 

 

An LTB consists of procuring enough components to last until a system is no longer in service. 

A bridge buy is purchasing enough components until a redesign can take place. With both 

solutions, the production and sustainment usage demand for the component must be taken into 

consideration to properly calculate the needed quantity.  

 

2.3.1.6 Circuit Board Redesign – Next Higher Assembly (NHA) 

 

When no substitute components exist, or a new component cannot be used unless the circuit card 

is redesigned, an NHA redesign may be used. In this scenario, only the NHA is affected, and the 

new design will not result in any changes above this level (Office D. S., 2016). A bridge buy is 

usually necessary to have enough inventory to last until the NHA redesign is complete. 

 

2.3.1.7 Complex/System Redesign 

 

This redesign involves multiple changes to various parts of the system beyond the NHA of the 

obsolete component. This is the costliest mitigation option, and a bridge buy is usually necessary 

to have enough inventory to last until the system redesign is complete. 
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2.3.2 Cost Avoidance 

 

Each of the mitigation techniques mentioned above has an associated cost upon implementation. 

One of the principal metrics that an Obsolescence Management Team (OMT), also known as a 

DMSMS Team (DMT), tracks is cost avoidance. The cost avoidance of a solution relates to the 

cost difference between the solution being implemented and the next most feasible solution 

(Office D. S., 2016). An example of this would be if a simple substitute and complex redesign 

were determined to be the only two solutions, then the cost avoidance for that case would be 

$10,473,148 - $12,805 = $10,460,343. Table 2 below shows the average cost associated with 

each resolution option. The data comes from a 2014 Department of Commerce survey of 

government and commercial DMSMS programs (Office D. S., 2016). 
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Table 2:  Average cost associated with implementing each DMSMS resolution option (Office D. 

S., 2016) 

 

2.3.3 Proactive Measures 

 

There is not one catch all solution that will proactively manage a system’s obsolescence issues. 

Key areas to focus on include having a robust supply chain, designing your system with 

obsolescence in mind, and planning for mitigating issues before they occur. It is essential that 

your supply chain has multiple sources and strong supplier relationships. Also, an open system 

architecture allows for easier replacement of components as old ones are discontinued. Having 

an OMT that constantly tracks obsolescence cases is imperative for catching DMSMS issues. 

They monitor current and past cases to make sure part shortages do not occur. 
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The latest research in DMSMS consists of various models for forecasting the discontinuance for 

proactive management. Figure 18 below shows multiple forecasting methods provided through 

different researchers that will be shown throughout this paper.  

 

Figure 18: List of various forecasting methods (Jennings, 2016) 

Proactive management entails forecasting and tracking obsolescence risk for the system’s 

components (Meng, Thörnberg, & Olsson, 2014). It includes part criticality analysis, spare stock 

posture, and planning for maintenance (Konoza, 2014). Figure 19 below depicts how early and 

proactive engagement will result in fewer obsolete components in a system over time.  
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Figure 19: Levels of obsolescence based on the type of management (Rojo, 2010) 

Building in design refreshes to a system’s lifecycle is a form of proactive obsolescence 

management. According to Zheng (2015) there are a variety of ways to replace components at 

design refreshes. A component that is projected to be obsolete at a future time can be proactively 

substituted at any possible design refresh before it is obsolete, or it can be reactively replaced at 

the earliest design refresh once it is already obsolete (Zheng, Terpenny, & Sandborn, 2015). 

Issues arise though with high costs and timely redesigns.  High costs and initial investments 

often mean that they will only realize a return on investment if they are able to operate for a long 

time, sometimes 20 or more years, thereby sometimes making is more desirable to keeping 

working with older technology (Amankwah-Amoah, 2017). 
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The highest form of obsolescence mitigation is called strategic management and involves 

planned technological refreshes to keep the newest components with the freshest life cycles in 

the system. Much of the latest DMSMS research today falls into the proactive or strategic 

categories. According to Sandborn (2011), “Proactive management means identifying and 

prioritizing selected non-obsolete parts that are at risk of obsolescence and identifying 

resolutions for them before they are discontinued. Design refreshes ultimately occur as other 

mitigation options are exhausted and functionality upgrades becomes necessary. Strategic 

management is done in addition to proactive and reactive management and involves the 

determination of the optimum mix of mitigation approaches and design refreshes” (Sandborn P. , 

2011). 
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One mitigation method is to perform a risk/cost benefit analysis on designing for obsolescence 

for the purpose of long-term sustainment. The benefit of this design approach is you can 

potentially increase the life of your product by using electrical components that have had fewer 

years in the marketplace. The downside is engineers are having to design with components with 

limited real-world test data which can lead to other complications down the road if appropriate 

measures are not taken. These material shortages, because of obsolescence of instruments for 

both research and instruction, have brought alarm to engineers in academia and industry about 

whether institutions can keep their capacity to provide quality products (National Science 

Foundation, 1981). Another approach is modernization through known synchronous revision 

frequency and throughout a system life cycle (Herald, 2012). With this approach, built in 

technological refreshes keep the components within the system up to date and are less likely to 

become discontinued by a manufacturer while your system is still in use.  

According to Zheng, ontology is a clear formal requirement of the terms and their relations for 

sharing data in a domain. In product design and development, an assembly design ontology has 

been established for cooperative product development. Ontology has also been practical to 

provision product conceptual design. Defined ontologies can be reused, even though there has 

not been a specific ontology to be defined for the problem of obsolescence. The obsolescence 

forecasting technique characterized with ontology fits the sales data to acquire the product life 

cycle curve and calculates years to EOL and life cycle steps created on the life cycle curve 

(Zheng, 2013). 
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Pobiak (2011) states that the House of Systems Engineering (HOSE) is a system engineering 

architecture framework and was introduced in 2010. The framework shows the holistic view of 

systems engineering rather than an isolated style. This system engineering architecture 

framework can be used to build successful obsolescence management systems, can support 

educational organizations in teaching system engineering principles, and will be a valuable 

instrument for systems engineers from an all-inclusive viewpoint (Pobiak, 2013). 

 

According to Rio (2014), many studies have shown that the implementation of any type of new 

technology is expensive. Increases in obsolescence expenditures, reduces investment in the short 

run which causes a time of low productivity. Rio’s simulations show that increases in the 

obsolescence costs, caused by the acceleration of equipment–specific technical development, 

shows the slowing in productivity. Since 1974, there has been a large slowdown in productivity 

in the United States, and a lot of it can be attributed to these technological changes (Rio, 2014). 

 

Lawlor (2015) states that arguments suggesting that the people should not be so focused on 

planning for obsolescence, which is already characterized as being inevitable. It can be argued 

that focusing on the fact that obsolescence is inevitable diverts attention from the fact that 

changing when a component goes end of life can have a substantial impact in terms of reducing 

waste. With that said, these views have been criticized for being too conservative. It is being 

suggested that obsolescence should not solely be planned for, but it should also be trying to be 

delayed (Lawlor, 2015). 
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According to Herald (2012), a study led by the National Defense Industrial Association (NDIA) 

shows that “rapid evolutionary advances in information technology are expected to continue 

unabated - (resulting in) continued short technology life spans.” Two models were used called 

the system element life cycle cost (SELCC) and the obsolescence revision sequences. Both 

models essentially showed that having multiple vendors and have multiple insertion points for 

technology refreshes are required for best obsolescence management practices (Herald, 2012). In 

addition to utilizing the latest information to update technologies, there is a need for companies 

be more aware of equipment and components as a way of recognizing and responding to 

indicators of obsolescence as shown in Figure 20 below (Amankwah-Amoah, 2017). 

 

Figure 20:  Intersections of technology change and technology persistence (Amankwah-

Amoah, 2017) 
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Furthermore, Figure 21 shows the defined cost be the expected cost for the remainder of an 

obsolescence cycle as the inventory runs out over time (Emsermann, 2007). Whatever extra 

profits are expected on upgrading technology need to uphold existing capacity of production to 

help edge off any production reduction (Patriarca, 2009). 

 

Figure 21: Inventory depletion over time (Emsermann, 2007) 

 

Research performed by Sandborn (2007) shows an obsolescence forecasting approach using life 

cycle curve forecasting methodology created by curve fitting sales data for an electrical 

component. Historically, most techniques involved some sort of ordinal scale or data mining 

approach with linear regression that usually only performs well when the true obsolescence date 

is near. Figure 22 shows a data mining trend equation of historical and forecasted sales data for 

monolithic flash memory being used to try and forecast future chip discontinuation dates. 
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Figure 22: Trend equation for peak sales year for flash memory (Sandborn P. A., 2007) 

The characteristics of the curve fits are graphed, and functions based on the trends are 

determined to calculate the life cycle curve of that component. The first technique offers a way 

to make the life cycle curve for component family with memory size being its primary attribute. 

The second method is a determination of electrical component obsolescence using vendor-

specific windows from data mining historical last-order or last-ship dates. The combination of 

the life cycle curve trends and vendor-specific windows substantially improved the accuracy of 

the algorithm for forecasting flash memory obsolescence dates compared to the original 

algorithm of a fixed window as shown in Figure 23 (Sandborn P. A., 2007). 
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Figure 23: Obsolescence Date Comparison of Old and New Algorithms (Sandborn P. A., 2007) 
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2.3.3.1 Design for Obsolescence & Cost Optimization 

 

Designing for obsolescence can include designing the physical architecture of a product to have 

multiple component replacement options and the overall management plan for combatting 

component discontinuance. These physical strategies include implementing open architecture, 

functional partitioning, and technology insertion which need to be addressed during system 

engineering, detailed design, production, and product support (Young, 2001). One method is to 

divide the hardware into distinct partitions using modularity that is afforded by open architecture 

to functionally split the system into multiple platforms (Young, 2001). Many companies use the 

terminology of Line Replaceable Module (LRM) or Line Replaceable Unit (LRU). Often 

performance constraints supersede any obsolescence management concerns to use functional 

partitioning when designing a system, which can make this an unusable solution (Sandborn P. , 

2007). 
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A study done by Feng (2007) also looks at cost minimization from an LTB perspective. He 

developed a tool called the Life of Type Evaluation (LOTE) tool to optimize LTB quantities. 

This tool looked at and compared demand distributions, holding costs, system downtime or 

unavailability penalties from the customer, and excess component disposal costs. The study 

determined that some companies may be placing more emphasis on their contractual penalties 

for system unavailability and not enough on the procurement, holding, and disposal costs of 

conducting LTBs. As a result, they may be purchasing more components than necessary (Feng, 

2007).  However, this is completely dependent on the language of the contact and for some 

situations, especially military systems, downtime is not an option. This means having too many 

parts outweighs to consequences having too few.   

 

Herald (2012) also proposes two different models for system refreshes that focus on optimizing 

the cost of the system during its lifetime. The two models are the System Element Life Cycle 

Cost (SELCC) and Obsolescence Revision Sequence (ORS). Figure 24 below depicts the S-

curve associated with the acquisition cost of a specific system element. 
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Figure 24: Market sales benefit S-curve vs. support cost (Herald, 2012) 

The bathtub type curve shows high costs at the bleeding edge and the lowest cost during the 

maturity phase of the component. There is a benefit to cost ratio intersection where a component 

should be purchased called the leading-edge point and then another point towards the end of the 

maturity phase where the component should be replaced to minimize total cost. The ORS model 

uses the inputs from the SELCC model and provides a mathematical representation for 

optimizing the rate and sequence of system element revisions (Herald, 2012). 

 

2.3.3.2 Management & Tools 

 

According to Sandborn (2007), designing your management plan for obsolescence focuses on the 

problem of minimizing the life cycle cost of sustaining the system. Figure 25 below shows a 

hierarchy of design for involuntary obsolescence activities that can be implemented to help 

manage this issue (Sandborn P. , 2007).  
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Figure 25: Hierarchy of design for involuntary obsolescence activities (Sandborn P. , 2007) 

The management process for selecting new components in a design and the development of a 

system is complex and should be done with an iterative process. According Lebron (2000), this 

process can be broken into the three stages of operational requirement analysis, COTS solutions 

for these requirements, and a COTS assessment. During the COTS assessment, the components 

are reviewed for performance, reliability, cost, and obsolescence risk. A system designed with 

open architecture is beneficial when a component goes obsolete because systems designed under 

completely closed and proprietary architecture typically require complex redesigns or new 

interfaces to incorporate new components (Ruben A. Lebron Jr., 2000). Figure 26 below shows 

the iterative decision analysis process that occurs when there is need for a new design. Other 

management considerations that go into the component selection process should include Critical 

Material Analysis (CMA), to check for hazardous materials and potential material shortages for a 

component selection and contracting language that proactively sets customer money aside to 

resolve obsolescence issues that may occur in the future (Office D. S., 2016). 
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Figure 26: Iterative Decision Analysis Process (Ruben A. Lebron Jr., 2000) 

 

Rojo (2010) reviews the three different approaches of forecasting, monitoring, and identifying 

alternative components, and mitigation strategy development. Some of these software tools 

include Q-Star, MOCA, Obsolescence Manager, Parts Plus, CAPS BOM Manager, and a few 

others. Most of these tools are focused on BOM management and alternative component 

identification, but the MOCA tool is unique regarding the fact that it attempts to predict the 

optimum technology insertion points to minimize obsolescence impacts to the system (Rojo, 

2010). 
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2.4 Future Practices 
 

Machine learning is a systematic process that determines how systems can be programmed to 

learn and improve automatically over multiple iterations.  To make this happen, machine 

learning applications use statistical and computational principles to develop self-learning 

algorithms that find information from datasets and experience. The model must first be trained to 

learn the mapping function using known information with a known expected output value. Once 

the model is trained, test data is put into the newly developed model to predict the output value 

for that data. Figure 27 shows an algorithm training execution steps for a supervised machine 

learning process. 

 

Figure 27: Supervised Machine Learning Process (Jennings, 2016) 
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A case study by Connor Jennings (2016) revealed that machine learning can process large sets of 

obsolescence data with multiple variables and provide recommendations based on its results. 

Two forecasting methods were used applying machine learning to increase accuracy and long-

term usability over current forecasting methods. The first was Obsolescence Risk Forecasting 

(ORML) where the output was the risk associated with a component being obsolete. The second 

method was Life Cycle Forecasting (LCML) where a component discontinuation date was 

estimated. In this research, the case study was performed using more than 7000 unique cell 

phone models with knowledge of the obsolescence status, release year and quarter, and other 

technical specifications such as screen size, weight, and camera resolution (Jennings, 2016). 

 

The study by Jennings used the three machine learning algorithms of Artificial Neural Networks 

(ANN), Support Vector Machines (SVM), and Random Forest (RF). RF resulted as the most 

suitable algorithm for ORML earning a rank of first in ¾ of the categories. When setting the RF 

model’s training set to 100%, the algorithm correctly identified 98.3% of the cellphones as active 

or discontinued and had a test accuracy of 94.3% when the training size was set to 90% 

(Jennings, 2016). Table 3 below show the average accuracy of each algorithm based on varying 

training sizes from 50% to 100%. 
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Table 3: Average Accuracy of Predictions by Training Size for ORML (Jennings, 2016) 

 

For LCML, SVM was determined to be the best forecasting algorithm for discontinuation dates 

of each cell phone in the dataset. Although RF received the highest rating for both 

nonperformance-based characteristics, SVM achieved higher on accuracy and speed, thus 

earning a better overall score (Jennings, 2016). Table 4 below shows to average Mean Square 

Error (MSE) for each algorithm where average prediction error is calculated by taking the square 

root of the MSE. The average life cycle of the cell phone was less than 2 years, so MSE values of 

less than 1 are desired. 

Table 4: Average MSE of Predictions by Training Size for LCML (Jennings, 2016) 
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2.5 Knowledge Gap 

 

This literature review has presented the various opportunities and challenges that exist for those 

fighting DMSMS. It is an unavoidable reality in manufacturing systems and supply chain 

environments as many systems, especially in the defense industry, are needed to be sustained for 

multiple decades.  There are various proactive/strategic approaches to mitigating obsolescence 

and tools to help track and forecast cases. Newer research shows an interesting shift from system 

life cycle management towards future proactive improvements of forecasting techniques with 

EOL predictions and system design refreshes. One of the key findings in this study was that of 

the 55 articles reviewed, there was only one that proposed the idea of using machine learning for 

forecasting purposes. This research effort suggests a need for an improved framework for 

managing obsolescence that places emphasis on proactiveness using the latest technology. 

 

Throughout the research there are attempts to manage obsolescence from many different angles, 

but current frameworks do not encompass some of the latest ideas in DMSMS management. 

While there are tools currently available to forecast obsolescence, they do not explore the area of 

machine learning.  Machine learning has the potential for creating BOM obsolescence risk 

profiles and improving component selection for design. Neither of these subjects have much 

discussion in current research. Research also lacks information on the most cost efficient and 

cost-effective path to tackle an obsolescence case from start to finish.  
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Table 5 below depicts some areas of obsolescence research that are well understood, understood 

but could be improved, or have little to no research on them at all. A case refers to an occurrence 

of an obsolescence issue. 

 

Table 5: DMSMS Research Gaps 

 

 

All aspects of pre-case, open case, and post-case topics are areas of study that need more 

research and will be explored in this dissertation. The main benefit of having a strong 

understanding of obsolescence is that systems can be sustained for extended periods at reduced 

system life cycle costs and downtime. 

 

 

Pre-Case Open Case Post-Case
BOM Scrubbing with GIDEP, Vendor, and 

Third Part Component data sources
Information on various mitigation solution types Monitoring implemented solution

Regular Technology Insertion Points Clear cost-effective path to choosing mitigation solution Communication strategies

Open Architecture Component Demand Analysis Details on how to create tracking tools

BOM Scrubbing using Machine Learning Details on the importance of metrics

Machine Learning for Component Selection

Machine Learning for BOM Risk Profiles

Color Legend
Well Researched

Partially Researched

Minimal Research
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CHAPTER 3 METHODOLOGY 
 

3.1 Aims 

 

Research suggested a need for an effective managerial framework to tackling obsolescence. 

When it comes to forecasting obsolescence, today’s best tools use traditional algorithms that 

analyze inputs using defined logic but are only as good as the logic provided. The aim of this 

research is to determine if machine learning predictive algorithms can accurately predict the 

product discontinuation date and availability status of an electrical component by a manufacturer 

and provide a framework for obsolescence management in military systems driven by best 

practices. This framework consists of mitigation practices from pre-case, open case, and post-

case situations. However, the main improvements to current mitigation methods will come in the 

form of proactive management using machine learning technology. A case study was performed 

using the Random Forest classification and regression algorithms predict the product 

discontinuation date and availability status of a set of electrical components. 
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3.2 Data Collection 

 

The machine learning aspect of the framework consisted of collecting component data from 

Xilinx component datasheets. These datasheets contain all the necessary info for selecting the 

desired variables for testing in the algorithms. Data collection for validation of the overall 

framework from pre-case, open case, and to post-case was done using a questionnaire with a 5-

point Likert scale response. There were 13 questions sent out to 11 experts in the field of 

machine learning, military systems, or DMSMS. Their responses were used to determine the 

level of benefit a DMSMS team would receive by implementing parts or all the proposed 

management framework. 
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3.2.1 Raw Data 
 

Table 6: List of 92 Xilinx Memory Chips used when testing in R 

 

 

 

Part Family Intro Year Slices Logic Cells Max. Distributed RAM Bits DLL PLL/MMCM Max I/O 5V Tolerent MHz Status

XC2S50E SPARTAN-IIE 2001 768 1728 24000 1 0 182 0 200 12

XC2S100E SPARTAN-IIE 2001 1200 2700 37000 1 0 202 0 200 12

XC2S150E SPARTAN-IIE 2001 1728 3888 54000 1 0 265 0 200 12

XC2S200E SPARTAN-IIE 2001 2352 5292 73000 1 0 289 0 200 12

XC2S300E SPARTAN-IIE 2001 3072 6912 96000 1 0 329 0 200 12

XC2S400E SPARTAN-IIE 2001 4800 10800 15000 1 0 410 0 200 12

XC2S600E SPARTAN-IIE 2001 6912 15552 216000 1 0 514 0 200 12

XC2V40 VIRTEX-II 2001 256 576 8 1 0 88 0 200 13

XC2V80 VIRTEX-II 2001 512 1152 16 1 0 120 0 200 13

XC2V250 VIRTEX-II 2001 1536 3456 48 1 0 200 0 200 13

XC2V500 VIRTEX-II 2001 3072 6912 96 1 0 264 0 200 13

XC2V1000 VIRTEX-II 2001 5120 11520 160 1 0 432 0 200 13

XC2V1500 VIRTEX-II 2001 7680 17280 240 1 0 528 0 200 13

XC2V2000 VIRTEX-II 2001 10752 24192 336 1 0 624 0 200 13

XC2V3000 VIRTEX-II 2001 14336 32256 448 1 0 720 0 200 13

XC2V4000 VIRTEX-II 2001 23040 51840 720 1 0 912 0 200 13

XC2V6000 VIRTEX-II 2001 33792 76032 1056 1 0 1104 0 200 13

XC2V8000 VIRTEX-II 2001 46592 104882 1456 1 0 1108 0 200 13

XCS05XL SPARTAN XL 2002 100 238 3100 1 0 77 1 80 8

XCS10XL SPARTAN XL 2002 196 466 6100 1 0 112 1 80 8

XCS20XL SPARTAN XL 2002 400 950 12500 1 0 160 1 80 8

XCS30XL SPARTAN XL 2002 576 1368 18000 1 0 192 1 80 8

XCS40XL SPARTAN XL 2002 784 1862 24500 1 0 205 1 80 8

XCV50E VIRTEX-E 2000 768 1728 24576 1 0 176 0 240 14

XCV100E VIRTEX-E 2000 1200 2700 38400 1 0 196 0 240 14

XCV200E VIRTEX-E 2000 2352 5292 75264 1 0 284 0 240 14

XCV300E VIRTEX-E 2000 3072 6912 98304 1 0 316 0 240 14

XCV400E VIRTEX-E 2000 4800 10800 153600 1 0 404 0 240 14

XCV600E VIRTEX-E 2000 6912 15552 221184 1 0 512 0 240 14

XCV1000E VIRTEX-E 2000 12288 27648 393216 1 0 660 0 240 14

XCV1600E VIRTEX-E 2000 15552 34992 497664 1 0 724 0 240 14

XCV2000E VIRTEX-E 2000 19200 43200 614400 1 0 804 0 240 14

XCV2600E VIRTEX-E 2000 25392 57132 812544 1 0 804 0 240 14

XCV3200E VIRTEX-E 2000 32448 73008 1038336 1 0 804 0 240 14

XCV50 VIRTEX 1998 768 1,728 24576 1 0 180 0 200 15

XCV100 VIRTEX 1998 1200 2,700 38400 1 0 180 0 200 15

XCV150 VIRTEX 1998 1728 3888 55296 1 0 260 0 200 15

XCV200 VIRTEX 1998 2352 5292 75264 1 0 284 0 200 15

XCV300 VIRTEX 1998 3072 6912 98304 1 0 316 0 200 15

XCV400 VIRTEX 1998 4800 10800 153600 1 0 404 0 200 15

XCV600 VIRTEX 1998 6912 15552 221184 1 0 512 0 200 15

XCV800 VIRTEX 1998 9408 21168 301056 1 0 512 0 200 15

XCV1000 VIRTEX 1998 12288 27648 393216 1 0 512 0 200 15

XC2VP2 VIRTEX-II PRO 2003 1408 3168 44 0 1 204 0 300 17

XC2VP4 VIRTEX-II PRO 2003 3008 6768 94 0 1 348 0 300 17

XC2VP7 VIRTEX-II PRO 2003 4928 11088 154 0 1 396 0 300 17

XC2VP20 VIRTEX-II PRO 2003 9280 20880 290 0 1 564 0 300 17

XC2VP30 VIRTEX-II PRO 2003 13696 30816 428 0 1 644 0 300 17

XC2VP40 VIRTEX-II PRO 2003 19392 43632 606 0 1 804 0 300 17

XC2VP50 VIRTEX-II PRO 2003 23616 53136 738 0 1 852 0 300 17

XC2VP70 VIRTEX-II PRO 2003 33088 74448 1034 0 1 996 0 300 17

XC2VP100 VIRTEX-II PRO 2003 44096 99216 1378 0 1 1164 0 300 17

XC2VPX20 VIRTEX-II PRO 2003 9792 22032 306 0 1 552 0 300 17

XC2S15 SPARTAN-II 2000 192 432 6000 1 0 86 1 200 20

XC2S30 SPARTAN-II 2000 432 972 13500 1 0 92 1 200 20

XC2S50 SPARTAN-II 2000 768 1728 24000 1 0 176 1 200 20

XC2S100 SPARTAN-II 2000 1200 2700 37500 1 0 176 1 200 20

XC2S150 SPARTAN-II 2000 1728 3888 54000 1 0 260 1 200 20

XC2S200 SPARTAN-II 2000 2352 5292 73500 1 0 284 1 200 20

XC3S50 SPARTAN-3 2003 768 1728 12000 1 0 124 0 300 17

XC3S200 SPARTAN-3 2003 1920 4320 30000 1 0 173 0 300 17

XC3S400 SPARTAN-3 2003 3584 8064 56000 1 0 264 0 300 17

XC3S1000 SPARTAN-3 2003 7680 17280 120000 1 0 391 0 300 17

XC3S1500 SPARTAN-3 2003 13312 29952 208000 1 0 487 0 300 17

XC3S2000 SPARTAN-3 2003 20480 46080 320000 1 0 565 0 300 17

XC3S4000 SPARTAN-3 2003 27648 62208 432000 1 0 712 0 300 17

XC3S5000 SPARTAN-3 2003 33280 74880 520000 1 0 784 0 300 17

XC3S100E SPARTAN-3E 2005 960 2160 15000 1 0 108 0 300 15

XC3S250E SPARTAN-3E 2005 2448 5508 38000 1 0 172 0 300 15

XC3S500E SPARTAN-3E 2005 4656 10476 73000 1 0 232 0 300 15

XC3S1200E SPARTAN-3E 2005 8672 19512 136000 1 0 304 0 300 15

XC3S1600E SPARTAN-3E 2005 14752 33192 231000 1 0 376 0 300 15

XC5VLX30 VIRTEX-5 2007 4800 30720 320 0 1 200 0 550 13

XC5VLX50 VIRTEX-5 2007 7200 46080 480 0 1 280 0 550 13

XC5VLX85 VIRTEX-5 2007 12960 82944 840 0 1 280 0 550 13

XC5VLX110 VIRTEX-5 2007 17280 110592 1120 0 1 400 0 550 13

XC5VLX220 VIRTEX-5 2007 34560 221184 2280 0 1 400 0 550 13

XC5VLX330 VIRTEX-5 2007 51840 331776 3420 0 1 600 0 550 13

XC6VLX75T VIRTEX-6 2009 11640 74496 5616 0 1 360 0 600 11

XC6VLX130T VIRTEX-6 2009 20000 128000 9504 0 1 600 0 600 11

XC6VLX195T VIRTEX-6 2009 31200 199680 12384 0 1 600 0 600 11

XC6VLX240T VIRTEX-6 2009 37680 241152 14976 0 1 720 0 600 11

XC6VLX365T VIRTEX-6 2009 56880 364032 14976 0 1 720 0 600 11

XC6VLX550T VIRTEX-6 2009 85920 549888 22752 0 1 1200 0 600 11

XC6VLX760 VIRTEX-6 2009 118560 758784 25920 0 1 1200 0 600 11

XC6VSX315T VIRTEX-6 2009 49200 314880 25344 0 1 720 0 600 11

XC6VSX475T VIRTEX-6 2009 74400 476160 38304 0 1 840 0 600 11

XC6VHX250T VIRTEX-6 2009 39360 251904 18144 0 1 320 0 600 11

XC6VHX255T VIRTEX-6 2009 39600 253440 18576 0 1 480 0 600 11

XC6VHX380T VIRTEX-6 2009 59760 382464 27648 0 1 720 0 600 11

XC6VHX565T VIRTEX-6 2009 88560 566784 32832 0 1 720 0 600 11
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Table 6 above depicts the 11 Xilinx Part Families consisting of 92 FPGA chips used in this case 

study. There were 54 obsolete components used that are indicated with red in the Status column, 

and there were 38 active components used. The component marketplace introduction dates range 

from the years 1998 – 2009. 

 

3.3 Obsolescence Management Framework Development 

 

The obsolescence management framework was developed using personal experience in the field 

of DMSMS and through research of peer reviewed articles on current management practices. The 

main area of focus was on proactive management, thus the reason for the case study on machine 

learning, but the framework also consists of open case and post-case processes. The framework 

was built by searching for articles in the University of Central Florida library using the keywords 

of mitigating obsolescence, obsolescence, Diminishing Manufacturing Sources and Material 

Shortages (DMSMS), design refresh, component, system life cycle, life cycle forecasting. and 

obsolescence management framework. Various aspects of obsolescence management were taken 

from multiple articles and were combined with personal experience to create a full framework. 

There were not any frameworks that incorporated machine learning, design refresh, in-depth 

component demand analysis, and post mitigation strategies all in one. This framework was built 

using today’s best obsolescence management practices. 
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Quantitative methods were used in both the analysis of the Random Forest algorithm results and 

the expert validation of the questionnaire. The regression analysis looked at the difference 

between the numerical average of the components actual or the Q-STAR forecasted 

discontinuation date and the model’s predicted discontinuation date. Q-STAR is a commercial 

database that helps companies with component life cycle management. The classification 

analysis determined the accuracy of its predictions of a component being available in the 

marketplace or discontinued. This information was then taken and placed into the pre-case 

framework to aide in component selection for design and helping determine technology refresh 

cycles. 

 

3.3.1 Algorithm Selection 

 

There are several machine learning algorithms to choose from for making predictions. Some of 

the most common ones that have good speed, accuracy, and interpretability include RF, SVM, 

ANN, and Naïve Bayes. The fastest and most accurate classification and regression algorithms 

include SVM, RF, ANN, Gradient Boosting Tree, and Naïve Bayes, Decision Tree, Linear 

Regression, and Logistic Regression (Li, 2017). The RF algorithm was selected for this study 

due to its well-rounded capabilities. Both the regression and classification RF algorithms were 

used. 
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3.3.1.1 Random Forest 

 

Random Forest is a supervised algorithm that combines multiple sets of decision trees to derive 

an accurate result. One of the useful features of the Random Forest algorithm is that is can be 

used for both regression and classification analysis.  The model works by expanding the number 

of trees and selecting the best feature from a random subset of features. The large number of 

uncorrelated models working together will outperform a general decision tree model that just 

looks for the most important feature at each node split (Yiu, 2019). Another benefit to Random 

Forest is these random subsets of features is help reduce the chance of overfitting which is when 

the mapping function is too closely related to a few datapoints. A final large benefit of using 

Random Forest is it does not require scaling to normalize data and it is affected very little by 

multicollinearity due to its use of bootstrap and feature sampling. This is again referring to the 

selection of different random subsets of features each time the model is run and having each 

decision tree train off a random sample of datapoints. A liner model summary, Pearson’s Chi-

squared test, residuals vs fitted plots, Q-Q plots, scale-location plots, and residuals vs leverage 

plots were looked at to test for collinearity and normalization of the data and is discussed further 

in Appendix A. 
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3.3.2 Feature Selection 

 

Feature selection is referred to the algorithmic process of obtaining a subset from an original set 

of features to select the relevant features of the dataset (Cai, Luo, Wang, & Yang, 2018). Figure 

28 shows the framework for the feature selection process. 

 

Figure 28: Feature selection framework (Cai, Luo, Wang, & Yang, 2018) 
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The main reasons for feature selection are for faster algorithm training times, reduced model 

complexity, improved model accuracy, and reduced overfitting (Kaushik, 2016). Selecting 

features will be a combination of previous studies, personal knowledge, and the algorithms 

mathematically selecting them on their own based on relevance. Data will initially be gathered 

from publicly available datasheets such as the one from Xilinx in Table 7 below.  

 

The top portion of the table contains information such as System Gates, CLB Array, Number of 

Slices, Logic Cells, and so on, that can be used as possible obsolescence predictors. Not every 

data sheet for every part family or manufacturer contains the same information. This makes the 

initial feature selection process difficult and time consuming. However, once the features are 

selected and the model is trained, the model can be modified to use only what it determines to be 

the most important variables to improve its accuracy and speed. 
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Table 7: XILINX VIRTEX-II Series FPGAs Datasheet (Xilinx) 
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3.4 Random Forest Model Validation 
 

There are five ways that the model’s accuracy can be validated. This study will be able to use 

four of those five methods.  

1. Classification – Comparing a prediction of Obsolete to known information on whether 

the component is active or obsolete. 

2. Classification – Comparing a prediction of Active to known information on whether the 

component is active or obsolete. 

3. Regression – Comparing the model’s discontinuation date to a component’s actual 

discontinuation date on an obsolete component. 

4. Regression – Comparing the model’s discontinuation date to a component’s predicted 

discontinuation date on an active component. The accuracy of these Machine Learning 

algorithmic models can be compared to a traditional data mining solution such as Q-

STAR for current EOL predictions. 

5. Regression – Comparing the model’s discontinuation date to a component’s predicted 

discontinuation date on an obsolete component. The accuracy of these Machine Learning 

algorithmic models cannot be compared to a traditional model such as Q-STAR for 

historical EOL predictions. Information is not available on historical predictions for an 

already obsolete component. 

 

 



    

72 
 

Validation methods 1-3 are those most important because they compare the Machine Learning 

results to known information. Methods 4 and 5 are less important because they are comparing 

one prediction tool to another when neither may be correct. Further data validation is detailed in 

the appendix of this paper. 

 

3.5 Obsolescence Management Framework Validation 

 

The overall management framework was validated through expert consensus on a 13 question, 5-

point Likert scale questionnaire. The 13 questions were as follows: 

1. The Pre-Case Framework demonstrates strong tools and processes for a proactive 

obsolescence management framework. 

2. Adding in Machine Learning as a Life Cycle Forecasting tool is a new idea for a 

proactive obsolescence management framework. 

3. Adding in Machine Learning as a Life Cycle Forecasting tool is a beneficial strategy for a 

proactive obsolescence management framework. 

4. Regular Technology or Design Refreshes is a beneficial strategy for a proactive 

obsolescence management framework. 

5. Machine Learning can aid in early detection of BOMs at high obsolescence risk. 

6. The Open Case Framework demonstrates a strong process for implementing obsolescence 

mitigation solutions. 

7. The Open Case Framework follows a logical path to a final solution. 
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8. The Post-Case Framework demonstrates a beneficial technique for managing mitigated 

obsolescence issues. 

9. Sustainment, Production, and Technology Refresh Roadmaps are helpful tools for 

managing mitigated obsolescence issues. 

10. Case Resolution, Cost Avoidance, and Case Turnaround Times are helpful metrics for 

managing mitigated obsolescence issues. 

11. Communication to all internal and external customers is imperative and is clearly 

demonstrated in the Post-Case Framework. 

12. Implementing the various Best Practices listed would aid in reduction of obsolescence 

risk/downtime to a system. 

13. Implementing the entire framework (Pre, Open, and Post) would likely reduce 

obsolescence risk/downtime to a system. 
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The participants were also asked to provide their degree, current work position, and professional 

background. They were given a PowerPoint with three slides each depicting the three sub-

frameworks of pre-case, open case, and post-case. They were also provided a Word document 

that provided more details on each part of the framework. These details are listed in the 

Appendix of this document. The participants were asked to fill out and email back the Excel 

document that contained the questionnaire by answering each question with a number 1,2,3,4, or 

5. 1 represented Strongly Disagree, 2 represented Disagree, 3 represented Neutral, 4 represented 

Agree, and 5 represented Strongly Agree. These results will then be used to validate or invalidate 

the proposed framework. Chapter 4 will introduce the initial machine learning experiments and 

how they were conducted. The results will be discussed in chapter 5 to justify the use of machine 

learning as a forecasting tool in the obsolescence management framework is laid out in chapter 6. 
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CHAPTER 4 INITIAL RANDOM FOREST EXPERIMENTS 
 

4.1 Introduction 

 

This experimentation used the Random Forest classification and regression algorithms to 

complete a small-scale case study using a sample size of 92 Xilinx FPGA chips. R statistical 

computing and graphics software was used to conduct this experiment. The goal was to see how 

accurately the algorithm classified each chip as “Active” or “Obsolete” and how closely it can 

predict a product discontinuation date. The features selected for the algorithms to use were 

Slices, Logic Cells, Max Distributed RAM Bits (MDRB), Dynamic Link Library (DLL), Phase-

Locked Loop/Mixed-Mode Clock Manager (PLL/MMCM), Max Input/Output (IO), 5V Tolerant, 

and Megahertz (MHz). The result of this case study could lead to the next step in future research. 

The next step would involve using a larger sample size with multiple algorithms and variable 

training sizes for comparison. 
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4.2 Case Study 

 

A case study was performed using the Random Forest classification and regression algorithms 

with a sample size of 92 Xilinx FPGA chips. R statistical computing and graphics software was 

used to run these algorithms comparing the selected features of Slices, Logic Cells, MDRB, 

DLL, PLL/MMCM, Max IO, 5V Tolerant, and MHz. 

 

4.2.1 Classification Code 

 

Below is code used for classifying a component as Active or Obsolete. The importance of this 

code’s output is that it allows for the creation of an obsolescence risk model to show the 

probability that a part is obsolete or not. A component may still be available in the marketplace, 

but based on the machine learning model, there may be a high risk that it will be obsolete soon 

and is therefore not desirable for future designs.  
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The R coding packages of cowplot and RF were used for classification. The training and testing 

sizes were both set to 50% with the decision tree level set to 500.  

library(cowplot) 

library(ggpolt2) 

library(randomForest) 

 

my_data <- read.csv(file.choose()) 

set.seed(12343) 

trainIndex= sample(nrow(my_data), 0.5*nrow(my_data), replace = FALSE) 

head(trainIndex) 

train=my_data[trainIndex, ] 

test=my_data[-trainIndex, ] 

 

model1 <- randomForest(Status ~ ., data = train, ntree=500, importance = TRUE) 

model1 

model2 <- randomForest(Status ~ ., data = test, ntree=500, importance = TRUE) 

model2  

 

print(table(my_data$Status)) 

print(table(train$Status)) 

 

oob.error.data <- data.frame( 

Trees=rep(1:nrow(model2$err.rate), times=3), 

Type=rep(c("OOB", "ACTIVE", "OBSOLETE"), each=nrow(model2$err.rate)), 

Error=c(model2$err.rate[,"OOB"], 

          model2$err.rate[,"ACTIVE"], 

          model2$err.rate[,"OBSOLETE"])) 
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4.2.2 Regression Code 

 

Below is the regression code used for predicting the EOL date of a component. The importance 

of this code is that its output gives design engineers a timeframe for when the part is expected to 

be discontinued. This information not only provides designers a useful way of predicting the 

amount of time needed to complete a redesign or find an alternative part, but this timeframe 

assists in maximizing the number of high-risk components that can be removed from the current 

product or redesign (Jennings, 2016). 

 

The RF library was used, and the decision tree level was set to 500. Obsolescence predictions 

were compared to actual discontinuation dates and active components were compared to Q-

STAR predictions. Having results comparable to an already available commercial data source 

helps validate the accuracy of the machine learning algorithms and their efficacy in predicting 

obsolescence.  
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library(randomForest)       

dataset <- read.csv(file.choose())       

dataset = dataset[1:9]       

set.seed(1234)       

regressor = randomForest(x = dataset[1:8],       

                         y = dataset$Status,       

                         ntree = 500)       

      

y_pred = predict(regressor, data.frame(ï..A=14752, B=33192 ,C=231000, D=1, E=0, F=376, 

G=0, H=220))  

 

4.2.3 Error Rate Plot Code 

 

The error rate code uses the ggplot2 package to create the decision tree chart down in Chapter 4 

Results and Discussion section of this paper. The importance of this chart is it shows how many 

decision trees are needed for the algorithm to perform with the lowest error rate. Too few trees 

will result in a larger rate of errors. A model with more trees than needed will not hurt the 

results, but the model will perform slower. 

library(ggpolt2) 

ggplot(data=oob.error.data, aes(x=Trees, y=Error)) + 

geom_line(aes(color=Type)) 

 

 

 

 

 



    

80 
 

4.2.4 Feature Importance Code 

 

The code below was used for determining feature importance and the statistical significance of 

each of the selected features. This shows us what weight the algorithm is placing on each 

variable along with the associated p-values.   

library(randomForest) 

require(randomForest) 

fit=randomForest(Status~., data=my_data) 

(VI_F=importance(fit)) 

Rfpermute(Status ~ . , data = test, ntree = 500, na.action = na.omit, nrep = 50)$pval 
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CHAPTER 5 RESULTS AND DISCUSSION 
 

5.1 Introduction 

 

As previously stated, a case study was performed using the Random Forest classification and 

regression algorithms with a sample size of 92 Xilinx Field Programmable Gate Array (FPGA) 

chips. R statistical computing and graphics software was used to run these algorithms comparing 

the selected features of Slices, Logic Cells, MDRB, DLL, PLL/MMCM, Max IO, 5V Tolerant, 

and MHz. The results are discussed below and are used to justify the use of machine learning as 

an integral part to the proposed obsolescence management framework in chapter 6. 

 

5.2 Results 

 

Both the training data and the test data had an OOB error rate of 10.87% using 500 trees. The 

training set was 50% of the population and the test set was the remaining 50%. Higher training 

sets resulted in lower OOB training error rates but did not improve testing results due to small 

sample sizes. The regression analysis shows that the Random Forest algorithm was able to 

predict an obsolescence date of an Obsolete component on average 0.75 years after the actual 

discontinuation of the component. On average the algorithm estimated the obsolescence date of 

an Active component 1.08 years early when compared to Q-STAR predictions. Q-STAR is a 

commercial database that helps companies with component life cycle management. Detailed 

findings are discussed below. 
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5.2.1 Classification Results 

 

The OOB error rate for the 50% training set was 10.87%. From the sample size of 46, the 

Random Forest classification algorithm correctly guessed 14 components as Active and 27 

Obsolete. The algorithm incorrectly guessed 4 components at Active when they were Obsolete 

and incorrectly guessed 1 component as Obsolete when it was Active. Figure 29 below depicts 

the training classification confusion matrix results from R. 

 

 

Figure 29: Random Forest Training Data Results 

 

The OOB error rate for the 50% testing set was 10.87%. From the sample size of 46, the Random 

Forest classification algorithm correctly guessed 17 components as Active and 24 as Obsolete. 

The algorithm incorrectly guessed 3 components at Active when they were Obsolete and 

incorrectly guessed 2 components as Obsolete when they were Active. Figure 30 below depicts 

the testing classification confusion matrix results from R. 

Call:

 randomForest(formula = Status ~ ., data = test, ntree = 500,      importance = TRUE) 

               Type of random forest: classification

                     Number of trees: 500

No. of variables tried at each split: 2

        OOB estimate of  error rate: 10.87%

Confusion matrix:

         ACTIVE OBSOLETE class.error

ACTIVE       14        4  0.22222222

OBSOLETE      1       27  0.03571429
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Figure 30 Random Forest Testing Data Results 

 

5.2.2 Regression Results 
 

The regression analysis shows that the RF algorithm was able to predict an obsolescence date of 

an obsolete component on average 0.75 years after the actual discontinuation of the component. 

On average the algorithm estimated the obsolescence date of an active component 1.08 years 

early when compared to Q-STAR predictions. It is important to note that actual discontinuation 

dates were used for obsolete components and Q-STAR data was used for active components. Q-

STAR was used as a comparison tool because there is no way of knowing how well the Random 

Forest algorithm predicted the years until EOL without comparing it to another widely used 

software tool in industry today. Overall, the algorithm predicted the EOL date on average 0.08 

years early which is a margin of error of less than 1% as shown in Table 7 below.  

 

 

 

Call:

 randomForest(formula = Status ~ ., data = train, ntree = 500,      importance = TRUE) 

               Type of random forest: classification

                     Number of trees: 500

No. of variables tried at each split: 2

        OOB estimate of  error rate: 10.87%

Confusion matrix:

         ACTIVE OBSOLETE class.error

ACTIVE       17        3  0.15000000

OBSOLETE      2       24  0.07692308
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Table 8: Random Forest Regression Results 

Status 
RF 

Prediction 

(Years) 

Actual or 

Q-STAR 

Prediction 

(Years)* 

Difference 

in Years 
Percentage 

Difference 
Over/Under 

Obsolete 13.92 13.17 0.75 5.70% OVERESTIMATED 

Active 16.92 18.00 -1.08 6.00% UNDERESTIMATED 

ALL 15.28 15.36 -0.08 0.53% UNDERESTIMATED 

*Actual discontinuation dates were used for obsolete components and Q-STAR data was used for 

active components. 

 

5.2.3 Error Rates 

 

Figure 31 shows the fluctuation in Active, Obsolete, OOB error rates for the RF algorithm as the 

number of decision trees are increased to 500. After about 200 trees, all the error rates flatten off 

indicating that 500 trees are enough for this analysis. Larger datasets may require more decision 

trees and therefore take longer for the model to run. 
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Figure 31: Error Rates Based on Number of Decision Trees 

 

5.2.4 Feature Importance 

 

The RF algorithm places a factor on each feature based on which attributes it determines to be 

the most important. Of the eight features selected for this study, MHz, the number of Logic 

Cells, and the number of MDRB in the FPGA chips were the top three most important attributes 

for predicting obsolescence status and EOL dates. Each feature has an associated P-value with 

MHz and Logic cells having statistically significant values of 0.02 and 0.05, respectfully. Table 9 

below presents both the Importance Factor and P-Value for all eight features used in the model. 
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Table 9: Feature Importance and Statistical Significance 

Feature 
Importance 

Factor 
P-Value 

Slices 3.84 0.12 

Logic Cells 5.87 0.05 

Max Distributed RAM 

Bits 
5.72 0.16 

DLL 1.46 0.12 

PLL.MMCM 1.42 0.09 

Max IO 4.34 0.15 

5V Tolerant 2.45 0.18 

MHz 15.81 0.02 

 

5.2.5 Discussion 

 

The results from this small-scale case study provide some positive information regarding using 

machine learning as a tool for predicting obsolescence. The RF classification algorithm was able 

to predict the Active vs. Obsolete status in both the training data and the test data with an OOB 

error rate of 10.87% at a 50% training size and 500 decision trees. The training set was 50% of 

the population and the test set was the remaining 50%.  
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Higher training sets did result in lower OOB training error rates but did not improve testing 

results due to the small sample size. The sample size of 92 components was small, so increasing 

the training size too large leaves too few of samples in the testing set to allow for any sort of 

statistical significance. The reason why the data is split into training and testing sets to reduce the 

risk of model overfitting the data. The algorithm uses the training set to define the logic it wants 

to use for predictions and then uses that logic on the test set. The importance of this classification 

information it allows for the creation of an obsolescence risk profile for a design’s Bill of 

Material (BOM). A company can look at the risk profile for a BOM and based on their risk 

tolerance, they can add or remove certain components as desired. 

 

The RF regression algorithm was able to predict the years to EOL date 0.75 years after the actual 

discontinuation of obsolete components and 1.08 years early when compared to Q-STAR 

predictions for active components. This was an error of 5.7 % and 6.0 % for active and obsolete 

components, respectively. The overall error was 0.53%.  
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Although a larger sample size would reduce variance and provide more significant information, 

there are two very positive takeaways from this information. The first is with parts that have a 

status of Obsolete. A discontinuation date is known information and the algorithm was able to 

predict its discontinuation date within one year. The second is comparing the Active results with 

another commercially available piece of software called Q-STAR. The Random Forest algorithm 

and Q-STAR predictions were on average only 1.08 years apart. This provides some accuracy 

validity to the machine learning model given the fact that its results were comparable to another 

widely used and accepted software solution in the marketplace today. 
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CHAPTER 6: OBSOLESCENCE MANAGEMENT FRAMEWORK 
 

An obsolescence management framework is a multiprong approach. There is not an exact path to 

every solution, but there are many methods that can help keep you ahead of the curve and help 

minimize the impact of each obsolescence case. The framework can be broken down into the 

three sections of pre-case, open casework, and post-case. Pre-case work is going to focus on 

efforts before a component goes obsolete while open case and post-case work will demonstrate 

measures for dealing with a newly obsolete component. The results in chapter 5 show that 

machine learning has the potential to be used in the pre-case framework and is discussed below. 

This framework was then validated through expert consensus using a 13 question Likert scale 

questionnaire. The flowcharts for each portion of the framework are placed in the Appendix 

section of this dissertation. 

 

 

 

 

 

 

 

 



    

90 
 

6.1 Pre-Case 

 

Pre-case work is going to consist of scrubbing bills of materials (BOMs) for all subsystems 

within the system. Based on most military designs today, we are going to assume that systems 

are modular and contain LRMs. Scrubbing of BOMs can be done using third party obsolescence 

software such as QSTAR or through machine learning methods as detailed earlier on in this 

paper. This scrubbing process is mostly used to get an estimate of the years to end of life 

(YTEOL) of each component. Most component manufacturing companies send out a PDN when 

they are planning on discontinuing a product. This usually will provide their customers with 6-12 

months of time to perform an LTB. The United States government usually provides similar 

information to any company subscribed to their GIDEP alerts. 

 

During the scrubbing process, if a component is not found to be obsolete, the YTEOL should be 

recorded, and the component is then placed back into the BOM scrub cycle. It is recommended 

that each BOM is reviewed for obsolescence at a minimum of once a year, however, quarterly is 

preferred. The reason for this is because some component manufactures may only provide a few 

months to place an LTB with them. When recording the YTEOL, any components with an 

estimated life of under 5 years should be placed into a subsystem design review analysis.  
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Once the risk level reaches a certain threshold of components with YTEOL under 5 years, the 

LRM would then be placed into a Technology Refresh (TR) phase to redesign the subassembly 

without the aging components. The number of years can be raised or lowed based on risk 

tolerance. A conservative estimate of 10% could be used as a requirement for redesign. This 

means that if 10% or more of the critical components in a BOM have a YTEOL of 5 years or 

less, the LRM should be redesigned. Critical components are any component that is not easily 

replaceable like a resistor or capacitor would be.  

 

This analysis should also be approached using machine learning classification algorithms to 

determine the obsolescence risk level of each BOM. These algorithms can output a weighted 

percentage for the probability that a component will be obsolete. This model can then be applied 

to the entire BOM to determine the overall obsolescence risk level. Once the level reaches a 

predetermined threshold, the LRM should be redesigned. Third party software or machine 

learning regression and classification algorithms can then again be used for the component 

selection process in the new design. 
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Figure 32: Pre-Case Process Flowchart 

 

Figure 32 above shows the pre-case flowchart that management should follow for maximum 

proactiveness. Vendor alerts, GIDEP alerts, and EOL modeling should all be part of the initial 

BOM scrubbing process. If a component is identified and verified as discontinued, then an 

obsolescence case should be opened, and mitigation solutions should be investigated. If the 

component is not obsolete, then LRU design refresh analysis should take place. This analysis can 

consist of both the YTEOL machine learning regression approach and/or the machine learning 

classification risk threshold approach. Once the LRM has been redesigned, the new associated 

BOM goes back into the scrubbing cycle. 
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6.2 Open Casework 
 

Once a component has been verified with the manufacturer for discontinuance, then an 

obsolescence case should be opened. Here all the different mitigation strategies such as existing 

stock, simple substitute, last-time-buy, etc, are contemplated until a solution is reached. Existing 

stock should be the first option looked at because there is no additional cost to implement this 

solution. Demand analysis will have to be conducted to determine if the number of components 

on hand will last the remaining life of the system. If the system is still in the production phase, 

then most likely existing stock will not be a viable solution.  

 

 

The next three options to look at would be last-time-buy, simple substitute, and complex 

substitute. If the component is inexpensive or the quantity needed is minimal, then an LTB is 

typically preferred over a substitute component. The reason for this is because with an LTB, you 

do not have to worry about BOM updates, customer approvals, design requalification, and so on. 

However, if an LTB is very expensive and a substitute is available, the substitute solution should 

be selected. 
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To calculate the number of components you would need to purchase for an LTB, you will first 

need to look at historical usage. In the example below in Table 9, five years of historical 

demands, or usage, were used to forecast future needs. The average number of repairs per year 

was 10. The margin of error (MOE) using a critical value of 1.645 for a one-tailed 95% 

confidence level is 1.876. The total future needs for a system with 7 years of use left would be 

(10 + 1.876) * 7 = 84 components. The confidence level can be raised or lowered based on 

component cost, desired risk level, or customer requirements.  

 

Table 10: Sustainment Forecast Model 

Year Usage 

1 10 

2 7 

3 13 

4 12 

5 8 

    

Average Yearly Repair Count 

(Usage) 10 

Standard Deviation 2.550 

System Life Remaining (Years) 7 

Sample Size 5 

Z Score (95% Confidence one-

tailed) 1.645 

Margin of Error 1.876 

    

Total Needs 84 
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If components are also needed for systems still going through production, the calculation would 

be based off confirmed and/or potential future orders. A simple calculation based off confirmed 

production orders would be (Number of Confirmed Orders) * (Washout Rate) = Total Production 

Needs. The washout rate is a multiplier between 1 and 2 and is based off the percentage of 

components expected to fail, break, or be otherwise unusable during the assembly process. An 

example calculation for 1,000 confirmed orders with a washout rate of 2% would be (1,000) * 

(1.02) = 1,020 components needed for production. If potential future orders were wanted in the 

calculation also, the equation would be as follows: 

((Number of Confirmed Orders) + ((Potential Future Orders) * (Percentage of Future Orders 

Expected to be Fulfilled))) * (Washout Rate) = Total Production Needs 

 

The percentage of future orders expected to be fulfilled should be based off historical order 

fulfillment percentages and risk tolerance. The most risk averse multiplier would be 1 while the 

least risk averse (highest risk tolerance) multiplier would be 0. A Production Roadmap provides 

a clear picture on the number of components needed and is explained further down. 
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The next solution that should be look at is extension of production or support. This is also known 

as a lifeboat agreement. Having strong relationships with you suppliers is integral for this 

solution to work. Sometimes a manufacturer will continue producing a component that they have 

released a product discontinuation notice on past the LTB date. This will be done typically at a 

much higher price point and only for a short period of time. Agreements between suppliers and 

customers can be made to last a few years which is often enough time for a redesign to take 

place. 

 

If the previously stated solutions are not feasible, repair, refurbishment, or reclamation can be 

investigated. This is rarely a final answer due to the limited number of non-operational systems 

available to salvage from and the difficulty of repairing an electrical component.  For military 

systems, this solution is not recommended due to reliability impacts.  
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The final three mitigation solutions involve engineering redesign of the component, next higher 

assembly, or system itself. A development of a new item or source can be used if the component 

can be developed through emulation, reverse engineering, or a new item is created with the same 

form, fit, and function as the original. This can come from the original manufacturer or a new 

source. If the component cannot be recreated, then a design change at the NHA should be 

performed to allow for a substitute component to become compatible with the system. Beyond 

this, a complex or system redesign is generally the most expensive solution and requires changes 

within multiple areas of the system to make a substitute component compatible. If any of these 

final three solutions are chosen, an LTB must still be performed to bridge the demand gap 

between the discontinuation date and the redesign production date. 

Table 11: Mitigation Solution Cost Elements (Office D. S., 2016) 
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Any solution that requires company or customer funding needs to be clearly communicated in a 

business case to management. Critical information includes the following: 

1. Part Number 

2. Part NHA 

3. Parts on hand 

4. Production/Sustainment Impact timeframe 

5. Mitigation solutions with multiple scenarios based on risk tolerance 

6. Cost 

It is imperative to deliver this information to management as quickly as possible in a concise, but 

accurate, manner. It is not always appropriate to conduct an LTB modeled out to the remaining 

life of the system. Some electrical components are extremely expensive, and quantities needed 

can reach the thousands. This obsolete component may already be replaced in a new design five 

years down the road. The full LTB cost may be so high that management choses to do a partial 

LTB to last until a redesign is completed. No matter the decisions, it is important to relay the 

data to the decision makers as soon as possible. Funding could take time, especially if its 

customer funded, and time is often a limited commodity in the world of obsolescence.  
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6.3 Post-Case 
 

Post-case work is going to consist of various tools and processes for properly managing 

component obsolescence along with metrics to track progress and provide updates to 

management and the customer. 

 

6.3.1 Sustainment Roadmaps 

 

Sustainment Roadmaps are an excellent tool for tracking component inventory levels to help 

ensure that parts on hand will last until a desired year. Accurate modeling beforehand is critical 

to make sure enough components are purchased in an LTB. In the roadmap below, there are two 

sets of years modeled for 2024 and 2035 based on historical component repair usage. In this 

example, some components will be phased out with a technology refresh. This tool allows you to 

track your obsolescence inventory as it is depleted and notifies you if you are consuming parts at 

rate faster than originally modeled for. 

The roadmap below displays the following: 

1. Component nomenclature 

2. Quantity of components needed for future repairs 

3. On-hand inventory 

4. Next Higher Assembly nomenclature or Shop Replaceable Unit nomenclature 

5. Quantity of the obsolete component in the Next Higher Assembly 
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6. The expected quantity of Next Higher Assembly washouts. A washout occurs when the 

Next Higher Assembly is beyond economical repair and a new subassembly is needed 

from production or sustainment stock. 

7. Quantity of the obsolete component needed for Next Higher Assembly washout 

8. Quantity of Next Higher Assembly units in stock or on order 

9. Calculated component shortage or excess 

10. The year being modeled out to 

11. Approximate component depletion year 

12. Line Replaceable Module/Line Replaceable Unit affected by the obsolete component 

13. Mitigation notes 

14. The model’s assumptions. These assumptions can include the confidence level, 

contracted flight hours, the Mean Time Between Instances (MTBI), and any other factor 

that may be important. 
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Table 12: Sustainment Roadmap example 

 

 

The calculation for the component shortage/excess is as follows: 

(Component Stock – Components Needed for Repairs) – ((Components Per SRU * SRU Needs 

for Washout) – (SRU Stock)) 

For component A the calculation would be as follows: 

(12-9) – ((1*13) - 11) = 3 - 2 = 1 

Therefore, no further action is needed other than regular roadmap maintenance as components 

become consumed for repairs. 

Current Year
Modeled to 

Year

Years 

Remaining

Tech Refresh 

Modeled to Year
Years Remaining

Updated: 1/1/2021

2021 2035 14 2024 3

Obsolete 

Component

Components Needed for 

Repairs
Component Stock NHA SRU 

Components Per 

SRU

SRUs Needs for 

Washout

Components 

Needed for SRU 

washout

SRU Stock
Component 

Shortage/Excess

Modeled to 

Year

Approx. 

Depletion Year
LRM/LRUs Affected Mitigation Notes Assumptions

A 9 12 AA 1 13 13 11 1 2035 2035 AAA

Sufficient inventory to sustain 

repairs through 2035. NO 

ACTION REQUIRED BY 

CUSTOMER.

Component: 95% Confidence

Contracted FH: 210,000

MTBI: 841,467

SRU: 50% Confidence

Actual FH: 148,270

 MTBI:  25,557 

B 41 10 BB 1 5 5 19 -17 2024 2022 BBB

 LTB of 31 components in 

progress. NO ACTION 

REQUIRED BY CUSTOMER.

Component: 95% Confidence

Actual FH: 148,270

MTBI:  34,076

SRU: 50% Confidence

Actual FH: 148,270

MTBI:  25,557 

C 38 40 CC 1 13 13 11 0 2035 2035 CCC

Sufficient inventory to sustain 

repairs through 2035. NO 

ACTION REQUIRED BY 

CUSTOMER.

Component: 95% Confidence

Contracted FH: 210,000

MTBI: 140,245

SRU: 50% Confidence

Actual FH: 148,270

MTBI:  25,557

D 40 1330 DD 1 0 0 15 1305 2035 2035 DDD

Sufficient inventory to sustain 

repairs through 2035. NO 

ACTION REQUIRED BY 

CUSTOMER.

Component: 95% Confidence

Contracted FH: 210,000

MTBI: 140,717

SRU: 50% Confidence

Actual FH: 148,270

MTBI:  25,557 

E 13 250 EE 1 0 0 165 402 2035 2035 EEE

Sufficient inventory to sustain 

repairs through 2035. NO 

ACTION REQUIRED BY 

CUSTOMER.

Component: 95% Confidence

Contracted FH: 210,000

MTBI: 599,975

SRU: 50% Confidence

Actual FH: 148,270

MTBI: 25,557

F 44 2 FF 1 0 0 165 123 2035 2035 FFF

Sufficient quantity of NHA FF. 

M-FFF  available for any 

additional requirements. NO 

ACTION REQUIRED BY 

CUSTOMER.

Component: 95% Confidence

Contracted FH: 210,000

MTBI:125,762

SRU: 50% Confidence

Actual FH: 148,270

MTBI: 25,557 

G 310 314 GG 1 0 0 0 4 2035 2035 GGG

Sufficient inventory to sustain 

repairs through 2035. NO 

ACTION REQUIRED BY 

CUSTOMER.

Component: 95% Confidence

Contracted FH: 210,000

MTBI: 14,941

SRU: 50% Confidence

Actual FH: 148,270

MTBI:   25,557

H 28 28 HH 2 4 8 9 1 2035 2035 HHH

Sufficient inventory to sustain 

repairs through 2035. 

Sufficient stock available/on-

order to sustain fleet until M-

HHH is available. NO ACTION 

REQUIRED BY CUSTOMER. 

Component: 95% Confidence

Contracted FH: 210,000

MTBI: 210,367

SRU: 50% Confidence

Actual FH: 148,270

 MTBI: 143,842

Customer

SRU Washout Calculation
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For component B, there is a shortage of 17 components. This would indicate a potential issue. 

However, the mitigation notes state that an LTB of 31 components is on order which surpasses 

the current shortage of 17. No further action is needed. 

 

6.3.2 Production Roadmaps 

 

The purpose of a Production Roadmap is the same as a sustainment roadmap which is to 

determine the number of components needed for an LTB and to track the depletion. Before an 

LTB is performed one must do the calculations for both repair and new hardware production. 

Production inventory levels must last until the next technology refresh point kicks in. To 

calculate the number of components needed for production, you would take the number of future 

production orders, multiply that number by the quantity of the obsolete component in that build, 

multiply that by a small scrap factor, and then multiply that by the order probability. The scrap 

factor would be based on historical yield rates to account for damaged components during 

assembly. In the example below, we will use a scrap rate of 10%. The order probability is the 

likelihood that the customer will follow through and pay for their order to be built. 
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In Table 13 below, component B is in type 1, 2, and 6 builds. There are 4 B components in each 

type 1 build, 15 in type 2 builds, and 4 in type 6 builds. Each build leading up to the technology 

refresh insertion point has a 100% build probability and a 10% scrap rate. Each individual build 

calculation is then also rounded up to the nearest whole number for an extra conservative value. 

The formula for component B would be as follows: 

Round up (1 * 4 * 1.1 * 1) + Round up (23 * 15 * 1.1 * 1) + Round up (57 * 4 * 1.1 * 1) + 

Round up (14 * 4 * 1.1 * 1) + Round up (2 * 15 * 1.1 * 1) + Round up (14 * 15 * 1.1 * 1) + 

Round up (14 * 15 * 1.1 * 1) + Round up (55* 4 * 1.1 * 1) + Round up (50 * 4 * 1.1 * 1) + 

Round up (22 * 15 * 1.1 * 1) + Round up (31 * 4 * 1.1 * 1) + Round up (24 * 4 * 1.1 * 1) =  

5 + 380 + 251 + 62 + 33 + 231 + 231 + 242 + 220 + 363 + 137 + 106 = 2,261 

In Figure 12 below, component B would need an LTB purchase of quantity 2,261 to meet 

production needs until the technology refresh insertion date. 

 

Component A has an on-hand quantity of 357. The burndown shows that an additional 585 

components are needed to be purchased. Component C has an on-hand quantity of 410. This is 

more than enough to last until the new design kicks in. If certain obsolete components are no 

longer available for procurement, then discussions with the customer will have to take place 

about moving their order back in the schedule and providing them with the design refresh build. 

 

 



    

104 
 

Table 13: Production Roadmap example 

 

 

6.3.3 Technology Refresh Roadmap 

 

The purpose of a Technology Refresh Roadmap is to clearly display redesign timelines and 

obsolescence impacts to various LRUs. This tool is mainly geared towards the customer to 

provide them with quick and easy to read updates. Figure 33 below depicts five different 

Technology Refresh cycles and their various stages. 

 

A B C

357 0 410

100% 11/12/2016 1 1 355 -5 410

100% 4/14/2017 2 23 203 -385 359

100% 4/14/2017 3 28 203 -385 359

100% 4/14/2017 4 16 203 -385 359

100% 4/14/2017 3 9 203 -385 359

100% 8/14/2017 1 57 140 -636 359

100% 1/14/2018 3 42 140 -636 359

100% 2/13/2018 1 14 124 -698 359

100% 10/14/2018 2 2 110 -731 354

100% 10/14/2018 2 14 17 -962 323

100% 10/15/2018 2 14 -76 -1193 292

100% 10/16/2018 3 50 -76 -1193 292

100% 10/17/2018 3 55 -76 -1193 292

100% 10/17/2018 1 55 -137 -1435 292

100% 12/18/2018 1 50 -192 -1655 292

100% 12/19/2018 2 22 -338 -2018 243

100% 12/18/2018 1 31 -373 -2155 243

100% 2/13/2019 6 24 -585 -2261 243

75% 5/16/2019 3 57 -585 -2261 243

75% 7/14/2019 1 50 -585 -2261 243

75% 10/14/2019 2 6 -585 -2261 243

75% 12/14/2019 4 50.5 -585 -2261 243

75% 1/14/2020 2 12 -585 -2261 243

75% 1/14/2020 3 12 -585 -2261 243

75% 1/14/2020 7 40 -585 -2261 243

50% 1/14/2020 3 33 -585 -2261 243

50% 1/14/2020 1 30 -585 -2261 243

75% 4/14/2020 2 36 -585 -2261 243

75% 4/15/2020 1 23 -585 -2261 243

75% 4/16/2020 1 24 -585 -2261 243
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In the example below, the yellow bar represents the amount of time in years allotted for 

engineering to complete the redesign. The orange wedge represents the time expected for all 

fielded assets to be equipped with the new design. This can be done through attrition or 

scheduled refurbishments. The white triangle with green border represents the estimate 

Engineering Completion Date (ECD) for the redesign. This bar can be moved to the left or right 

as required due to accelerated progress or delays to the redesign. The solid green triangle 

represents the actual ECD. The solid black triangle signifies the production impact date. This 

date represents the latest possible date for the ECD before production can no longer produce the 

old LRU. The solid blue triangle depicts the sustainment impact date. This date represents the 

latest possible date for the ECD before fielded assets can no longer be repaired. 

 

TR 1 denotes a scenario where engineering had five years from 2015 to 2020 to complete a 

redesign. Engineering took 6 years to complete and finished in 2021 just in time to meet the 

production impact date. There were no impacts to sustainment but planned fielding will have to 

be pushed back one year. In all five scenarios, the redesign timeframe and planned fielding are 

expected to take five years each. The production and sustainment impact date vary based on 

inventory levels of the obsolete components in each LRU. Smaller details can be laid out in the 

note’s section of the roadmap for the customer to understand specifically what may be driving 

certain timelines or impact dates. 
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Figure 33: Technology Refresh Roadmap example 

 

 

6.4 Metrics 

 

Metrics are a great way for the DMT to track its progress and establish goals, while also being 

imperative to providing updates to the customer and demonstrate the value of the team. Some of 

the key metrics that will be discussed are cost avoidance, case resolution history, and annual case 

turnaround-time (TAT).  
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6.4.1 Case Resolutions 

 

One of the main metrics to track for management and the customer is the overall case resolution 

counts for closed cases and the total number of cases opened each year. This provides a clear 

picture on what the main resolution types occurring are and the outlook for the expected future 

number of cases. Figure 34 below displays an example of the percentage of each resolution type 

that has resulted since 2010. The chart shows that 93% of all solutions result in a Simple 

Substitute or a Last-Time-Buy. This is valuable information because most solutions would result 

in a redesign if it were not for the work of the DMT. 

 

 

Figure 34: Case resolutions since inception by percentage example 

 

 

 

70%

23%

3% 2% 1% 1%

Case Resolutions Since DMT Inception (2010)

Simple Substitute

Last-Time-Buy

Existing Stock

Extension of Support

Complex Substitute

Redesign NHA
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Figure 35 shows the total number of open cases each year since 2010. The trend line indicates 

that over time, the number of cases is increasing. This is typical of an ageing system. This chart 

reinforces the need for a DMT by showing that each year the number of cases is only going to 

grow creating larger risk to the system. Without a DMT, the system would experience 

tremendous downtime. 

 

 

Figure 35: Number of cases since inception by count example 

 

Figure 36 below is an example of case resolutions by percentage for the most current year. This 

information shows management and the customer the most up-to-date data and can be compared 

to historical data in Figure 34 above to see if there are any new emerging trends developing. 
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Figure 36: Case resolutions in 2020 by percentage example 

 

Figure 37 consists of identical data from Figure 36 but displayed in a count format instead of a 

percentage. Providing information in multiple formats can paint a better picture for leadership 

and the customer. This helps them understand what they are looking at to make informed 

decisions. 

 

Figure 37: Case resolutions in 2020 by count example 
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6.4.2 Cost Avoidance & Cost of Service 

 

Each of the mitigation techniques demonstrated in the table above has an associated cost upon 

implementation. As stated earlier, cost avoidance of a solution relates the difference in cost 

between the solution being implemented and the next most feasible solution (Office, 2016). In 

Figure 38 below, the chart depicts an example of a typical cost avoidance vs cost of service 

scenario. This is important information that management and the customer want to see.  

 

The chart below demonstrates the value that the DMT is providing relative to the cost of the 

service. In 2020, the DMT’s $4,000,000 service cost to the customer resulted in an avoidance of 

cost of over $46,000,000. Over the past eight years, the overall cost of service has decreased as 

the DMT has been able to provide the same or better service at less cost year over year, while the 

cost avoidance has continued to climb. The steady upward curve is often seen in aging systems, 

which makes this information even more valuable for both the company and the customer. When 

the customer can clearly see that not investing in a DMT would result in costs 5-10 times what 

they currently pay, they are likely to continue paying for a proactive obsolescence team. 
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Figure 38: System Cost Avoidance example 

 

 

 

 

6.4.3 Annual Case Turnaround Time 

 

The purpose of tracking case TAT is to ensure that obsolescence cases are being worked in as 

quick of a manner as possible. The longer a case takes to complete, the higher the risk level to 

the system. Customers will often implement a contractual requirement for the DMT to not 

exceed a specified number of days from the date the case is opened to the date it is closed. This 

is usually done on a yearly collective basis for the average TAT for all cases each year. The 

example below depicted in Figure 39 shows a continual improvement in the yearly case closure 

TAT. This demonstrates to both the customer and leadership the value the DMT is providing to 

the program through consistent yearly obsolescence risk reduction. 
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Figure 39: Annual case TAT example 

 

 

6.5 Best Practices 
 

1. Contractual funding for a DMT to promote proactive obsolescence management. 

2. Pre-funded budget for mitigation solutions from customers. This saves time and resources 

for implementing a solution as there is no need to reach out to the customer for approval 

for most cases. 

3. Machine learning models for initial design selection, component EOL tracking, and BOM 

obsolescence risk level evaluations. 

4. Continuous technology refresh initiatives based on BOM obsolescence risk level 

evaluations. 
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5. Division of hardware into distinct partitions using modularity that is afforded by open 

architecture to functionally split the system into multiple segments known as LRMs or 

LRUs. Open architecture makes obsolescence easier to mitigate because systems 

designed under completely closed and proprietary architecture typically require complex 

redesigns or new interfaces to incorporate new components. 

6. React quickly to high-risk situations and elevate information to management when 

necessary. 

7. Implementation of the most cost-effective mitigation solutions through proper selection 

and accurate LTB modeling. 

8. Require subcontractors to keep constant communication with the DMT and provide 

consistent and accurate information. This information includes up to date BOMs, solution 

implementation timelines, and remaining stock quantities. 

9. Utilize multiple material sources and vendor locations, when possible, to reduce 

obsolescence risk. 

10. Conduct regular obsolescence working group (OWG) and integrated product team (IPT) 

meetings with all internal and external customers including, but not limited to, the 

following: finance, program managers, quality, planning, engineering, suppliers, 

procurement, and production. 

11. Monthly obsolescence reports to customers to keep a steady flow of communication. 

12. Capture metrics such as cost avoidance, case outcomes, and long-range forecasting to 

demonstrate impacts and value to the customer. 
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13. Automate as many daily tasks as possible to reduce time collecting metrics and creating 

reports. 

14. Keep all obsolescence case data in a central location that is easily accessible to all 

members of the team. 

15. Keep thorough and well-organized documentation of work processes for knowledge 

transfer when training new team members. Critical historical information is often lost due 

to tribal knowledge that is not passed down when senior members leave the team. 

 

 

6.6 Obsolescence Management Framework Validation 

 

The obsolescence management framework was validated using a 13 question Likert scale 

questionnaire. The questionnaire was sent out to 11 industry experts all of which provided their 

responses. The average score for each question was as follows: 
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Table 14: Average Response Score 

Question Average Response Score 

1 4.36 

2 3.82 

3 4.64 

4 4.27 

5 4.64 

6 4.55 

7 4.73 

8 4.64 

9 4.82 

10 4.55 

11 4.55 

12 4.55 

13 4.45 

Overall 4.50 

 

The question with the lowest overall score was question 2 with an average score of 3.82. This 

was mainly due to some of the experts not being certain whether machine learning is a new 

concept in DMSMS forecasting or not. Since the lowest score for question 2 was a 3, there were 

no responses disagreeing that it is a new concept in the field. The question with the highest 

overall score was on question 9 with an average score of 4.82. This question focused on the 

importance of roadmaps in managing mitigated cases. The overall score for the entire 

questionnaire was 4.50. This means that the overall expert consensus to the management 

framework was a mixture of agree to strongly agree. This provides strong justification to the 

legitimacy of the framework and provides validation that it would likely reduce obsolescence 

risk and downtime to a system whether in production or being sustained in the field. 
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A strong method to confirm the validity of the framework questionnaire is through a content 

validity index (CVI). The higher the CVI, the stronger the validation that the framework holds 

value. The table below discusses the acceptable minimum CVI values based on various 

quantities of experts. 

 

Table 15: The number of experts and its implication of the acceptable cut-off score of CVI. 

Adapted and modified from (Yusoff, 2019) 

Number of Experts Acceptable CVI Values 

2 At Least 0.8 

3-5 Should be 1 

6 At Least 0.83 

6-8 At Least 0.83 

9 or more At Least 0.78 

 

The questionnaire in this dissertation used 11 experts and therefore is aiming for a CVI value of 

0.78 or higher. The Likert scale had a 5-point system. Any response score of 4 or 5 will count 

towards the CVI value, whereas any response score of 3, 2, or 1 will not. Table 16 below shows 

all 13 question responses from each of the 11 experts. The CVI looks at the number of experts in 

agreeance for each question. As an example, for question 1, there were 10 experts out of 11 who 

gave a response score of 4 or 5. The CVI for question 1 is 10/11 or 0.91. The overall CVI score 

for the entire questionnaire is 0.92 which surpasses the satisfactory level of content validity. 
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Table 16: CVI for Framework Questionnaire 

 

 

Some overall comments provided by the experts were as follows: 

1. Technology refreshes can be beneficial, but most programs tend to shy away from due to 

high initial costs unless they absolutely must. 

2. While communication to all internal and external customers is important, not all contract 

types require customer notification of an obsolescence issue prior to a mitigation solution 

being implemented. 

3. It is recommended to include in the framework the assumption that the systems are 

modularized. 

4. It is recommended to include in the framework the assumption that the repair, 

refurbishment, or reclamation mitigation solution is not recommended for military 

systems. 

 

 

Questions Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 Expert 8 Expert 9 Expert 10 Expert 11 Experts in Agreement CVI

Q 1 1 1 0 1 1 1 1 1 1 1 1 10 0.91

Q 2 1 0 0 0 1 1 1 0 1 1 0 6 0.55

Q 3 1 1 1 1 1 1 1 1 1 1 1 11 1.00

Q 4 1 1 1 1 1 1 1 1 1 1 0 10 0.91

Q 5 1 1 1 1 1 1 1 1 1 1 1 11 1.00

Q 6 1 1 1 1 1 0 1 1 1 1 1 10 0.91

Q 7 1 1 1 1 1 1 1 1 1 1 1 11 1.00

Q 8 1 1 1 1 1 1 1 0 1 1 1 10 0.91

Q 9 1 1 1 1 1 1 1 1 1 1 1 11 1.00

Q 10 1 1 1 0 1 1 1 1 1 1 1 10 0.91

Q 11 1 1 1 1 1 1 1 0 1 1 1 10 0.91

Q 12 1 1 1 1 1 1 1 1 1 1 1 11 1.00

Q 13 1 1 0 1 1 1 1 1 1 1 1 10 0.91

CVI Average 0.92

Content Validity Index (CVI)
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CHAPTER 7 CONCLUDING REMARKS 
 

7.1 Conclusion 

 

To conclude, Diminishing Manufacturing Sources and Material Shortages is an inevitable reality 

in manufacturing systems and supply chain environments as systems are needed to be sustained 

for long timeframes.  More emphasis needs to be put on proactive/strategic approaches to 

mitigating obsolescence, rather than just reactive. A proactive strategy comes in the form of 

obsolescence forecasting demonstrated by a case study by Connor Jennings. Using machine 

learning has validated the accuracy of the Life Cycle Forecasting framework by showing that 

obsolescence dates can be predicted within a few months of the actual discontinuation date. That 

case study demonstrated the strength of the Obsolescence Risk Forecasting by correctly 

identifying active and obsolete parts with high accuracy.   
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Today’s best tools for forecasting obsolescence use traditional algorithms that analyze inputs 

using defined logic but are only as good as the logic provided. Machine Learning takes inputs 

and outputs to create its own logic and then uses this logic when analyzing new data. The results 

for this small-scale case study shows promising results for a larger scale experiment. The 

Random Forest algorithm was able to classify components as Active or Obsolete with an OOB 

error rate of 10.87% and predict actual obsolescence dates with less than a one-year margin of 

error. Future research in this area would require reperforming this experiment with a larger 

dataset, variable training sizes, optimized feature selection, and multiple algorithms such as 

Naive Bayes and Support-Vector Machines.   

 

This research constructed an obsolescence management framework using personal experience in 

the field of DMSMS and through research of peer reviewed articles on current management 

practices. The main area of focus was on proactive management which is where the machine 

learning case study played a role. Expert consensus derived an average score of 4.50/5. This 

means that the expert agreed/strongly agreed that implementing the proposed framework likely 

reduce obsolescence risk, help mitigate issues, and reduce downtime to a system. 
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There are various proactive/strategic approaches to mitigating obsolescence and tools to help 

track and forecast cases. Some of these key areas of focus are funding for a robust DMSMS 

team, a strong supply chain, system design that factors in obsolescence risk, and strong 

communication with all parties involved. It is imperative to develop an effective and data-driven 

approach to communicating obsolescence impacts to leadership to ensure successful mitigation 

of obsolescence issues.  Solution funding could take time, especially if its customer funded, and 

time is often a limited commodity in the world of obsolescence. Some post-case tools and 

strategies include utilizing sustainment, production, and technology refresh roadmaps, along with 

employing data driven metrics to provide key information to leadership and demonstrate value to 

the customer. 

 

A powerful proactive strategy that this framework includes is built-in technology refresh cycles 

into a system that can be implemented using machine learning. A redesign can be implemented 

once a predetermined risk threshold is met. Afterwards, third party software or machine learning 

regression and classification algorithms can be used for the component selection process in the 

new design. Once a case is open, it is important to come to the most cost-effective mitigation 

solution. It is imperative to deliver this information to management as quickly and accurately as 

possible so a decision can be made.  

 

 



    

121 
 

7.2 Contributions to the Body of Knowledge 

 

This framework provides a helpful guide to anyone in the field of managing obsolescence issues 

particularly with military-based systems. It demonstrates the potential for using machine learning 

as a life cycle forecasting tool in lieu of traditional models. This framework proposes the use of 

machine learning models to aide in the selection of components for system designs and creating 

obsolescence risk profiles for BOMs. It also provides a clear path on how to find a solution to 

problems as they occur and how to manage these newly mitigated obsolescence issues. This case 

study provides a path forward for future research using machine learning as a forecasting tool in 

the DMSMS field. 

 

7.3 Challenges, Limitations & Future Research 

 

One of the main challenges for completing future research with machine learning and 

obsolescence is collecting large amounts of complete of data. It is said that we are in the 

Information Age as take on projects of big data analytics and this era is moving towards more 

cognitive processing with machine learning and artificial intelligence capabilities that rely on the 

large amounts of data we collect and manage (Mullins, 2017). A model will always only be as 

good as the input information that it receives.  
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When it comes to machine learning, training data determines the performance of the model’s 

outputs. According to Hale (2018), bad quality data will replicate itself as it flows through 

machine learning systems, generating flawed information. A quote from Thomas C. Redman, a 

well-known figure in the data quality management world, states, “Poor data quality is enemy 

number one to the widespread, profitable use of machine learning” (Hale, 2018). To overcome 

the enemy of bad data, a great deal of time must be spent analyzing data integrity to help 

safeguard against inaccurate and biased results. 

 

 

Comparing component data is another challenge, but there are some online databases that can 

provide component obsolescence. Some of these databases include, but are not limited to, 

PartMiner, Q-Star, SiliconExpert, CAPS Universe and Total Parts Plus. Manufacturers also often 

have their component datasheets publicly available. It is important for the data to be as complete 

as possible, but as demonstrated in various studies, to a certain extent, machine learning models 

can make their own predictions to fill in gaps of missing or incomplete data. 
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Another challenge and possibly a limitation are fitting the models to make them work with data 

from all types of components. Different types of components include resistors, capacitors, 

microcontrollers, integrated circuits (IC), and so on. An FPGA is not going to have the same 

obsolescence trends as a diode. A digital IC may require different algorithm features than an 

analog IC for the predictive models to be accurate. Sometimes age can be used as a feature where 

other times primary attributes such as speed, size, logic gates, or logic cells can be used as inputs 

(Gao, Liu, & Wang, 2011). Figure 40 shows how age can be a primary driver on certain 

components such as an operational amplifier, but age does not have a strongly correlated effect 

on flash memory. This is an obstacle that may be hard to overcome in due to the complexity of 

having to set up different models for different types of components. This research focused on 

utilizing machine learning algorithms for predicting component obsolescence using Flash 

Memory (FM) chips. Future research can be done to branch out to other types of components 

since this dissertation study shows promise. 

 

 

Figure 40: Age effect on Flash Memory vs. Op Amps (Technologies, 2015) 
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Making sure that the historical collected data still reflects current data is a third challenge. 

According to Jennings (2016), a machine learning or statistical obsolescence model in present 

day with past obsolescence data would not predict advancements and innovations in technology. 

This means that the obsolescence forecasting frameworks and all current machine learning 

models cannot predict unforeseen technological advancements, and therefore are better suited to 

track steady improvements in the electrical component industry (Jennings, 2016). This is an issue 

that is just the nature of the beast and cannot necessarily be completely erased, but it is important 

to be cognizant of this incidence. The main takeaway here is to remember that the goal is to 

improve upon the prediction accuracies of current models, of all types, and bring forward better 

obsolesce information to electrical design engineers than they are currently receiving. Nothing 

will ever be perfect, but everything can always be made better. 

 

Another limitation to this study is there is not a way of comparing the accuracy of these machine 

learning algorithmic models to a traditional model such as Q-STAR for historical predictions. 

Access to historical predictions on an already obsolete component is not available. This does not 

mean the use of machine learning models for obsolescence predictions cannot be justified, as the 

case study results show promise. With all that said, and based on the positive preliminary results, 

I believe that continued research and experimentation using machine learning algorithms would 

provide great knowledge for the field of component obsolescence forecasting. 
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Future research within the realm of combining artificial intelligence and DMSMS would include 

the use of deep learning with larger datasets. As machine learning is a subset of artificial 

intelligence, deep learning is a subset of machine learning. The main difference between the two 

is machine learning makes informed decisions based on what it learns from the algorithm parsing 

data and deep learning layers algorithms to create an artificial neural network that can learn and 

make decisions on its own (Grossfeld, 2020). A classic example of deep learning in action is 

AlphaZero created by Google DeepMind.  According to Silver et al., AlphaZero used deep 

neural networks to play millions of chess games against itself in a trial-and-error process called 

reinforcement learning. Over time the system learned the best moves by remembering strong 

moves and learning from mistakes on bad moves (Silver, Hubert, Schrittweiser, & Hassabis, 

2018). This type of extreme machine learning could be explored for DMSMS forecasting in the 

future. 
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APPENDIX A: DATA VALIDATION 
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1. Variable Assumptions 

a. Multivariate Normality - Q-Q plot shows that the errors between observed and 

predicted values to be normally distributed. As variables are removed, the top of 

the line does begin to skew slightly.  

b. No Multicollinearity - Some exists but can be removed. Some variable reduction 

in future studies should not greatly negatively impact the model’s accuracy.  

c. Homoscedasticity - The variance of error seems similar across the values of the 

independent variables. However, it is hard to definitively say because the data 

contains both numeric and ordinal data. This is creating negative sloped diagonal 

line clusters. This happens with mixed data and is not necessarily a reason for 

concern. 

2. Fit Indices – R2 value ranges from 0.72-0.80 depending on variables used with the Chi-

Squared test showing a p-value of less than 0.01. This means the model explains most of 

the variation within the data and is statistically significant. 

3. Snapshot vs Longitudinal – This case study uses a small sample size and breaking the 

data down by years would result in very small testing and training groups. 
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The following data was pulled from R software using its multicollinearity tests, linear model 

summary, Pearson’s Chi-squared test, residuals vs fitted plots, Q-Q plots, scale-location plots, 

and residuals vs leverage plots. The purpose of this information is to demonstrate the validity of 

the machine learning model outputs.  Although this real-world data is not perfect, it does pass 

various validity tests. As some of the variables exhibiting collinearity were removed from the 

calculation for retesting, the outputs did not change dramatically. Some of the most important 

information from the validity testing is that the R2 values ranged from 0.72-0.80 in the Chi-

Squared tests showing a p-value of less than 0.01. This shows that the model explains most of 

the variation within the data and is statistically significant.  The initial multicollinearity test was 

with all seven variables with three of the variables showing some multicollinearity. 

H0:the X’s are orthogonal 

H1:the X’s are not orthogonal 

 

 

All Individual Multicollinearity Diagnostics Result 

 

              VIF    TOL           Wi           Fi Leamer         CVIF Klein 

ï..A 4602313.5390 0.0000 4.679018e+07 5.706868e+07 0.0005 2470508.3127     1 

B    4598253.3459 0.0000 4.674890e+07 5.701833e+07 0.0005 2468328.8130     1 

C          1.5361 0.6510 5.450800e+00 6.648200e+00 0.8068       0.8246     0 

D          2.3512 0.4253 1.373710e+01 1.675470e+01 0.6522       1.2621     0 

F         11.3211 0.0883 1.049312e+02 1.279816e+02 0.2972       6.0771     1 

G          2.0475 0.4884 1.064980e+01 1.298920e+01 0.6989       1.0991     0 

H          3.5862 0.2788 2.629350e+01 3.206940e+01 0.5281       1.9251     0 

 

1 --> COLLINEARITY is detected by the test  

0 --> COLLINEARITY is not detected by the test 
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Linear Model Summary 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.30571 -0.06197 -0.01640  0.04870  0.20702  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.689e+00  1.425e-01  11.850  < 2e-16 *** 

ï..A         1.084e-02  2.315e-03   4.680 1.68e-05 *** 

B           -4.816e-03  1.029e-03  -4.682 1.67e-05 *** 

C           -1.049e-07  7.705e-08  -1.362   0.1783     

D            1.160e-01  5.201e-02   2.230   0.0295 *   

F            1.140e-04  1.473e-04   0.774   0.4419     

G            3.442e-01  4.853e-02   7.092 1.74e-09 *** 

H            3.628e-03  4.023e-04   9.019 9.16e-13 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.103 on 60 degrees of freedom 

Multiple R-squared:  0.8053, Adjusted R-squared:  0.7826  

F-statistic: 35.46 on 7 and 60 DF,  p-value: < 2.2e-16 

 

Pearson's Chi-squared test 

 

data:  dataset 

X-squared = 4787139, df = 335, p-value < 2.2e-16 

 

 



    

130 
 

 

Figure 41: Residuals vs Fitted, Q-Q, Scale-Location, and Residuals vs Leverage plots for seven 

variables 

 

Residual vs fitted plots are showing diagonal line clusters due to presence of both numeric and 

ordinal data. 
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Six variables showed less collinearity. 

 

 

All Individual Multicollinearity Diagnostics Result 

 

      VIF    TOL       Wi       Fi Leamer   CVIF Klein   IND1   IND2 

B  9.9335 0.1007 110.7754 140.7026 0.3173 6.6858     1 0.0081 1.4100 

C  1.5347 0.6516   6.6298   8.4209 0.8072 1.0329     0 0.0525 0.5462 

D  2.2202 0.4504  15.1300  19.2176 0.6711 1.4943     0 0.0363 0.8617 

F 10.9267 0.0915 123.0916 156.3462 0.3025 7.3544     1 0.0074 1.4244 

G  2.0112 0.4972  12.5391  15.9267 0.7051 1.3537     0 0.0401 0.7883 

H  2.6198 0.3817  20.0855  25.5118 0.6178 1.7633     0 0.0308 0.9694 

 

1 --> COLLINEARITY is detected by the test  

0 --> COLLINEARITY is not detected by the test 

 

Linear Model Summary 

 

Residuals: 

      Min        1Q    Median        3Q       Max  

-0.207830 -0.070689 -0.008673  0.061795  0.208599  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.389e+00  1.475e-01   9.417 1.68e-13 *** 

B           -2.578e-06  1.752e-06  -1.472  0.14626     

C           -9.374e-08  8.923e-08  -1.051  0.29761     

D            1.734e-01  5.856e-02   2.961  0.00436 **  

F            2.427e-04  1.677e-04   1.447  0.15294     

G            3.140e-01  5.574e-02   5.633 4.79e-07 *** 

H            4.606e-03  3.984e-04  11.560  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.1193 on 61 degrees of freedom 

Multiple R-squared:  0.7343, Adjusted R-squared:  0.7081  

F-statistic: 28.09 on 6 and 61 DF,  p-value: 7.865e-16 
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Pearson's Chi-squared test 

 

data:  my_data 

X-squared = 4613208, df = 402, p-value < 2.2e-16 

 

 

Figure 42: Residuals vs Fitted, Q-Q, Scale-Location, and Residuals vs Leverage plots for six 

variables 
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With five variables there was no more collinearity. However, the Q-Q chart begins to look a little 

worse. This is most likely due to the removal of numeric variables that were showing collinearity 

making the ratio of ordinal to numeric data larger. Although the Q-Q chart looks the worst out of 

the 3 sections here, on the residuals vs leverage chart none of data points show to be extreme 

outliers that would have a large impact on the overall results. 

All Individual Multicollinearity Diagnostics Result 

 

     VIF    TOL      Wi      Fi Leamer   CVIF Klein   IND1   IND2 

B 1.5358 0.6511  8.4383 11.4297 0.8069 1.0193     0 0.0413 0.7977 

C 1.5266 0.6551  8.2934 11.2334 0.8094 1.0132     0 0.0416 0.7888 

D 2.0010 0.4998 15.7657 21.3546 0.7069 1.3281     0 0.0317 1.1439 

G 1.6701 0.5988 10.5536 14.2949 0.7738 1.1085     0 0.0380 0.9175 

H 2.4468 0.4087 22.7869 30.8649 0.6393 1.6240     0 0.0259 1.3521 

 

1 --> COLLINEARITY is detected by the test  

0 --> COLLINEARITY is not detected by the test 
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Linear Model Summary 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.21026 -0.06919 -0.00336  0.03514  0.20388  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.506e+00  1.244e-01  12.108  < 2e-16 *** 

B           -2.469e-07  6.949e-07  -0.355   0.7235     

C           -8.436e-08  8.978e-08  -0.940   0.3510     

D            1.468e-01  5.608e-02   2.617   0.0111 *   

G            2.807e-01  5.124e-02   5.479 8.28e-07 *** 

H            4.457e-03  3.884e-04  11.476  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.1204 on 62 degrees of freedom 

Multiple R-squared:  0.7252, Adjusted R-squared:  0.703  

F-statistic: 32.72 on 5 and 62 DF,  p-value: 3.54e-16 

 

Pearson's Chi-squared test 

 

data:  my_data 

X-squared = 4597051, df = 335, p-value < 2.2e-16 
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Figure 43: Residuals vs Fitted, Q-Q, Scale-Location, and Residuals vs Leverage plots for five 

variables 
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APPENDIX B: QUESTIONNAIRE FRAMEWORK 
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Pre-Case Framework provided for questionnaire. 

 

Figure 44: Pre-Case Framework 
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Open Case Framework provided for questionnaire. 

 

Figure 45: Open Case Framework 
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Post-Case Framework provided for questionnaire. 

 

Figure 46: Post-Case Framework 

 

 

 

 

 

 



    

140 
 

APPENDIX C: QUESTIONNAIRE RESPONSES 
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Framework Questionnaire provided to experts. 

 

Figure 47: Framework Questionnaire 

 

Framework Questionnaire Responses. 

 

Figure 48: Framework Response #1 

Please provide your response to the following statements by placing a number 1,2,3,4, or 5 in each cell in Column B. Answer Level Meaning

The Pre-Case Framework demonstrates strong tools and processes for a proactive obsolescence management framework. 1 Strongly Disagree

Adding in Machine Learning as a Life Cycle Forecasting tool is a new idea for a proactive obsolescence management framework. 2 Disagree

Adding in Machine Learning as a Life Cycle Forecasting tool is a beneficial strategy for a proactive obsolescence management framework. 3 Neutral

Regular Technology or Design Refreshes is a beneficial strategy for a proactive obsolescence management framework. 4 Agree

Machine Learning can aid in early detection of BOMs at high obsolescence risk. 5 Strongly Agree

The Open Case Framework demonstrates a strong process for implementing obsolescence mitigation solutions.

The Open Case Framework follows a logical path to a final solution.

The Post-Case Framework demonstrates a beneficial technique for managing mitigated obsolescence issues.

Sustainment, Production, and Technology Refresh Roadmaps are helpful tools for managing mitigated obsolescence issues.

Case Resolution, Cost Avoidance, and Case Turnaround Times are helpful metrics for managing mitigated obsolescence issues.

Communication to all internal and external customers is imperative and is clearly demonstrated in the Post-Case Framework.

Implementing the various Best Practices listed would aid in reduction of obsolescence risk/downtime to a system.

Implementing the entire framework (Pre, Open, and Post) would likely reduce obsolescence risk/downtime to a system.

Degree:
Current Work Position:
Professional Background (Anything applicable to Obsolescence, Military Systems, etc.):

Please provide your response to the following statements by placing a number 1,2,3,4, or 5 in each cell in Column B. Answer

The Pre-Case Framework demonstrates strong tools and processes for a proactive obsolescence management framework. 5

Adding in Machine Learning as a Life Cycle Forecasting tool is a new idea for a proactive obsolescence management framework. 5

Adding in Machine Learning as a Life Cycle Forecasting tool is a beneficial strategy for a proactive obsolescence management framework. 5

Regular Technology or Design Refreshes is a beneficial strategy for a proactive obsolescence management framework. 5

Machine Learning can aid in early detection of BOMs at high obsolescence risk. 5

The Open Case Framework demonstrates a strong process for implementing obsolescence mitigation solutions. 5

The Open Case Framework follows a logical path to a final solution. 5

The Post-Case Framework demonstrates a beneficial techniques for managing mitigated obsolescence issues. 5

Sustainment, Production, and Technology Refresh Roadmaps are helpful tools for managing mitigated obsolescence issues. 5

Case Resolution, Cost Avoidance, and Case Turnaround Times are helpful metrics for managing mitigated obsolescence issues. 5

Communication to all internal and external customers is imperative and is clearly demonstrated in the Post-Case Framework. 5

Implementing the various Best Practices listed would aid in reduction of obsolescence risk/downtime to a system. 5

Implementing the entire framework (Pre, Open, and Post) would likely reduce obsolescence risk/downtime to a system. 5

Degree: PhD Industrial Engineering
Current Work Position: Engineering Project Manager (EPM)
Professional Background (Anything applicable to Obsolescence, Military Systems, etc.): Over 20 years of experience in system engineering. Working on 
DoD systems throughout the life cycle of a system (proposal, requirements, design, implementation, system integration and test, verification, logistics, 
deployment...).
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Figure 49: Framework Response #2 

 

 

Figure 50: Framework Response #3 

Please provide your response to the following statements by placing a number 1,2,3,4, or 5 in each cell in Column B. Answer

The Pre-Case Framework demonstrates strong tools and processes for a proactive obsolescence management framework. 5

Adding in Machine Learning as a Life Cycle Forecasting tool is a new idea for a proactive obsolescence management framework. 3

Adding in Machine Learning as a Life Cycle Forecasting tool is a beneficial strategy for a proactive obsolescence management framework. 4

Regular Technology or Design Refreshes is a beneficial strategy for a proactive obsolescence management framework. 5

Machine Learning can aid in early detection of BOMs at high obsolescence risk. 4

The Open Case Framework demonstrates a strong process for implementing obsolescence mitigation solutions. 5

The Open Case Framework follows a logical path to a final solution. 5

The Post-Case Framework demonstrates a beneficial techniques for managing mitigated obsolescence issues. 5

Sustainment, Production, and Technology Refresh Roadmaps are helpful tools for managing mitigated obsolescence issues. 5

Case Resolution, Cost Avoidance, and Case Turnaround Times are helpful metrics for managing mitigated obsolescence issues. 4

Communication to all internal and external customers is imperative and is clearly demonstrated in the Post-Case Framework. 5

Implementing the various Best Practices listed would aid in reduction of obsolescence risk/downtime to a system. 5

Implementing the entire framework (Pre, Open, and Post) would likely reduce obsolescence risk/downtime to a system. 5

Degree: PhD Ind Eng
Current Work Position:  Causal Analyst
Professional Background (Anything applicable to Obsolescence, Military Systems, etc.):  Systems Engineer and Program Manager for numerous military 
acquisition programs.

Please provide your response to the following statements by placing a number 1,2,3,4, or 5 in each cell in Column B. Answer

The Pre-Case Framework demonstrates strong tools and processes for a proactive obsolescence management framework. 3

Adding in Machine Learning as a Life Cycle Forecasting tool is a new idea for a proactive obsolescence management framework. 3

Adding in Machine Learning as a Life Cycle Forecasting tool is a beneficial strategy for a proactive obsolescence management framework. 5

Regular Technology or Design Refreshes is a beneficial strategy for a proactive obsolescence management framework. 5

Machine Learning can aid in early detection of BOMs at high obsolescence risk. 5

The Open Case Framework demonstrates a strong process for implementing obsolescence mitigation solutions. 5

The Open Case Framework follows a logical path to a final solution. 5

The Post-Case Framework demonstrates a beneficial technique for managing mitigated obsolescence issues. 5

Sustainment, Production, and Technology Refresh Roadmaps are helpful tools for managing mitigated obsolescence issues. 5

Case Resolution, Cost Avoidance, and Case Turnaround Times are helpful metrics for managing mitigated obsolescence issues. 5

Communication to all internal and external customers is imperative and is clearly demonstrated in the Post-Case Framework. 5

Implementing the various Best Practices listed would aid in reduction of obsolescence risk/downtime to a system. 5

Implementing the entire framework (Pre, Open, and Post) would likely reduce obsolescence risk/downtime to a system. 3

Degree: Ph.D.
Current Work Position: Professor
Professional Background (Anything applicable to Obsolescence, Military Systems, etc.): Academic
Notes: The first and last questions are related to the implementation of the framework and that is something that I will not be able to answer as agree or 
disagree. Adding Machine Learning as Life Cycle Forecasting tool for a proactive obsolescence idea has been introduced before but may be not within a 
framework. 
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Figure 51: Framework Response #4 

 

 

 

 

Figure 52: Framework Response #5 

 

 

 

Please provide your response to the following statements by placing a number 1,2,3,4, or 5 in each cell in Column B. Answer

The Pre-Case Framework demonstrates strong tools and processes for a proactive obsolescence management framework. 5

Adding in Machine Learning as a Life Cycle Forecasting tool is a new idea for a proactive obsolescence management framework. 4

Adding in Machine Learning as a Life Cycle Forecasting tool is a beneficial strategy for a proactive obsolescence management framework. 5

Regular Technology or Design Refreshes is a beneficial strategy for a proactive obsolescence management framework. 4

Machine Learning can aid in early detection of BOMs at high obsolescence risk. 5

The Open Case Framework demonstrates a strong process for implementing obsolescence mitigation solutions. 5

The Open Case Framework follows a logical path to a final solution. 5

The Post-Case Framework demonstrates a beneficial techniques for managing mitigated obsolescence issues. 5

Sustainment, Production, and Technology Refresh Roadmaps are helpful tools for managing mitigated obsolescence issues. 5

Case Resolution, Cost Avoidance, and Case Turnaround Times are helpful metrics for managing mitigated obsolescence issues. 5

Communication to all internal and external customers is imperative and is clearly demonstrated in the Post-Case Framework. 5

Implementing the various Best Practices listed would aid in reduction of obsolescence risk/downtime to a system. 5

Implementing the entire framework (Pre, Open, and Post) would likely reduce obsolescence risk/downtime to a system. 5

Degree: Bachelors of Science Business Administration
Current Work Position: Obsolescence Manager, Fixed Wing (LSE)
Professional Background (Anything applicable to Obsolescence, Military Systems, etc.):

Please provide your response to the following statements by placing a number 1,2,3,4, or 5 in each cell in Column B. Answer

The Pre-Case Framework demonstrates strong tools and processes for a proactive obsolescence management framework. 4

Adding in Machine Learning as a Life Cycle Forecasting tool is a new idea for a proactive obsolescence management framework. 3

Adding in Machine Learning as a Life Cycle Forecasting tool is a beneficial strategy for a proactive obsolescence management framework. 4

Regular Technology or Design Refreshes is a beneficial strategy for a proactive obsolescence management framework. 4

Machine Learning can aid in early detection of BOMs at high obsolescence risk. 4

The Open Case Framework demonstrates a strong process for implementing obsolescence mitigation solutions. 4

The Open Case Framework follows a logical path to a final solution. 4

The Post-Case Framework demonstrates a beneficial techniques for managing mitigated obsolescence issues. 4

Sustainment, Production, and Technology Refresh Roadmaps are helpful tools for managing mitigated obsolescence issues. 4

Case Resolution, Cost Avoidance, and Case Turnaround Times are helpful metrics for managing mitigated obsolescence issues. 3

Communication to all internal and external customers is imperative and is clearly demonstrated in the Post-Case Framework. 4

Implementing the various Best Practices listed would aid in reduction of obsolescence risk/downtime to a system. 4

Implementing the entire framework (Pre, Open, and Post) would likely reduce obsolescence risk/downtime to a system. 4

Degree:
Current Work Position: Obsolescence Manager, Rotary System
Professional Background (Anything applicable to Obsolescence, Military Systems, etc.):
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Figure 53: Framework Response #6 

 

 

 

 

Figure 54: Framework Response #7 

Please provide your response to the following statements by placing a number 1,2,3,4, or 5 in each cell in Column B. Answer

The Pre-Case Framework demonstrates strong tools and processes for a proactive obsolescence management framework. 4

Adding in Machine Learning as a Life Cycle Forecasting tool is a new idea for a proactive obsolescence management framework. 4

Adding in Machine Learning as a Life Cycle Forecasting tool is a beneficial strategy for a proactive obsolescence management framework. 4

Regular Technology or Design Refreshes is a beneficial strategy for a proactive obsolescence management framework. 4

Machine Learning can aid in early detection of BOMs at high obsolescence risk. 5

The Open Case Framework demonstrates a stong process for implementing obsolescence mitigation solutions. 3

The Open Case Framework follows a logical path to a final solution. 4

The Post-Case Framework demonstrates a beneficial techiques for managing mitigated obsolescence issues. 4

Sustainment, Production, and Technology Refresh Roadmaps are helpful tools for managing mitigated obsolescence issues. 4

Case Resolution, Cost Avoidance, and Case Turnaround Times are helpful metrics for managing mitigated obsolescence issues. 5

Communication to all internal and external customers is imperative and is clearly demonstrated in the Post-Case Framework. 5

Impelementing the various Best Practices listed would aid in reduction of obsolescence risk/downtime to a system. 5

Impelementing the entire framework (Pre, Open, and Post) would likely reduce obsolescence risk/downtime to a system. 4

Degree:PhD
Current Work Position: Senior Expert engineer/ Program manager at Siemens-Energy
Professional Background (Anything applicable to Obsolescence, Military Systems, etc): Industrial Gas turbine repair 

Please provide your response to the following statements by placing a number 1,2,3,4, or 5 in each cell in Column B. Answer

The Pre-Case Framework demonstrates strong tools and processes for a proactive obsolescence management framework. 5

Adding in Machine Learning as a Life Cycle Forecasting tool is a new idea for a proactive obsolescence management framework. 5

Adding in Machine Learning as a Life Cycle Forecasting tool is a beneficial strategy for a proactive obsolescence management framework. 5

Regular Technology or Design Refreshes is a beneficial strategy for a proactive obsolescence management framework. 4

Machine Learning can aid in early detection of BOMs at high obsolescence risk. 5

The Open Case Framework demonstrates a stong process for implementing obsolescence mitigation solutions. 4

The Open Case Framework follows a logical path to a final solution. 5

The Post-Case Framework demonstrates a beneficial techiques for managing mitigated obsolescence issues. 5

Sustainment, Production, and Technology Refresh Roadmaps are helpful tools for managing mitigated obsolescence issues. 5

Case Resolution, Cost Avoidance, and Case Turnaround Times are helpful metrics for managing mitigated obsolescence issues. 4

Communication to all internal and external customers is imperative and is clearly demonstrated in the Post-Case Framework. 4

Impelementing the various Best Practices listed would aid in reduction of obsolescence risk/downtime to a system. 4

Impelementing the entire framework (Pre, Open, and Post) would likely reduce obsolescence risk/downtime to a system. 5

Degree: PhD
Current Work Position: Technical Fellow, Raytheon Technologies Research Center
Professional Background (Anything applicable to Obsolescence, Military Systems, etc):
Technical Fellow at RTRC with forty years of research experience in advanced manufacturing and materials. She has authored over forty patents in her 
field and has published over a 120 peer-reviewed journal articles and reports. She is responsible for: (i) identifying and creating new technology areas in 
materials and manufacturing with widespread impact across Raytheon Technologies; (ii) developing capabilities in the fields of advanced manufacturing 
and tribology; and (iii) guides technical project work in advanced manufacturing. She is an editor of the Journal of Applied Mathematics and editorial 
board member of the International Scholarly Research Network of Tribology. She is also a reviewer of multiple national and international journals in 
advanced manufacturing. She is a recipient of the 2015 Otis President Safety and multiple RTRC Outstanding Achievement Awards. She is a member of the 
Connecticut Academy of Science and Engineering, SME, ASME, SWE. Finally, she is an Adjunct Professor at University of Hartford and at the University of 
McMaster, Canada.
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Figure 55: Framework Response #8 

 

 

 

Figure 56: Framework Response #9 

 

 

Please provide your response to the following statements by placing a number 1,2,3,4, or 5 in each cell in Column B. Answer

The Pre-Case Framework demonstrates strong tools and processes for a proactive obsolescence management framework. 4

Adding in Machine Learning as a Life Cycle Forecasting tool is a new idea for a proactive obsolescence management framework. 3

Adding in Machine Learning as a Life Cycle Forecasting tool is a beneficial strategy for a proactive obsolescence management framework. 4

Regular Technology or Design Refreshes is a beneficial strategy for a proactive obsolescence management framework. 5

Machine Learning can aid in early detection of BOMs at high obsolescence risk. 4

The Open Case Framework demonstrates a strong process for implementing obsolescence mitigation solutions. 5

The Open Case Framework follows a logical path to a final solution. 4

The Post-Case Framework demonstrates a beneficial technique for managing mitigated obsolescence issues. 3

Sustainment, Production, and Technology Refresh Roadmaps are helpful tools for managing mitigated obsolescence issues. 5

Case Resolution, Cost Avoidance, and Case Turnaround Times are helpful metrics for managing mitigated obsolescence issues. 5

Communication to all internal and external customers is imperative and is clearly demonstrated in the Post-Case Framework. 3

Implementing the various Best Practices listed would aid in reduction of obsolescence risk/downtime to a system. 4

Implementing the entire framework (Pre, Open, and Post) would likely reduce obsolescence risk/downtime to a system. 5

Degree: Ph.D.
Current Work Position: Emeritus Professor, Founding& First President of E-JUST University 
Professional 2Background (Anything applicable to Obsolescence, Military Systems, etc.): Supervised 2 Ph.D,s in line of obsolescence Studies,  Advisor to the 
Military technical college,  Cairo in research and systems optimization.

Please provide your response to the following statements by placing a number 1,2,3,4, or 5 in each cell in Column B. Answer

The Pre-Case Framework demonstrates strong tools and processes for a proactive obsolescence management framework. 4

Adding in Machine Learning as a Life Cycle Forecasting tool is a new idea for a proactive obsolescence management framework. 4

Adding in Machine Learning as a Life Cycle Forecasting tool is a beneficial strategy for a proactive obsolescence management framework. 5

Regular Technology or Design Refreshes is a beneficial strategy for a proactive obsolescence management framework. 4

Machine Learning can aid in early detection of BOMs at high obsolescence risk. 4

The Open Case Framework demonstrates a strong process for implementing obsolescence mitigation solutions. 5

The Open Case Framework follows a logical path to a final solution. 5

The Post-Case Framework demonstrates a beneficial technique for managing mitigated obsolescence issues. 5

Sustainment, Production, and Technology Refresh Roadmaps are helpful tools for managing mitigated obsolescence issues. 5

Case Resolution, Cost Avoidance, and Case Turnaround Times are helpful metrics for managing mitigated obsolescence issues. 4

Communication to all internal and external customers is imperative and is clearly demonstrated in the Post-Case Framework. 4

Implementing the various Best Practices listed would aid in reduction of obsolescence risk/downtime to a system. 4

Implementing the entire framework (Pre, Open, and Post) would likely reduce obsolescence risk/downtime to a system. 4

Degree: BS Engineering Physics, MBA in Aviation, MS Systems Engineering
Current Work Position: Engineering Duty Officer, Mechanical Engineer, Strategic Systems Programs (SSP)
Professional Background (Anything applicable to Obsolescence, Military Systems, etc.): NAWCTSD (Naval Air Warfare Center Training Systems 
Division) August 2009 - July 2020: Systems Engineer for training system acquisition. SSP July 2020 - present: Mechanical Engineer. US Navy January 
2014 - present: Engineering Duty Officer. All positions dealt with obsolescence.
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Figure 57: Framework Response #10 

 

 

 

 

Figure 58: Framework Response #11 

 

 

Please provide your response to the following statements by placing a number 1,2,3,4, or 5 in each cell in Column B. Answer

The Pre-Case Framework demonstrates strong tools and processes for a proactive obsolescence management framework. 4

Adding in Machine Learning as a Life Cycle Forecasting tool is a new idea for a proactive obsolescence management framework. 5

Adding in Machine Learning as a Life Cycle Forecasting tool is a beneficial strategy for a proactive obsolescence management framework. 5

Regular Technology or Design Refreshes is a beneficial strategy for a proactive obsolescence management framework. 4

Machine Learning can aid in early detection of BOMs at high obsolescence risk. 5

The Open Case Framework demonstrates a stong process for implementing obsolescence mitigation solutions. 4

The Open Case Framework follows a logical path to a final solution. 5

The Post-Case Framework demonstrates a beneficial techiques for managing mitigated obsolescence issues. 5

Sustainment, Production, and Technology Refresh Roadmaps are helpful tools for managing mitigated obsolescence issues. 5

Case Resolution, Cost Avoidance, and Case Turnaround Times are helpful metrics for managing mitigated obsolescence issues. 5

Communication to all internal and external customers is imperative and is clearly demonstrated in the Post-Case Framework. 5

Impelementing the various Best Practices listed would aid in reduction of obsolescence risk/downtime to a system. 4

Impelementing the entire framework (Pre, Open, and Post) would likely reduce obsolescence risk/downtime to a system. 4

Degree:  BS Electronic Engineering Technology
Current Work Position:  Project Engineering Associate Manager
Professional Background (Anything applicable to Obsolescence, Military Systems, etc):  Obsolescence management for 4 years on Fixed Wing (primarily 
Sniper)

Please provide your response to the following statements by placing a number 1,2,3,4, or 5 in each cell in Column B. Answer

The Pre-Case Framework demonstrates strong tools and processes for a proactive obsolescence management framework. 5

Adding in Machine Learning as a Life Cycle Forecasting tool is a new idea for a proactive obsolescence management framework. 3

Adding in Machine Learning as a Life Cycle Forecasting tool is a beneficial strategy for a proactive obsolescence management framework. 5

Regular Technology or Design Refreshes is a beneficial strategy for a proactive obsolescence management framework. 3

Machine Learning can aid in early detection of BOMs at high obsolescence risk. 5

The Open Case Framework demonstrates a strong process for implementing obsolescence mitigation solutions. 5

The Open Case Framework follows a logical path to a final solution. 5

The Post-Case Framework demonstrates a beneficial technique for managing mitigated obsolescence issues. 5

Sustainment, Production, and Technology Refresh Roadmaps are helpful tools for managing mitigated obsolescence issues. 5

Case Resolution, Cost Avoidance, and Case Turnaround Times are helpful metrics for managing mitigated obsolescence issues. 5

Communication to all internal and external customers is imperative and is clearly demonstrated in the Post-Case Framework. 5

Implementing the various Best Practices listed would aid in reduction of obsolescence risk/downtime to a system. 5

Implementing the entire framework (Pre, Open, and Post) would likely reduce obsolescence risk/downtime to a system. 5

Degree: B.S. in Business Management and A.S. in Electrical Engineering Technology
Current Work Position: Lead Logistics Management Specialist
Professional Background (Anything applicable to Obsolescence, Military Systems, etc.): Government DMSMS management team member for military ship 
and aircraft simulators. 
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