
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2020- 

2021 

Visual Learning Beyond Human Curated Datasets Visual Learning Beyond Human Curated Datasets 

Muhammad Abdullah Jamal 
University of Central Florida 

 Part of the Artificial Intelligence and Robotics Commons 

Find similar works at: https://stars.library.ucf.edu/etd2020 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Jamal, Muhammad Abdullah, "Visual Learning Beyond Human Curated Datasets" (2021). Electronic 
Theses and Dissertations, 2020-. 701. 
https://stars.library.ucf.edu/etd2020/701 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
http://network.bepress.com/hgg/discipline/143?utm_source=stars.library.ucf.edu%2Fetd2020%2F701&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/701?utm_source=stars.library.ucf.edu%2Fetd2020%2F701&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


VISUAL LEARNING BEYOND HUMAN CURATED DATASETS

by

MUHAMMAD ABDULLAH JAMAL
M.S. University of Central Florida, 2020

B.E. National University of Sciences and Technology, 2013

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Summer Term
2021

Major Professor: Liqiang Wang, Boqing Gong



c© 2021 Muhammad Abdullah Jamal

ii



ABSTRACT

The success of deep neural networks in a variety of computer vision tasks heavily relies on large-

scale datasets. However, it is expensive to manually acquire labels for large datasets. Given

the human annotation cost and scarcity of data, the challenge is to learn efficiently with insuf-

ficiently labeled data. In this dissertation, we propose several approaches towards data-efficient

learning in the context of few-shot learning, long-tailed visual recognition, and unsupervised and

semi-supervised learning. In the first part, we propose a novel paradigm of Task-Agnostic Meta-

Learning (TAML) algorithms to improve few-shot learning. Furthermore, in the second part, we

analyze the long-tailed problem from a domain adaptation perspective and propose to augment

the classic class-balanced learning for longtails by explicitly estimating the differences between

the class-conditioned distributions with a meta-learning approach. Following this, we propose our

lazy approach based on an intuitive teacher-student scheme to enable the gradient-based meta-

learning algorithms to explore long horizons. Finally, in the third part, we propose a novel face

detector adaptation approach that is applicable whenever the target domain supplies many repre-

sentative images, no matter they are labeled or not. Experiments on several benchmark datasets

verify the efficacy of the proposed methods under all settings.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Thanks to deep learning, we have achieved remarkable results in computer vision tasks such as

object recognition [27], semantic segmentation [191, 185], and detection [133, 130] in recent years.

Unfortunately, this success comes at a cost. Deep learning requires a large amount of labeled data

(e.g., thousands of examples for a class) for training to solve a particular task. However, human

annotation cost and scarcity of data can significantly hinder the performance of deep learning

models. For example, in the case of few-shot learning, a deep learning model cannot perform well

given few examples. On the other hand, a human can learn and adapt quickly from few examples

using prior knowledge. Another example is long-tailed training sets where many tail classes have

fewer examples and deep learning models can be over-fitted to the majority classes. Last, but not

the least, is the case of unsupervised and semi-supervised learning [28] where the goal is to learn

from totally unlabeled data or partially labeled and unlabeled data respectively. These examples

motivate us towards the development of data-efficient models which can generalize well given

insufficient labeled data. In this proposal, we are proposing different approaches to tackling few-

shot learning, long-tailed visual recognition, unsupervised, and semi-supervised learning.

1.2 Contribution

Meta-learning approaches have been proposed to tackle the few-shot learning problem. Typically,

a meta-learner is trained on a variety of tasks in the hopes of being generalizable to new tasks.

However, the generalizability on new tasks of a meta-learner could be fragile when it is over-

trained on existing tasks during the meta-training phase. In other words, the initial model of a

1



meta-learner could be too biased toward existing tasks to adapt to new tasks, especially when only

very few examples are available to update the model. To avoid a biased meta-learner and improve

its generalizability, we propose a novel paradigm of Task-Agnostic Meta-Learning (TAML) algo-

rithms [71]. Specifically, we present an entropy-based approach that meta-learns an unbiased initial

model with the largest uncertainty over the output labels by preventing it from over-performing in

classification tasks. Alternatively, a more general inequality-minimization TAML is presented for

more ubiquitous scenarios by directly minimizing the inequality of initial losses beyond the clas-

sification tasks wherever a suitable loss can be defined. Experiments on benchmarked datasets

demonstrate that the proposed approaches outperform compared meta-learning algorithms in both

few-shot classification and reinforcement learning tasks.

Besides few-shot learning, deep learning models can also under-perform in the case of long-tailed

training sets. Longtails are a challenging problem as it poses a mismatch between the training

set seen by a machine learning model and our expectation of the model to perform well on all

classes. We analyze this mismatch from a domain adaptation point of view. First of all, we connect

existing class-balanced methods for long-tailed classification to target shift, a well-studied scenario

in domain adaptation. The connection reveals that these methods implicitly assume that the training

data and test data share the same class-conditioned distribution, which does not hold in general

and especially for the tail classes. While a head class could contain abundant and diverse training

examples that well represent the expected data at inference time, the tail classes are often short

of representative training data. To this end, we propose to augment the classic class-balanced

learning by explicitly estimating the differences between the class-conditioned distributions with

a meta-learning approach [73]. We validate our approach with six benchmark datasets and three

loss functions.

Gradient-based meta-learning first trains task-specific models by an inner loop and then backprop-

agates meta-gradients through the loop to update the meta-model. To avoid high-order gradients,

2



existing methods either take a small number of inner steps or approximate the meta-updates for the

situations that the meta-model and task models lie in the same space. To enable long inner horizons

for more general meta-learning problems, we instead propose an intuitive teacher-student strategy.

The key idea is to employ a student network to adequately explore the search space of task-specific

models, followed by a teacher’s “leap” toward the regions probed by the student. The teacher

not only arrives at a high-quality model but also defines a lightweight computational graph for the

meta-gradients. Our approach is generic; it performs well when applied to four meta-learning algo-

rithms over three tasks: few-shot learning, long-tailed object recognition, and adversarial blackbox

attack.

Moreover, we propose a novel face detector adaptation approach [72] that works as long as there

are representative images of the target domain no matter they are labeled or not and, more impor-

tantly, without the need of accessing the training data of the source domain. It is often desirable

to have some built-in schemes for a face detector to automatically adapt, e.g., to a particular user’s

photo album (the target domain). Our approach explicitly accounts for the notorious negative

transfer caveat in domain adaptation thanks to a residual loss by design. Moreover, it does not

incur catastrophic interference with the knowledge learned from the source domain and, therefore,

the adapted face detectors maintain about the same performance as the old detectors in the origi-

nal source domain. As such, our adaption approach to face detectors is analogous to the popular

interpolation techniques for language models; it may opens a new direction for progressively train-

ing the face detectors domain by domain. We report extensive experimental results to verify our

approach on two massively bench-marked face detectors.

1.3 Outline

This proposal is organized as follows.
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Chapter 1 discusses the motivation of learning from insufficiently labeled data and highlights the

contributions of this proposal.

Chapter 2 presents related works on few-shot learning, long-tail visual recognition, and unsuper-

vised and semi-supervised learning for face detector adaptation.

Chapter 3 proposes a novel paradigm of Task-Agnostic Meta-Learning (TAML) algorithms to

tackle few-shot learning. Specifically, we present an entropy-based approach, and a more gen-

eral inequality-minimization TAML for more ubiquitous scenarios.

Chapter 4 analyzes the long-tail problem from a domain adaptation perspective by proposing to

augment the classic class-balanced learning by explicitly estimating the differences between the

class-conditioned distributions with a meta-learning approach.

Chapter 5 proposes an intuitive teacher student scheme to enable the gradient-based meta-learning

algorithms to explore long horizons by the inner loop.

Chapter 6 proposes a novel face detector adaptation approach that works as long as there are

representative images of the target domain no matter they are labeled or not and, more importantly,

without the need of accessing the training data of the source domain.

Chapter 7 concludes this dissertation and highlights the future work.
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CHAPTER 2: LITERATURE REVIEW

2.1 Few-Shot Learning

Recently, meta-learning approaches have been proposed to solve the few-shot learning. The idea of

meta-learning has been proposed more than a couple of decades ago [143, 120, 161]. Most of the

approaches to meta-learning include learning a learner’s model by training a meta-learner. Recent

studies towards meta-learning for deep neural networks include learning a hand-designed optimizer

like SGD by parameterizing it through recurrent neural networks. Li [89], and Andrychowicz [4]

studied a LSTM based meta-learner that takes the gradients from learner and performs an optimiza-

tion step. To solve few-shot classification problems, [129] used the same LSTM based meta-learner

approach in which LSTM meta-learner takes the gradient of a learner and proposed an update to

the learner’s parameters. The approach learns both weight initialization and an optimizer of the

model weights. Finn [41] proposed a more general approach for meta-learning known as MAML

by simply learning weight initialization for a learner through a fixed gradient descent. It trains a

model on a variety of tasks to have a good initialization point that can be quickly adapted (few or

one gradient steps) to a new task using few training examples. Meta-SGD [98] extends the MAML,

which not only learns weight initialization but also the learner’s update step size. [117] proposes a

temporal convolution and attention based meta-learner called SNAIL that achieves state-of-the-art

performance for few-shot classification tasks and reinforcement learning tasks.

Other paradigms of meta-learning approaches include training a memory augmented neural net-

work on existing tasks by coupling with LSTM or feed-forward neural network controller [141,

119]. There are also several non-meta-learning approaches to few-shot classification problem by

designing specific neural architectures. For example, [81] trains a Siamese network to compare

new examples with existing ones in a learned metric space. Vinyals [166] used a differentiable
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nearest neighbour loss by utilizing the cosine similarities between the features produced by a con-

volutional neural network. [154] proposed a similar approach to matching net but used a square

euclidean distance metric instead. In this proposal, we mainly focus on the meta-learning ap-

proaches and their applications to few-shot classification and reinforcement tasks.

2.2 Long-Tailed Visual Recognition

Our work is closely related to the class-balanced methods briefly reviewed in Chapter 4. In this

section, we discuss domain adaptation and the works of other types for tackling the long-tailed

visual recognition.

Metric learning, hinge loss, and head-to-tail knowledge transfer. Hinge loss, focal loss [184]

and metric learning are flexible tools for one to handle the long-tailed problem [14, 66, 183, 189,

62, 173]. They mostly contain two major steps. One is to sample or group the data being aware

of the long-tailed property, and the other is to construct large-margin losses. Our approach is loss-

agnostic, and we show it can benefit different loss functions in the experiments. Another line of

research is to transfer knowledge [60, 31, 93] from the head classes to the tail. Yin et al. transfer

intra-class variance from the head to tail [181], Liu et al. add a memory module to the neural

networks to transfer semantic features [104], and Wang et al. employ a meta network to regress

network weights between different classes [172].

Hard example mining and weighting. Hard example mining is prevalent and effective in object

detection [39, 111, 133, 101]. While it is not particularly designed for the long-tailed recognition,

it can indirectly shift the model’s focus to the tail classes, from which the hard examples usually

originate (cf. [25, 32, 45] and our experiments). Nonetheless, such methods could be sensitive to

outliers or unnecessarily allow a minority of examples to dominate the training. The recently pro-
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posed instance weighting by meta-learning methods [132, 153] alleviate those issues. Following

the general meta-learning principle [41, 71, 99], they set aside a validation set to guide how to

weigh the training examples by gradient descent. Similar schemes are used in learning from noisy

data [75, 26, 171, 177].

Domain adaptation. In real-world applications, there often exist mismatches between the distri-

butions of training data and test data for various reasons [162, 190, 59]. There has been a rich

line of works on domain adaptation for generic visual recognition [56, 23], such as object recogni-

tion [138], action recognition [90], Webly-supervised learning [9, 35, 17], attribute detection [47],

etc. Domain adaptation methods aim to mitigate the mismatches so that the learned models can

generalize well to the inference-time data [152, 52, 51]. There are some approaches that handle

the imbalance problem in domain adaptation. Zou et al. [195] deal with the class imbalance by

controlling the pseudo-label learning and generation using the confidence scores that are normal-

ized class-wise. Yan et al. [178] use a weighted maximum mean discrepancy to handle the class

imbalance in unsupervised domain adaptation. We understand the long-tail challenge in visual

recognition from the perspective of domain adaptation. While domain adaptation methods need to

access a large amount of unlabeled (and sometimes also a small portion of labeled) target domain

data, we do not access any inference-time data in our approach. Unlike existing weighting methods

in domain adaptation [21, 67, 186], we meta-learn the weights.

2.3 Long-Horizon Gradient based Meta-learning

Meta-learning has been a long-standing sub-field in machine learning [143, 161, 120]. Early

approaches update a model’s parameters by training a meta-learner [7, 8, 144]. This has been

well studied in optimizing neural networks, and one such family of meta-learning learns an opti-

mizer [129, 89, 4]. A specialized neural network takes gradients as input and outputs an update
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rule for the learner. In addition to the update rule, [129] also learn the weight initialization for

few-shot learning. Finally, there are several approaches [115, 175] for training generic optimizers

that can be applied broadly to different neural networks and datasets.

Under the context of few-shot learning, another family of meta-learning involves metric-learning

based methods [166, 154, 117, 81, 125], which learn a metric space to benefit different few-shot

learning tasks. The goal is to find the similarity between two samples regardless of their classes

using some distance metric so that the similarity function can be used to classify the unseen classes

at the test stage. Some recent studies along this line include Relation Network [158], which uses a

relation module as the similarity function, ridge regression [10], and graph neural networks [142].

Besides these approaches, some of the methods have been reviewed in 2.1.

More recently, gradient-based meta-learning gains its momentum, and a variety of methods have

been proposed in this vein. The most notable one among them might be [41], where the goal

is to learn the network weight initialization so that it can adapt to unseen tasks rapidly. There

have been extensions to improve MAML. Meta-SGD [99] learns the learning rates along with the

weight initialization. Regularization techniques [180, 71] are introduced to MAML to mitigate

over-fitting. [126] preconditions on the gradients in the inner loop by learning a curvature. De-

spite MAML’s popularity, it is still computationally expensive and consumes large memory due

to the computation of high-order derivatives. The authors show that the first-order approximation,

which neglects the gradients of the inner loop during meta-optimization, performs about the same

as the original MAML. Another first-order meta-learning method is Reptile [122], which decou-

ples the inner and outer optimization steps. iMAML [127] provides an approximate solution for

meta-gradients by using an algorithm based on conjugate gradients, and its low-level optimization

is similar to Meta-MinibatchProx [193]. The idea is to add an `2 regularizer in the inner loop,

allowing the updated parameters close to the initial parameters.
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2.4 Face Detector Adaptation under Unsupervised and Semi-supervised Setting

Face detector adaptation. Jain and Learned-Miller use a Gaussian process to update the low

detection scores by assuming smoothness of the detections and that the detected regions of high

scores are more likely correct than the others [70]. Wang et al. [170] and Li et al. [87] make similar

assumptions and yet use the regions of high detection scores to re-train a new detector for the target

domain using vocabulary trees and probabilistic elastic part models, respectively. When the target

domain comprises video sequences, the motion and tracking cues are usually very effective for

adapting the detectors [159, 148, 169, 140, 136].

Domain adaptation. Most of the domain adaptation work is briefly reviewed in the section 2.2.

The goal is to minimize the discrepancy between the source and target by exploring the data from

both domains. However, the modern face detectors are often trained from an extreme-scale training

set, making it hard to carry the source data to the adaptation stage. Domain adaptation in the

absence of the source data [19, 84] is the most relevant to ours. Such methods use the source

models either for regularization [84] or to augment the features of the target data [19], while we

consider a different problem, deep face detectors, and refer to the source model in both the cost

function and the classifier of the target face detector.

Negative transfer is a notorious caveat in domain adaptation [135, 50, 146, 147]. Whereas ex-

isting works attempt to solve this problem by defining intuitive statistical measures, we directly

tackle it with a novel cost function motivated by the safe semi-supervised learning [94, 95, 108].

Nonetheless, we devise the cost function in such a way of seamlessly integrating it with the deep

models. Besides, we derive an analytic form for the unsupervised adaptation, getting rid of the

cumbersome EM style optimization.

Catastrophic forgetting or interference [114, 128, 44, 113] refers to that a pre-trained network
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cannot perform well on the old tasks after it is fine-tuned for a new task. Recent years witness an

upsurge of interest in this problem, including the exploitation of a local winner-takes-all activation

function [156], dropout [55, 155], a knowledge distillation loss [97, 134, 65, 168, 167], pathway

connections [40], and progressive networks [137]. We argue that it is probably easier to deal with

the catastrophic forgetting problem for domain adaptation which can be seen as a special case of

sequential multi-task learning, due to that the source and target domains share the same semantic

labels. We leverage exactly this idiosyncrasy to re-parameterize the target classifier as the source

classifier plus an offset.
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CHAPTER 3: FEW-SHOT LEARNING

The key to achieving human level intelligence is to learn from a few labeled examples. Human

can learn and adapt quickly from a few examples using prior experience. We want our learner to

be able to learn from a few examples and quickly adapt to a changing task. All these concerns

motivate to study the few-shot learning problem. The advantage of studying the few-shot problem

is that it only relies on few examples and it alleviates the need to collect large amount of labeled

training set which is a cumbersome process.

Recently, meta-learning approach is being used to tackle the problem of few-shot learning. A

meta-learning model usually contains two parts – an initial model, and an updating strategy (e.g.,

a parameterized model) to train the initial model to a new task with few examples.

Then the goal of meta-learning is to automatically meta-learn the optimal parameters for both the

initial model and the updating strategy that are generalizable across a variety of tasks. There are

many meta-learning approaches that show promising results on few-shot learning problems. For

example, Meta-LSTM [129] uses LSTM meta-learner that not only learns initial model but also

the updating rule. On the contrary, MAML [41] only learns an initial model since its updating rule

is fixed to a classic gradient descent method as a meta-learner.

The problem with existing meta-learning approaches is that the initial model can be trained biased

towards some tasks, particularly those sampled in meta-training phase. Such a biased initial model

may not be well generalizable to an unseen task that has a large deviation from meta-training tasks,

especially when very few examples are available on the new task. This inspires us to meta-train an

unbiased initial model by preventing it from overperforming on some tasks or directly minimizing

the inequality of performances across different tasks, in a hope to make it more generalizable to
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unseen tasks. To this end, we propose a Task-Agnostic Meta-Learning (TAML) algorithms [71]1

in this chapter.

Specifically, we propose two novel paradigms of TAML algorithms – an entropy-based TAML and

inequality-minimization measures based TAML. The idea of using entropy based approach is to

maximize the entropy of labels predicted by the initial model to prevent it from overperforming

on some tasks. However, the entropy-based approach is limited to discrete outputs from a model,

making it more amenable to classification tasks.

The second paradigm is inspired by inequality measures used in Economics. The idea is to meta-

train an initial model in such a way that it directly minimizes the inequality of losses by the initial

model across a variety of tasks. This will force the meta-learner to learn a unbiased initial model

without over-performing on some particular tasks. Meanwhile, any form of losses can be adopted

for involved task without having to rely on discrete outputs. This makes this paradigm more

ubiquitous to many scenarios beyond classification tasks.

3.1 Approach

Our goal is to train a model that can be task-agnostic in a way that it prevents the initial model

or learner to over-perform on a particular task. In this section, we will first describe our entropy

based and inequality-minimization measures based approach to the problem, and then we will

discuss some of the inequality measures that we used in the paper.

1This chapter’s material has been accepted in 2019 in Conference on Computer Vision and Pattern Recognition
(CVPR 2019), “Task Agnostic Meta-Learning for Few-Shot Learning” authored by Muhammad Abdullah Jamal and
Guo-Jun Qi.
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3.1.1 Task-Agnostic Meta-Learning

In this section, we propose a task-agnostic approach for few-shot meta-learning. The goal of few-

shot meta-learning is to train a model in such a way that it can learn to adapt rapidly using few

samples for a new task. In this meta-learning approach, a learner is trained during a meta-learning

phase on variety of sampled tasks so that it can learn new tasks , while a meta-learner trains the

learner and is responsible for learning the update rule and initial model.

The problem with the current meta-learning approach is that the initial model or learner can be

biased towards some tasks sampled during the meta-training phase, particularly when future tasks

in the test phase may have discrepancy from those in the training tasks. In this case, we wish to

avoid an initial model over-performing on some tasks. Moreover, an over-performed initial model

could also prevent the meta-learner to learn a better update rule with consistent performance across

tasks.

To address this problem, we impose an unbiased task-agnostic prior on the initial model by prevent-

ing it from over-performing on some tasks so that a meta-learner can achieve a more competitive

update rule. There have been many meta-learning approaches to few-shot learning problems that

have been briefly discussed in the section 2. While the task-agnostic prior is a widely applicable

principle for many meta-learning algorithms, we mainly choose Model-Agnostic Meta Learning

approach (MAML) as an example to present the idea, and it is not hard to extend to other meta-

learning approaches.

In the following, we will depict the idea by presenting two paradigms of task-agnostic meta-

learning (TAML) algorithms – the entropy-maximization/reduction TAML and inequality-minimization

TAML.
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3.1.2 Entropy-Maximization/Reduction TAML

For simplicity, we express the model as a function fθ that is parameterized by θ. For example, it

can be a classifier that takes an input example and outputs its discrete label. During meta-training, a

batch of tasks are sampled from a task distribution p(T ), and each task is K-shot N -way problem

where K represents the number of training examples while N represent the number of classes

depending on the problem setting. In the MAML, a model is trained on a task T i usingK examples

and then tested on a few new examples Dval for this task.

A model has an initial parameter θ and when it is trained on the task T i, its parameter is updated

from θ to θi by following an updating rule. For example, for K-shot classification, stochastic

gradient descent can be used to update model parameter by θi ← θ − α∇θLTi(fθ) that attempts to

minimize the cross-entropy loss LTi(fθ) for the classification task Ti over K examples.

To prevent the initial model fθ from over-performing on a task, we prefer it makes a random guess

over predicted labels with an equal probability so that it is not biased towards the task. This can be

expressed as a maximum-entropy prior over θ so that the initial model should have a large entropy

over the predicted labels over samples from task T i.

The entropy for task Ti is computed by sampling xi from PTi(x) over its output probabilities yi,n

over N predicted labels:

HTi(fθ) = −Exi∼PTi (x)
N∑
n=1

ŷi,n log(ŷi,n) (3.1)

where [yi,1, · · · , yi,N ] = fθ(xi) is the predictions by fθ, which are often an output from a softmax

layer in a classification task. The above expectation is taken over xi’s sampled from task Ti.

Alternatively, one can not only maximize the entropy before the update of initial model’s parame-
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ter, but also minimize the entropy after the update. So overall, we maximize the entropy reduction

for each task T i as HTi(fθ) − HTi(fθi). The minimization of HTi(fθi) means that the model can

become more certain about the labels with a higher confidence after updating the parameter θ to θi.

This entropy term can be combined with the typical meta-training objective term as a regularizer

to find the optimal θ, which is

min
θ

ETi∼P (T )LTi(fθi) + λ[−HTi(fθ) +HTi(fθi)]

where λ is a positive balancing coefficient, and the first term is the expected loss for the updated

model fθi . The entropy-reduction algorithm is summarized in 1.

Algorithm 1 TAML for Few-Shot Classification
Require: p(T ): distribution over tasks.
Require: α, β: hyperparameters

Randomly Initialize θ
while not done do

Sample batch of tasks T i ∼ p(T )
for all T i do

Sample K samples from T i
Evaluate∇θLTi(f θ) and LTi(fθ) using K
samples.
Compute adapted parameters using gradient
descent.
θi ← θ − α∇θLTi
Sample Dval from Ti for meta update.

end for
if Entropy-Reduction TAML then

Update θ ← θ − β∇θ{ETi∼P (T )LTi(fθi)
+ λ[−HTi(fθ) +HTi(fθi)]} using Dval, LTi ,
andHTi .

else if Inequality Measures Based TAML then
Update θ ← θ − β∇θ[ETi∼p(T )LTi(fθi)
+ λIE({LTi(fθ)})] using Dval,i, LTi , and IE

end if
end while
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Unfortunately, the entropy-based TAML is subject to a critical limitation – it is only amenable

to discrete labels in classification tasks to compute the entropy. In contrast, many other learning

problems, such as regression and reinforcement learning problems, it is often trained by minimiz-

ing some loss or error functions directly without explicitly accessing a particular form of outputs

like discrete labels. To make the TAML widely applicable, we need to define an alternative metric

to measure and minimize the bias across tasks.

3.1.3 Inequality-Minimization TAML

We wish to train a task-agnostic model in meta-learning such that its initial performance is unbiased

towards any particular task T i. Such a task-agnostic meta-learner would do so by minimizing the

inequality of its performances over different tasks.

To this end, we propose an approach based on a large family of statistics used to measure the

”economic inequalities” to measure the ”task bias”. The idea is that the loss of an initial model on

each task Ti is viewed as an income for that task. Then for the TAML model, its loss inequality

over multiple tasks is minimized to make the meta-learner task-agnostic.

Specifically, the bias of the initial model towards any particular tasks is minimized during meta-

training by minimizing the inequality over the losses of sampled tasks in a batch. So, given an

unseen task during testing phase, a better generalization performance is expected on the new task

by updating from an unbiased initial model with few examples. The key difference between both

TAMLs lies that for entropy, we only consider one task at a time by computing the entropy of its

output labels. Moreover, entropy depends on a particular form or explanation of output function,

e.g., the SoftMax output. On the contrary, the inequality only depends on the loss, thus it is more

ubiquitous.
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The complete algorithm is explained in 1. Formally, consider a batch of sampled tasks {Ti}

and their losses {LTi(fθ)} by the initial model fθ, one can compute the inequality measure by

IE({LTi(fθ)}) as discussed later. Then the initial model parameter θ is meta-learned by minimiz-

ing the following objective

ETi∼p(T ) [LTi(fθi)] + λIE({LTi(fθ)})

through gradient descent as shown in Algorithm 1. It is worth noting that the inequality measure is

computed over a set of losses from sampled tasks. The first term is the expected loss by the model

fθi after the update, while the second is the inequality of losses by the initial model fθ before the

update. Both terms are a function of the initial model parameter θ since θi is updated from θ. In

the following, we will elaborate on some choices on inequality measures IE .

3.1.3.1 Inequality Measures

Inequality measures [150] are instrumental towards calculating the economic inequalities in the

outcomes that can be wealth, incomes, or health related metrics. In meta-learning context, we use

`i = LTi(fθ) to represent the loss of a task Ti, ¯̀ represents the mean of the losses over sampled

tasks, and M is the number of tasks in a single batch. The inequality measures used in TAML are

briefly described below.

The Theil Index [160] measure has been derived from redundancy in information theory, which

is defined as the difference between the maximum entropy of the data and an observed entropy.

Suppose that we have M losses {`i|i = 1, · · · ,M}, then Thiel Index is defined as

TT =
1

M

M∑
i=1

`i
¯̀ ln

`i
¯̀ (3.2)
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Generalized Entropy index [22] has been proposed to measure the income inequality. It is not

a single inequality measure, but it is a family that includes many inequality measures like Thiel

Index, Thiel L etc. For some real value α, it is defined as:

GE(α) =



1

Mα(α− 1)

M∑
i=1

[(
`i
¯̀

)α
− 1

]
, α 6= 0, 1,

1

M

M∑
i=1

`i
¯̀ ln

`i
¯̀ , α = 1,

− 1

M

M∑
i=1

ln
`i
¯̀ , α = 0,

(3.3)

From the equation, we can see that it does represent a family of inequality measures. When α is

zero, it is called a mean log deviation of Thiel L, and when α is one, it is actually Thiel Index. A

larger GE α value makes this index more sensitive to differences at the upper part of the distribu-

tion, and a smaller α value makes it more sensitive to differences at the bottom of the distribution.

The Atkinson Index [6] is another measure for income inequality which is useful in determining

which end of the distribution contributed the most to the observed inequality. It is defined as:

Aε =


1− 1

¯̀

(
1

N

N∑
i=1

`1−εi

) 1
1−εat

, for 0 ≤ εat 6= 1,

1− 1
¯̀

(
1

N

N∏
i=1

`i

) 1
N

, for εat = 1,

(3.4)

where ε is called ”inequality aversion parameter”. When ε = 0 the index becomes more sensitive to

the changes in upper end of the distribution ,and when it approaches to 1, the index becomes more

sensitive to the changes in lower end of the distribution. Gini-Coefficient [3] is usually defined as

the half of the relative absolute mean difference. In terms of meta-learning, if there are M tasks in
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a single batch and a task Ti loss is represented by `i, then Gini-Coefficient is defined as:

G =

∑M
i=1

∑M
j=1 |`i − `j|

2n
∑M

i=1 `i
(3.5)

Gini- coefficient is more sensitive to deviation around the middle of the distribution than at the

upper or lower part of the distribution.

The variance of logarithms [124] is another common inequality measure defined as:

VL(`) =
1

M

M∑
i=1

[ln `i − ln g(`)]2 (3.6)

where g(`) is the geometric mean of ` which is defined as (
∏M

i=1 `i)
1/M . The geometric mean put

greater emphasis on the lower losses of the distribution.

Algorithm 2 Inequality Measures Based TAML for Reinforcement Learning
Require: p(T ): distribution over tasks.
Require: α, β: hyperparameters

Randomly Initialize θ
while not done do

Sample batch of tasks T i ∼ p(T )
for all T i do

Sample K trajectories (x1, a1, ..., xT ) using fθ in
T i.
Evaluate∇θLTi(f θ) and LTi using K trajectories
in Equation 3.7
Compute adapted parameters using gradient
descent : θi = θ − α∇θLTi .
Sample trajectories Dval,i using fθi in Ti.

end for
Update θ ← θ − β∇θ[ETi∼p(T )LTi(fθi)
+ λIE({LTi(fθ)})] using Dval,i, LTi , and IE

end while
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Table 3.1: Few Shot Classification results on Omniglot dataset for fully connected network and
convolutional network on 5-way setting, where * means re-run results as there is no general train-
ing/test splitting available for Omniglot, thus we re-run compared models with the same splitting
used in running the TAML for a fair comparison. The± shows 95% confidence interval over tasks.

Methods
5-way

1-shot 5-shot
MANN, no conv [141] 82.8% 94.9%
MAML, no conv [41] 89.7 ± 1.1% 97.5 ± 0.6 %(96.1 ± 0.4)%*
TAML(Entropy), no conv 91.19 ± 1.03% 97.40 ± 0.34%
TAML(Theil), no conv 91.37 ± 0.97% 96.84 ± 0.36%
TAML(GE(2)), no conv 91.3 ± 1.0% 96.76 ± 0.4%
TAML(Atkinson), no conv 91.77 ± 0.97% 97.0 ± 0.4%
Siamese Nets [81] 97.3% 98.4%
Matching Nets [166] 98.1% 98.9%
Neural Statistician [37] 98.1% 99.5%
Memory Mod. [77] 98.4% 99.6%
Prototypical Nets [154] 98.8% 99.7%
Meta Nets [119] 98.9% -
Snail [117] 99.07 ± 0.16% 99.78 ± 0.09%
MAML [41] 98.7 ± 0.4% 99.9± 0.1%
MAML+L2 [41] 98.77 ± 0.5% 99.31± 0.1%
Meta-SGD* [98] 97.97 ± 0.7% 98.96± 0.2%
TAML(Entropy) 99.23 ± 0.35% 99.71 ± 0.1%
TAML(Theil) 99.5 ± 0.3% 99.81 ± 0.1 %
TAML(GE(2)) 99.47 ± 0.25 % 99.83 ± 0.09%
TAML(Atkinson) 99.37 ± 0.3% 99.77 ± 0.1%
TAML (Gini-Coefficient) 99.3 ± 0.32% 99.70 ± 0.1%
TAML(GE(0)) 99.33 ± 0.31% 99.75 ± 0.09%
TAML (VL) 99.1 ± 0.36% 99.6 ± 0.1%

3.2 Experiments

We report experiment results in this section to evaluate the efficacy of the proposed TAML ap-

proaches on a variety of few-shot learning problems on classification and reinforcement learning.
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Table 3.2: Few Shot Classification results on Omniglot dataset for CNN on 20-way setting. For
a fair comparison, * denotes re-run results by both meta-learning approaches on the same train-
ing/test split used in TAML models. The proposed TAML approaches outperform both MAML
and Meta-SGD.

Methods 20-way
1-shot 5-shot

Siamese Nets [81] 88.2% 97.0%
Matching Nets [166] 93.8% 98.5%
Neural Statistician [37] 93.2% 98.1%
Memory Mod. [77] 95.0% 98.6%
MAML* [41] 90.81 ± 0.5% 97.49 ± 0.15%
MAML+L2* [41] 90.93 ± 0.6% 97.65 ± 0.18%
Meta-SGD* [98] 93.98 ± 0.43% 98.42 ± 0.11%
TAML(Entropy + MAML) 95.62 ± 0.5% 98.64 ± 0.13%
TAML(Theil + Meta-SGD) 95.15 ± 0.39% 98.56 ± 0.1%
TAML(Atkinson + Meta-SGD) 94.91 ± 0.42% 98.50 ± 0.1%
TAML (VL + Meta-SGD) 95.12 ± 0.39% 98.58 ± 0.1%
TAML(Theil + MAML) 92.61 ± 0.46% 98.4 ± 0.1%
TAML(GE(2) + MAML) 91.78 ± 0.5% 97.93 ± 0.1%
TAML(Atkinson + MAML) 93.01 ± 0.47% 98.21 ± 0.1%
TAML(GE(0) + MAML) 92.95 ± 0.5% 98.2 ± 0.1%
TAML (VL + MAML) 93.38 ± 0.47% 98.54 ± 0.1%

3.2.1 Classification

We use two benchmark datasets Omniglot and MiniImagenet for few-shot classification problem.

The Omniglot dataset has 1623 characters from 50 alphabets. Each character has 20 instances

which are drawn by different individuals. We randomly select 1200 characters for training and

remaining for testing. From 1200 characters, we randomly sample 100 for validation. As proposed

in [141], the dataset is augmented with rotations by multiple of 90 degrees.

The Mini-Imagenet dataset was proposed by [166] and it consists of 100 classes from Imagenet

dataset. We used the same split proposed by [129] for fair comparison. It involves 64 training

classes, 12 validation classes and 20 test classes. We consider 5-way and 20-way classification for

both 1-shot and 5-shot.
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(a) Entropy (b) Thiel

Figure 3.1: Validation Accuracy of TAML vs MAML on Mini-Imagenet 1-shot 5-way.

For K-shot N -way classification, we first sample N unseen classes from training set and for every

N unseen class, we sample K different instances. We follow the same model architecture used

by [166]. The Omniglot dataset images are downsampled by 28x28 and we use a strided convolu-

tions instead of max-pooling. The MiniImagenet images are downsampled to 84x84 and we used

32 filters in the convolutional layers for 5-shot setting. For 1-shot setting, we used 64 filters in

convolutional layers and we added two dropouts. We also used Leaky-ReLU instead of ReLU as

non-linearity. We re-run the MAML on MiniImagenet 1-shot setting for this customized architec-

ture too. We also evaluate the proposed approach on non-convolutional neural network. For a fair

comparison with MANN [141] and MAML [41], we follow the same architecture used by MAML

[41]. We use Leaky-ReLU as non-linearity instead of ReLU non-linearity.

We train and evaluate the meta-models based on TAML that are unbiased and show they can be

adapted to new tasks in few iterations as how they are meta-trained. For Omniglot dataset, we use

a batch size of 32 and 16 for 5-way and 20-way classification, respectively. We follow [41] for

other training settings. For fair comparison with Meta-SGD on 20-way classification, the model

was trained with 1 gradient step. For 5-way Mini-Imagenet, we use a batch size of 4 for both

1-shot and 5-shot settings. For 5-way 5-shot setting, we used a learning rate α of 0.05. For 20-way
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classification on MiniImagenet, the learning rate was set to 0.01 for both 1-shot and 5-shot, and

each task is updated using one-gradient step. All the models are trained for 60000 iterations. We

use the validation set to tune the hyper-parameter λ for both the approaches.

Table 3.3: Few Shot Classification results on Mini-Imagenet dataset on 5-way and 20-way setting.
The results for other methods on 5-way are reported from MAML, and for 20-way, the results are
reported from Meta-SGD. TAML approaches outperform MAML on both settings and Meta-SGD
on 20-way setting.* Accuracy using the comparable network architecture.

Methods
5-way

1-shot 5-shot
20 way

1-shot 5-shot
Fine-tune 28.86 ± 0.54% 49.79 ± 0.79% - -
Nearest Neighbors 41.08 ± 0.70% 51.04 ± 0.65% - -
Matching Nets [166] 43.56 ± 0.84% 55.31 ± 0.73% 17.31 ± 0.22% 22.69 ± 0.20%
Meta-Learn LSTM [129] 43.44 ± 0.77% 60.60 ± 0.71% 16.70 ± 0.23% 26.06 ± 0.25%
TAML(Theil + Meta-Learn LSTM) 46.28 ± 0.79% 62.92 ± 0.66% - -
MAML (firstorderapprox.) [41] 48.07 ± 1.75% 63.15 ± 0.91% - -
MAML [41] 48.70 ± 1.84% 63.11 ± 0.92% 16.49 ± 0.58% 19.29 ± 0.29%
MAML (64 filters) [41] 49.5 ± 1.8% - - -
Meta-SGD [98] 50.47 ± 1.87% 64.03 ± 0.94% 17.56 ± 0.64% 28.92 ± 0.35%
Prototypical network [154] 46.61 ± 0.78% 65.77 ± 0.70% - -
Reptile [122] 49.97 ± 0.32% 65.99 ± 0.58% - -
LLAMA [58] 49.40 ± 1.83% - - -
SNAIL* [117] 45.1% 55.2% - -
GNN [142] 50.33 ± 0.36% 66.41 ± 0.63% - -
Relation Network [158] 50.44 ± 0.82% 65.32 ± 0.70% - -
TAML(Entropy + MAML) 51.73 ± 1.88% 66.05 ± 0.85% - -
TAML(Theil + MAML) 51.5 ± 1.86% 65.94 ± 0.9% 18.74 ± 0.65% 25.77 ± 0.33%
TAML(GE(2) + MAML) 50.87 ± 1.86% 65.18 ± 0.9% 18.22 ± 0.67% 24.89 ± 0.34%
TAML(Atkinson + MAML) 51.03 ± 1.83% 65.24 ± 0.91% - -
TAML(GE(0) + MAML) 50.93 ± 1.9% 65.71 ± 0.9% 18.95 ± 0.68% 24.53± 0.33%
TAML (VL + MAML) 51.13 ± 1.85% 66.0 ± 0.89% 18.13 ± 0.64% 25.33 ± 0.32%
TAML(GE(0) + Meta-SGD) 51.1 ± 1.88% 65.51 ± 0.93% 19.45 ± 0.67% 29.75± 0.34%
TAML (VL + Meta-SGD) 51.77 ± 1.86% 65.6 ± 0.93% 19.73 ± 0.65% 29.81 ± 0.35%

3.2.1.1 Results

We report the results for 5-way Omniglot for both fully connected network and convolutional

network. We added one more baseline in which we add L2 regularizer in the MAML’s cost function
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and from Table 3.1 3.2, it shows that the performance is about the same as MAML for both 5-way

and 20-way classification settings.The convolutional network learned by TAML outperforms all

the state-of-the-art methods in Table 3.1. For 20-way classification, we re-ran the Meta-SGD

algorithm with our own training/test splitting for fair comparison since the Meta-SGD is not open-

sourced and their training/test split is neither available. The results are reported in the Table 3.2. It

can be shown that TAML outperforms MAML and Meta-SGD for both 1-shot and 5-shot settings.

The results also show that TAML achieves much more competitive rule during the training.

For MiniImagenet, the proposed TAML approaches outperform the compared ones for 1-shot 5-

way classification problem. For 5-shot 5 way setting, our entropy based approach still outperforms

all the other methods except for GNN which is still within the variance of entropy based approach.

The entropy based TAML achieves the best performance compared with inequality-minimization

TAML for 5-shot problem. For 20-way setting, we use the reported results from Meta-SGD for

both MAML and Meta-SGD. We outperform both MAML and Meta-SGD for both 1-shot and 5-

shot settings. It is interesting to note that MAML performs poor compared with matching nets and

Meta-learner LSTM when it is trained using one gradient step as reported in Table 3.3. The test

accuracy for prototypical results which is reported in Table 3.3 for models matches train and test

”shot” and ”way”. The results reported by [154] requires 30-way 15 queries per training episode

for 1-shot and, 20-way 15 queries per training episode for 5-shot results.

We also compare the performance of TAML when applied to Meta-Learn LSTM [129]. For this

experiment, we added dropout after the last convolution layer and use leaky ReLU instead of ReLU

non-linearity. In each iteration, We sample 5 datasets where each dataset is {Dtrain,Dtest} from

Dmeta−train, and then calculate loss for each test set Dtest of the dataset using the initial parameter

of Meta-Learner. We optimize the parameters of the Meta-learner based on the both classification

loss and TAML based inequality measure. We report the result in table 3.3. For both 1-shot and

5-shot experiment, we outperform Meta-Learn LSTM and achieve almost more than 3% accuracy
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on both the settings. This shows that TAML can be applicable to any meta-learning algorithm.

Figure 3.1 shows the curve of validation accuracies of our entropy approach on the left panel and

Theil based approach on right panel versus MAML for Mini-Imagenet 5-way 1-shot at gradient

step 5. It can be seen that our both approaches achieve much better validation accuracy as compared

to MAML meaning TAML achieves much better initialization point.

3.2.1.2 Analyses

Entropy based approach performs better than the inequality based approach. For 5- way Omniglot,

there is negligible difference between the entropy based approach and inequality based approach.

For 1 shot 5-way MiniImagenet experiment, entropy based TAML still beats inequality based

TAML for MAML algorithms. VL based TAML has negligible improvement as compare to en-

tropy based TAML because it uses Meta-SGD algorithm. When it uses MAML, its performance

is lower than the entropy based approach. Every inequality has some properties as mentioned in

section 3.1.3.1. Some of the inequalities are more sensitive to upper part of the distribution means

it is more sensitive towards those tasks which have higher loss value and some of the inequalities

are sensitive towards changes to those tasks which have lower loss values. The idea is to increase

the uncertainty of the initial model on different tasks. Theil inequality is a part of larger family

of GE. When alpha is 1 in equation 3.3, it becomes Theil Index. Moreover, As we can see from

Table 3.1 3.2 3.3, VL, GE(0) and Thiel perform better than GE(2). For Omniglot 5-way exper-

iment, the margin is negligible because MAML already achieved 99% accuracy on 1 shot and

99.9% on 5-shot. Atkinson index can also be derived from generalized entropy index family by

setting epsilon = 1 - alpha as mentioned in equation 3.4 and 3.3. The high epsilon corresponds to

GE index with small alpha means it becomes sensitive to lower end of the distribution.
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(a) GE(0) (b) Theil (c) GE(2)

Figure 3.2: Results on 2D Navigation task.

3.2.2 Reinforcement Learning

In reinforcement learning, the goal is to learn the optimal policy given fewer trajectories or ex-

periences. A reinforcement learning task T i is defined as Markov Decision Process that consists

of a state space S, an action space A, the reward function R, and state-transition probabilities

qi(xt+1|xt, at) where at is the action at time step t [118, 149, 151, 105, 103]. In our experiments,

we are using the same settings as proposed in [41] where we are sampling trajectories using policy

fθ. The loss function used is the negative of the expectation of the sum of the rewards,

LTi = −Eat∼fθ,xt,qTi

(
T∑
t=1

Ri(xt, at)

)
(3.7)

Experiments were performed using rllab suite [36]. Vanilla policy gradient [176] is used to for

inner gradient updates while trust region policy optimizer (TRPO) [145] is used as meta-optimizer.

The algorithm is the same as mentioned in algorithm 1 with the only difference bing that trajecto-

ries were sampled instead of images.

For reinforcement learning experiment, we evaluate TAML on a 2D navigation task. The policy

network that was used in performing this task is identical to the policy network that was used in
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[41] for a fair comparison, which is a three-layered network using ReLU while setting the step

size α = 0.1. The experiment consists an agent moving in two-dimensional environment and

the goal of the agent is to reach the goal state that is randomly sampled from a unit square. For

evaluation purposes, we compare the results of TAML with MAML, oracle policy, conventional

pre-training and random initialization. Our results have shown that GE(0), Theil, and GE(2) TAML

perform on-par with MAML after 2 gradient steps but start to outperform it afterwards as shown

in figure 3.2.
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CHAPTER 4: LONG-TAILED VISUAL RECOGNITION

Big curated datasets, deep learning, and unprecedented computing power are often referred to

as the three pillars of recent advances in visual recognition [83, 133, 106]. As we continue to

build the big-dataset pillar, however, the power law emerges as an inevitable challenge. Object

frequency in the real world often exhibits a long-tailed distribution where a small number of classes

dominate, such as plants and animals [164, 1], landmarks around the globe [123], and common

and uncommon objects in contexts [100, 61].

In this chapter, we propose to investigate long-tailed visual recognition from a domain adapta-

tion point of view1. The long-tail challenge is essentially a mismatch problem between datasets

with long-tailed class distributions seen by a machine learning model and our expectation of the

model to perform well on all classes (and not bias toward the head classes). Conventional visual

recognition methods, for instance, training neural networks by a cross-entropy loss, overly fit the

dominant classes and fail in the underrepresented tail classes as they implicitly assume that the test

sets are drawn i.i.d. from the same underlying distribution as the long-tailed training set. Domain

adaptation explicitly breaks the assumption [152, 138, 52]. It discloses the inference-time data or

distribution (target domain) to the machine learning models when they learn from the training data

(source domain).

Denote by Ps(x, y) and Pt(x, y) the distributions of a source domain and a target domain, re-

spectively, where x and y are respectively an instance and its class label. In long-tailed visual

recognition, the marginal class distribution Ps(y) of the source domain is long-tailed, and yet the

1This chapter’s material has been accepted in 2020 in Conference on Computer Vision and Pattern Recognition
(CVPR 2020), “Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition from a Domain Adapta-
tion Perspective” authored by Muhammad Abdullah Jamal, Matthew Brown, Ming-Hsuan Yang, Liqiang Wang, and
Boqing Gong.
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Figure 4.1: The training set of iNaturalist 2018 exhibits a long-tailed class distribution [1]. We
connect domain adaptation with the mismatch between the long-tailed training set and our expec-
tation of the trained classifier to perform equally well in all classes. We also view the prevalent
class-balanced methods in long-tailed classification as the target shift in domain adaptation, i.e.,
Ps(y) 6= Pt(y) and Ps(x|y) = Pt(x|y), where Ps and Pt are respectively the distributions of the
source domain and the target domain, and x and y respectively stand for the input and output of
a classifier. We contend that the second part of the target shift assumption does not hold for tail
classes, e.g., Ps(x|King Eider) 6= Pt(x|King Eider), because the limited training images of King
Eider cannot well represent the data at inference time.

class distribution Pt(y) of the target domain is more balanced, e.g., a uniform distribution.

In generic domain adaptation, there could be multiple causes of mismatches between two do-

mains. Covariate shift [152] causes domain discrepancy on the marginal distribution of input,

i.e., Ps(x) 6= Pt(x), but often maintains the same predictive function across the domains, i.e.,

Ps(y|x) = Pt(y|x). Under the target-shift cause [186], the domains differ only by the class distri-
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butions, i.e., Ps(y) 6= Pt(y) and Ps(x|y) = Pt(x|y), partially explaining the rationale of designing

class-balanced weights to tackle the long-tail challenge [25, 110, 38, 194, 116, 24, 12, 33, 111, 39].

These class-balanced methods enable the tail classes to play a bigger role than their sizes sug-

gest in determining the model’s decision boundaries. The class-wise weights are inversely related

to the class sizes [66, 116, 110]. Alternatively, one can derive these weights from the cost of

misclassifying an example of one class to another [38, 194]. Cui et al. proposed an interest-

ing weighting scheme by counting the “effective number” of examples per class [25]. Finally,

over/under-sampling head/tail classes [24, 111, 12, 33, 39] effectively belongs to the same fam-

ily as the class-balanced weights, although they lead to practically different training algorithms.

Chapter 2 reviews other methods for coping with the long-tail challenge.

One the one hand, the plethora of works reviewed above indicate that the target shift, i.e., Ps(y) 6=

Pt(y) and Ps(x|y) = Pt(x|y), is generally a reasonable assumption based on which one can design

effective algorithms for learning unbiased models from a training set with a long-tailed class dis-

tribution. On the other hand, however, our intuition challenges the second part of the target shift

assumption; in other words, Ps(x|y) = Pt(x|y) may not hold. While a head class (e.g., Dog) of the

training set could contain abundant and diverse examples that well represent the expected data at

inference time, the tail classes (e.g., King Eider) are often short of representative training examples.

As a result, training examples drawn from the conditional distribution Ps(x|Dog) of the source do-

main can probably well approximate the conditional distribution Pt(x|Dog) of the target domain,

but the discrepancy between the conditional distributions Ps(x|King Eider) and Pt(x|King Eider)

of the two domains is likely big because it is hard to collect training examples for King Eider (cf.

Figure 4.1).

To this end, we propose to augment the class-balanced learning by relaxing the assumption that the

source and target domains share the same conditional distributions Ps(x|y) and Pt(x|y). By ex-
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plicitly accounting for the differences between them, we arrive at a two-component weight [73] for

each training example. The first part is inherited from the classic class-wise weighting, carrying on

its effectiveness in various applications. The second part corresponds to the conditional distribu-

tions, and we estimate it by the meta-learning framework of learning to re-weight examples [132].

We make two critical improvements over this framework. One is that we can initialize the weights

close to the optima because we have substantial prior knowledge about the two-component weights

as a result of our analysis of the long-tailed problem. The other is that we remove two constraints

from the framework such that the search space is big enough to cover the optima with a bigger

chance.

We conduct extensive experiments on several datasets, including both long-tailed CIFAR [82], Im-

ageNet [27], and Places-2 [192], which are artificially made long-tailed [25, 104], and iNaturalist

2017 and 2018 [164, 1], which are long-tailed by nature. We test our approach with three different

losses (cross-entropy, focal loss [101], and a label-distribution-aware margin loss [14]). Results

validate that our two-component weighting [73] is advantageous over the class-balanced methods.

4.1 Class Balancing as Domain Adaptation

In this section, we present a detailed analysis of the class-balanced methods [66, 110, 25, 24, 111]

for long-tailed visual recognition from the domain adaptation point of view.

Suppose we have a training set (source domain) {(xi, yi)}ni=1 drawn i.i.d. from a long-tailed dis-

tribution Ps(x, y) — more precisely, the marginal distribution Ps(y) of classes are heavy-tailed

because, in visual recognition, it is often difficult to collect examples for rare classes. Nonetheless,
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we expect to learn a visual recognition model to make as few mistakes as possible on all classes:

error = EPt(x,y)L(f(x; θ), y), (4.1)

where we desire a target domain Pt(x, y) whose marginal class distribution Pt(y) is more balanced

(e.g., a uniform distribution) at the inference time, f(·; θ) is the recognition model parameterized

by θ, and L(·, ·) is a 0-1 loss. We abuse the notation L(·, ·) a little and let it be a differentiable

surrogate loss (i.e., cross-entropy) during training.

Next, we apply the importance sampling trick to connect the expected error with the long-tailed

source domain,

error = EPt(x,y)L(f(x; θ), y) (4.2)

=EPs(x,y)L(f(x; θ), y)Pt(x, y)/Ps(x, y) (4.3)

=EPs(x,y)L(f(x; θ), y)
Pt(y)Pt(x|y)

Ps(y)Ps(x|y)
(4.4)

:=EPs(x,y)L(f(x; θ), y)wy(1 + ε̃x,y), (4.5)

where wy = Pt(y)/Ps(y) and ε̃x,y = Pt(x|y)/Ps(x|y)− 1.

Existing class-balanced methods focus on how to determine the class-wise weights {wy} and result

in the following objective function for training,

min
θ

1

n

n∑
i=1

wyiL(f(xi; θ), yi), (4.6)

which approximates the expected inference error (eq. (4.5)) by assuming ε̃x,y = 0 or, in other

words, by assuming Ps(x|y) = Pt(x|y) for any class y. This assumption is referred to as target

shift [186] in domain adaptation.
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We contend that the assumption of a shared conditional distribution, Ps(x|y) = Pt(x|y), does not

hold in general, especially for the tail classes. One may easily compile a representative training

set for Dog, but not for King Eider. We propose to explicitly model the difference ε̃x,y between

the source and target conditional distributions and arrive at an improved algorithm upon the class-

balanced methods.

4.2 Modeling the Conditional Differences

For simplicity, we introduce a conditional weight εx,y := wy ε̃x,y and re-write the expected inference

error as

error = EPs(x,y)L(f(x; θ), y)(wy + εx,y) (4.7)

≈ 1

n

n∑
i=1

(wyi + εi)L(f(xi; θ), yi), (4.8)

where the last term is an unbiased estimation of the error. Notably, we do not make the assump-

tion that the conditional distributions of the source and target domains are the same, i.e., we allow

Ps(x|y) 6= Pt(x|y) and εi 6= 0. Hence, the weight for each training example consists of two parts.

One component is the class-wise weight wyi , and the other is the conditional weight εi. We need

to estimate both components to derive a practical algorithm from eq. (4.8) because the underlying

distributions of data are unknown — although we believe the class distribution of the training set

must be long-tailed.
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4.2.1 Estimating the Class-wise Weights {wy}

We let the class-wise weights resemble the empirically successful design in the literature. In par-

ticular, we estimate them by the recently proposed “effective numbers” [25]. Supposing there are

ny training examples for the y-th class, we have wy ≈ (1 − β)/(1 − βny) where β ∈ [0, 1) is a

hyper-parameter with the recommended value β = (n − 1)/n, and n is the number of training

examples.

4.2.2 Meta-learning the Conditional Weights {εi}

We estimate the conditional weights by customizing a meta-learning framework [132]. We de-

scribe our approach below and then discuss two critical differences from the original framework in

Section 4.2.3.

The main idea is to hold out a balanced development set D from the training set and use it to guide

the search for the conditional weights that give rise to the best-performing recognition model f(·; θ)

on the development set. Denote by T the remaining training data. We seek the conditional weights

ε := {εi} by solving the following problem,

min
ε

1

|D|
∑
i∈D

L(f(xi; θ
∗(ε)), yi) with (4.9)

θ∗(ε)← arg min
θ

1

|T |
∑
i∈T

(wyi + εi)L(f(xi; θ), yi) (4.10)

where we do not weigh the losses over the development set which is already balanced. Essentially,

the problem above searches for the optimal conditional weights such that, after we learn a recogni-

tion model f(·; θ) by minimizing the error estimation (eqs (4.10) and (4.8)), the model performs

the best on the development set (eq. (4.9)).
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It would be daunting to solve the problem above by brute-force search, e.g., iterating all the pos-

sible sets {ε} of conditional weights. Even if we can, it is computationally prohibitive to train for

each set of weights a recognition model f(·; θ∗(ε)) and then find out the best model from all.

Instead, we modify the meta-learning framework [132] and search for the conditional weights in a

greedy manner. It interleaves the quest for the weights ε with the updates to the model parameters

θ, given current time step t,

θ̃t+1(εt)← θt − η
∂
∑

i∈T (wyi + εti)L(f(xi; θ
t), yi)

∂θ

εt+1 ← εt − τ
∂
∑

i∈D L(f(xi; θ̃
t+1(εt)), yi)

∂ε

θt+1 ← θt − η
∂
∑

i∈T (wyi + εt+1
i )L(f(xi; θ

t), yi)

∂θ
.

The first equation tries a one-step gradient descent for θt using the losses weighted by the current

conditional weights εt (plus the class-wise weights). The updated model parameters θ̃t+1(εt) are

then scrutinized on the balanced development set D, which updates the conditional weights by one

step. The updated weights εt+1 are better than the old ones, meaning that the model parameters

θt+1 returned by the last equation should give rise to smaller recognition error on the development

set than θ̃t+1 do. Starting from θt+1 and εt+1, we then move on to the next round of updates. We

present our overall algorithm in the next section.

4.2.3 Overall Algorithm and Discussion

We are ready to present Algorithm 5 for long-tailed visual recognition. The discussions in the

previous sections consider all the training examples in a batch setting. Algorithm 5 customizes it

into a stochastic setting so that we can easily integrate it with deep learning frameworks.
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Algorithm 3 Meta-learning for long-tailed recognition
Require: Training set T , balanced development set D
Require: Class-wise weights {wy} estimated by using [25]
Require: Learning rates η and τ , stopping steps t1 and t2
Require: Initial parameters θ of the recognition network

1: for t = 1, 2, · · · , t1 do
2: Sample a mini-batch B from the training set T
3: Compute loss LB = 1

|B|
∑

i∈B L(f(xi; θ), yi)
4: Update θ ← θ − η∇θLB
5: end for
6: for t = t1 + 1, · · · , t1 + t2 do
7: Sample a mini-batch B from the training set T
8: Set εi ← 0, ∀i ∈ B, and denote by ε := {εi, i ∈ B}
9: Compute LB = 1

|B|
∑

i∈B(wyi + εi)L(f(xi; θ), yi)

10: Update θ̃(ε)← θ − η∇θLB
11: Sample Bd from the balanced development set D
12: Compute LBd = 1

|Bd|
∑

i∈Bd L(f(xi; θ̃(ε)), yi)
13: Update ε← ε− τ∇εLBd
14: Compute new loss with the updated ε

L̃B = 1
|B|
∑

i∈B(wyi + εi)L(f(xi; θ), yi)

15: Update θ ← θ − η∇θL̃B
16: end for

There are two learning stages in the algorithm. In the first stage (lines 1–5), we train the neu-

ral recognition network f(·; θ) by using the conventional cross-entropy loss over the long-tailed

training set. The second stage (lines 6–16) meta-learns the conditional weights by resorting to a

balanced development set and meanwhile continues to update the recognition model. We highlight

the part for updating the conditional weights in lines 11–13.

It is worth noting some seemingly small and yet fundamental differences between our algorithm

and the learning to re-weight (L2RW) method [132]. Conceptually, while we share the same meta-

learning framework as L2RW, both the class-wise weight, wy = Pt(y)/Ps(y), and the conditional

weight, εx,y = wy ε̃x,y = Pt(y)/Ps(y)
(
Pt(x|y)/Ps(x|y) − 1

)
, have principled interpretations as

oppose to a general per-example weight in L2RW. We will explore other machine learning frame-

works (e.g., [11, 157]) to learn the conditional weights in future work, but the interpretations of
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them remain the same.

Algorithmically, unlike L2RW, we employ two-component weights, estimate the class-wise com-

ponents by a different method [25], do not clip negative weights {εi} to 0, and do not normalize

them such that they sum to 1 within a mini-batch. The clipping and normalization operations in

L2RW unexpectedly reduce the search space of the weights, and the normalization is especially

troublesome as it depends on the mini-batch size. Hence, if the optimal weights actually lie out-

side of the reduced search space, there is no chance to hit the optima by L2RW. In contrast, our

algorithm searches for each conditional weight εi in the full real space. One may wonder whether

or not our total effective weight, wyi +εi, could become negative. Careful investigation reveals that

it never goes below 0 in our experiments, likely due to that the good initialization (as explained

below) to the conditional weights makes it unnecessary to update the weights too wildly by line 13

in Algorithm 5.

Computationally, we provide proper initialization to both the conditional weights, by εi ← 0 (line

8), and the model parameters θ of the recognition network, by pre-training the network with a

vanilla cross-entropy loss (lines 1–5). As a result, our algorithm is more stable than L2RW (cf.

Section 4.3.1). Note that 0 is a reasonable a priori value for the conditional weights thanks to the

promising results obtained by existing class-balanced methods. Those methods assume that the

discrepancy is as small as 0 between the conditional distributions of the source and target domains,

meaning that Pt(x|y)/Ps(x|y) − 1 is close to 0, so are the conditional weights {εi}. Hence, our

approach should perform at worst the same as the class-balanced method [25] by initializing the

conditional weights to 0 (and the class-wise weights by [25]).
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4.3 Experiments

We evaluate and ablate our approach on six datasets of various scales, ranging from the manually

created long-tailed CIFAR-10 and CIFAR-100 [25], ImageNet-LT, and Places-LT [104], to the

naturally long-tailed iNaturalist 2017 [164] and 2018 [1]. Following [25], we define the imbalance

factor (IF) of a dataset as the class size of the first head class divided by the size of the last tail

class.

Long-Tailed CIFAR (CIFAR-LT): The original CIFAR-10 (CIFAR-100) dataset contains 50,000

training images and 10,000 test images of size 32x32 uniformly falling into 10 (100) classes [82].

Cui et al. [25] created long-tailed versions by randomly removing training examples. In par-

ticular, the number of examples dropped from the y-th class is nyµy, where ny is the original

number of training examples in the class and µ ∈ (0, 1). By varying µ, we arrive at six

training sets, respectively, with the imbalance factors (IFs) of 200, 100, 50, 20, 10, and 1,

where IF=1 corresponds to the original datasets. We do not change the test sets, which are

balanced. We randomly select ten training images per class as our development set D.

ImageNet-LT: In spirit similar to the long-tailed CIFAR datasets, Liu et al. [104] introduced

a long-tailed version of ImageNet-2012 [27] called ImageNet-LT. It is created by firstly

sampling the class sizes from a Pareto distribution with the power value α = 6, followed

by sampling the corresponding number of images for each class. The resultant dataset has

115.8K training images in 1,000 classes, and its imbalance factor is 1280/5. The authors have

also provided a validation set with 20 images per class, from which we sample ten images

to construct our development set D. The original balanced ImageNet-2012 validation set is

used as the test set (50 images per class).

Places-LT: Liu et al. [104] have also created a Places-LT dataset by sampling from Places-2 [192]

using the same strategy as above. It contains 62.5K training images from 365 classes with
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Table 4.1: Overview of the six datasets used in our experiments. (IF stands for the imbalance
factor)

Dataset # Classes IF # Train. img. Tail class size Head class size # Val. img. # Test img.
CIFAR-LT-10 10 1.0–200.0 50,000–11,203 500–25 5,000 – 10,000
CIFAR-LT-100 100 1.0–200.0 50,000–9,502 500–2 500 – 10,000
iNat 2017 5,089 435.4 579,184 9 3,919 95,986 –
iNat 2018 8,142 500.0 437,513 2 1,000 24,426 –
ImageNet-LT 1,000 256.0 115,846 5 1,280 20,000 50,000
Places-LT 365 996.0 62,500 5 4,980 7,300 36,500

an imbalance factor 4980/5. This large imbalance factor indicates that it is more challenging

than ImageNet-LT. Places-LT has 20 (100) validation (test) images per class. Our develop-

ment set D contains ten images per class randomly selected from the validation set.

iNaturalist (iNat) 2017 and 2018: The iNat 2017 [164] and 2018 [1] are real-world fine-grained

visual recognition datasets that naturally exhibit long-tailed class distributions. iNat 2017

(2018) consists of 579,184 (435,713) training images in 5,089 (8,142) classes, and its imbal-

ance factor is 3919/9 (1000/2). We use the official validation sets to test our approach. We

select five (two) images per class from the training set of iNat 2017 (2018) for the develop-

ment set.

Table 4.1 gives an overview of the six datasets used in the following experiments.

For evaluation metrics, as the test sets are all balanced, we simply use the top-k error as the

evaluation metric. We report results for k = 1, 3, 5.

4.3.1 Object Recognition with CIFAR-LT

We run both comparison experiments and ablation studies with CIFAR-LT-10 and CIFAR-LT-100.

We use ResNet-32 [63] in the experiments. We compare our approach to the following competing
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ones.

• Cross-entropy training. This is the baseline that trains ResNet-32 using the vanilla cross-

entropy loss.

• Class-balanced loss [25]. It weighs the conventional losses by class-wise weights, which are

estimated based on effective numbers. We apply this class-balanced weighting to three dif-

ferent losses: cross-entropy, the focal loss [101], and the recently proposed label-distribution-

aware margin loss [14].

• Focal loss [101]. The focal loss can be understood as a smooth version of hard example

mining. It does not directly tackle the long-tailed recognition problem. However, it can

penalize the examples of tail classes more than those of the head classes if the network is

biased toward the head classes during training.

• Label-distribution-aware margin loss [14]. It dynamically tunes the margins between

classes according to their degrees of dominance in the training set.

• Class-balanced fine-tuning [24]. The main idea is to first train the neural network with the

whole imbalanced training set and then fine-tune it on a balanced subset of the training set.

• Learning to re-weight (L2RW) [132]. It weighs training examples by meta-learning. Please

see Section 4.2.3 for more discussions about L2RW and our approach.

• Meta-weight net [153]. Similarly to L2RW, it also weighs examples by a meta-learning

method except that it regresses the weights by a multilayer perceptron.

4.3.1.1 Implementation details

For the first two baselines, we use the code of [25] to set the learning rates and other hyperparam-

eters. We train the L2RW model using an initial learning rate of 1e-3. We decay the learning rate
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Table 4.2: Test top-1 errors (%) of ResNet-32 on CIFAR-LT-10 under different imbalance settings.
* indicates results reported in [153].

Imbalance factor 200 100 50 20 10 1
Cross-entropy training 34.32 29.64 25.19 17.77 13.61 7.53/7.11*
Class-balanced cross-entropy loss [25] 31.11 27.63 21.95 15.64 13.23 7.53/7.11*
Class-balanced fine-tuning [24]
Class-balanced fine-tuning [24]*

33.76
33.92

28.66
28.67

22.56
22.58

16.78
13.73

16.83
13.58

7.08
6.77

L2RW [132]
L2RW [132]*

33.75
33.49

27.77
25.84

23.55
21.07

18.65
16.90

17.88
14.81

11.60
10.75

Meta-weight net [153] 32.8 26.43 20.9 15.55 12.45 7.19
Ours with cross-entropy loss 29.34 23.59 19.49 13.54 11.15 7.21
Focal loss [101] 34.71 29.62 23.29 17.24 13.34 6.97
Class-balanced focal Loss [25] 31.85 25.43 20.78 16.22 12.52 6.97
Ours with focal Loss 25.57 21.1 17.12 13.9 11.63 7.19
LDAM loss [14] (results reported in paper) - 26.65 - - 13.04 11.37
LDAM-DRW [14] (results reported in paper) - 22.97 - - 11.84 -
Ours with LDAM loss 22.77 20.0 17.77 15.63 12.6 10.29

by 0.01 at the 160th and 180th epochs. For our approach, we use an initial learning rate of 0.1 and

then also decay the learning rate at the 160th and 180th epochs by 0.01. The batch size is 100 for

all experiments. We train all models on a single GPU using the stochastic gradient descent with

momentum.

4.3.1.2 Results

Table 4.2 shows the classification errors of ResNet-32 on the long-tailed CIFAR-10 with different

imbalance factors. We group the competing methods into three sessions according to which basic

loss they use (cross-entropy, focal [101], or LDAM [14]). We test our approach with all three

losses. We can see that our method outperforms the competing ones in each session by notable

margins. Although the focal loss and the LDAM loss already have the capacity of mitigating the

long-tailed issue, respectively, by penalizing hard examples and by distribution-aware margins,

our method can further boost their performances. In general, the advantages of our approach over
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Table 4.3: Test top-1 errors (%) of ResNet-32 on CIFAR-LT-100 under different imbalance set-
tings. * indicates results reported in [153].

Imbalance factor 200 100 50 20 10 1
Cross-entropy training 65.16 61.68 56.15 48.86 44.29 29.50
Class-balanced cross-entropy loss [25] 64.30 61.44 55.45 48.47 42.88 29.50
Class-balanced fine-tuning [24]
Class-balanced fine-tuning [24]*

61.34
61.78

58.5
58.17

53.78
53.60

47.70
47.89

42.43
42.56

29.37
29.28

L2RW [132]
L2RW [132]*

67.00
66.62

61.10
59.77

56.83
55.56

49.25
48.36

47.88
46.27

36.42
35.89

Meta-weight net [153] 63.38 58.39 54.34 46.96 41.09 29.9
Ours with cross-entropy loss 60.69 56.65 51.47 44.38 40.42 28.14
Focal Loss [101] 64.38 61.59 55.68 48.05 44.22 28.85
Class-balanced focal Loss [25] 63.77 60.40 54.79 47.41 42.01 28.85
Ours with focal loss 60.66 55.3 49.92 44.27 40.41 29.15
LDAM Loss [14] (results reported in paper) - 60.40 - - 43.09 -
LDAM-DRW [14] (results reported in paper) - 57.96 - - 41.29 -
Ours with LDAM loss 60.47 55.92 50.84 47.62 42.0 -

existing ones become more significant as the imbalance factor increases. When the dataset is bal-

anced (the last column), our approach does not hurt the performance of vanilla losses compared

to L2RW. We can draw about the same observations as above for the long-tailed CIFAR-100 from

Table 4.3. Finally, we further validate our approach by running each setting 5 times with different

random seeds on long-tailed CIFAR-10. Table 4.7 shows the mean top-1 errors (%) and the stan-

dard deviations under the imbalance factors of 200, 100, and 50. We can see that the mean error

rates are consistent with the results provided in Table 4.2.

4.3.1.3 Where does our approach work?

Figure 4.2 presents three confusion matrices respectively by the models of the cross-entropy train-

ing, L2RW, and our method on CIFAR-LT-10. The imbalance factor is 200. Compared with

the cross-entropy model, L2RW improves the accuracies on the tail classes and yet sacrifices the
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Figure 4.2: Confusion matrices by the cross-entropy training, L2RW, and our method on CIFAR-
LT-10 (the imbalance factor is 200).

Figure 4.3: Mean conditional weights {εi} within each class vs. training epochs on CIFAR-LT-10
(left: IF = 100; right: IF = 10).

accuracies for the head classes. In contrast, ours maintains about the same performance as the

cross-entropy model on the head classes and meanwhile significantly improves the accuracies for

the last five tail classes.

43



Table 4.4: Ablation study of our approach by using the cross-entropy loss on CIFAR-LT-10. The
results are test top-1 errors%.

Imbalance factor 100 50 20
L2RW [132] 27.77 23.55 18.65
L2RW, pre-training 25.96 22.04 15.67
L2RW, pre-training, init. by wy 26.26 22.50 17.44
L2RW, pre-training, wyi + εi 24.54 20.47 14.38
Ours 23.59 19.49 13.54
Ours updating wy 25.42 20.13 15.62
Class-balanced [25] 27.63 21.95 15.64

4.3.1.4 What are the learned conditional weights?

We are interested in examining the conditional weights {εi} for each class throughout the training.

For a visualization purpose, we average them within each class. Figure 4.3 demonstrates how they

change over the last 20 epochs for the 1st, 4th, 7th, and 10th classes of CIFAR-LT-10. The two

panels correspond to the imbalance factors of 100 and 10, respectively. Interestingly, the learned

conditional weights of the tail classes are more prominent than those of the head classes in most

epochs. Moreover, the conditional weights of the two head classes (the 1st and 4th) are even below

0 at certain epochs. Such results verify our intuition that the scarce training examples of the tail

classes deserve more attention in training to make the neural network perform in a balanced fashion

at the test phase.

4.3.1.5 Ablation study: ours vs. L2RW

Our overall algorithm differs from L2RW mainly in four ways: 1) pre-training the network, 2)

initializing the weights by a priori knowledge, 3) two-component weights, and estimating the
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class-wise components by a separate algorithm [25], and 4) no clipping or normalization of the

weights. Table 4.4 examines these components by applying them one after another to L2RW.

First, pre-training the neural network boosts the performance of the vanilla L2RW. Second, if we

initialize the sample weights by our class-wise weights {wy}, the errors increase a little probably

because the clipping and normalization steps in L2RW require more careful initialization to the

sample weights. Third, if we replace the sample weights by our two-component weights, we

can bring the performance of L2RW closer to ours. Finally, after we remove the clipping and

normalization, we arrive at our algorithm, which gives rise to the best results among all variations.

4.3.1.6 Ablation study: the two-component weights

By Table 4.4, we also highlight the importance of the two-component weights {wyi + εi} mo-

tivated from our domain adaptation point of view to the long-tailed visual recognition. First of

all, they benefit L2RW (comparing “L2RW, pre-training, wyi + εi” with “L2RW, pre-training” in

Table 4.4). Besides, they are also vital for our approach. If we drop the class-wise weights, our

results would be about the same as L2RW with pre-training. If we drop the conditional weights

and meta-learn the class-wise weights (cf. “Ours updating wy”), the errors become larger than our

original algorithm. Nonetheless, the results are better than the class-balanced training (cf. last

row in Table 4.4), implying that the learned class-wise weights give rise to better models than the

effective-number-based class-wise weights [25].

4.3.2 Object Recognition with iNat 2017 and 2018

We use ResNet-50 [63] as the backbone network for the iNat 2017 and 2018 datasets. The networks

are pre-trained on ImageNet for iNat 2017 and on ImageNet plus iNat 2017 for iNat 2018. We

experiment with the mini-batch size of 64 and the learning rate of 0.01. We train all the models
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Table 4.5: Classification errors on iNat 2017 and 2018. (*results reported in paper. CE=cross-
entropy, CB=class-balanced)

Dataset iNat 2017 iNat 2018

Method Top-1 Top-3/5 Top-1 Top-3/5

CE 43.49 26.60/21.00 36.20 19.40/15.85

CB CE [25] 42.59 25.92/20.60 34.69 19.22/15.83

Ours, CE 40.62 23.70/18.40 32.45 18.02/13.83

CB focal [25]* 41.92 –/20.92 38.88 –/18.97

LDAM [14]* – – 35.42 –/16.48

LDAM-drw* – – 32.00 –/14.82

cRT [78]* – – 34.8 –

cRT+epochs* – – 32.4 –

using the stochastic gradient descent with momentum. For the meta-learning stage of our approach,

we switch to a small learning rate, 0.001.

Table 4.5 shows the results of our two-component weighting applied to the cross-entropy loss. We

shrink the text size for iNat 2018 to signify that we advocate experiments with iNat 2017 instead

because there are only three validation/test images per class in iNat 2018 (cf. Table 4.1). Our ap-

proach boosts the cross-entropy training by about 2% more than the class-balanced weighting [25]

does. As we have reported similar effects for the focal loss and the LDAM loss on CIFAR-LT

with extensive experiments, we do not run them on the large-scale iNat datasets to save computa-

tion costs. Nonetheless, we include the results reported in the literature of the focal loss, LDAM

loss, and a classifier re-training method [78], which was published after we submitted the work

to CVPR 2020. We reported more detailed comparison in table 4.10. As the experiment setups

of the existing works vary by network initialization, the sampling strategy of mini-batches, losses,

trainable layers of a network, etc., it is hard to have a fair comparison by the end results. Hence,

besides their top-1 errors, we also report the experiment setups for each method. Our approach
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Table 4.6: Classification errors on ImageNet-LT and Places-LT. (*reported in paper. CE=cross-
entropy, CB=class-balanced)

Dataset ImageNet-LT Places-LT
Method Top-1 Top-3/5 Top-1 Top-3/5
CE 74.74 61.35/52.12 73.00 52.05/41.44
CB CE [25] 73.41 59.22/50.49 71.14 51.58/41.96
Ours, CE 70.10 53.29/45.18 69.20 47.95/38.00

outperforms the class-balanced weighting scheme for both the cross-entropy loss and the focal

loss. Moreover, our results are on par with the best reported ones. Finally, we stress that almost

all existing methods employ a class-balanced weighting or sampling strategy no matter what their

main techniques are to tackle the long-tailed problem. Hence, given our consistent improvements

over the class-balanced weighting, we expect the methods which have benefited from the class-

balancing can gain further from our two-component weighting.

4.3.3 Experiments with ImageNet-LT and Places-LT

Following Liu et al.’s experiment setup [104], we employ ResNet-32 and ResNet-152 for the ex-

periments on ImageNet-LT and Places-LT, respectively. For ImageNet-LT, we adopt an initial

learning rate of 0.1 and decay it by 0.1 after every 35 epochs. For Places-LT, the initial learning

rate is 0.01 and is decayed by 0.1 every 10 epochs. For our own approach, we switch from the

cross-entropy training to the meta-learning stage when the first decay of the learning rate happens.

The mini-batch size is 64, and the optimizer is stochastic gradient descent with momentum.
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Table 4.7: Multiple runs of our approach by using the cross-entropy loss on CIFAR-LT-10. The
results are top-1 errors% on the test sets.

Imbalance factor 200 100 50
Cross-entropy training 34.32 29.64 25.19
Class-balanced cross-entropy loss [25] 31.11 27.63 21.95
Class-balanced fine-tuning [24]
Class-balanced fine-tuning [24]*

33.76
33.92

28.66
28.67

22.56
22.58

L2RW [132]
L2RW [132]*

33.75
33.49

27.77
25.84

23.55
21.07

Meta-weight net [153] 32.8 26.43 20.9
Ours with cross-entropy loss 29.32 ± 0.23 23.71 ± 0.22 19.45 ± 0.28

4.3.3.1 Results

Table 4.6 shows that the class-balanced training improves the vanilla cross-entropy results, and

our two-component weighting further boosts the results. We expect the same observation with the

focal and LDAM losses. Finally, we find another improvement by updating the classification layers

only in the meta-learning stage. We arrive at 62.90% top-1 error (39.86/29.87% top-3/5 error) on

Places-LT, which is on par with 64.1% by OLTR [104] or 63.3% by cRT [78], while noting that

our two-component weighting can be conveniently applied to both OLTR and cRT. Similar to

iNaturalist, Table 4.8 and Table 4.9 shows the more detailed comparison on ImageNet-LT and

Places-LT respectively.
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Table 4.8: Test top-1 errors (%) of different methods on ImageNet-LT. * indicates the re-run
results.

Methods NN Initialization Sampling Loss
Stage-1
Trainable Variables

Stage-2
Trainable Variables Results

Vanilla Model ResNet-10 No-pretrain Class-Balanced CE All - 80.0
Vanilla Model [101] ResNet-10 No-pretrain Class-Balanced Focal All - 69.8
Vanilla Model ResNet-10 No-pretrain Class-Balanced Lifted All - 69.2
Vanilla Model [189] ResNet-10 No-pretrain Class-Balanced Range All - 69.3
Joint [78] ResNet-10 No-pretrain Class-Balanced CE All All 65.2
NCM [78] ResNet-10 No-pretrain Class-Balanced CE All Classifier layer 64.5
cRT [78] ResNet-10 No-pretrain Class-Balanced CE All Classifier layer 58.2
τ -normalized [78] ResNet-10 No-pretrain Class-Balanced CE All Classifier layer 59.4
OLTR* [104] ResNet-10 No-pretrain Class-Balanced CE All All 65.6
OLTR [104] ResNet-10 No-pretrain Class-Balanced CE All All 64.4
Ours ResNet-10 No-pretrain None CE All Classifier layer 63.5
Ours ResNet-10 No-pretrain None Focal All Classifier layer 63.3
Vanilla Model ResNet-50 No-pretrain None CE All - 59.0
CB [25] ResNet-50 No-pretrain None CE All - 58.2
Joint [78] ResNet-50 No-pretrain Class-Balanced CE All All 58.4
NCM [78] ResNet-50 No-pretrain Class-Balanced CE All Classifier layer 55.7
cRT [78] ResNet-50 No-pretrain Class-Balanced CE All Classifier layer 52.7
τ -normalized [78] ResNet-50 No-pretrain Class-Balanced CE All Classifier layer 53.3
Ours ResNet-50 No-pretrain None CE All Classifier layer 52.0

Table 4.9: Test top-1 errors (%) of different methods on Places-LT. * indicates the re-run results.

Methods NN Initialization Sampling Loss
Stage-1
Trainable Variables

Stage-2
Trainable Variables Results

Vanilla Model ResNet-152 ImageNet Class-Balanced CE
FC layers
Last Block + FC

-
-

72.1
69.7

Vanilla Model [101] ResNet-152 ImageNet Class-Balanced Focal
FC layers
Last Block + FC

-
-

67.0
66.5

Vanilla Model ResNet-152 ImageNet Class-Balanced Lifted FC layers - 64.8
Vanilla Model [189] ResNet-152 ImageNet Class-Balanced Range FC layers - 64.9
Joint [78] ResNet-152 ImageNet Class-Balanced CE Last block + FC Last block + FC 69.8
NCM [78] ResNet-152 ImageNet Class-Balanced CE Last block + FC Classifier layer 63.7
cRT [78] ResNet-152 ImageNet Class-Balanced CE Last block + FC Classifier layer 63.3
τ -normalized [78] ResNet-152 ImageNet Class-Balanced CE Last block + FC Classifier layer 62.1
OLTR* [104] ResNet-152 ImageNet Class-Balanced CE Last block + FC FC + memory 64.8
OLTR [104] ResNet-152 ImageNet Class-Balanced CE Last block + FC FC + memory 64.1
Ours ResNet-152 ImageNet None CE Last block + FC Classifier layer 62.9
Ours ResNet-152 ImageNet None Focal Last block + FC Classifier layer 62.2
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Table 4.10: Test top-1 errors (%) of different methods on iNaturalist 2018.

Methods NN Initialization Sampling Loss
Stage-1
Trainable Variables

Stage-2
Trainable Variables Results

Vanilla Model ResNet-50 No-pretrain None CE All - 42.9
Vanilla Model ResNet-50 ImageNet+iNat’17 None CE All - 36.2
LDAM [14] ResNet-50 No-pretrain None LDAM All - 35.4
LDAM-DRW [14] ResNet-50 No-pretrain None LDAM All - 32.0
CB [25] ResNet-50 ImageNet+iNat’17 None CE All - 34.7
CB [25] ResNet-50 No-pretrain None Focal All - 38.9
Joint [78] ResNet-50 No-pretrain Class-Balanced CE All All 38.3
NCM [78] ResNet-50 No-pretrain Class-Balanced CE All Classifier layer 41.8
cRT [78] ResNet-50 No-pretrain Class-Balanced CE All Classifier layer 34.8
τ -normalized [78] ResNet-50 No-pretrain Class-Balanced CE All Classifier layer 34.4
Ours ResNet-50 ImageNet+iNat’17 None CE All All 32.4
Ours ResNet-50 ImageNet+iNat’17 None Focal All All 32.3
Vanilla Model ResNet-101 ImageNet+iNat’17 None CE All - 34.3
CB [25] ResNet-101 ImageNet+iNat’17 None CE All - 32.7
Ours ResNet-101 ImageNet+iNat’17 None CE All All 31.5
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CHAPTER 5: LONG-HORIZON GRADIENT-BASED META-LEARNING

Humans can quickly learn the skills needed for new tasks by drawing from a fund of prior knowl-

edge and experience. To grant machine learners this level of intelligence, meta-learning studies

how to leverage past learning experiences to more efficiently learn for a new task [165]. A hallmark

experiment design provides a meta-learner a variety of few-shot learning tasks (meta-training) and

then desires it to solve previously unseen and yet related few-shot learning tasks (meta-test). This

design enforces “learning to learn” because the few-shot training examples are insufficient for a

learner to achieve high accuracy on any task in isolation.

Recent meta-learning methods focus on deep neural networks. Some learn recurrent neural net-

works as an update rule to a model [129, 4]. Some transfer attention schemes across tasks [117,

166]. Gradient-based meta-learning gains momenta recently following the seminal work [41]. It

is model-agnostic meta-learning (MAML), learning a global model initialization from which a

meta-learner can quickly derive task-specific models by using a few training examples.

In its core, MAML is a bilevel optimization problem [20]. The upper level searches for the best

global initialization, and the lower level optimizes individual models, which all share the common

initialization, for particular tasks sampled from a task distribution. This problem is hard to solve.

[41] instead propose a “greedy” algorithm, which comprises two loops. The inner loop samples

tasks and updates the task-specific models by k steps using the tasks’ training examples. The

k-step updates write a differentiable computation graph. The outer loop updates the common

initialization by backpropagating meta-gradients through the computation graph. This method is

“greedy” in that the number of inner steps is often small (e.g., k = 1). The outer loop takes actions

before the inner loop sufficiently explores its search space.

This “greedy” algorithm is due to practical constraints that backpropagating meta-gradients through
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the inner loop incurs high-order derivatives, big memory footprints, and the risk of vanishing or

exploding gradients. For the same reason, some related work also turns to greedy strategies, such

as meta-attack [34] and learning to reweigh examples [132].

To this end, two questions arise naturally. Would a less greedy gradient-based meta-learner (say,

k>10 inner steps) achieve better performance? How to make it less greedy?

Some first-order algorithms [41, 122, 42] have provided an affirmative answer to the first question

above. [127] proposed a less “greedy” MAML by regularizing the inner loop. However, they are

highly tailored for that the meta-model and task models lie in the same space, preventing them

from tackling other meta-learning problems, for example, the long-tailed classification described

later.

To answer the questions for more general meta-learning scenarios, we provide some preliminary

results by introducing a lookahead optimizer [187] into the inner loop. It can be viewed as a

teacher-student scheme. We use a student neural network to explore the search space for a given

task adequately (by a large number k of updates), and a teacher network then takes a “leap” to-

ward the regions visited by the student. As a result, the teacher network not only arrives at a

high-performing model but also defines a very lightweight computational graph for the outer loop.

In contrast to the traditionally “greedy” meta-learning framework used in MAML [41], meta-

attack [34], learning to reweigh examples [132], etc., the teacher is “lazy”. It sends a student to

optimize for a task up to many steps and moves only once after that.

Our approach improves the gradient-based meta-learning framework rather than a single algo-

rithm. Hence, we evaluate it on different methods and tasks, including MAML and Reptile [122]

for few-shot learning, a two-component weighting algorithm [73] for long-tailed classification,

and meta-attack [34]. Extensive results provide an affirmative answer to the first question above:

long-horizon exploration in the inner loop improves a meta-learner’s performance. We expect our

52



approach, along with the compelling experimental results, can facilitate future work to address the

second question above.

5.1 “Greedy” Gradient-Based Meta-Learning

We first review gradient-based meta-learning from the perspective of “search space carving”.

Notations. Let PT denote a task distribution. For each task drawn from the distribution T ∼ PT ,

we have a training set Dtr and a validation set Dval, both in the form of {(x1, y1), (x2, y2), · · · }

where xm and ym are respectively an input and a label. We learn a predictive model for a task by

minimizing the empirical loss LTDtr(φ) over the training set while using the validation set to choose

hyper-parameters (e.g., early stopping), where φ collects all trainable parameters of the model.

Similarly, we denote by LTDval(φ) the loss calculated over the validation set.

Meta-learning as “space carving”. Instead of focusing on an isolated task, meta-learning takes

a global view and introduces a meta-model, parameterized by θ, that can improve the learning

efficiency for all individual tasks drawn from the task distribution PT . The underlying idea is to

derive a task-specific model φ from not only the training set Dtr but also the meta-model θ, i.e.,

φ ∈ M(θ,Dtr). We refer to M(θ,Dtr) the “carved” search space for the task-specific model

φ, where the “carving” function is realized as an attention module in [166, 117], as a conditional

neural process in [49, 57], as a gradient-based update rule in [41, 126, 99, 122], and as a regularized

optimization problem in [127, 193].

An optimal meta-model θ∗ is supposed to yield the best task-specific models in expectation,

θ∗ ← arg min
θ

ET ∼PT ,Dval∼T LTDval(φ
∗(θ))

subject to φ∗(θ)← arg min
φ∈M(θ,Dtr)

LTDtr(φ).
(5.1)
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One can estimate the optimal meta-model θ∗ from some tasks and then use it to “carve” the search

space,M(θ∗,Dtr), for novel tasks’ models.

Gradient-based meta-learning. One of the notable meta-learning methods is MAML [41], which

uses a gradient-based update rule to “carve” the search space for a task-specific model,

MMAML(θ,Dtr) := {φ0 ← θ} ∪ {φj |φj ← φj−1

−α∇φLTDtr(φj−1), j = 1, 2, · · · , k}
(5.2)

where the meta-model θ becomes an initialization to the task-specific model φ0, the other candidate

models φ1, · · · , φk are obtained by gradient descent, and α > 0 is a learning rate. Substituting it

into equation (5.1), φk ∈ MMAML(θ,Dtr) is naturally a solution to the lower-level optimization

problem, and MAML solves the upper-level optimization problem by meta-gradient descent,

θ ← θ − βET ∼PT ,Dval∼T∇θLTDval(φk(θ)), (5.3)

where β is a learning rate, and φk(θ) indicates the dependency on the meta-model θ. The meta-

gradient must backpropagate through the chain of updates in eq. (5.2), which has to be short (e.g.,

k = 1) to avoid big memory footprints, high-order derivatives, and the risk of vanishing or explod-

ing gradients.

We say MAML is “greedy” in that it descends meta-gradients for the meta-model θ before it

runs adequate updates to the task-specific model φ. As an increasing number of works adopt the

gradient-based “search space carving” for task-specific models [99, 127, 126, 43, 180], they also

bear greedy algorithms. Relaxing the greedy strategy may benefit not one, but a variety of, high-

order meta-learning methods.
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5.2 A “Lazy” Approach to Gradient-Based Meta-Learning

In this section, we describe a “lazy” meta-learning approach, which is readily applicable to dif-

ferent gradient-based meta-learning algorithms. We first describe the general approach as an im-

provement to MAML and then customize it for few-shot learning, long-tailed classification, and

meta-attack.

5.2.1 General Approach

Given a meta-model θ, we “carve” the search space for task-specific models φ ∈ M(θ,Dtr) by a

teacher-student scheme. The key idea is to let a student explore the search space adequately using

the training set of a task-specific model without worrying the length of the update chain because

a teacher will examine the explored regions by the student, followed by a one-step “leap”. Hence,

one can update the meta-model by backpropagating meta-gradients through the teacher’s “leap”,

not the student’s update chain (ignoring that the chain starts from the meta-model). Figure 5.1

illustrates the main idea.

An exploratory student acts exactly the same as the gradient-based updates in MAML except that

it explores the feasible space by a large number of steps (k > 10), resulting in k+ 1 checkpoints of

a task-specific model φ ∈ MMAML(θ,Dtr) = {φj, j = 0, · · · , k}. It is clear from Section 5.1 that

we cannot backpropagate the meta-gradients through the long chain of checkpoints, φ0, · · · , φk,

made by the exploratory student.

A lazy teacher sits at the initialization φ0 = θ till the student stops. It then takes a “leap” towards

the region explored by the student. The teacher essentially defines another “carved search space”
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Figure 5.1: To compute the meta-gradients∇θ

∑
i L
Ti
Dval(φi(θ)), MAML [41] differentiates through

the inner updates, the implicit MAML [127] approximates local curvatures, while we differentiate
through the “lazy” teacher’s one-step “leap”. The exploratory student may make many steps of
inner updates before the teacher’s “leap”.

for the task-specific model φ,

MLAZY(θ,Dtr) := γθ + (1− γ)Rk−b+1,··· ,k (5.4)

where γ ∈ [0, 1]. The region Rk−b+1,··· ,k is a convex hull of the last b checkpoints the student

visited:

Rk−b+1,··· ,k := αk−b+1φk−b+1 + αk−b+2φk−b+2+

· · ·+ αkφk,

(5.5)

where the coefficients {α} are non-negative and their sum equals 1, i.e., αk−b+1 + · · · + αk = 1.

The last b checkpoints presumably cover a high-quality task-specific model φ by a better chance

than the first few checkpoints. We shall experiment with b = 3 and b = 1.

Any task-specific model φ in this “lazy” spaceMLAZY(θ,Dtr) is determined by the hyper-parameters

γ and αk−b+1, · · · , αk, over which we conduct a grid search to minimize the validation lossLTDval(φ).
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This is similar in spirit to meta-SGD [99], which uses the validation data to search for the learning

rates.

Denote by γ̂θ + (1− γ̂)φ̂ the task-specific model as a result of the grid search. Notably, it is only

one hop away from the meta-model θ, making it easy to compute meta-gradients.

Concretely, the meta-gradient descent for the meta model θ becomes θ ← θ−βET ∼PT ,Dval∼T∇θLTDval(γ̂θ+

(1− γ̂)φ̂), which is apparently more manageable than the gradients in eq. (5.3) when k > 1.

Algorithm 4 “Lazy” Meta-Learning
Require: A distribution over tasks PT

Require: Learning rates η, β

Ensure: The meta model θ

1: Randomly initialize the meta-model θ

2: while not done do

3: Sample a batch of tasks {T i ∼ PT }

4: for all {T i} do

5: Sample data Dtr and Dval for Ti

6: φi,0 ← θ

7: for j = 1, 2, · · · , k do //student

8: φi,j ← φi,j−1 − η∇φLTiDtr(φi,j−1)

9: end for

10: Grid-searchMLAZY(θ,Dtr) such that LTiDval is minimized at γ̂iθ + (1− γ̂i)φ̂i //teacher

11: φi(θ)← γ̂iθ + (1− γ̂i)φ̂i //teacher

12: end for

13: θ ← θ − β∇θ

∑
i L
Ti
Dval(φi(θ))

14: end while
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Algorithm 4 presents our “lazy” approach in detail. In the outer while-loop, we sample a batch of

tasks {Ti} (Line 3, or L3) and use them to make a gradient update to the meta-model θ (L13). All

task-specific models {φi,0} are initialized to the current meta-model θ (L6). For each task Ti, the

student first runs gradient descent with respect to the task-specific model φi up to k steps (L8), and

the teacher then takes a “leap” from the initial meta-model θ according to the checkpoints visited

by the student (L10–11)

Remarks. Our “lazy” teacher is motivated by the lookahead optimizer [187]. They have some

key differences as follows due to the meta-learning setup. We initialize multiple task-specific

models by the meta-model. Moreover, we dynamically choose the “leap” rate γ by a validation

set. Finally, the validation data allows us to take advantage of not one checkpoint, but a region

around the checkpoints visited by the student.

Like Reptile, our approach allows the inner loop to make many steps of updates to task-specific

models. Moreover, we share the same update rule as Reptile by the end of the many-step explo-

ration. However, we apply that rule to the task-specific models, while Reptile essentially uses it to

update the meta-model. Unlike Reptile, we use meta-gradients to update the meta-model. This dif-

ference is subtle and vital, making it straightforward to apply our approach to the two-component

weighting algorithm (Algorithm 5) for long-tailed classification (and other meta-like algorithms)

but unclear how to do it for Reptile.

We share the same goal, to make MAML less “greedy”, as the recently proposed implicit gradients

(iMAML) [127]. iMAML changes the lower-level problem in eq. (5.1) to an `2-regularized prob-

lem, which lends an analytical expression for the meta-gradient. But it is expensive to compute and

has to be approximated by a conjugate gradient algorithm. The `2 regularization also falls short in

capturing structural relations between a meta-model and task-specific models.
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5.2.2 Few-Shot Learning, Long-Tailed Classification, and Meta-Attack

Since the “lazy” teacher does not change the innermost loop of gradient-based meta-learning — it

instead “leaps” over the chain of updates to the task-specific model φ, we can apply it to different

algorithms. We evaluate it on few-shot learning, long-tailed classification, and meta-attack, in

which meta-learning based methods have led to state-of-the-art results.

Few-shot learning in this paper concerns an N -way-K-shot classification problem. To customize

Algorithm 4 for this problem, we randomly select N classes for each task Ti and then draw from

each class K + 1 examples with labels, K of which are assigned to the training set Dtr and one

is to the validation set Dval. Besides, we choose the hyper-parameter γi by using the task-specific

model’s classification accuracy on the validation set, instead of the loss in L10, Algorithm 4.

There is an interesting “trap” in few-shot learning, identified as over-fitting by memorization [180].

The tasks {Ti} drawn from a distribution PT are supposed to be i.i.d., but they could be correlated

in the following scenario. Suppose there exists a global order of all classes. If we maintain this

order among the N classes in each task, the meta-model could over-fit the tasks seen during meta-

training by memorizing the functions that solve these tasks, and it would fail to generalize to new

tasks. Hence, it is important to randomly shuffle the N classes every time we sample them for a

task (e.g., “dogs” and “cats” are respectively labeled as 0 and 1 in a two-way classification task,

and yet they are shuffled to 1 and 0 in another two-way task).

We will empirically show that our approach is less prone to over-fitting than MAML even without

class shuffling. A possible reason is that we use longer chains of updates (φ0, · · · , φk, k > 10) to

learn the functions that solve the individual tasks, making them harder to memorize.

Long-tailed classification emerges as an inevitable challenge as object recognition makes progress

toward large-scale, fine-grained classes [1, 174], which often exhibit a long-tailed distribution. To
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uplift infrequent classes, [73] propose to weigh each training example by two components, a fixed

component wy to balance different classes [25] and a trainable component εi. We improve their

learning method by a “lazy” teacher, as described in Algorithm 5. It alternatively optimizes the per-

example weight εi (using a balanced validation set) and a recognition network θ (using the long-

tailed training set), in the same spirit as meta learning (cf. Algorithm 4 vs. L5-12 in Algorithm 5).

We insert a “lazy” teacher model to L6, let it take a “leap” in L12, and then backpropagate the

gradient with respect to the per-example weight εi through the “leap”.

Algorithm 5 “Lazy” Two-Component Weighting for Long-Tailed Recognition
Require: A training set Dtr whose class frequency is long-tailed, a balanced validation set Dval

Require: Class-wise weights {wy} estimated by using [? ]

Require: Learning rates η, τ , pre-training steps t1, fine-tuning steps t2

1: Train a recognition network, parameterized by θ, for t1 steps by a standard cross-entropy loss

2: for t = t1 + 1, · · · , t1 + t2 do

3: Sample a mini-batch B from the training set Dtr

4: Set εi ← 0,∀i ∈ B, and denote by ε := {εi, i ∈ B}

5: Compute LB(θ, ε) := 1
|B|
∑

i∈B(wyi + εi)Li(θ) //Li is a cross-entropy over the i-th input

6: Update θ̃(ε)← θ − η∇θLB(θ, ε) // The “lazy” teacher, which depends on ε

7: Initialize a student model by setting φ0 ← θ̃(ε)

8: for j = 1, 2, ..., k do

9: Update the student model by gradient descent φj ← φj−1 − η∇φLB(φj−1, ε)

10: end for

11: Grid search for γ s.t. the teacher’s “leap”, γθ̃(ε) + (1− γ)φk, yields high accuracy on Dval

12: Update ε← ε− τ∇εLDval(γθ̃(ε) + (1− γ)φk)

13: Compute LB(θ, ε) (cf. Line 5) and update θ ← θ − η∇θLB(θ, ε)

14: end for
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Meta-attack [34] is a query-efficient blackbox attack algorithm on deep neural networks. Recent

work [80, 29, 91] has shown that one can manipulate an image recognition network’s predictions

by adding very small perturbations to benign inputs. However, if the network’s architecture and

weights are unknown (blackbox), it takes a large number of queries into the network to find a valid

adversarial example. To improve the query efficiency, [34] propose to learn a meta-model from

many whitebox neural networks and then generalize it to blackbox attacks. They train this meta-

model by using the same meta-learning framework as Algorithm 4. Therefore, it is straightforward

to improve their inner loop by our “lazy” teacher. The inputs to the meta-attacker are images,

and the desired outputs are their gradients — during meta-training, the gradients are generated

from different classification models. Instead of the cross-entropy loss, meta-attack adopts a mean-

squared error (MSE) loss in the inner loop, i.e.,

LTiDtr = ||φ(Xij)− Gij||22 (5.6)

where the task Ti is to find adversarial examples for the inputs to the i-th pre-trained classification

network, Xij is an image sampled for the task, Gij are the gradients of the classification network

with respect to (w.r.t.) the image, and φ(·) is a task-specific model whose output is to approximate

the gradients Gij . This model is useful because, given a blackbox classification network, we can

use the task-specific model to predict the gradients of this network w.r.t. an image, followed by

gradient ascent towards an adversarial example (cf. Algorithm 7).

Algorithm 6 presents how to train this meta-attacker by applying our “lazy” teacher to Reptile, and

we then follow Algorithm 7 for attacking blackbox networks [34].
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Algorithm 6 Training algorithm of meta-attack using “lazy” Reptile
Require: A distribution over tasks PT

Require: Input Images X , gradients Gi generated from a classification network serving task T i

Require: Learning rates α, β

Ensure: The meta attacker θ

1: Randomly initialize the meta-attacker θ

2: while not done do

3: Sample a batch of tasks {T i ∼ PT }

4: for all {T i} do

5: Sample data Dtr and Dval for Ti // in the form of {Xij,Gij}

6: φi,0 ← θ

7: for j = 1, 2, · · · , k do

8: φi,j ← φi,j−1 − α∇φLTiDtr(φi,j−1)

9: end for

10: γi ← arg minγ LTiDval(γθ + (1− γ)φi,k)

11: φi(θ)← γiθ + (1− γi)φi,k

12: end for

13: θ ← θ − β
∑

i(θ − φi(θ))

14: end while
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Algorithm 7 Adversarial Meta-Attack
Require: Test image xo with label t, meta-attacker fθ, target model Mtar, iteration interval j,

selected top-q coordinates

1: for t = 0, 1, 2, · · · do

2: if (t+ 1) mod j = 0 then

3: Perform zeroth-order gradient estimation [79] on top-q coordinates, denoted as It and

4: obtain gt.

5: Fine-tune meta-attacker fθ with (xt,gt) on It by L = |[fθ(xt]It − [gt]It |22.

6: else

7: Generate the gradient map gt directly from meta-attacker fθ with xt,

8: select coordinates It.

9: end if

10: Update [x′]It = [xt]It + λ[gt]It .

11: ifMtar(x
′) 6= t then

12: xadv = x′

13: break

14: else

15: xt+1 = x′

16: end if

17: end for

Ensure: adversarial example xadv.
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5.3 Experiments

We evaluate the “lazy”, long-horizon meta-learning approach by plugging it into different algo-

rithms with applications to few-shot learning, long-tailed recognition, and meta-attack.

5.3.1 Few-Shot Learning

We experiment with four datasets for few-shot learning: Omniglot [85], MiniImageNet [166],

TieredImageNet [131], and CIFAR-FS [10]. The experiment protocols and implementation de-

tails largely follow MAML [41] and Reptile [122]. The Omniglot dataset consists of handwritten

characters from 50 different alphabets and 1623 characters. There are 20 handwritten examples of

each character. MiniImageNet contains 100 classes form ImageNet [27], which are split to 64, 16,

and 20 classes for meta-training, meta-validation, and meta-test, respectively. TieredImagNet has

608 classes from ImageNet, which are grouped into 34 higher-level categories following the Ima-

geNet taxonomy. They are split into 20 meta-training categories, 6 meta-validation categories, and

8 meta-test categories. Due to this partition scheme, the meta-test classes are less similar to the

meta-training classes in TieredImageNet than in other datasets. CIFAR-FS re-purposes CIFAR-

100 [82], splitting its 100 classes into 64, 16, and 20 classes for meta-training, meta-validation,

and meta-test, respectively.

5.3.1.1 Experiment protocols and hyper-parameters

Our experiment protocols and implementation details largely follow MAML [41] and Reptile [122].

In particular, we use a convolutional neural network that comprises four modules in all the exper-

iments. Each module has 3x3 convolutions, a batch-normalization layer, 2x2 max-pooling, and

the ReLU activation, and every convolutional layer contains 64 filters for the experiments on Om-
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niglot and 32 filters for other datasets. For fair comparison, we also re-implement some of the

existing methods using this network architecture. We report more details for the “Lazy” Reptile

in Table 5.1. For “Lazy” MAML, we set k = 10 for 1-shot and 5-shot tasks, respectively, on both

MiniImageNet and TieredImageNet.

Table 5.1: Hyper-parameter details for few-shot learning in ours (Reptile). The “Eval inner batch”
row shows the numbers for both 1-shot and 5-shot settings.

Hyper-parameter Omniglot CIFAR-FS Mini-ImageNet TieredImageNet
Inner learning rate (η) 0.001 0.001 0.001 0.001
Inner iterations (k) 5 8 8 8
Inner batch size 10 10 10 10
Training shots 10 15 15 15
Outer step-size (β) 1.0 1.0 1.0 1.0
Total outer-iterations 100k 120k 120k 130k
Meta batch size 20 20 20 20
Eval. inner iterations 50 50 50 50
Eval. inner batch 5/15 5/15 5/15 5/15

Table 5.2: Our approach applied to MAML and Reptile for five-way few-shot classification on
MiniImageNet (Accuracy ± 95% confidence interval over 2000 runs)

Method
MiniImageNet

1-shot 5-shot

MAML [41] 48.70 ± 1.84 63.11 ± 0.92
“Lazy” MAML (b = 1) 48.26 ± 1.78 64.13 ± 1.90
“Lazy” MAML (b = 3) 48.17 ± 1.84 63.73 ± 1.10

Reptile [122] 49.97 ± 0.32 65.99 ± 0.58
“Lazy” Reptile (b = 1) 51.50 ± 1.00 67.22 ± 0.97
“Lazy” Reptile (b = 3) 52.67 ± 1.01 68.77 ± 0.98

Our approach permits long-horizon inner updates and involves a convex hull of the last few check-

points. In Table 5.2, we first experiment with the last b=3 and b=1 checkpoints. We test them

65



with two representative meta-learning algorithms: MAML (cf. Algorithm 4) and Reptile (replac-

ing Line 13 (L13) in Algorithm 4 with θ ← θ − β
∑

i(θ − φi(θ))). The intervals are 0.05 in the

grid search (L10), and the search range for the learning rate γ is between 0.75 and 0.95.

Table 5.2 shows that there is no significant difference between b = 3 and b = 1, so we shall employ

b = 1 for the remaining experiments. Moreover, the “lazy” variation improves the vanilla Reptile,

but not MAML, probably because the five-way one/five-shot learning is too simple for MAML

to take advantage of the long-horizon inner updates. We next study many-way few-shot learning

tasks, which are arguably more complex.

5.3.1.2 MAML vs. “Lazy” MAML for many-way few-shot learning

We switch to the TieredImageNet dataset since there are only 20 classes in MiniImageNet’s meta-

test set. The left panel of Figure 5.2 shows the results of MAML, FOMAML and “Lazy” MAML

for N -way-five-shot learning, where N varies in {5, 20, 30, 50}, and the student runs for k =

10, 15, 20, 20 inner steps, respectively. We set the inner learning rate (η) to 0.005 and the outer

learning rate (β) to 0.001 for all the settings. The “lazy” variation is on par with MAML for the

five-way classification, and it outperforms MAML, and FOMAML for 20-way, 30-way, and 50-

way five-shot classifications. This trend indicates that the many-way few-shot learning problems

desire more inner updates to the task-specific models, amplifying the benefit of the “lazy” teacher.

5.3.1.3 Reptile vs. “Lazy” Reptile for many-way few-shot learning

The left panel of Figure 5.3 compares the results of Reptile and “Lazy” Reptile forN -way-five-shot

learning on TieredImageNet whereN varies in {5, 20, 30}. Our approach outperforms Reptile. We

emphasize that not all meta-learning algorithms can be approximated by a first-order version; for
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Figure 5.2: Left: Mean Accuracy (%) for N -way-five-shot classification on TieredImageNet.
Right: Mean Accuracy (%) for 20-way-one-shot non-i.i.d. [180] classification tasks on Omniglot.

example, it is not immediately clear how to do it for Algorithm 5, the two-component weighting

method for long-tailed classification. The right panel of Figure 5.3 shows some 20-way-5-shot

results on MiniImageNet. We can see that our lazy strategy boosts both MAML and Reptile by a

significant margin. It again indicates that more training data needs more steps of exploration for

a task-specific model and hence magnifies the benefit of our teacher-student scheme introduced to

both MAML and Reptile.
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Figure 5.3: Left: Mean Accuracy (%) for N -way-five-shot classification on TieredImageNet. b).
Mean Accuracy (%) for 20-way-5-shot classification on MiniImageNet.
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5.3.1.4 Many-shot Classification

The Figure 5.4 shows the results of MAML and “Lazy” MAML for five-way-K-shot learning on

MiniImageNet. We vary K in {1, 5, 20, 50} and let the student run for k = 10, 15, 15, 20 steps,

respectively. Under the 1-shot and 5-shot settings, our approach is comparable to MAML, but it

significantly outperforms MAML for 20-shot and 50-shot classifications. This trend indicates that

more training data desires more steps of exploration for a task-specific model and hence magnifies

the benefit of our teacher-student scheme introduced to MAML.
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Figure 5.4: Mean Accuracy (%) for five-way K-shot classification on MiniImageNet.

5.3.1.5 “Lazy” MAML is less prone to over-fitting by memorization than MAML

The right panel of Figure 5.2 shows some 20-way-one-shot classification results on Omniglot when

we learn from non-i.id. tasks, i.e., by maintaining a global order of all training classes. This global

order creates a shortcut for meta-learning methods; they may memorize the order from the meta-

training tasks and fail to generalize to meta-test tasks [180]. We can see that the “lazy” teacher

boosts MAML by a large margin and outperforms TAML [71], and FOMAML indicating that it is
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less prone to over-fitting by memorization. A plausible reason is that the k = 15 steps taken by the

exploratory student make it harder to memorize than the one-step update in MAML or TAML.

5.3.1.6 Five-way-few-shot learning

We compare our approach with state-of-the-art meta-learning methods for five-way few-shot learn-

ing problems on four datasets. The results are shown in Tables 5.3 for MiniImageNet and Tiered-

ImageNet . For our own approach, we study both the MAML-style update to the meta-model (ours

(MAML), L13 in Algorithm 4) and the Reptile-style [122] update (ours (Reptile), L14 in Algo-

rithm 4) for MiniImageNet and TieredImageNet. Batch normalization with test data yields about

2% improvement over the normalization with the training data only, and we report the results of

both scenarios.

Table 5.3: Five-way few-shot classification accuracies (%) on MiniImageNet and TieredImageNet.
The ± shows 95% confidence intervals computed over 2000 tasks.

Method
BN w/ Mini-ImageNet TieredImageNet

Test 1-shot 5-shot 1-shot 5-shot

MAML [41] 7 46.21 ± 1.76 61.12 ± 1.01 49.60 ± 1.83 66.58 ± 1.78
MAML [41] 3 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 69.60 ± 1.73
Meta-Curvature [126] 3 48.83 ± 1.80 62.63 ± 0.93 50.30 ± 1.99 66.14 ± 0.95
iMAML [127] 3 49.30 ± 1.88 - - -
Ours (MAML) 3 48.26 ± 1.78 64.13 ± 1.90 51.03 ± 1.70 70.67 ± 1.72

FOMAML [41] 7 45.53 ± 1.58 61.02 ± 1.12 48.01 ± 1.74 64.07 ± 1.72
Reptile [122] 7 47.07 ± 0.26 62.74 ± 0.37 49.12 ± 0.43 65.99 ± 0.42
Meta-MinibatchProx [193] 7 47.81 ± 1.00 63.18 ± 1.00 49.97 ± 0.93 66.60 ± 0.91
Ours (Reptile) 7 48.14 ± 0.94 64.64 ± 0.92 51.15 ± 0.95 68.84 ± 0.90

FOMAML [41] 3 48.07 ± 1.75 63.15 ± 0.91 50.12 ± 1.82 67.43 ± 1.80
Reptile [122] 3 49.97 ± 0.32 65.99 ± 0.58 51.34 ± 0.4 68.73 ± 0.40
Meta-MinibatchProx [193] 3 50.08 ± 1.00 66.28 ± 0.98 53.71 ± 1.04 69.78 ± 0.95
Ours (Reptile) 3 51.50 ± 1.00 67.22 ± 0.97 54.41 ± 1.00 72.21 ± 0.94
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Table 5.4: Five-way few-shot classification accuracies (%) on Omniglot and CIFAR-FS. The ±
shows 95% confidence intervals computed over 1000 tasks.

Method
BN w/ Omniglot CIFAR-FS

Test 1-shot 5-shot 1-shot 5-shot

MAML [41] 3 98.70 ± 0.40 99.90 ± 0.10 56.50 ± 1.90 70.50 ± 0.90
iMAML [127] 3 99.16 ± 0.35 99.67 ± 0.12 - -

Reptile [122] 7 95.39 ± 0.09 98.90 ± 0.10 53.12 ± 1.34 69.40 ± 1.30
Ours (Reptile) 7 95.44 ± 0.57 98.92 ± 0.29 54.64 ± 1.30 70.56 ± 1.20

FOMAML [41] 3 98.30 ± 0.50 99.20 ± 0.20 55.6 ± 1.88 69.52 ± 0.91
Reptile [122] 3 97.68 ± 0.04 99.48 ± 0.06 57.50 ± 0.45 71.88 ± 0.42
Ours (Reptile) 3 98.20 ± 0.38 99.70 ± 0.16 59.36 ± 1.44 74.90 ± 1.28

It can be seen that our results are better than or comparable with those of the competing meth-

ods. In general, the improvements by our teacher-student scheme are more significant on 5-shot

settings than on 1-shot settings, verifying the trend in Section 5.3.1.2 that more training data can

better leverage the exploratory student in our method. Besides, ours (Reptile) outperforms ours

(MAML) probably for two reasons. One is that ours (Reptile) uses more than k shots of training

examples per class for a k-shot learning problem during meta-training, following the experiment

setup of Reptile [122]. The other is that the second-order gradients in ours (MAML) make the

training procedure less stable than Reptile. We hypothesize that a many-shot setting would be less

sensitive to both factors. Indeed, we verified this hypothesis by another five-way-50-shot learning

experiment with ours (Reptile), which yields 76.17 ± 0.32% on MiniImageNet and is lower than

78.54± 0.70 by ours (MAML).

The results on Omniglot and CIFAR-FS are reported in Table 5.4. We only report ours (Reptile)

due to its low computation cost. It can be seen that our results are better than or comparable with

those of the competing methods.
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5.3.1.7 Computational Analysis

In our evaluation, we also want to answer the following question empirically. How does the mem-

ory requirements of “Lazy” MAML compare with MAML?. Figure 5.5 shows the memory trade-

off for “Lazy” MAML and MAML on 5-shot 20-way MiniImageNet. “Lazy” MAML decouples

the dependency of inner and outer loop by teacher-student scheme which allows it to define a very

lightweight computation graph. The figure shows that the memory of the “Lazy” MAML doesn’t

exceed beyond 5 GB for many inner gradient steps while on the other hand, MAML reaches the

capacity of 12 GB after 5 inner steps.

Figure 5.5: Memory trade-offs with 4 layer CNN on 20-way-5-shot MiniImageNet task.

5.3.2 Long-Tailed Classification

Following the experiment setup in [25] and [73], we use the CIFAR-LT-100 dataset [25] to compare

our Algorithm 5 with several long-tailed recognition methods. [25] created multiple long-tailed
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datasets by removing training examples from CIFAR-100 [82] according to different power law

distributions. In each version, we compute an imbalance factor as the ratio between the sizes of

the head class and the tail class. We run k = 5 steps in the innermost loop of Algorithm 5.

Table 5.5: Test top-1 errors (%) of ResNet-32 on CIFAR-LT-100 under different imbalance set-
tings.

Method ↓ Imbalance factor→ 200 100 50 20

Standard cross-entropy training 65.16 61.68 56.15 48.86
Class-balanced cross-entropy training [25] 64.30 61.44 55.45 48.47
Class-balanced fine-tuning [24] 61.78 58.17 53.60 47.89
Learning to reweight [132] 67.00 61.10 56.83 49.25
Meta-weight [153] 63.38 58.39 54.34 46.96

Two-component weighting [73] 60.69 56.65 51.47 44.38
Lazy two-component weighting (ours) 58.67 53.46 48.24 43.68

Table 5.5 shows the test errors (%) under different imbalance factors. We can see that our teacher-

student scheme boosts the original two-component weighting approach [73] under all the imbal-

ance factors. The results are especially interesting in that Algorithm 5 is not exactly a meta-learning

method, though it shares the same framework as the gradient-based meta-learning due to the two

nested optimization loops. Besides, compared with the other competing methods, our results es-

tablish a new state of the arts for the long-tailed object recognition.

5.3.3 Meta-Attack

We evaluate the “lazy” meta-attack on MNIST [86] and CIFAR-10 [82]. We follow [34] for the

experiment setup and all training details, including the network architectures used to generate

gradients for input images, the attack models, meta-attack models, and evaluation metrics for both

the datasets, to name a few. The learning rates in the inner and outer loops are both 0.01. We let the
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student run k = 8 and k = 10 steps in the innermost loop for MNIST and CIFAR-10, respectively.

Table 5.6: Untargeted adversarial attack results on MNIST and CIFAR10. We achieve comparable
success rates and average `2 distortions with other methods by using a smaller number of queries.

Dataset / Target model Method Success Rate Avg. `2 Avg. Queries

MNIST / Net4

Zoo [16] 1.00 1.61 21,760
Decision boundary [2] 1.00 1.85 13,630
Opt-attack [18] 1.00 1.85 12,925
AutoZoom [163], 1.00 1.86 2,412
Bandits [68] 0.73 1.99 3,771

Meta-attack [34] 1.00 1.77 749
Lazy meta-attack (ours) 1.00 1.65 566

CIFAR10 / Resnet18

Zoo [16] 1.00 0.30 8,192
Decision boundary [2] 1.00 0.30 17,010
Opt-attack [18] 1.00 0.33 20,407
AutoZoom [163] 1.00 0.28 3,112
Bandits [68] 0.91 0.33 4,491
FW-black [15] 1.00 0.43 5,021

Meta-attack [34] 0.94 0.34 1,583
Lazy meta-attack (ours) 0.98 0.45 1,061

Table 5.6 shows the results of untargeted attack, namely, the attack is considered successful once it

alters the recognition network’s prediction to any incorrect class. In addition to the original meta-

attack [34], Table 5.6 also presents several existing blackbox attack methods for comparison. We

can see that meta-attack and our “lazy” meta-attack yield about the same success rates as the other

blackbox attacks. The second-to-the-right column is about the average `2 distortion an attacker

makes to an input, the lower the better. The rightmost column is about the number of queries an

attacker makes into the recognition network, the lower the better. The “lazy” meta-attack is able

to achieve comparable success rates and `2 distortion rates with the other methods yet by using a

smaller number of queries. Both meta-attack and its “lazy” version significantly outperform the

other methods in terms of the query efficiency, indicating the generalization capability of the meta-

attack model from known whitebox neural networks to unknown blackbox networks. Similar to
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untargeted attack, we achieve comparable results on success rate and average `2 distortion using a

smaller number of queries on a targeted attack as shown in Table 5.7.

Table 5.7: Comparison of several methods under targeted attack on MNIST and CIFAR-10. Similar
to the untargeted attack, we reduce the number of queries for meta attack.

Dataset / Target model Method Success Rate Avg. L2 Avg. Queries

MNIST / Net4

Zoo [16] 1.00 2.63 23,552
Decision Boundary [2] 0.64 2.71 19,951
AutoZoom [163] 0.95 2.52 6,174
Opt-attack [18] 1.00 2.33 99,661

Meta attack [34] 1.00 2.66 1,299
Lazy meta-attack (ours) 1.00 2.63 1,108

CIFAR10 / Resnet18

Zoo [16] 1.00 0.55 66,400
Decision Boundary [2] 0.58 0.53 16,250
AutoZoom [163] 1.00 0.51 9,082
Opt-attack [18] 1.00 0.50 121,810
FW-black [15] 0.90 0.73 6,987

Meta attack [34] 0.93 0.77 3,667
Lazy meta-attack (ours) 0.92 0.69 3,092
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CHAPTER 6: FACE DETECTOR ADAPTATION UNDER

UNSUPERVISED AND SEMI-SUPERVISED SETTING

Face detection is often the very first step in analyzing faces. Recent literatures [102, 121, 188, 179]

demonstrate the effectiveness of deep learning for face detection. However, as a massively data-

driven method, the deep learning based face detectors are inevitably biased accordingly to the

training data distribution. Collecting a comprehensive dataset for training can be highly expensive,

if not impossible. Besides, considering the limited computational budget in real-world applica-

tions, arguably, there is no single face detector that fits all scenarios.

To address the discrepancy between the data distribution in training and the deployment of the

face detector, it is highly desirable to have some adaptation mechanism built for the face detectors.

When there are labeled or unlabeled images available from a particular target domain, one can

adapt the detectors to achieve better performance in the target domain than the original ones do.

In this chapter, we propose a novel face detector adaptation approach [72] 1that is applicable when-

ever the target domain supplies many representative images, no matter they are labeled or not. It

entails some very interesting properties which we contend are missing or not explicitly discussed

in the previous works of adapting face detectors [70, 170, 87].

First of all, our approach is designed to avoid negative transfer, i.e., the adapted detector is sup-

posed to perform better than or at least on par with the original one in the target domain. It is worth

noting that the negative transfer frequently occurs in domain adaptation [21, 53, 107], being a no-

toriously hard problem to solve. Moreover, this problem is likely more severe in the face detector

1This chapter’s material has been accepted in 2018 in Conference on Computer Vision and Pattern Recognition
(CVPR 2018), “Deep Face Detector Adaptation without Negative Transfer or Catastrophic Forgetting” authored by
Muhammad Abdullah Jamal, Haoxiang Li and Boqing Gong.
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(1) (2) (3)

Figure 6.1: From left to right are face detection results on the FDDB dataset with a state-of-the-
art face detector (1) [133, 74], the same detector but adapted by our method to the target domain
(FDDB) with no data annotation (2), and with some data annotations (3).

adaptation since the room to improve the state-of-the-art face detectors is actually very small —

for the same reason, we argue that it is vital for a face detector adaptation algorithm to explicitly

take account of the negative transfer caveat.

Besides, we do not rely on the source data to conduct the adaptation, in a sharp contrast to most

domain adaptation methods for generic visual recognition [56, 138, 54]. Indeed, the face detector

adaptation is supposed to be done without accessing the source data because the source datasets

are often extremely large and contain sensitive identity information. We note that some existing

works on face detector adaptation [87] actually follow this protocol.

At last but not the least, we strive to prevent our approach from catastrophic forgetting or the so

called interference [55, 114, 113] with the source domain. In this sense, our method is analogous

to the well-known language model interpolation [76] where one extends the old language model
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by interpolating it with the one trained for a new domain such that, in expectation, the resulting

model performs well on all old domains as well the new domain. As such, our approach may also

open an alternative direction for training the face detectors, namely, one can progressively improve

the face detectors by growing the number of new domains without the need of keeping the images

of the old domains.

We adapt a deep learning based face detector by fine-tuning [139, 182] it using both labeled and

unlabeled images of the target domain. In order to avoid the negative transfer, we devise a loss

function to approximate the expected performance improvement from the old detector to the new

one. Since the hypothesis space — the set of networks specified by the weights — is the same

for the two detectors, to minimize the loss does not change the old detector unless it finds another

network that is expected to perform better than the old one in the target domain. While the expected

performance gain of a network is mainly estimated by labeled data, we also augment it by deriving

a closed form of the network’s worst possible performance degradation that can be estimated by

the unlabeled images of the target domain.

Our approach shares some spirits with AdaBoost [46] and residual learning [64] in the sense that

the cost function of interest is a residual with respect to the source detector. Arguably, the residual

loss is best captured by a residual detection score. Hence, we construct the target detector by an

offset to the source one. Jointly, the residual loss and the offset detection score alleviate the urge of

updating the weights of the old detector, effectively reducing the effect of catastrophic forgetting

about the source domain.

The main contributions of this paper include both the novel adaptation approach and the three key

properties of our method (cf. above) which we contend are missing from the previous works and

yet are supposed to be possessed by a good face detector adaptation algorithm.
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6.1 Approach

A face detector usually consists of two components: proposing candidate face regions from an

image and classifying or scoring the regions. In this work, we adapt deep convolutional neural

networks based face detectors to a given target domain by calibrating the second component, i.e.,

the classifiers. For simplicity, we express a deep face detector (e.g., [74]) as σ(wTF (x; θ)), where

σ(z) = (1 + exp(−z))−1 is the sigmoid function indicating how likely the region proposal x

out of an image is a face. The feature representations F (x; θ) of this region is extracted by a

convolutional neural network, where θ collects all the network parameters except the classifier

weights w. Given such a detector pre-trained in the source domain, our goal is to adapt it to the

target domain without using any source data and that the adapted face detector σ(w̃TF (x; θ̃)) is

not hurt by negative transfer or catastrophic forgetting.

In order to facilitate the adaptation to the target domain, we need the access to some representative

images of that domain. We envision that a real use case of the face detector adaptation entails many

unlabeled target images and yet only a small number or even none of labeled ones. Our approach

takes account of both scenarios.

6.1.1 Unsupervised Face Detector Adaptation

We first consider the unsupervised face detector adaption in which we have access to the proposed

regions {xt}Tt=1 of the target domain but not their labels — the labels {yt ∈ {0, 1}} are unknown.

The objective is to obtain a high-quality face detector σ(w̃TF (x; θ̃)) for the target domain using

the pre-trained face detector σ(wTF (x; θ)) and the unlabeled images of the target domain.

Our approach is originally motivated by the works on safe semi-supervised learning [95, 94, 108],

where the idea is to trust the classifier pre-trained from the labeled data as much as possible and to
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improve upon it only relatively. In our context, the relative performance change for any data point

(xt, yt), yt ∈ {0, 1}, of the target domain is

RESt(w̃, θ̃) := C
(
yt, σ(w̃TF (xt; θ̃))

)
− C

(
yt, σ(wTF (xt; θ))

)
, (6.1)

where C(y, ŷ) is a performance measure, which is implemented as the multi-class classification

accuracy in [94], top-k precision, F-score, and area under the ROC curve in [95], and log-likelihood

in [108]. We instead use the cross-entropy C(y, ŷ) = −y log ŷ−(1−y) log(1−ŷ) in this paper. This

choice seamlessly integrates it with the stochastic training procedure for deep neural networks.

When there are no labels available in the target domain, we find a robust target face detector that

improves upon the source one under the worst case scenario,

min
u, θ̃

λ

2
‖u‖22 + Et max

yt∈{0,1}
RESt(w + u, θ̃), (6.2)

where Et denotes the mean average 1
T

∑T
t=1. We introduce this notation to stress the fact that

the expected performance change from the old face detector to the adapted one can be unbiasedly

estimated by the mean average over the target examples. We overload the notation yt a little and

use the fact that the groundtruth labels are binary. We also decompose the classifier of the target

detector by w + u, where w are the parameters of the source detector’s classifier. This decom-

position is mainly for two reasons. First, we can interpret Eq. (6.1) as the residual between the

performances of the two face detectors. Arguably, this quantity is accordingly best captured by the

residual detection score between the two detectors. Hence, we re-parameterize the binary classifier

of the target face detector as w̃ = w + u. Second, notice that the `2 regularization over the offset

weights u effectively constrains the classifier (w̃) of the target face detector around that (w) of the

source detector. This prevents the classifier from shifting around, taxing less than otherwise over
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the network weights θ̃ for the overall target face detector to generate right predictions. Accordingly,

the resultant representations F (x; θ̃) do not significantly deviate from the original representations

F (x; θ) for the region proposal x of either source or target domain. In other words, the network

does not catastrophically forget the knowledge extracted from the source domain.

To fit problem (6.2) to the existing deep learning tools (e.g., Tensorflow), we first note that there is

an analytical solution to the inner maximization. Denote by at = σ((w+u)TF (xt; θ̃)), āt = 1−at,

bt = σ(wTF (xt; θ)), b̄t = 1− bt. We have the following,

max
yt∈{0,1}

RESt(w + u, θ̃), ∀t (6.3)

⇔ max
yt∈{0,1}

−yt log at − (1− yt) log āt

+yt log bt + (1− yt) log b̄t

(6.4)

⇒ yt = 1 if log at + log b̄t − log āt − log bt < 0

and yt = 0 otherwise.
(6.5)

Next, we substitute the above back to Eq. (6.2) which then reduces to the canonical minimization

problem and can be conveniently solved by programming the cost function using some off-shelf

deep learning tools.

Eq. (6.2) is interesting in a few ways. The residual term indicates the relative loss by the target

face detector with respect to the source detector. If, for the ease of discussion, we assume the

adapted face detector performs about the same on all the target examples, then the residual is large

only when the source face detector does a good job and correctly classifies the data point (xt, yt)
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— incurring small cross-entropy loss. The data points with small cross-entropy loss values by the

source detector would be penalized more, because of their relative large residuals, than the other

data in the optimization process. As a result, the new face detector is enforced to imitate the source

detector: if a data point is correctly classified by the source detector’s classifier, so should it be by

the target detector.

In our experiments, we initialize the weights of the target face detector (θ̃,w,u) by the source

detector (θ,w,0). Hence, after solving Eq. (6.2), the new detector gives rise to no higher loss than

the source face detector; the residuals are either negative or zero. As a result, there is no negative

transfer to the target domain in expectation. Moreover, since we seek to minimize the residual loss

for the worst possible label assignments (cf. maxyt in Eq. (6.2)), the obtained detector is not worse

than the source one (i.e., no negative transfer) for any label assignments to the region proposals

{xt}.

We note that the search space of the possible label assignments in Eq. (6.2) could be reduced by

imposing similar assumptions as in [70, 170, 87]. In particular, for the region proposals whose

prediction scores are high (low) by the source face detector, we may assign 1’s (0’s) to them. The

worst case label assignment would then be applied only to the regions of which the source detector

is unsure. We leave this to the future work.

6.1.2 Supervised Face Detector Adaptation

In the supervised face detector adaptation, we are given a small set of labeled face images of the

target domain {(xt, yt)}Tt=1 which is by itself insufficient for training a high-quality face detector.

Following Eq. (6.2), it is now natural to write out the objective function under the supervised
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setting as below,

min
u, θ̃

λ

2
‖u‖22 + Et RESt(w + u, θ̃). (6.6)

Note that the second cross-entropy term of Eq. (6.1) has no actual effect in the problem (6.6) —

the minima of (u, θ̃) remain the same if we remove that term from Eq. (6.6). However, we keep it

there for the ease of presentation.

6.1.3 Semi-supervised Face Detector Adaptation

Recall that we aim to adapt a pre-trained deep neural network based face detector to the target

domain that supplies many unlabeled images and possibly some labeled ones. Indeed, a real use

case of the face detector adaptation likely falls under this semi-supervised regime. In this case, we

initialize the target detector by copying the weights from the source detector, and then alternate

between the supervised and unsupervised adaptations in our training. In particular, we update the

target face detector twice in each iteration by the gradients of eq. (6.6) and eq. (6.2), respectively.

6.2 Experiments

Our approach is model-agnostic, in the sense that it is readily applicable to different types of face

detectors. In this section, we report extensive experimental results on two massively benchmarked

deep face detectors.
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6.2.1 Face Detectors and Source Domains

We experiment with two deep learning based face detectors: CascadeCNN [88] and Faster-RCNN [133,

74]. The CascadeCNN face detector is fast but extracts relatively weaker features while the Faster-

RCNN model runs slower due to its use of a bigger network and more discriminative features.

In particular, CascadeCNN is trained by 25,000 faces from the AFLW dataset [112]. The Faster-

RCNN face detector is trained using the training set of WIDER FACE dataset [179], which pro-

vides 32,203 images and 393,703 labeled faces with a high degree of variability in scale, pose,

occlusion, etc. Per the comparison experiments in [74], the open-sourced Faster-RCNN face de-

tector model is superior over 11 other top-performing detectors, all of which are published after

2015. Finally, it is interesting to note that both AFLW and WIDER FACE strive to cover a wide

spectrum of face appearance variations, making them effective sources to adapt from.

6.2.2 Target Domain

The FDDB [69] dataset is a popular face detection benchmark. It contains 2,854 images and a total

of 5,171 labeled faces. The images are randomly partitioned into 10 folds, of which we use the

first six as our training set, the seventh for validation, and the remaining three for testing. We also

evaluate our method on Caltech Occluded Faces in the Wild (COFW) dataset [13].

We claim that this choice — WIDER FACE or AFLW as the source domain and FDDB as the target

domain — well represents the real application scenarios of face detector adaptation. On the one

hand, there is a large training set in the source domain for us to learn a generic face detector that

performs very well on different testing sets. WIDER FACE relies on diverse data sources since

it employs Google and Bing to acquire the images and AFLW is a large-scale dataset collected

from Flicker. On the other hand, the target domain of FDDB images are relatively homogeneous,
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all sampled from the Yahoo! news website. They are mostly professional photos sharing some

common idiosyncrasies.

6.2.3 Evaluation Metrics

Both WIDER FACE and FDDB datasets have defined and released the code for standard evaluation

metrics. The Precision-Recall curve is used by WIDER FACE. FDDB employs the ROC curves of

discrete and continuous scores computed from a bipartite graph. We use their code to evaluate our

results in order to have direct comparison with existing methods.

6.2.4 Competing Methods

We compare our approach to the following competing baselines

• Source refers to the detectors trained from the original training data and is the starting point

for our method to fine-tune the neural network parameters.

• Fine-tuning [139] simply fine-tunes the models using the labeled data of the target domain,

if they are available, following the same way the detectors are trained in their source domains

yet with smaller learning rates.

• GP [70] is a Gaussian process based unsupervised face detector adaptation method which

uses the regions of high detection confidence — far from p = 0.5 — to update the detection

scores of the other regions.

• LWF [96] is a recent learning without forgetting (LWF) method that augments the conven-

tional cross-entropy loss with the knowledge distillation loss [65] such that the adapted face

detector preserves the response characteristics learned from the source domain.
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• GDSDA [5] introduces the generalized distillation [109] into semi-supervised domain adap-

tation.

• HTL [84] is a representative hypothesis transfer method that transfers knowledge from the

source domain to the target by augmenting the feature representations of the target domain.

• Gradient Reversal [48] is an effective method for the domain adaptation of deep neural

networks. The main idea is to learn representations to fail the classifier that predicts from

which domain a data point comes. Since it has to access the source domain data, it is actually

not fair to compare this method with the other baselines or ours. Nonetheless, we still include

its results in the FDDB experiment for reference.

6.2.5 Implementation Details

We freeze the first eight convolutional layers of the Faster-RCNN model for all the experiments.

We fine-tune all parameters of the last 48-net detection net in the CascadeCNN model. The vali-

dation set of the target domain is used to determine the hyper-parameters of all the methods. For

Faster-RCNN, we use λ = 1e-3 and the base learning rates 1e-4 and 5e-4 for the supervised and

unsupervised settings, respectively. Early stopping happens at the 5,000th iteration for the super-

vised experiment and the 6,000th for the unsupervised. For CascadeCNN, we set λ = 2 and the

base learning rate 1e-4 for both supervised and unsupervised settings. For the supervised case, we

fine-tune the model for 8,000 iterations with the base learning rate and another 4,000 iterations

with the learning rate of 1e-5. For the unsupervised, we fine-tune the model for 10,000 iterations

and divide the base learning rate by 10 at the 7,000th iteration. For all competing methods, the

validation sets are used to determine all the free parameters.
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Figure 6.2: Detection results comparison on FDDB under unsupervised (0 out of 6 folds labeled),
semi-supervised (3 out of 6 folds labeled), and supervised settings: our method generally outper-
forms all competing methods and does not suffer from negative transfer.
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• Fine-tuning [139]: For Faster-RCNN, we run the experiments for 7,000 iterations in total.

The base learning rate is 1e-4 in the first 4,000 iterations and then reduced to 1e-5 for the

remaining 3,000 iterations. For CascadeCNN, we fine-tune the model with the learning rate

of 1e-4 for 10,000 iterations and another 5,000 iterations with the learning rate of 1e-5.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400

Tr
ue

 p
os

itiv
e 

ra
te

Total False positives

1 Fold (Semi-supervised Adaptation)

Ours
Source

Fine-tune
Fine-tune+GP

GDSDA

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400

Tr
ue

 p
os

itiv
e 

ra
te

Total False positives

5 Folds (Semi-supervised Adaptation)

Ours
Source

Fine-tune
Fine-tune+GP

GDSDA

(a) FasterRCNN Detector Adaptation

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400

Tr
ue

 p
os

itiv
e 

ra
te

Total False positives

1 Fold (Semi-supervised Adaptation)

Ours
Source

Fine-tune
Fine-tune+GP

GDSDA

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80

Tr
ue

 p
os

itiv
e 

ra
te

Total False positives

5 Folds (Semi-supervised Adaptation)

Ours
Source

Fine-tune
Fine-tune+GP

GDSDA

(b) CascadeCNN Detector Adaptation

Figure 6.3: More detection results under semi-supervised settings with N = {1, 5} out of 6 folds
training images annotated. Combined with Figure 6.2, our method can generally bring additional
performance gains from additional annotated data.

• LWF [96]: For Faster-RCNN, we train the model for 8,000 iterations. The base learning

rate is set to 1e-4 for the first 6,000 iterations and then reduced to 1e-5 for the next 2000
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iterations. For CascadeCNN, we train the model for 15,000 iterations with the base learning

rate of 1e-4 and reduce it to 1e-5 at the 10,000th iteration. In both the experiments, the

learning rate for the last layer is 10 times the base learning rate of the other layers.

• GDSDA [5]: We train the Faster-RCNN, and CascadeCNN with a learning rate of 1e-4 for

8,000 iterations, and 12,000 iterations respectively.

• HTL [84]: We train the CascadeCNN using the learning rate 1e-4 for 10,000 iterations and

another 3,000 iterations using the learning rate 1e-5.

• Gradient Reversal [48]: We train the Faster-RCNN using the base learning rate of 1e-4 for

20,000 iterations and then reduce it to 1e-5 for the next 10,000 iterations. Since the training

sets of the source domain and the target domain are highly unbalanced, we alternatively take

one image from either set to train the Gradient Reversal.

6.2.6 Comparison Results

We compare our algorithm with other competing methods in this section. We evaluate the effec-

tiveness of all the methods by varying the number of labeled data from the target domain. More

specifically, all the methods have access to the 6 folds of training images for the adaptation, while

only N folds out of the 6 are labeled, N ∈ {0, 1, 3, 5, 6}. It is a fully unsupervised setting when

N = 0, a semi-supervised adaptation setting when 1 ≤ N ≤ 5, and a supervised adaptation setting

when N = 6. Note that not all the baseline methods can handle all the settings.

Figure 6.2 and Figure 6.3 together show the ROC curves of the discrete scores on FDDB for the

(a) CascadeCNN detector and (b) Faster-RCNN detector. When N = 0 (unsupervised adaptation),

most of the above-mentioned competing methods are not applicable any more. As shown in Fig-

ure 6.2, in this challenging setting, we observe GP cannot improve the pre-trained high-quality
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face detectors while our method still brings extra gains.

When N = 6, all the training images of the target domain are labeled (supervised adaptation),

we outperform all the competing methods when adapting the CascadeCNN detector. Even for the

high-quality FasterRCNN detector, our method gives rise to the largest improvement among all

the methods, including Gradient Reversal which takes advantage of the extra training data in the

source domain.

Under the semi-supervised setting, which is more realistic, our method achieves significant and

consistent improvement for both face detectors over the original Source detectors. With the addi-

tional results shown in Figure 6.32, varying N from 0 to 6, our method generally performs better

and better as more annotated data become available.

Overall, compared with Source models, our method does not cause negative transfer, while all the

other competing methods suffer from negative transfer to some extent excluding Gradient Reversal.

Figure 6.8 and Figure 6.9 show the ROC curves of the continuous scores on FDDB for the Faster-

RCNN and CascadeCNN. The left panels exhibit the curves of the Faster-RCNN and the right

panels show the curves for the CascadeCNN. For CasacadeCNN, our approach outperforms all

the competing methods in all the settings. For Faster-RCNN, our method can still boost the per-

formance under the supervised setting and under semi-supervised setting when N = 5. More

importantly, our approach does not incur negative transfer, i.e., the results are either better than or

about the same as the source detectors. It is actually worth pointing out that the annotations are

inconsistent between the FDDB dataset and the source where the detectors are trained. As a result,

the FDDB under-evaluates the adaptation methods.

2The scale of the horizontal axis of the top-right panel differs from the other panels of CascadeCNN. If we used
the same scale as the others instead, the fine-tuning results would be left out.
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In addition to the FDDB dataset, we additionally consider COFW [13] as the target domain here.

COFW provides 1,345 training faces and 507 testing faces and includes heavy occlusion and large

shape variations.

Figure 6.4 and Figure 6.5 show the ROC curves of both discrete and continuous scores on COFW

for both the Faster-RCNN and CascadeCNN face detectors under the supervised setting. We can

draw the same observation as on the FDDB dataset, that our method shows no negative transfer

as compared to other competing methods for both the Faster-RCNN and CascadeCNN detectors.

GDSDA is an exception among the competing methods and leads to no negative transfer for Cas-

cadeCNN (but not for Faster-RCNN).

6.2.7 Ablation Study

We investigate our proposed method by examining its ablated versions. Recall that our approach

is two-pronged. On the one hand, it uses the residuals in the cost function to explicitly prevent

negative transfer in terms of the cross-entropy loss. On the other hand, it re-parameterizes the

classifier of the target detector by w̃ = w + u, where w is the classifier weights of the source

detector.

Figure 6.6 shows that both components contribute to the performance improvement in our method.

The ROC curve of the source detector is included for reference. Clearly, we observe that the

two components mutually complement. Besides, removing the residual loss (Ours w/o resid-

ual loss) hurts our method more than directly optimizing the classifier weights w̃ without re-

parameterization (Ours w/o residual score).
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Figure 6.4: ROC Curves on COFW using FasterRCNN (supervised adaptation).
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Figure 6.5: ROC Curves on COFW using CascadeCNN (supervised adaptation).

6.2.8 No Catastrophic Forgetting

Finally, we evaluate the catastrophic forgetting in the domain adaptation context. After adapting

all competing methods to the target domain (FDDB), we evaluate their performance back to the
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Figure 6.6: Ablation Studies about our approach on FDDB (supervised adaptation)

(a) Easy Set (b) Medium Set (c) Hard Set

Figure 6.7: Evaluation of catastrophic forgetting on source domain after supervised adaptation to
target domain: detection results on validation set of WIDER FACE (Easy, Medium and Hard sets).

source domain (WIDER Face). We test on the validation set of the WIDER Face in our experiment.

Source refers to the one without adaptation and is thus with no forgetting at all.

As shown in Figure 6.10, it is not surprising to see that fine-tuning leads to severe forgetting about

the source domain. This observation is well-aligned with prior arts. After all, domain adaptation

can be seen as a special case of the sequential multi-task learning, under which previous studies

have shown that fine-tuning causes catastrophic forgetting [55, 97]. Both LWF and our methods
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maintain a reasonably good performance in the source domain compared with the Source detector.

LWF prevents forgetting about the source domain using a knowledge distillation loss, while we do

so by the residual loss coupled with the residual detection score. Thanks to the `2 regularization

over the offset vector u in the classifier of the adapted detector, there is no noticeable difference

between the new classifier (w + u) and that (w) of the source face detector. We test both classifiers

stacked over the network of the adapted detector and find that their corresponding curves almost

overlap, as shown in Figure 6.10. We also evaluate the catastrophic forgetting when the detectors

are adapted to COFW. Figure 6.10 shows the performance on the validation set of the WIDER Face

for Faster-RCNN. Our approach maintains a good performance in the source domain compared

with the original source detector.

6.2.9 More Qualitative Results

We show more qualitative results in Figure 6.11 and Figure 6.12. Our method is able to discard

some of the false positives from both the source detectors. We can also observe that our method is

able to detect the true positives that have not been detected by the source detectors.
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Figure 6.8: Continuous score results on the FDDB under unsupervised, supervised, and semi-
supervised settings (3 out of 6 folds of training images annotated). (Left: Faster-RCNN, Right:
CascadeCNN)
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Figure 6.9: Continuous score results under the semi-supervised settings with N = {1, 5} out of 6
folds training images annotated on the FDDB dataset. (Left: Faster-RCNN, Right: CascadeCNN)
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(a) Easy Set (b) Medium Set (c) Hard Set

Figure 6.10: Evaluation of catastrophic forgetting on source domain after supervised adaptation
to target domain (COFW): detection results on the validation set of WIDER FACE (Easy, Medium
and Hard sets).

Figure 6.11: Qualitative results of adapting Faster-RCNN. The image on the left of each pair
shows the detection results by the source model and the right image shows our method in the
supervised adaptation setting.
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Figure 6.12: More qualitative results, from left to right are face detection results on FDDB dataset
with a CascadeCNN (1), the same detector but adapted by our method to the target domain
(FDDB) with no data annotation (2), and with some data annotation (3).
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CHAPTER 7: CONCLUSION AND FUTURE WORK

The success in computer vision tasks are largely dependent on large scale human curated datasets.

But there are learning regimes where data collection and annotating them are difficult. In this

dissertation, we studied and proposed different algorithms to learn beyond human curated datasets.

In Chapter 3, we proposed a novel paradigm of Task Agnostic Meta-Learning (TAML) algorithms

for few-shot learning to train a meta-learner unbiased towards a variety of tasks before its ini-

tial model is adapted to unseen tasks. Both an entropy-based TAML and a general inequality-

minimization TAML applicable to more ubiquitous scenarios are presented. We argue that the

meta-learner with unbiased task-agnostic prior could be more generalizable to handle new tasks

compared with the conventional meta-learning algorithms. The experiment results also demon-

strate the TAML could consistently outperform existing meta-learning algorithms on both few-shot

classification and reinforcement learning tasks.

In Chapter 4, we made two major contributions to the long-tailed visual recognition. One is the

novel domain adaptation perspective for analyzing the mismatch problem in long-tailed classifi-

cation. While the training set of real-world objects is often long-tailed with a few classes that

dominate, we expect the learned classifier to perform equally well in all classes. By decomposing

this mismatch into class-wise differences and the discrepancy between class-conditioned distribu-

tions, we uncover the implicit assumption behind existing class-balanced methods, that the training

and test sets share the same class-conditioned distribution. Our second contribution is to relax this

assumption to explicitly model the ratio between two class conditioned distributions.

Following these, in Chapter 5, we proposed a teacher-student scheme for the gradient-based meta-

learning algorithms to allow them run more steps of inner updates to task-specific models while

being immune to the risk of vanishing or exploding gradients. The student explores the tasks-
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specific model’s feasible space up to many steps, and the “lazy” teacher takes a one-step “leap”

towards the region explored by the student. As a result, the teacher defines a lightweight com-

putation graph and yet it takes advantage of the adequately explored checkpoints by the student.

This approach is generic; we apply it to different problems, include few-shot learning, long-tail

recognition, and meta-attack and various meta-learning methods.

Finally, in Chapter 6, we revisited the face detector adaptation problem under the new context of

deep learning based face detectors. The approach we proposed offers three key properties which

we contend are missing or not explicitly discussed in the existing face detector adaptation works.

In short, the adaptation of face detectors is supposed to be executed in the absence of the source do-

main’s data, with little negative transfer, and incurring no catastrophic forgetting about the source

domain. Our approach explicitly accounts for all the requirements by two residuals: a residual loss

to avoid negative transfer and a residual classifier to alleviate catastrophic forgetting.

7.1 Future Work

I’m interested in developing models that don’t generally rely on human annotated large datasets,

but can also learn representations without human supervision. There are three areas that are critical

to this goal and natural next steps: first, improving the general meta-learning algorithms; second,

improving self-supervised learning in few-shot learning in downstream tasks, and third, incorpo-

rating meta-learning in general domain adaptation problem.

7.1.1 Self-Supervised Learning

To avoid the excessive cost of human annotation, and collecting large-scale datasets, a promis-

ing sub-class of unsupervised visual learning called self-supervised learning [92, 30] has been
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proposed recently. It requires unlabeled data to define a pretext task from which it can encode

high-level semantic representation that are useful for downstream tasks. One can think of self-

supervision as a prior for downstream tasks in fine-tuning stage. However, the fine-tuning becomes

in-efficient when there are few labeled examples. On the other hand, meta-learning has been par-

ticularly successful in learning better prior or initialization for future fine-tuning. I’m interested

in understanding self-supervised learning in this setting and wants to answer couple of questions.

1) Can we train a model in a self-supervised manner via meta-learning? 2) Meta-learning usually

requires many training tasks for generalization. Can we generate these tasks via self-supervised

learning from unlabeled data? I believe this is an important direction towards making the machine

less reliable on labeled data.

7.1.2 Domain Adaptation

DA is an adaptation problem in which a goal is to learn a model from labeled source domain that

can perform well on unlabeled or labeled data in target domain. The whole adaptation scenario

can be analyzed from the meta-learning perspective. We can formulate meta-learning as a way

of adaptation from seen classes in training set to unseen classes in test set where unseen classes

have few examples. It has been successfully useful for few-shot learning recently where it learns

an initialization for unseen tasks for faster adaptation. The question that I’m interested in is; can

meta-learning be used as initialization for general domain adaptation? But, there are two problems

that we must find solution for 1) Meta-learning computational graph is intractable for domain

adaptation 2) In unsupervised domain adaptation, there is no access to the labels for the target

domain whereas, meta-learning needs some supervision to define a learning loss for minimizing

the meta-objective.
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