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Privacy
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ABSTRACT

Differential privacy has taken the privacy community by storm.
Computer scientists developed this technique to allow researchers to
submit queries to databases without being able to glean sensitive
information about the individuals described in the data. Legal
scholars champion differential privacy as a practical solution to the
competing interests in research and confidentiality, and policymakers
are poised to adopt it as the gold standard for data privacy. It would
be a disastrous mistake.

This Article provides an illustrated guide to the virtues and
pitfalls of differential privacy. While the technique is suitable for a
narrow set of research uses, the great majority of analyses would
produce results that are beyond absurd-average income in the
negative millions or correlations well above 1.0, for example.

The legal community mistakenly believes that differential
privacy can offer the benefits of data research without sacrificing
privacy. In fact, differential privacy will usually produce either very
wrong research results or very useless privacy protections.
Policymakers and data stewards will have to rely on a mix of
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approaches-perhaps differential privacy where it is well suited to the
task and other disclosure prevention techniques in the great majority of
situations where it isn't.
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INTRODUCTION

A young internist at the largest hospital in a midsized New
England city is fretting. She has just diagnosed an emergency room
patient with Eastern Equine Encephalitis Virus (EEEV). The
diagnosis troubles the internist for a number of reasons. Modern
medicine offers neither a vaccine nor an effective treatment.'
Moreover, the internist remembers that a colleague diagnosed a
different patient with EEEV three weeks ago and knows that there
was a third case a few weeks before that. The disease is transmitted
by mosquitos and is not communicable between humans. However, an
influx of cases would suggest that the local mosquito population has
changed, putting the city's inhabitants at risk. So, the internist is
fretting about whether the three cases that have come through the
hospital in the last six weeks merit a phone call to the state and
national centers for disease control.

1. See Eastern Equine Encephalitis, Centers for Disease Control & Prevention,
http://www.cdc.gov/EasternEquineEncephalitis/index.html (last updated Aug. 16, 2010).
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To aid her decision, the internist decides to query a state
health database to see how many cases of the rare disease have
occurred in her city in each of the last eight years. Recently, the state
health database proudly adopted differential privacy as a means to
ensure confidentiality for each of the patients in the state's database.

Differential privacy is regarded as the gold standard for data
privacy. 2  To protect the data subjects' sensitive information,
differential privacy systematically adds a random number generated
from a special distribution centered at zero to the results of all data
queries. The "noise"-the random value that is added-ensures that
no single person's inclusion or exclusion from the database can
significantly affect the results of queries. That way, a user of the
system cannot infer anything about any particular patient. Because
the state health department is also concerned about the utility of the
research performed on the database, it has chosen the lowest level of
noise recommended by the founders of differential privacy. That is to
say, the state has chosen the least privacy-protecting standard in
order to preserve as much utility of the dataset as possible.

When the internist submits her query, the database produces
the following output:3

Query = Count of Patients
Diagnosed with EEEV within the City

Year N Year N

2012 837.3 2007 5,019.3

2011 211.3 2006 868.6

2010 -794.6 2005 -2,820.6

2009 -1,587.8 1 2004 2,913.9

2008 2,165.5 1 1_1_ _

What is the internist to make of this data?

2. See Raghav Bhaskar et al., Noiseless Database Privacy, in ADVANCES IN
CRYPTOLOGY- ASIACRYPT 2011: 17TH INTERNATIONAL CONFERENCE ON THE THEORY AND
APPLICATION OF CRYPTOLOGY AND INFORMATION SECURITY 215, 215 (Dong Hoon Lee & Xiaoyun
Wang eds., 2011); Samuel Greengard, Privacy Matters, 51 COMMC'NS OF THE ACM, Sept. 2008, at
17, 18; Graham Cormode, Individual Privacy vs Population Privacy: Learning to Attack
Anonymization, in KDD'11 Proceedings of the 17th ACM SIGKDD INTERNATIONAL CONFERENCE
ON KNOWLEDGE DISCOVERY AND DATA MINING 1253, 1253 (2011). But see Fida K. Dankar &
Khaled El Emam, Practicing Differential Privacy in Health Care: A Review, 6 TRANSACTIONS ON
DATA PRIVACY 35, 51-60 (2013) (noting theoretical limitations that differential privacy must
address before it can be widely adopted for health care research).

3. This is an actual instantiation of the differential privacy technique. The noise in
this exercise was randomly drawn after setting E = ln(3) and allowing for 1,000 queries to the
database. For a description of the technique, see infra Part I.B.
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If the internist is unfamiliar with the theory behind differential
privacy, she would be baffled by the respones. She would be especially
puzzled by the negative and fractional values since people do not tend
to be negative or partial.4 The internist is likely to conclude the
responses are useless, or worse, that the system is seriously flawed.

If the internist happens to be familiar with the theory behind
differential privacy, she would know that there is a very good
chance-to be precise, a 37% chance-that the system is adding over
1,000 points of noise in one direction or the other. However, even
knowing the distribution of noise that is randomly added to each cell,
the internist has no hope of interpreting the response. The true
values could be almost anything. It could be that the city has
consistently diagnosed dozens of patients a year with EEEV,
rendering her experience little reason for alarm. Or it could be that
the true values are all zero, suggesting that there is reason for
concern. The noise so badly dwarfs the true figures that the database
query is a pointless exercise.

This hypothetical is a representative example of the chaos that
differential privacy would bring to most research database systems.
And yet, differential privacy is consistently held up as the best
solution to manage the competing interests in privacy and research. 5

Differential privacy has been rocking the computer science
world for over ten years and is fast becoming a crossover hit among
privacy scholars and policymakers.6 Lay descriptions of differential
privacy are universally positive. Scientific American promises that "a
mathematical technique called 'differential privacy' gives researchers
access to vast repositories of personal data while meeting a high
standard for privacy protection." 7 Another journal, Communications
of the ACM, describes differential privacy in slightly more detailed and
equally appealing terms:

Differential privacy, which first emerged in 2006 (though its roots go back to 2001),
could provide the tipping point for real change. By introducing random noise and
ensuring that a database behaves the same-independent of whether any individual or

4. See MICROSOFT, DIFFERENTIAL PRIVACY FOR EVERYONE 4-5 (2012), available at
http://www.microsoft.com/en-us/downloadldetails.aspx?id=35409 ("Thus, instead of reporting one

case for Smallville, the [query system] may report any number close to one. It could be zero, or
(yes, this would be a valid noisy response when using DP), or even -1.").

5. See Bhaskar et al., supra note 2, at 215; Cormode, supra note 2, at 1253-54;
Greengard, supra note 2, at 18.

6. Google Scholar has indexed over 2,500 articles on the topic. Google Scholar,
www.scholar.google.com (last visited Apr. 12, 2014) (describing a search for "Differential
Privacy").

7. Erica Klarreich, Privacy By the Numbers: A New Approach to Safeguarding Data,
Sci. AM. (Dec. 31, 2012), http://www.scientificamerican.comlarticle/privacy-by-the-numbers-a-
new-approach-to-safeguarding-data.
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small group is included or excluded from the data set, thus making it impossible to tell
which data set was used-it's possible to prevent personal data from being compromised
or misused. 8

Legal scholars have also trumpeted the promise of differential
privacy. Felix Wu recommends differential privacy for some scientific
research contexts because the query results are "unreliable with
respect to any one individual" while still making it sufficiently reliable
for aggregate purposes.9 Paul Ohm explains differential privacy as a
process that takes the true answer to a query and "introduces a
carefully calculated amount of random noise to the answer, ensuring
mathematically that even the most sophisticated reidentifier will not
be able to use the answer to unearth information about the people in
the database."10 And Andrew Chin and Anne Klinefelter recommend
differential privacy as a best practice or, in some cases, a legal
mandate to avoid the reidentification risks associated with the release
of microdata. 11

Policymakers have listened. Ed Felten, the chief technologiest
for the Federal Trade Commission, praises differential privacy as "a
workable, formal definition of privacy-preserving data access. '12 The
developers of differential privacy have even recommended using the
technique to create privacy "currency," so that a person can
understand and control the extent to which their personal information
is exposed. 13

These popular impressions give differential privacy an
infectious allure. Who wouldn't want to maximize database utility
while ensuring privacy?

The truth, of course, is that there is no simple solution to the
eternal contest between data privacy and data utility. As we will
show, differential privacy in its pure form is a useful tool in certain

8. Greengard, supra note 2, at 18.
9. Felix T. Wu, Defining Privacy and Utility in Data Sets, 84 U. COLO. L. REV. 1117,

1139-40 (2013).
10. Paul Ohm, Broken Promises of Privacy: Responding to the Surprising Failure of

Anonymization, 57 UCLA L. REV. 1701, 1756 (2010). Ohm acknowledges that differential privacy
techniques add significant administration costs, and also risks denying the researcher an
opportunity to mine the raw data freely to find useful patterns. Id. These are external critiques.
Ohm does not present the internal critique of differential privacy theory that we develop here.
See id.

11. Andrew Chin & Anne Klinefelter, Differential Privacy as a Response to the
Reidentification Threat: The Facebook Advertiser Case Study, 90 N.C. L. REV. 1417, 1452-54
(2012).

12. Ed Felten, What Does it Mean to Preserve Privacy?, TECH@FTC (May 15, 2012, 4:47
PM), http://techatftc.wordpress.com/2012/05/15/what-does-it-mean-to-preserve-privacy.

13. See Frank D. McSherry, Privacy Integrated Queries: An Extensible Platform for
Privacy-Preserving Data Analysis, in SIGMOD'09: PROCEEDINGS OF THE 2009 ACM SIGMOD
International Conference on Management of Data 19, 25 (2009); Klarreich, supra note 7.
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narrow circumstances. Unfortunately, most research occurrs outside
of those circumstances, rendering a pure form of differential privacy
useless for most research. To make differential privacy practical for
the vast majority of data research, one would have to diverge
significantly from differential privacy's pure form.

Not surprisingly, this is the direction in which advocates of
differential privacy have gone. 14 It is the only way to go if one harbors
hopes for general application of the technique. But the only way to
convert differential privacy into a useful tool is to accept and adopt a
range of compromises that surrender the claim of absolute "ensured"
privacy. In other words, a useful version of differential privacy is not
differential privacy at all. It is a set of noise-adding practices
indistinguishable in spirit from other disclosure prevention techniques
that existed well before differential privacy burst onto the scene.
Thus, differential privacy is either not practicable or not novel.

This Article provides a comprehensive, but digestible,
description of differential privacy and a study and critique of its
application. Part I explains the age-old tension between data
confidentiality and utility and shows how differential privacy strives
to thread the needle with an elegant solution. To this end, Part I
recounts a brief history of the development of differential privacy and
presents a successful application of differential privacy that
demonstrates its promise.

Part II explores the many contexts in which differential privacy
cannot provide meaningful protection for privacy without sabotaging
the utility of the data. Some of the examples in this section are lifted
directly from the differential privacy literature, suggesting, at least in
some cases, that the proponents of differential privacy do not
themselves fully understand the theory. The most striking failures of
differential privacy (correlations greater than 1, average incomes in
the negative millions) track some of the most general, common uses of
data. Part II demonstrates clearly that differential privacy cannot
serve as the lodestar for the future of data privacy.

Part III conducts a postmortem. What went wrong in the
applications of differential privacy described in Part II? Looking
forward, how can we know in advance whether differential privacy is a
viable tool for a particular research problem? The answers provide
insight into the limitations of differential privacy's theoretical
underpinnings. These limitations can point researchers in the right
direction, allowing them to understand when and why a deviation

14. See Bhaskar et al., supra note 2, at 215-16; Cynthia Dwork & Adam Smith,
Differential Privacy for Statistics: What We Know and What We Want to Learn, 1 J. PRIVACY &
CONFIDENTIALITY 135, 139 (2009).
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from the strict requirements of differential privacy is warranted and
necessary. We also identify and correct some misinformed legal
scholarship and media discussion that give unjustified praise to
differential privacy as a panacea.

The Article concludes with a dilemma. On one hand, we praise
some recent efforts to take what is good about differential privacy and
modify what is unworkable until a more nuanced and messy-but
ulitimately more useful-system of privacy practices are produced.
On the other hand, after we deviate in important respects from the
edicts of differential privacy, we end up with the same disclosure risk
principles that the founders of differential privacy had insisted needed
to be scrapped. In the end, differential privacy is a revolution that
brought us more or less where we started.

I. WHAT Is DIFFERENTIAL PRIVACY?

Protecting privacy in a research database is tricky business.
Disclosure risk experts want to preserve many of the relationships
among the data and make them accessible. 15 This is a necessary
condition if we expect researchers to glean new insights. However, the
experts also want to thwart certain types of data revelations so that a
researcher who goes rogue-or who was never really a researcher to
begin with-will not be able to learn new details about the individuals
described in the dataset. How to preserve the "good" revelations while
discarding the "bad" ones is a puzzle that has consumed the attention
of statisticians and computer scientists for decades. 16

When research data sets are made broadly available for
research purposes, they usually take one of two forms.1 7 Sometimes

15. See George T. Duncan & Sumitra Mukherjee, Optimal Disclosure Limitation
Strategy in Statistical Databases: Deterring Tracker Attacks through Additive Noise, 95 J. OF THE
AM. STAT. ASS'N 720, 720 (2000); Krishnamurty Muralidhar et al., A General Additive Data
Perturbation Method for Database Security, 45 MGMT. SCI. 1399, 1399-1401 (1999);
Krishnamurty Muralidhar & Rathindra Sarathy, Data Shuffling-A New Masking Approach for
Numerical Data, 52 MGMT. SCI. 658, 658-59 (2006) [hereinafter Muralidhar & Sarathy, Data
Shuffling]; Rathindra Sarathy et al., Perturbing Nonnormal Confidential Attributes: The Copula
Approach, 48 MGMT. SCI. 1613, 1613-14 (2002); Mario Trottini et al., Maintaining Tail
Dependence in Data Shuffling Using t Copula, 81 STAT. & PROBABILITY LETTERS 420, 420 (2011).

16. "Statistical offices carefully scrutinize their publications to insure that there is no
disclosure, i.e., disclosure of information about individual respondents. This task has never been
easy or straightforward." I. P. Fellegi, On the Question of Statistical Confidentiality, 67 J. AM.
STAT. ASS'N 7, 7 (1972).

17. These two popular forms do not exhaust the possibilities for data release, of course.
Sometimes government agencies release summary information, such as a table, taken from more
detailed data. These releases are neither microdata nor interactive data. See JACOB S. SIEGEL,
APPLIED DEMOGRAPHY: APPLICATIONS TO BUSINESS, GOVERNMENT, LAW AND PUBLIC POLICY 175

(2002).
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the disclosure risk expert prepares and releases
microdata-individual-level datasets that researchers can download
and analyze on their own. Other times, the expert prepares an
interactive database that is searchable by the public. An outside
researcher would submit a query or analysis request through a user
interface that submits the query to the raw data. The interface
returns the result to the outside researcher (sometimes after applying
a privacy algorithm of some sort). The techniques for preserving
privacy with these alternative research systems are quite different,
not surprisingly. The debate over how best to prepare microdata is
lively and rich.' 8

The public conversation about interactive databases, in
contrast, is underdeveloped. 19 Outside of the technical field, hopeful
faith in differential privacy dominates the discussion of query-based
privacy. 20 This Part first explains the problem differential privacy
seeks to solve. It is not immediately obvious why a query-based
research system needs any protection for privacy in the first place,
since outside researchers do not have direct access to the raw data;
but even an interactive database can be exploited to expose a person's
private information. Next, we demystify differential privacy-the
creative solution developed by Microsoft researcher Cynthia
Dwork-by working through a successful example of differential
privacy in action.

A. The Problem

Six years ago, during a Eurostat work session on statistical
data confidentiality in Manchester, England, Cynthia Dwork, an
energetic and highly respected researcher at Microsoft, made a
startling statement. 21 In a presentation to the world's statistical

18. One popular form of microdata release is the "de-identified" public database. De-
identification involves the removal of all personally identifiable information and, sometimes, the
removal of other categories of information that can identify a person in combination. HIPAA, for
example, identifies 18 variables as personally identifiable information. 45 C.F.R.
§ 164.514(b)(2)(i)(A)-(R). Disclosure experts have long understood that de-identification cannot
guarantee anonymization, but this subtlety is lost in news reporting. For a discussion of
reidentification risk and its treatment in the popular press, see Jane Yakowitz, Tragedy of the
Data Commons, 25 HARv. J.L. & TECH. 1, 36-37 (2011).

19. Cf. Cynthia Dwork, A Firm Foundation for Private Data Analysis, 54 COMMC'NS OF
THE ACM 86, 89 (2011) (discussing the limited way the public uses interactive databases).

20. See Chin & Klinefelter, supra note 11, at 1452-53; Greengard, supra note 2, at 18;
Ohm, supra note 10, at 1756-57; Wu, supra note 9, at 1137-38; Klarreich, supra note 7.

21. Cynthia Dwork, Presentation before the Eurostat Work Session on Statistical Data
Confidentiality: Differentially Private Marginals Release with Mutual Consistency and Error
Independent of Sample Size (Dec. 17-19, 2007), available at http://www.unece.org/
fileadminlDAMlstats/documents/2007/12/confidentialitywp. 19.e.ppt).

[Vol. 16:4:701708
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privacy researchers, Dwork announced that most, if not all, of the data
privacy protection mechanisms currently in use were vulnerable to
"blatant non-privacy."22

What Dwork meant by "blatant non-privacy" comes from a
2003 computer science publication by Irit Dinur and Kobbi Nissim. 23

Dinur and Nissim showed that an adversary-that is, a malicious
false researcher who wishes to expose as much personal information
as possible by querying a database-could reconstruct a binary
database (a database containing only responses consisting of "0"s and
"I"s) if they had limitless opportunity to query the original database,
even if noise of magnitude ±E is added to the results of the queries, as
long as E is not too large. 24 Dinur and Nissim defined "non-privacy" as
a condition in which an adversary can accurately expose 99% of the
original database through queries.25

To understand how such an attack works, suppose a database
contains the HIV status of 400 patients at a particular clinic. The
adversary knows that E = 2, meaning that the noise added or
subtracted is no greater than 2. The adversary knows that for any
responsehe receives from the system, the true value is within +2 of
the response. Now assume that the adversary issues the query, "How
many of the first 20 individuals in the database are HIV positive?"
For the sake of argument, let us assume that the true answer to this
query is 5. And assume that the system adds -2 to the true answer
and responds with 3. Now the adversary asks: "How many of the first
21 individuals in the database are HIV positive?" Assume that the
twenty-first individual is HIV positive, and the true answer to this
query is 6. The system adds +2 to the true answer and responds with
8. From the response to the first query, the adversary knows that the
true answer could not possibly be greater than 5. From the response
to the second query, the adversary knows that the true answer could
not possibly be less than 6. So, he can correctly conclude that: (a) the

22. Id. (emphasizing this point on slide 24 of the accompanying PowerPoint
presentation); see also Cynthia Dwork, Ask a Better Question, Get a Better Answer: A New
Approach to Private Data Analysis, in Database Theory - ICDT 2007: 11th International
Conference 18, 18-20 (Thomas Schwentick & Dan Suciu eds., 2006) (describing the Dinur-Nissim
"blatant non-privacy" vulnerabilities and proposing differential privacy as a solution).

23. Irit Dinur & Kobbi Nissim, Revealing Information While Preserving Privacy, in
Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems 202, 204, 206 (2003).

24. To be precise, if the largest amount of noise added is E, and if E is less than the
number of data subjects, Dinur and Nissim showed that an adversary who could make unlimited
numbers of queries could reconstruct a database so that the new database differed from the old
database in no more than 4 E places. Thus, whenever E <n1400, the adversary will be able to
construct a database that is accurate in 99% of the values, satisfying "blatant non-privacy." Id. at
205-07.

25. Id. at 204.
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twenty-first individual must be HIV positive, and (b) there are 5 HIV
positive cases among the first 20 individuals.

There are 2400 possible queries of this sort, and if an adversary
used all of them, he could correctly reconstruct 99% of the HIV
statuses. Dinur and Nissim also showed that even under more
realistic scenarios where the number of queries is bounded, and even
when the noise added occasionally exceeds E, an adversary can still
recreate a rather accurate database as long as E is not too large and
the value of E is known. 26

These results provide important theoretical foundations for
disclosure risk because they show that moving from a microdata
release to a query system does not automatically assure privacy. A
query system must be designed in a thoughtful way. However, from a
practical perspective, the consequences of the Dinur-Nissim discovery
are not as serious as they seem at first glance. For instance, if the
selection of the noise function, E, is large enough, it can thwart an
adversary's attempt to construct a nearly accurate database no matter
how many queries he submits. 27

But the most helpful limitation is the natural bound on the
number of queries that a researcher can submit. Even for small
databases, like the HIV database described above, an adversary would
not be able to issue all of the queries necessary to attempt a full
database reconstruction because of the sheer number of queries
required. A database with 400 subjects would require 2400 queries. To
give a sense of scale, 2332.2 is a googol, which is greater than the
number of atoms in the observable universe. 28

In addition to these natural limitations of the adversary, a
query system may limit the total number of queries issued to the
database or impose other restrictions when responding to queries. 29

The data producer can also withhold information about the amount of
noise added. Once an adversary is constrained in the number of query
submissions, an appropriate selection of noise can virtually guarantee

26. Conditioned on the fact that E is no larger than 4In. Id. at 206.

27. For example, E = 50 would avoid blatant non-privacy for a small database with 1000
subjects because the reconstructed database would be off in 4 x 50 = 200 positions, rendering the
database correct in only 80% of the values.

28. See John D. Cook, There Isn't a Googol of Anything, Endeavour (Oct. 13, 2010),
http://www.johndcook.com/blog/2010/10/13/googol; Googol, Wolfram Math World,
http://mathworld.wolfram.com/Googol.html (last visited Jan. 29, 2014) (discussing the size of a
google).

29. For example, theoretically nothing prevents a researcher from querying "what is the
HIV status of subject #2502?" See Klarreich, supra note 7 (noting that differentially private data
release algorithms allow adversaries to ask "practically any question about a database," but
"blur[s]" private information with noise).

[Vol. 16:4:701710
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that a reconstruction attack will not work. 30 The Dinur-Nissim attack
would also fail if the administrator were to change the values in the
original database and use the modified database to respond to all
queries.

31

Reconstruction attacks are not the only privacy threats that
concern data providers. If an adversary can accurately figure out one
highly sensitive attribute of a single data subject, such as an HIV
diagnosis, the revelation would be disconcerting, even if the rest of the
original database remained unknown. Meanwhile, data providers
might shrug at a 99% accurate candidate database constructed by an
"adversary" who guessed that everybody in the database had a
negative HIV status.32

Thus, disclosure risk experts have long understood that the
best approach to protecting privacy is one that is contextually
sensitive.3 3  Privacy risks fall disproportionately on data subjects
whose demographics or other characteristics make them unusual.3 4

Disclosure risk experts traditionally employ a range of techniques to
protect outlier data subjects and highly sensitive attributes. Most of
the time, for the sake of simplicity and ease of application, a database
query system will add some random noise to the results generated by
a particular query, and that noise usually falls within some bounded
range. 35 That way, the utility of the response is not swamped by the
noise added at the end. The disclosure limitation community was

30. Since a realistic adversary who is "bounded" or constrained by his computational
ability will be thwarted by noise that is greater than 4Jn, large databases require comparatively
less noise to overcome the reconstruction attack. For example, a database with 100 subjects
would require noise up to ±10 to avoid such an attack (10% of the total number of subjects), but a
database with 1,000,000 requires noise only up to ±1000 (a tenth of one percent of the total
number of subjects). See Dinur & Nissim, supra note 23, at 206.

31. Since the response to all queries are provided from the modified database, the best
the adversary can hope to do is to reconstruct the modified database but not the original
database.

32. A 99% accurate reconstruction is much more impressive when the binary outcomes
are approximately equally likely (each outcome has probability approximately 50%). See Cynthia
Dwork, The Analytic Framework for Data: A Cryptographic View, Microsoft Research 5 (2013),
available at http://cusp.nyu.edu/wp-content/uploads/2013/06/chapterl lv2.pdf.

33. See Tore Dalenius, Towards a Methodology for Statistical Disclosure Control, 5
STATISTISK TIDSKRIF1 429, 432-33 (1977) (explaining that the context of the data refers to "[t]he
frame: {O}F;" "[t]he data associated with the objects in the frame: I; C; X, Y, ... ,Z;" "[t]he
statistics released from the survey: S;" and "[t]he extra-objective data: E' and noting that "[i]f the
release of the statistics S makes it possible to determine the value DK more accurately than is
possible without access to S, a disclosure has taken place").

34. See Krishnamurty Muralidhar & Rathindra Sarathy, Security of Random Data
Perturbation Methods, 24 ACM TRANSACTIONS ON DATABASE SYS. 487, 488 (1999); Rathindra
Sarathy & Krishnamurty Muralidhar, The Security of Confidential Numerical Data in
Databases, 13 Info. Sys. Res. 389, 393 (2002).

35. See, e.g., Lawrence H. Cox & John A. George, Controlled Rounding for Tables with
Subtotals, 20 ANNALS OPERATIONS RES. 141, 141 (1989); Dalenius, supra note 33, at 441.
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interested in developing alternatives to these common noise-adding
practices when Dwork made her provocative presentation.3 6

The holistic approach was unsatisfying to Dwork. She
criticized the popular approaches for being "syntactic" and context
driven.37 Instead, Dwork insisted that the practical compromises were
not necessary. One could design a query system that avoids even the
theoretical risks of query attacks, or, rather, allows the theoretical
risks only within a predefined range of tolerances.

B. The Birth of Differential Privacy

Differential privacy does two important things at once. First, it
defines a measure of privacy, or rather, a measure of disclosure-the
opposite of privacy.38 And second, it allows data producers to set the
bounds of how much disclosure they will allow. 39 For Dwork, if, based
on a query result-or a series of results-an adversary can improve
his prediction of a person's attributes, then any such improvement in
the prediction represents a disclosure.40

In its purest form, this definition is too strong to be usable in
settings where disclosure is strictly prohibited.41  It obliterates
research utility. Suppose, for example, an adversary has external
knowledge that a particular person, Claire, is female. Now, any
research describing gender differences along various dimensions
would improve his predictions of Claire's attributes. While his best
guess at her income would have been the average US income in the
absence of better information, his prediction would be improved
(though still not good) by learning that women earn less, on average,
than men do. If disclosure were defined this broadly, every published
statistic would violate privacy.

Dwork avoided this absurdity by proposing an elegant solution:
differential privacy ensures that the presence or absence of an

36. See, e.g., Muralidhar et al., supra note 15, at 1399; Muralidhar & Sarathy, Data
Shuffling, supra note 15, at 658; D.B. Rubin, Discussion of Statistical Disclosure Limitation, 9 J.
Official Stat. 461, 461 (1993).

37. Cynthia Dwork, An Ad Omnia Approach to Defining and Achieving Private Data
Analysis, in PRIVACY, SECURITY, AND TRUST IN KDD-PINKDD 2007, at 1, 1 (F. Bonchi et al. eds.,
2008).

38. See id. at 5-6; Dwork, A Firm Foundation for Private Data Analysis, supra note 19,
at 91; Cynthia Dwork, Differential Privacy, in 2 Proceedings of the 33rd International
Conference on AUTOMATA, LANGUAGES AND PROGRAMMING 1, 8-9 (Michele Bugliesi et al. eds.,
2006).

39. Dwork, An Ad Omnia Approach to Defining and Achieving Private Data Analysis,
supra note 37, at 6; Dwork, Differential Privacy, supra note 38, at 9.

40. See Dwork, An Ad Omnia Approach to Defining and Achieving Private Data
Analysis, supra note 37, at 6; Dwork, Differential Privacy, supra note 38, at 4.

41. See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 89-90.
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individual does not significantly affect the responses that the system
provides. 42 More precisely, differential privacy disclosure occurs when,
for any individual, the probability that a query will return a particular
result in the presence of that individual in the database differs from
the probability that a query would return that same result in the
absence of that individual.43 The measure of the disclosure for a
particular query to a particular individual is the ratio of those two
probabilities-the probabilities that the query system would return
the result with, and then without, the individual's data.4 4 Ideally, this
ratio would be one, allowing no disclosure at all. But since this is
impossible to achieve if the responses are to be useful, the data
curator can select some small level of disclosure that society is willing
to tolerate. The closer to one the ratio is, the less disclosure has taken
place.45

For a query system to satisfy differential privacy, the system
must add noise that ensures it only returns results such that the
disclosure for everybody stays within certain predetermined bounds.46

Consider this example: Suppose a data producer had made
differential privacy commitments, promising that the ratio of
probabilities for all possible people and all possible values of return
results would never be less than 1/2 or more than 2. And suppose that
the database contains the wealth for the year 2010 for all Americans
whose primary residence is in the state of Washington. An adversary
submits the query, "How many people have more than $1 million in
wealth?"

Suppose the true answer is 226,412, and one of those
millionaires is Bill Gates. 47 The query system will apply some noise
randomly drawn from a distribution, but what should that
distribution be? Well, it must be drawn such that it does not diverge
too greatly from the distribution of responses if the database didn't
include Bill Gates. Removing Bill Gates from the database, the
answer to the query is 226,411, and noise from the same distribution
is randomly drawn to apply to that number instead. The query
system must use a distribution that ensures that when we look at the
probability of all possible returned results based on the true result or

42. Id.
43. Id. at 89.
44. Id.

45. See id. at 87.
46. See id.
47. In 2010, the true figure was around 226,000. John Cook, Millionaires to Double in

Washington, but Will that Spark Angel Investment?, GEEKWIRE (May 4, 2011, 2:04 PM),
http://www.geekwire.com/201 1/number-millionaires-double-washington-spark-angel-investment.
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the result with a record deleted, the distributions are not too far apart.
Figure 1 plots the distribution that has this quality.

Figure 1-Distribution of Query Response if the
True Answer Contains, or Does Not Contain, Bill Gates

226,405 226,411 226.412 226,418

Reflect for a moment on the reasons that we want the query
system to produce similar results whether Bill Gates is or is not in the
query system. Most people know perfectly well that Bill Gates lives in
Seattle and is a billionaire, so they would not be surprised to discover
that he is included in the count of millionaires. But suppose an
eccentric adversary knew the identity of every millionaire in
Washington except Bill Gates. Suppose also that he knew that
everybody except the 226,411 millionaires and Bill Gates were not
millionaires. The only thing he does not know is whether Bill Gates
has at least $1 million. If this adversary is clever, and if the data
producer had used bounded noise, the adversary might be able to
improve his inference that the noise centers around 226,411
(suggesting Gates is not a millionaire) or around 226,412 (suggesting
that he is a millionaire). 48 Differential privacy ensures that the

48. For instance, the data producer may have added noise by selecting from random

integer values in the range ±10. Hence, if the response to the query is 226,401, the adversary

I
I
I
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system does not produce answers that behave very differently under
either case.

Mathematically, the promise of differential privacy looks like
this:

Given a database X, and a hypothetical database X* that differs
from X by the deletion or addition of just one record, differential
privacy ensures that 49

1 P(Response = riX)
e- - P(Response = rjX*) -

The data producer gets to choose E, and the choice of E will
determine how much disclosure (as defined by Dwork and described
above) the system will tolerate. The reason for the use of e
(2.71828... ) is that by setting up the differential privacy promise
this way, it corresponds precisely with a distribution curve already
well known to statisticians-the Laplace distribution curve.5 0 Laplace
distribution has precisely the quality we are looking for: when the
curve is shifted over a certain amount, the ratio of probabilities for the
original and shifted curve stay within a predesignated boundary.

To employ differential privacy, a data curator would do the
following:

(1) Select -. The smaller the value, the greater the privacy.
(2) Compute the response to the query using the original data.

Let a represent the true answer to the query.
(3) Compute the global sensitivity (Af) for the query. Global

sensitivity is determined by answering the following: "Assume that
there are two databases X and X* which differ in exactly one record
and that the answer to this query from database X is a and that from
database X* is a*. For any two such databases X and X* in the
universe of all possible databases for the queried variable, what is the
maximum possible absolute difference between a and a*?''51 According

knows that Bill Gates is not a millionaire; if the response to the query is 226,422, the adversary
knows that Bill Gates is a millionaire.

49. Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 90;
Rathindra Sarathy & Krishnamurty Muralidhar, Some Additional Insights on Applying
Differential Privacy for Numeric Data, in LECTURE NOTES IN COMPUTER SCIENCE: PRIVACY IN
STATISTICAL DATABASES 210, 211 (Josep Domingo-Ferrer & Emmanouil Magkos eds., 2011)
[hereinafter Sarathy & Muralidhar, Additional Insights on Applying Differential Privacy].

50. The probability density function of a Laplace random variable is f(x) = e b
51. In order to be able to compute Af, a necessary step when implementing differential

privacy, the data must have strict upper and lower bounds. Rathindra Sarathy & Krishnamurty
Muralidhar, Evaluating Laplace Noise Addition to Satisfy Differential Privacy for Numeric Data,
4 TRANSACTIONS ON DATA PRIVACY 1, 4 (2011) [hereinafter Sarathy & Muralidhar, Evaluating
Laplace Noise]; Sarathy & Muralidhar, Additional Insights on Applying Differential Privacy,
supra note 49; Larry Wasserman & Shuheng Zhou, A Statistical Framework for Differential
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to Dwork and Smith, "The sensitivity essentially captures how great a
difference (between the value of fon two databases differing in a
single element) must be hidden by the additive noise generated by the
curator."52 If the noise can protect this difference, then of course, all
other, smaller, differences will also be protected. This is the key to
differential privacy's protection.

(4) Generate a random value (noise) from a Laplace
distribution with mean = 0 and scale parameter b = Af/E. Let y
represent the randomly generated noise.

(5) Provide the user with response R = a + y. The noise added
(Y) is unrelated to the characteristics of the actual query (number of
observations in the database or query and the value of the true
response) and is determined exclusively by Af and E.53

Observe this as applied to the example of the number of
millionaires in Washington. The data producer wanted the ratio of
responses to stay within 1/2 and 2 when a person's information was
included or removed from the database. Therefore, the data producer
selected E = ln(2).54 The global sensitivity here has to be one. Since the
query asks for a headcount, the greatest difference any single person
can make to the count is one.

We know that the true answer to the query is 226,412. We do
not know what answer the data query system will produce because it
takes the true answer and adds some randomly chosen noise from a
Laplace distribution. But we can look at the range of responses such a
system produces. Figure 2 plots the chance of seeing any particular
response.

Privacy, 105 J. Am. Stat. Ass'n 375, 378-79 (2010) (noting that "it is difficult to extend
differential privacy to unbounded domains").

52. Dwork & Smith, supra note 14, at 140.
53. "[O]ur expected error magnitude is constant, independent of n." Dwork, A Firm

Foundation for Private Data Analysis, supra note 19, at 92.
54. Surely you remember from precalculus class that et" (2) = 2, right?
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Figure 2-Number of Millionaires in Washington State
e = In (2) Af = 1

26404 26406 26408 26410 26412 26414 26416 26418 26420

As you can see, differential privacy works quite well here. The
query system produces results that tend to provide utility-the
responses are very unlikely to be too far off from the true answer-and
the system also insures against disclosure. This is a true win-win.

C. The Qualities of Differential Privacy

Much of this Article is devoted to illuminating the defects of
differential privacy, but we do not want the reader to walk away
without an understanding of its virtues. As the millionaires example
demonstrates, Dwork's measure of disclosure makes the issue of
auxiliary information easy to handle and potentially very privacy
protecting. Even if the adversary knows everything in the database
except one particular piece of information, differential privacy assures
that the responses from the database-in the presence or absence of
this record-are indistinguishable within a factor of e-. If we have
confidence that this factor is small enough to be considered safe, then
we need not speculate about what a user's motives are or how much
information he already has. He can be a super-adversary, knowing
almost everything, and his efforts will still be frustrated.
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Differential privacy also protects against possible inferences
based on a person's absence from a database. 55 A person's absence
might reveal something very important. To see why this is so, return
to the example of the income data for Washington residents. This
time let us assume that the adversary's target is Larry Page, who does
not live in Washington-and thus would not be in the database. If the
last piece of information that the adversary needed about Larry Page
was whether or not he lived in Washington, and the adversary also
knew all of the 226,412 millionaires in Washington, then the fact that
noise is not centered around 226,413 would reveal to the adversary
that Larry Page does not live in Washington, and a disclosure would
occur.

Dwork consciously made some overt choices and sacrifices
when she developed differential privacy. For one thing, as Dwork
herself has noted, microdata releases cannot be prepared in a way
that strictly complies with differential privacy, so the standard applies
only to query systems. 56 Also, much rides on the query designer's
selection of s. The smaller it is, the more privacy protecting, but also
the more utility damaging since the noise added will tend to be
larger. 57 Therefore, we must rely on the judgment of the data
producer to select an appropriate E that strikes the right bargain
between privacy and utility.58 This selection is all the more difficult
because, whatever selection the data producer chooses for the system's
overall privacy protections (E), he must also decide how many queries
researchers are allowed to make. Because the effects of successive
queries on disclosure are cumulative, the data producer will have to
divide his choice of E by the anticipated number of queries. 59

55. See supra notes 42-43 and accompanying text.
56. The definition of differential privacy "trivially rules out the subsample-and-release

paradigm discussed: For an individual x not in the dataset, the probability that x's data is
sampled and released is obviously zero; the multiplicative nature of the guarantee ensures that
the same is true for an individual whose data is in the dataset." Dwork, A Firm Foundation for
Private Data Analysis, supra note 19, at 91. Thus, the very release of microdata violates DP
requirements. In addition, the application of differential privacy is a function of the query
submitted, and since microdata is released so that a person may use it to issue any and all
queries, the promises of differential privacy cannot be kept. Sarathy & Muralidhar, Evaluating
Laplace Noise, supra note 51, at 3. To meet the differential privacy standard, even if it were
possible, the data producer would have to add so much noise that the database would be
meaningless. Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 92.

57. See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91-92.
58. As we will demonstrate later in this Article, a data curator who wants to preserve

even a small amount of data utility will have to choose a fairly large s, allowing a generous
tolerance for disclosure. See discussion infra Part III.D.

59. To understand why this is so, let's revisit the Bill Gates example. The adversary

knows that 226,411 individuals have more than a million dollars in personal wealth. Issuing the
query "How many individuals in Washington State have more than a million dollars?" may
result in a response that has twice the probability that the true answer is 226,411 compared to
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Finally, in defining disclosure as she does, Dwork implicitly
rejects other definitions of disclosure that would disclose families or
groups. 60 Dwork ensures that an individual is not distinguishable
from the results of a query, but she does not build in protections
against revelations for families or subgroups. 61 What differential
privacy can promise is that "the ability of an adversary to inflict harm
(or good, for that matter)-of any sort, to any set of people-should be
essentially the same, independent of whether any individual opts in
to, or opts out of, the dataset. 62 For most research applications, this
distinction between individuals and groups make sense.6 3 After all, a
research study finding that smoking causes cancer says something
about every person who smokes-it allows an adversary to predict
with better accuracy whether a particular smoker (whether they were
in the research database or not) has cancer. But the adjustment to the
adversary's prediction about that particular smoker would be based on
group phenomena and not on individualized information about this
particular smoker. 64

Nevertheless, some data producers may be concerned about
family and group disclosures. Some group disclosures-like whether a
family has a congenital disease-might be more important than
protecting against the theoretical possibility that somebody might not

the probability that the true answer is 226,412. The adversary can also issue the additional
query "How many millionaires live in the 98039 zip code?," which happens to be Bill Gates's zip
code. Jeanne Lang Jones, The Sound's Wealthiest Zip Codes, PUGET SOUND Bus. J. (Feb. 6, 2005,
9:00 PM), http://www.bizjournals.com/seattle/stories/2005/02/07/focusl.html. Since the adversary
has information on all millionaires in Washington State, we have to assume that he also knows
all the million dollar income earners (other than Bill Gates) who live in this zip code. The
response to this query may result in a response that, as in the previous query, suggests that the
probability that Bill Gates is a millionaire is twice as likely as Bill Gates not a millionaire. Since
the Laplace noise has been added independently, taken together, these two results provide the
adversary with the assurance that the probability Bill Gates is a millionaire is four times as
likely as the probability that he is not a millionaire. The privacy specification for the two queries
combined is thus ln(4) = 2 x In(2)= 2E (twice the original E we had set). In general, if the
adversary is allowed to issue m queries and the privacy assurance is set to E for each query, then
for all mm queries combined, the privacy assurance is only mE (remember that a small - provides
more privacy). If we wish to limit the disclosure level to E for all mm queries combined, it would
be necessary to set the disclosure level for each query to be (E/M). Dwork, A Firm Foundation for
Private Data Analysis, supra note 19, at 92.

60. See, e.g., Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 89.
61. See infra Part III.E.
62. Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91.
63. See, e.g., Wu, supra note 9, at 1168-69.
64. Justin Brickell & Vitaly Shmatikov, The Cost of Privacy: Destruction of Data-Mining

Utility in Anonymized Data Publishing, in KDD '08 PROCEEDINGS OF THE 14TH ACM SIGKDD
INT'L CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING 70, 71 (2008) ("Sensitive
attribute disclosure occurs when the adversary learns information about an individual's sensitive
attribute(s). This form of privacy breach is different and in-comparable to learning whether an
individual is included in the database, which is the focus of differential privacy."); see also Wu,
supra note 9, at 1121-23 (further clarifying the difference between research-based and data-
based disclosures).
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know that Bill Gates lives in Washington. If so, they will have to rely
on techniques beyond differential privacy.

II. STUNNING FAILURES IN APPLICATION

All database query systems serve the purpose of providing
reasonably accurate information. Research results are the raison
d'etre for the query system in the first place. Inaccurate responses can
be useless. In some cases, they can be positively harmful. Privacy is
trivially easy to achieve if the data producer has no minimum
standards for response accuracy. Responding to all queries with "0"
would do the trick. Yet to facilitate useful research, maintaining
reasonable accuracy has to be a priority. Unfortunately, differential
privacy has great difficulty performing under most realistic conditions.
The illustrations in this Part show that a data producer who wishes to
comply with differential privacy will almost always have to choose
between adding so much Laplace noise that the query results are
ludicrous or adding so little noise that the dataset is left vulnerable to
attack.

There are exceptions-the Washington millionaires example
from the previous part is one of them. In Part III, this Article will
explain when differential privacy can work. But first, let us examine
how differential privacy can quickly go off the rails. As in most
illustrations of differential privacy, we assume that the curator or
administrator of the database allows for only one query to the
database. This assumption is completely unrealistic since thousands
(or perhaps millions) of queries may be issued to the database. 65

When the database receives many queries, the privacy afforded is
diminished by each individual query.6 6 We will consider this issue in
more detail in Part III. The assumption of a single query presents
differential privacy in the best possible light. Considering multiple
queries means that the noise added will increase as a direct multiple
of the number of queries, making matters much worse. 67

65. See Drew Olanoff, Zuckerberg on Building a Search Engine: Facebook Is Pretty
Uniquely Positioned, at Some Point We'll Do It, TECHCRUNCH (Sept. 11, 2012),
http://techcrunch.com/2012/09/1 1/zuckerberg-we-have-a-team-working-on-search (stating that
Facebook, for example, does over a billion queries a day).

66. See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 92
("Given any query sequence fl, .. f, s-differential privacy can be achieved by running K with

noise distribution Lap(F_-, ) on each query, even if the queries are chosen adaptively, with

each successive query depending on the answers to the previous queries.").
67. See infra Part III.D for a discussion of the multiple queries problem.
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A. The Average Lithuanian Woman

One of the most frequently cited examples to justify the need
for differential privacy is also, in our view, one of the most misguided.
Dwork presents this example as she contemplates the disclosure risk
from a database that includes the heights of Lithuanian women:

Finally, suppose that one's true height is considered sensitive. Given the auxiliary
information "[Alan] Turing is two inches taller than the average Lithuanian woman,"
access to the statistical database teaches Turing's height. In contrast, anyone without
access to the database, knowing only the auxiliary information, learns much less about
Turing's height. 68

The idea is that even individuals who are not represented in
the database stand to suffer a privacy violation. 69 Therefore, to set up
the problem, we assume that (1) Alan Turing's height is not known to
the public; (2) the height of the average Lithuanian woman is
available only to those who have access to the query database; and (3)
the auxiliary information that Turing is two inches taller than the
average Lithuanian woman is known to the adversary.

This is an odd hypothetical. After all, in order to create the
auxiliary information that "Turing is two inches taller than the
average Lithuanian woman," the creator of the information must
know both Turing's height and the height of the average Lithuanian
woman. This would have to be Turing himself or somebody privy to
his sensitive height information; but then, how did they know the
height of Lithuanian women?

Even if a data curator is determined to protect height
information, this particular style of auxiliary information falls outside
the set of risks that differential privacy is designed to reduce. 70 The
meat of the sensitive information is contained in the auxiliary
information. The auxiliary information is the disclosure-it is just
communicated in reference to some external fact.71

In any case, let us humor the hypothetical. What would
differential privacy tell the curator of a database about the height of
Lithuanian women to do in order to protect the privacy of Alan
Turing-and others? Let us follow the steps laid out in Part I.

68. Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 90. The
example has been repeated in other works, sometimes using Terry Gross instead of Alan Turing.
See, e.g., Dwork & Smith, supra note 14, at 136.

69. See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 90-91.
70. See Wu, supra note 9, at 1137-38. Consider the following example. Suppose Turing

declares: 'My salary is ten times the zip code of the White House." Would publication of the
White House's address violate Turing's privacy?

71. See Wu, supra note 9, at 1143-44. Felix Wu analogizes to the notions of cause-in-
fact versus proximate cause. Disclosure of the external fact is a cause, but it is not a cause-in-
fact. Id. at 1137-38.
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1. Select E

First, the curator of the database containing the height of
Lithuanian women must decide on the value of E (the acceptable level
of disclosure). The curator must make a judgment call on how far off
the probability distributions are allowed to be when the database
does, and does not, include a particular person. Dwork has suggested
that E is often in the order of 0.01 or 0.1, "or in some cases, In 2 or In
3."72 Since the primary objective in this exercise is to prevent
disclosure, we should use a fairly high privacy standard, setting
E = 0.1. (Remember, the smaller the E, the greater the noise).

The query "What is the height of the average Lithuanian
woman" is actually two queries rolled into one because it requires two
different pieces of information: the number of Lithuanian women and
their total height. Further, since E = 0.1 and the response involves
two different queries, for each query, we will set -q = 0.05.

2. Compute the Response to the Query Using the Original Data

According to Statistics Lithuania, the population of Lithuania
in 2012 was just over 3 million, with females accounting for
approximately 1.6 million.73 The average height of Lithuanian women
is 66 inches. 74

3. Compute the Global Sensitivity (Af) for the Query

We must determine global sensitivity for both the count of
Lithuanian women and the sum of their heights. The absence or
presence of an individual will change the number of Lithuanian
woman by exactly one and hence 1f = 1. But how about the sum of
the height query? The largest difference in the sum of heights
between any two databases that differ in one record would occur when
one database contains the tallest living person and the other does not.
The difference in the total height between the two databases would
equal the height of the tallest living person. The height of the tallest
person living in the world today is 99 inches (8'3"), so 1f for the sum of
the height query is 99.

72. Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91.
73. See Official Statistics Portal, Stat. Lith. (Apr. 9, 2014), http://osp.stat.gov.lt/

enltemines-lenteles19.
74. See Average Female Height by Country, AVERAGEHEIGHT.CO,

http://www.averageheight.co/average-female-height-by-country (last visited Feb. 5, 2014).
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4. Generate a Random Value (Noise) from a Laplace Distribution with
Mean = 0 and Scale Parameter b = Af/E

Based on the information worked out above, the Table provides
the original answers, the noise added, and the response to a query
operating on the entire population of Lithuanian women.

Table 1-Response to Query on Average Height
Over Database of Lithuanian Women

Eq = 0.05

Laplace Noise Noise Added Response
True values Af Low High

(0.01) (0.99) Low High
# of

Lithuanian 1,603,014 1 -78 78 1,602,936 1,603,092
Women
Total

Height 105,798,924 99 -7,746 7,746 105,791,178 105,806,670
(inches)
Average
Height 66 65.99 66.01
(inches)

Because this query analyzes over one million people, the large
n keeps the Laplace noise from drowning out the true signal. Thus,
the low estimate of average height is within 0.02" of the high estimate
for average height. Anyone who knows that Turing is 2" taller than
the average Lithuanian woman will have no trouble concluding that
he is 68" tall, even after the data curator adopts the precautions of
differential privacy.

However, the decision to adopt differential privacy to protect
everyone (including Turing and the world's tallest person), whether or
not they are in the database, comes at a very high cost in other
contexts. What if the adversary knew that Turing was 2" taller than
the average woman in the small Lithuanian town of Smalininkai
(population 621, of whom 350 are women)? Or what if the adversary
knows Turing is 2" taller than the average employed woman in
Smalininkai? Now, to protect the possibility of disclosure for Turing
(as well as the world's tallest person), the query system must allow the
possibility of inventing a land of 30-foot-tall women. It also may
produce tiny towns with people measuring less than 1" tall. Tables 2
and 3 display the range of results for average heights of these smaller
subpopulations, using the same differential privacy parameters we set
before.
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Table 2-Response to Query on Average Height of
Smalininkai Women Over Database of Lithuanian Women

Eq = 0.05
Noise Noise Added

True Laplace Response
values Low High Low High

(0.01) (0.99)
# of

Smalininkai 350 1 -78 78 272 428
Women

Total Height 23,100 99 -7,746 7,746 15,354 30,846
(inches)

Average
Height 66 35.9 113.5
(inches)

Table 3-Response to Query on Average Height of Employed
Smalininkai Women Over Database of Lithuanian Women

Eq = 0.05
eNoise Noise Added

True Af Laplace Response
values Low High

(0.01) (0.99) Low High
# of

Employed 120 1 -78 78 42 198
Smalininkai

Women
Total Height 7,920 99 -7,746 7,746 174 15,666(inches)

Average
Height 66 0.88 375.1
(inches)

Notice that the distributions of noise that the equation adds to
the count and total heights in Tables 2 and 3 are identical to the
distributions shown in Table 1. This should not be surprising, since
the shape of the noise distribution is determined solely by the values
of -q and Af. These values did not change since we still have to
protect the world's tallest person. However, while the noise was
relatively small as applied to the entire female population of
Lithuania, the same noise quickly overwhelms the true values when
taking the averages over smaller subpopulations.

One could rationalize that smaller subgroups need more noise
to protect the confidential information. However, research databases
often rely on randomly selected subsamples of the population to avoid
the significant costs of surveying every person. The database applies
the exact same distribution of noise to an unknown, random
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subsample of the population. So, if a world census allowed
researchers to query average heights on a randomly selected sample of
120 Lithuanian women, the results would look just as bizarre as the
ones reported in Table 3.

Matters would be much worse if we assume that the curator
decides to respond to several hundred or thousands of queries. The
noise currently added is large enough to overwhelm the true answer;
with one thousand queries, the noise added to comply with differential
privacy standards would increase a thousand fold!75

B. Averages of Variables With Long Tails

Differential privacy has the potential to radically distort
averages of variables (like height) that are normally distributed, but
the distortion is even worse on variables like income that have a
skew-that is, where some members of the population have values
that are very distant from the median. For instance, while the median
family income in the United States is just under $53,000,76 a few
hedge fund operators like George Soros have income exceeding $1
billion.77 Scholars often refer to these distant values to as the "long
tail" of the distribution.

Booneville, Kentucky, is a small and struggling town. 78 Its
population is just over 100, and the median household income is just
above the poverty line. 79  Suppose the town decided to make a
database available for public research as part of a new transparency
initiative designed to inspire research on public welfare and the
prevention of poverty. Under normal circumstances, one might
counsel the town to include only a random subsample of residents and
to join forces with other similar towns so that a data user might not be
able to discern the precise town in which the data subjects live. There
may be other precautions too, based on the context and nature of the
data. But in this hypothetical scenario, the town has opted instead to
rely on differential privacy. After all, one of the core strengths of

75. See infra Part IIJ.D for a discussion of the queries problem.
76. Selected Economic Characteristics: 2007-2011 American Community Survey 5-Year

Estimates, US Census Bureau, http://factfinder2.census.gov/faces/tableservicesjsflpages/
productview.xhtml?pid=ACS11 5YR DPO3 (last visited Jan. 26, 2014).

77. Louise Story, Top Hedge Fund Managers Do Well in a Down Year, N.Y. TIMES, Mar.
24, 2009, http://www.nytimes.com/2009/03/25/business/25hedge.html.

78. See Selected Economic Characteristics: Booneville City, Kentucky, 2007-2011
American Community Survey 5-Year Estimates, US Census Bureau,
http://factfinder2.census.gov/faces/nav/jsf/pages/searchresults.xhtml (search for "American
Community Survey" and "Booneville city, Arkansas"; then show results from 2011) (last visited
Feb. 5, 2014).

79. See id.
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differential privacy is that the methods of masking query responses
are completely independent of the size and nature of the Booneville
data-the town can have mathematical certainty of meeting privacy
standards regardless of the particular features of its town.80

What happens when a researcher queries the average income
of Booneville residents? In this case, income is the confidential
variable; we do not want an adversary to be able to tell something
about his target-either about his income or using his income-based
on what he learns from the response to the query. In particular, the
town would need to ensure that the adversary would not be able to
rule out that his target-a Booneville resident-is a billionaire. After
all, when large values are included in an analysis of the mean, the
outlier has an outsized effect on the analysis. So a reported mean that
roughly matches the incomes of the rest of the Booneville population
would suggest that the last person in the sample is not a billionaire.
Also, the town might need to ensure that an adversary who knows
everything about George Soros except where he lives is not able to rule
out Booneville as George Soros's hometown. Thus, even if the highest
income among Booneville residents is $50,000, the probability of any
particular response coming back from the query needs to be not so far
off from the probability that that response would come back if George
Soros lived in Booneville.81 That is the promise of differential privacy.
Unfortunately, this privacy promise also means that the response is
likely to be useless.

Now, we will work through the application following the
instructions we provided in Part I.

1. Select E

First, the town must decide how much disclosure it is willing to
tolerate and will have to allocate this disclosure among all the queries
it issues to this database. For simplicity we will assume that the town
will use E = 0.50 for this particular query.8 2

80. See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91.
81. The fact that everyone knows with practical certainty that no one in the subset

earned $1 billion is irrelevant; the response distribution should be constructed in such a manner
that $1 billion income is feasible in this subset. See Dwork & Smith, supra note 14, at 137.

82. Note that this selection is less differential privacy-protecting, and thus more utility-
preserving, than our last example.
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2. Compute the Response to the Query Using the Original Data

Suppose, for this illustration, the true per capita income for
Booneville residents is $23,426 (which is the value reported by the US
Census Bureau's FactFinder web tool for 2007-11).83

3. Compute the Global Sensitivity (Af) for the Query

As we saw with the example of Lithuanian women, this query
actually involves two separate global sensitivities (sum of income and
count of people), but we will take a shortcut by dividing the global
sensitivity for income by the number of data subjects responsive to the
query.8 4  In this case, only 59 Booneville residents were in the
workforce according to FactFinder.85

When it comes to income, the global sensitivity is very large. It
is the difference between the highest-paid man in the world and an
unemployed man. For the sake of illustration, we will assume that
the highest income is $1 billion and the lowest is $0. Thus, the global
sensitivity is $1 billion.8 6

4. Generate a Random Value (Noise) from a Laplace Distribution with
Mean = 0 and Scale Parameter b = Af/e

Now comes the fun part-the selection of noise to add to the
true answer ($23,426). A Laplace distribution randomly selects noise,
but the reason we went through all the work of determining the global
sensitivity and the value of E is that these two factors determine the
distribution-the likelihood of how much noise the equation adds. To
satisfy differential privacy, the Laplace distribution which randomly
selects the noise must have a standard deviation of

2_f = 2 1000000000 ; 48 million.
nEq 59x0.5

Thus, although the true answer to the query "What is the
average income of the inhabitants of Booneville?" is $23,426, the
answer after the differential privacy process is very likely to be over

83. See Selected Economic Characteristics: Booneville City, Kentucky, supra note 78.
84. For the purposes of this illustration, we have added noise only to the income

variable. Adding noise to the number of residents would have made matters worse.
85. See Selected Economic Characteristics: 2007-2011 American Community Survey

5-Year Estimates, supra note 76.

86. We know that hedge fund operators like George Soros regularly take pay in excess
of $1 billion, so our illustration is a conservative estimate of the noise that would be added by
differential privacy processes.
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$10 million.87 It is also very likely to come out lower than negative
$10 million. In fact, the chance that the query answer will be within
$1 million of the true answer is under 3%.88

Table 4 and Figure 3 show the Laplace distribution of noise.
The two dotted lines represent negative $5 million and $5 million.
The small area between the dotted lines visually represents the
chance that the noise would fall within that range.

Table 4-Distribution of Noise Added to a Query for
Average Income Where the True Answer is $23,426

Eq = 0.5, Af = $1 Billion

Response
Noise Level Noise Added (True Value +

Noise)

Very Low (0.001) -210,664,681 -$210,641,255

First percentile (0.01) -132,610,949 -$132,587,523

Fifth percentile (0.05) -78,053,732 -$78,030,306

Tenth percentile (0.10) -54,557,217 -$54,533,791

Twenty-fifth (0.25) -23,496,515 -$23,473,089

Fiftieth (0.50) 0 $23,426

Seventy-fifth (0.75) 23,496,515 $23,519,941

Ninetieth (0.90) 54,557,217 $54,580,643

Ninety-fifth (0.95) 78,053,732 $78,077,158

Ninety-ninth (0.99) 132,610,949 $132,634,375

Very High (0.999) 210,664,681 $210,688,107

87. See Dwork, An Ad Omnia Approach to Defining and Achieving Private Data
Analysis, supra note 37, at 7.

88. See id. at 8.

[Vol. 16:4:701



FOOLS GOLD

Figure 3-Distribution of Noise Added to a Query
for Average Income Eq = 0.5, Af = $1 Billion

-$150 $0 $150

In Millions

Table 5 shows the distribution of noise under various choices
of,. Even if the data producer chose 1 for the value of E, a choice that
might garner criticism for being insufficiently protective of privacy,
the response to any query on the income variable would be swamped
by noise.

Table 5-The Probability that Laplace Noise Will
Be Selected from Specified Ranges A = $1 Billion

= 0.01 E = 0.10 E = 0.50 E = 1.00 E = In(3)
+10,000 0.0000 0.0001 0.0003 0.0006 0.0006

+100,000 0.0001 0.0006 0.0029 0.0059 0.0065
+500,000 0.0003 0.0029 0.0146 0.0291 0.0319

+1 Million 0.0006 0.0059 0.0291 0.0573 0.0628
±5 Million 0.0029 0.0291 0.1371 0.2555 0.2768

±10 Million 0.0059 0.0573 0.2555 0.4457 0.4770
±100 Million 0.2555 0.9477 1.0000 1.0000 1.0000

+1 Billion 0.4457 0.9973 1.0000 1.0000 1.0000

Table 5 also reveals another important fact about differential
privacy method; by design, the noise added to a query is entirely
independent from the values of the database. The Laplace noise
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distribution is determined by global sensitivity and the choice of E,
neither of which required the data producer to consult the database.8 9

The noise is independent from the actual answer to the query.90 So
Table 5 represents the noise that would be added not only to this
hypothetical query involving a small town in Kentucky but to any
analysis of income over data this size. Therefore, if the US Census
Bureau chose to adopt differential privacy in an online query system
for the Current Population Survey, it too would add and subtract
hundreds of millions in noise to protect George Soros when a user
queried, "What is the average income for employed females over the
age of 65 living in the South Bronx?" Note that this applies even to
queries about females because the last pieces of information an
adversary might need about George Soros is that he is not an older
female living in the Bronx.

When it comes to the analysis of continuous, skewed variables
(like income), differential privacy's strict and inflexible promises force
a data producer to select from two choices: he can either obliterate the
data's utility or he can give up on the type of privacy that differential
privacy promises.

For comparison's sake, let us look at how the Census Bureau's
American FactFinder service actually reports the income of the
residents in Booneville, Kentucky. 91  According to American
FactFinder, the average income of the 51 working individuals in
Booneville is $21,907 and a margin of error of +$11,247.92 For any
realistic selection of E, this release of information by the Census
Bureau would violate differential privacy since an adversary would be
able to conclude that it is extremely unlikely that anyone living in
Booneville has an income of $1 billion. From the first line of Table 5
above, one can see that the probability of observing a differentially
private response within the range that the Census Bureau has
released is infinitesimally small.

It is hard to fault the Census Bureau for not using differential
privacy. After all, a little external information and knowledge of the
world would suggest that it is extremely unlikely that a multi-
billionaire lives in a small, poor town in Kentucky. It makes little
sense to guard against the revelation that, as one would expect, there
are no billionaires in Booneville at the cost of the utility of the rest of
the dataset. Differential privacy does not differentiate between the

89. "Thus, our expected error magnitude is constant, independent of n." Dwork, A Firm
Foundation for Private Data Analysis, supra note 19, at 92.

90. See id.
91. See Selected Economic Characteristics: Booneville City, Kentucky, supra note 78.
92. Id.
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many possible types of revelations. It treats all as if they were equally
meaningful, which leads to silly results and upside-down priorities.

C. Tables

Part I demonstrated that differential privacy can perform fairly
well when queries are asked to report counts, such as the numbers of
people who have various characteristics. Suppose that, instead of
querying the mean income, the data user submitted a query to create
a histogram of income? With count queries, the addition or deletion of
one individual changes only a single bucket in a histogram-and by
only 1. Thus, the global sensitivity is 1 instead of $1 billion.

Before we present the results, it is worth reflecting on the loss
of utility that comes with the change of format. The accuracy of
simple statistics from grouped histogram data is always compromised
by the crudeness of the categories. Still, one might expect an
improvement over the differential privacy responses for average
income that we explored above.

Table 6 shows a hypothetical histogram for Booneville,
Kentucky, and noise that we randomly selected from a Laplace
distribution with E = 0.50 (as before). This is just one realization of
possible responses to the histogram query. In practice, the data user
would see only the last column of the table. The shaded columns help
us assess whether the last column is close enough for research
purposes.

Table 6-Example Responses to a Series of Count Queries
about the Income of Booneville Residents Eq = 0.5, Af = 1

Noise (rounded ResponseInom rop True Nos rudd (True
Income Group Count to the closest Count+

integer) Noise)

$0 to $10 Thousand 11 2 13

$10 Thousand to $50 Thousand 40 7 47

$50 Thousand to $100 Thousand 7 -2 5

$100 Thousand to $500 Thousand 1 -4 -3

$500 Thousand to $1 Million 0 -5 -5

$1 Million to $10 Million 0 0 0

$10 Million to $100 Million 0 3 3

$100 Million to $1 Billion 0 0 0

More than $1 Billion 0 5 5
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The unshaded response column reports that there are five
individuals whose income is higher than $1 billion and three
individuals whose income is between $10 million and $100 million. Of
course, we know that the maximum income of individuals in
Booneville city is less than $500,000, so this table steers researchers
wildly off the mark.93 Naturally, the negative values are par for the
course.9 4 They very slightly help balance out the bias from positive
noise if the researcher decides to use the table to calculate a rough
estimate of average income, but the correction is hardly worth the
bother since an estimate of the average would be quite poor as it is. A
researcher using only the responses above would conclude that the
average income among Booneville residents is about $44 million. 95

Why does this table perform so poorly even though the table
from Part I, reporting the number of millionaires in Washington,
performed so well? Recall that the noise or, more precisely, the
distribution that produces the noise, is independent from the true
values in the original dataset. It is also independent from the size of
the database. In both tables, the global sensitivity (Af) is 1.
However, when working with the number of Washington millionaires,
noise in the range of -7 to 7 does not make much of a difference
because the true response is over 200,000. Here, since the true
answers are small (under 100), noise on the same scale greatly
distorts the analysis.

Table 7 shows the Laplace distributions for tabular data, where
Af = 1. Each row displays the probability of observing noise values
within the identified range for varying specifications of -.

93. One option for skewed data is to set arbitrary upper and lower limits for the values.
For the income variable, it might be suggested that the upper limit should be set at (say) $100
thousand. For this particular query, such a truncation would eliminate the problem of very large
values. But the truncation would frustrate research on high income earners, or on income
inequality. For example, if the query asked for the average income of hedge fund managers,
truncating the upper limit of income at $100 thousand would put nearly the entire data set in
the truncated range. See J.K. Ord et al., Truncated Distributions and Measures of Income
Inequality, 45 INDIAN J. STAT. 413, 414-15 (1983).

94. See Microsoft, supra note 4, at 5.
95. Assuming that the researcher sets the income in the middle of the range for each

category, so that the 23 people earning between $0 and $10,000 are estimated to earn $5,000, the
85 people earning between $10,000 and $50,000 are estimated to earn $30,000, etc. The 5 people
earning in excess of $1 billion are estimated to earn $1 billion and $1. By this method, the
researcher would reach an estimated average income over $44 million. Using the same message
using the "True Count" column would yield a more modest average income of $35,254. We know
that this is still quite far from the $21,907 average that the Census reports for the town. See
Selected Economic Characteristics: Booneville City, Kentucky, supra note 78.
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Table 7-The Probability that Laplace Noise Will Be Selected
from Specified Ranges, for Varying Selections of e Af 1

0.001 0.01 0.10 0.25 0.50 /n(2) 1.00 ln(3) 5.00
±1 0.00 0.01 0.10 0.22 0.39 0.50 0.63 0.67 0.99

±2 0.00 0.02 0.18 0.39 0.63 0.75 0.86 0.89 1.00

±3 0.00 0.03 0.26 0.53 0.78 0.88 0.95 0.96

±5 0.00 0.05 0.39 0.71 0.92 0.97 0.99 1.00
±10 0.01 0.10 0.63 0.92 0.99 1.00 1.00

±20 0.02 0.18 0.86 0.99 1.00

±50 0.05 0.39 0.99 1.00

+100 0.10 0.63 1.00

±500 0.39 0.99

±1000 0.63 1.00

±5000 0.99

±10000 1.00

When s > 1, relatively little noise is added to the true answer.
But, large - values open the system to risk of disclosure, and the risk
is not managed in any thoughtful way. When E is as large as 5 or
higher, the risk of disclosure is so great that the system cannot fairly
be described as a privacy-protecting one. When E < 0.10, the noise
generated could be +100. Adding 100 or more to a query response
might be just fine if the true response is in the order of 100,000 or
more, but it causes chaos if the true answer is less than ten. Table 7
shows the distribution of noise added to count queries irrespective of
the true answer. Once - is specified, the noise will be generated with
the above stated probabilities.

Dwork defends this as a desirable feature since small
databases leave the data subjects more vulnerable and thus require
proportionally more protection than larger databases.9 6 But this is not
necessarily so. Suppose that Table 6, the representative example of a
histogram query, reports the income not from the town of Booneville,
but from a stratified random sample of 130 Americans. As long as the
adversary does not have a way of knowing who was included in the
random sample, this database would not require any more protective
noise than a database containing the entire US population, yet

96. See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91.
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differential privacy methods would cause much more loss to its
utility.9

7

Moreover, the noise distribution is not limited to count queries.
This noise is added in all situations for which Af = 1, even if the query
demands a strict upper and lower bound for the true value. Consider
the query, "What is the average income tax rate for Americans?" A
person submitting the query would expect a reasonable response
between 0% and 39.6% (the highest marginal tax rate), but Table 7
shows that for any E < 5.0, there is a high probability that the
response will be negative or above 1, rendering it useless. This is also
poses a significant problem for statistical measures that must be
interpreted within a bounded range, as we illustrate in the next
example.

D. Correlations

Lest there be any doubt that differential privacy performs
poorly under most typical research settings, consider its effects on
correlation. Statistical research often explores the relationships
between variables. Pearson's product-moment correlation, measuring
the strength of the linear relationship between two variables, is one of
the most basic and essential tools to understand how various forces
and phenomena interact and operate on one another. Correlation
ranges between [-1, 1] where -1 means that two variables have a
perfectly negative relationship (an increase in X corresponds with a
proportional decrease in Y), 0 means the two variables share no
relationship (an increase in X sometimes corresponds with increases
and sometimes decreases in Y), and 1 indicates a perfectly positive
relationship (an increase in X corresponds with a proportional
increase in Y). In this case, the function (correlation) has clear lower
and upper bounds-a query on correlation will always come out
between -1 and 1.

Suppose the Department of Education is preparing a database
query system based on a national longitudinal study on the
relationship between education and income. Among other things, the
database contains information on each data subject's highest
educational attainment (measured in years of qualified schooling) and
annual income. What happens when the Department of Education
adopts differential privacy and applies Laplace noise to a query

97. It also seems to contradict the work of Dinur and Nissim, who conclude that in order
to prevent blatant non-privacy, the noise added would have to be in the order of -,n. Dinur &
Nissim, supra note 23, at 206.
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requesting the correlation between educational attainment and
income?

Let us work through the usual steps:

1. Select E

In this example, let us explore what happens to the query
response under a range of - running from 0.01 (relatively privacy
protective) to 10.0 (quite lax). As before, we will assume a single
query of the database to avoid the need to add more noise for serial
queries.

2. Compute the Response to the Query Using the Original Data

The relationship between education and income is strong.
Expected earnings increase in lockstep as a person moves from high
school to college to masters, doctoral, or professional degrees.98

Assume for this exercise that the education and income data in the
Department of Education's database produce a correlation coefficient
of 0.45.

3. Compute the Global Sensitivity (Af) for the Query

The global sensitivity requires the data curator to anticipate
the greatest difference that the addition or subtraction of a single data
point can make to a similar query on the same variable for any
possible database-not just the database that the curator is preparing
for public research. 99

For a very small sample, the addition (or subtraction) of a
single data subject can change the correlation coefficient of two
variables from perfectly positive correlation to a strong negative
correlation, or vice versa-a change of nearly 2. To see how, imagine a
database with just two people. Person A has had fewer than 8 years of
formal education (no high school) and has an annual income of
$52,000. Person B has a professional degree and earns $70,000 each
year. For this small set of data, correlation between education and
income will be 1: the more education, the more income. Now, imagine
what happens when we add Person C to the dataset. Person C also
has no formal education, but has an income of $1 million. With these
three data points, the correlation between income and education can

98. Sandy Baum & Jennifer Ma, Education Pays: The Benefits of Higher Education for
Individuals and Society, COLLEGE BOARD RESEARCH PAPER 10 (2007).

99. See Part LB (discussing the need for the data curator to mask the presence or
absence of any entry).
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fall below 0. After adding Person C, it looks like on balance, less
education will tend to increase income.

We could construct a similar illustration where a correlation of
+1 is converted to -1 (or something infinitely close) with the addition
of 1 new data point, so we are working with Af = 2.

4. Generate a Random Value (Noise) from a Laplace Distribution with
Mean = 0 and Scale Parameter b = Af/E

Next we randomly draw noise from the Laplace distribution
determined by the values of global sensitivity and E. This is where the
process takes a turn for the worst.

Correlation takes the range from -1 to 1. Output outside of
that range would be meaningless, and small changes within the range
can have a great effect on the researcher's interpretation. Table 8
reports the probability that the noise added to the true answer will be
no higher than 1, and no lower than -1 under varying selections of E.

Table 8-The Probability that Laplace Noise Will
Fall Within [-1, 1] for Varying Selections of E

A =2

Probability
Noise Is in the

E Range

[-1, 1]

0.01 0.004988

0.10 0.048771

0.20 0.095163

0.50 0.221199

1.00 0.393469

2.00 0.632121

5.00 0.917915

10.00 0.993262

For small, privacy-protecting levels of e (< 0.50), the noise
added to the true answer is very likely to be so large that the query
system's response will be nonsense. If the data curator selects E > 5,
there is a decent chance the reported correlation will be within the
range, but of course it is also very likely to misstate the relationship
between the variables (and to say that two factors that are positively
correlated are negatively correlated, or vice versa).
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Figure 4 shows what the distribution of responses would be,
assuming that the true answer (the actual correlation) is zero and e =
0.50. The dotted lines show the acceptable response range [-1, 1].
The figure illustrates that the great majority of responses would fall
outside the acceptable range for correlation rendering the response
completely meaningless to the user. Many of the responses within the
dotted lines would be very misleading to the researchers and to the
relying public.

Figure 4-Distribution of Responses to a Query
for Correlation Where the True Answer is 0

.. = o.5, Af2 ___

-35 -25 -15 -5 -1 t 5

With noise like this, differential privacy simply cannot provide
a workable solution for analyses of correlations or of any statistical
measure with a strict upper and lower bound.

The examples worked through in this Part should give a sense
of differential privacy's serious practical limitations. While
differential privacy is a technical standard, the problems that it would
cause if adopted broadly would be profound, wide reaching, and
devastating to research. Nevertheless, policymakers and privacy
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scholars are embracing differential privacy with increasing
enthusiasm. 100 This enthusiasm must be tempered. The proponents
of differential privacy have oversold its usefulness. Realistically, the
future of data privacy will rely on differential privacy only in very
narrow circumstances or only if differential privacy is modified to the
point of being unrecognizable to its creators.

III. THE GOLDEN HAMMER

The proponents of differential privacy have embraced the law
of the instrument: When you have a hammer, everything looks like a
nail. The developers of differential privacy have insisted that it is a
full-service tool that will free research from the perils of privacy risk
in every context. As Cynthia Dwork and her collaborators say, apply
differential privacy "and never look back."10 1

Policymakers and legal scholars are ready to adopt differential
privacy as a-or even the-best practice, though their enthusiasm
reveals a lack of understanding about what differential privacy would
do to data research. 10 2 In one case, legal scholars jumped to the
conclusion that Facebook employs differential privacy when it is very
likely using a different noise-adding technique. 10 3 This is a variation
on the law of the instrument: When you like hammers, every tool looks
like one.

In this Part, we will explore why differential privacy has
suddenly gained the attention and trust of legal scholars and
policymakers. Without exception, the enthusiasm for differential
privacy stems from misinformed understanding of how the standard
works. This Part also explores instances where differential privacy
will likely work well and where it will likely not.

100. See, e.g., Chin & Klinefelter, supra note 11, at 1452-53; Ohm, supra note 10, at
1756; Wu, supra note 9, at 1139-40; Felten, supra note 12.

101. Cynthia Dwork et al., Differentially Private Marginals Release with Mutual
Consistency and Error Independent of Sample Size, EUROSTAT WORK SESSION ON STAT. DATA
CONFIDENTIALITY 193, 198 (2007).

102. See Greengard, supra note 2, at 17; Chin & Klinefelter, supra note 11, at 1452-55.
103. See Chin & Klinefelter, supra note 11, at 1422-23. Chin and Klinefelter describe an

investigation that they conducted to assess the security practices of Facebook. Id. at 1432-45.
Based on their analysis, the authors conclude that Facebook is likely using differential privacy,
even though Facebook has never indicated that they are. Id. at 1422-23. Since the researchers
submitted over 30,000 queries, almost any selection of epsilon would have required the noise for
each query to dominate the true answer. See id. at 1436. Either Facebook is using some other
noise-adding mechanism, or the company is implementing differential privacy incorrectly.
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A. Misinformed Exuberance

The examples worked through in Part II showed that
differential privacy has serious practical limitations. Somehow these
problems have escaped the notice of many scholars and journalists,
even when the drawbacks are right under their noses.

Consider this excerpt from a Scientific American article:
Suppose the true answer to [a query] is 157. The differentially private algorithm will
"add noise" to the true answer; that is, before returning an answer, it will add or
subtract from 157 some number, chosen randomly according to a predetermined set of
probabilities. Thus, it might return 157, but it also might return 153, 159 or even 292.
The person who asked the question knows which probability distribution the algorithm
is using, so she has a rough idea of how much the true answer has likely been distorted
(otherwise the answer the algorithm spat out would be completely useless to her).
However, she doesn't know which random number the algorithm actually added. 104

This is a typical explanation and endorsement of differential
privacy and it makes an equally typical mistake. The author starts
with an assumption that contorts the rest of her analysis. The key
here is that the reader already knows what the true answer is-157.
It is only if the reader already knows the answer that a response like
"159 or even 292" can seem useful. But how would the hypothetical
researcher, who must operate in ignorance of the true answer, react to
a response of "159 or even 292?"

Now consider how the query response in this hypothetical could
be meaningful. First, the response might be useful if the selected E is
large, so that the magnitude of the noise is very likely to be small.
But the author says the response could very well be 292. If the noise
added spans a range of 150, - in this case cannot be small. We can
rule out this possibility.

The second possibility is that a span of 150 might still be small
relative to the sort of numbers the researcher was expecting to
observe. For example, if the questioner had asked a database
containing information on the entire US population to return the
number of people who live in particular town in order to understand
whether the town is big or small, then a response within 150 of the
true value sheds some light. As we have said before, count queries
that happen to have very large values are suitable for differential
privacy techniques. 105 However, these are unusual conditions. For
most researchers, an answer that is likely to be 150 away from the
true answer, and that allows them only to conclude things like "this is
large-ish" or "this is probably small" will not be good enough. After

104. Klarreich, supra note 7.
105. See supra Part II.A.
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all, from the perspective of a researcher who does not know the true
answer, a query response of "292" with a margin of error in excess of
150 would have to consider that the true answer might be 442, and
that is quite far off from the true answer, which we know to be 157.

The Scientific American journalist assumed that the questioner
already knew the true answer, or, at least, has a good sense of its
ballpark. 10 6 The experience of a researcher who already knows the
answer makes a lousy gauge for the utility of a query system. Instead,
we should be concerned about the researchers who potentially do not
know what the approximate true answer is. After all, if the
researcher knew the approximate answer, he would have little reason
to use a query system that adds noise. Scientific American thus relays
some of the misplaced confidence of the developers of differential
privacy.

We take our next example from a Microsoft whitepaper titled
Differential Privacy for Everyone.10 7

A researcher wants to test whether a particular disease is more
likely to manifest in people who have lived in certain regions. She
connects to her hospital's query system that has differential privacy
guards in place. The researcher makes a series of queries on the
number of patients with the disease who have lived in each of the
towns in the suspected region. Suppose that some of the towns have a
large number of people with the disease, some towns have no people
with the disease, and one town, Smallville, has a single case. If the
query system were to report the true answers to the researcher, the
patient (Bob) in Smallville may be at risk. For example, if he had very
recently moved to the researcher's hometown, and the researcher
knows he is from Smallville, she might be able to put together that he
has the disease. The Microsoft whitepaper explains:

To avoid this situation, the [query system] will introduce a random but small level of
inaccuracy, or distortion, into the results it serves to the researcher....

Thus, the answers reported by the [query system] are accurate enough that they provide
valuable information to the researcher, but inaccurate enough that the researcher
cannot know if Bob's name is or is not in the database. 108

The conclusions that Microsoft urges us to draw are
speculative, to say the least. There is simply no guarantee that the
responses from the query system would lead the researcher to the
correct approximate understanding about where the cases of the

106. See Klarreich, supra note 7.
107. See MICROSOFT, supra note 4, at 4-5.
108. Id. at 5.
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disease do and do not come from. Whether the responses are only
"slightly larger or smaller" will depend entirely on the data curator's
specification of E and the total number of queries. 09

For good measure, let us quickly work through the hypothetical
selecting a relatively liberal value for - (that is, a less
privacy-protecting choice). Suppose - =In(3), which is approximately
1.0986. Assume also that the curator of the database has determined
that a total of 1000 simple count queries can be issued to the
database. Allowing a range of queries would require us to add more
noise, so this is a realistic lower bound in terms of the distortion of
results.

With E = 1.0986 and m = 1000, we must use q = (1.0986/1000)
for each individual query. As with all count queries, the most a single
individual can influence a count query is by 1, so Afq = 1.110

What happens when the researcher queries the system "For
each town located in the suspected regions, what is the number of
patients with the disease?" Table 9 reports the likelihood that the
noise added to each town's response will be within a particular range.

Table 9-Distribution of Laplace Noise Within
Specified Ranges -, = In (3)/1000, Af = 1

Noise Range Probability

±1 0.00

±5 0.01

±10 0.01

+50 0.05

+100 0.10

±500 0.42

+1000 0.67

+10000 1.00

So, for Smallville, there is a very high chance-16%-that the
response will exceed 1000, even though we know the true answer is 1.
There is also a very high chance-again, 16%-that the response will
be less than -1000.

109. Remember that, because the effect on privacy of queries is cumulative, the noise
added to each successive query must increase in order to satisfy differential privacy for any
specific overall selection of E. See supra note 59 and accompanying text.

110. The noise will be randomly selected from the distribution generated by the Laplace
function Lap (Afq/Eq) = Lap(910.239).
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Now consider one of the towns "where there are a significant
number of individuals" with the disease. Suppose the number of
individuals with the disease is about 100. The response has a 45%
chance of having a zero or negative value: Even if the number of
individuals with the disease in this town is 1000, the probability of
observing a negative value response is greater than 16%. Therefore, it
is not obvious at all that a faithful use of differential privacy will
provide the researcher with meaningful answers from which she could
infer that eight towns had a number of people with the disease, and
Smallville had either a small number or 0.

To drive this point home, Table 10 provides just one
realization, selected randomly from the Laplace noise distribution, for
the eight towns and Smallville.

Table 10-Example of Noise-Added Responses to
the Smallville Hypothetical E. = In (3)/1000, Af = 1

Tnne Noise ResponseTown Answer

1 105 2893.9 2998.9
2 80 -2840.6 -2760.6
3 92 848,6 940.6
4 100 4099.3 4199.3
5 125 2145.4 2270.4
6 103 -1607.8 -1504.8
7 99 -814.6 -715.6
8 85 191.3 276.3

Smallville 1 817.3 818.3

The researcher, who sees only the unshaded last column, would be
hard-pressed to say anything about the relative prevalence of the
disease in these nine towns. The best the researcher could do is
conclude that, knowing the value of E, the true responses were not
large enough to overpower the magnitude of the noise that had to be
added to maintain differential privacy. The researcher could conclude
that none of the towns had tens of thousands of cases of the disease,
but she could not confidently say anything more specific than that.

The only practical application of this sort is in response to
queries involving common diseases like the flu that occur in the tens
of thousands across the subpopulations of interest. For a rare form of
cancer, answers drawn from the differential privacy parameters we
set will be useless, or worse than useless. 111

111. Astute readers may notice that the random realization reported in Table 10 is very
similar to the output that our fictional internist was confronting in the Introduction. See supra
note 3 and accompanying text. Indeed, we took the same error drawn here and added it to our
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The curator could try to set the parameters differently from ours in
order to squeeze some more utility out of the system. The curator
could, for example, decide that the system will only respond to a small
number of queries so that the E for each query could be larger. But by
reducing the number of queries, the curator reduces the overall value
of the query system. 112

The Microsoft authors' reassurance that "the answers reported
by the DP guard are accurate enough that they provide valuable
information to the researcher" is thoroughly unwarranted.
Reassurances of this sort mislead lay audiences into the optimistic
impression that differential privacy preserves data utility better than
it does.

By working with examples where they already know the true
answer, the proponents of differential privacy have given the
impression that the standard is more useful and viable than it really
is. Erica Klarreich, the author of the Scientific American article,
advances the following illustration:

To see what kind of distribution will ensure differential privacy, imagine that a prying
questioner is trying to find out whether I am in a database. He asks, "How many people
named Erica Klarreich are in the database?" Let's say he gets an answer of 100.
Because Erica Klarreich is such a rare name, the questioner knows that the true answer
is almost certainly either 0 or 1, leaving two possibilities:

(a) The answer is 0 and the algorithm added 100 in noise; or

(b) The answer is 1 and the algorithm added 99 in noise.

To preserve my privacy, the probability of picking 99 or 100 must be almost exactly the
same; then the questioner will be unable to distinguish meaningfully between the two
possibilities. 

1 13

The assumption that "the questioner knows that the true answer is
almost certainly either 0 or 1" turns out to be critical to understanding
whether differential privacy is striking the right balance between
privacy and utility. We might be satisfied that this intrusive data
user must ignore the response to his query because, in the trade-off
between his curiosity and Erica Klarreich's privacy, the better interest
prevailed.

equally fictional "true" responses, which was 20 for each year. Thus, as it turns out, this internist
would have had little to worry about if she had known the truth-that seeing a few cases over
the course of several weeks is par for the course. Since the internist did not know the true
values, though, she would have had little reason to feel comforted or alarmed by the responses
that she received.

112. There are also some situations in which restricting the database to a small number
of queries in order to reduce the magnitude of the noise can produce disclosures. For an example,
see Cormode, supra note 2, at 1254. These disclosures are not, technically, within Dwork's
definition of "disclosure" motivating her differential privacy solutions.

113. Klarreich, supra note 7.
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But what if the questioner does not know the true answer must
be 0 or 1? Instead of "How many people named Erica Klarreich are in
the database?" what if the query was "How many people died of
postoperative infections last month at this hospital?" Now, when the
user receives the response "100," he will either naively assume that
the hospital must have terrible sanitary conditions, or, if he is a
sophisticated user, he would know to ignore the results since the
probability distribution of the noise is in the order of ±_100.

Thus, although we changed nothing about the differential
privacy mechanism (altering only the intent of the data user, who in
this case is not malicious), a result of "100" to a query whose true
result is 0 or 1 is no longer satisfactory. After all, if the true answer is
0, we would not want the data user to worry about the conditions of
the hospital. But if the true result were close to 100, we would want
the researcher to worry. If a hospital were to create a publicly
available query system, it would have to anticipate both types of
queries-that is, both the intrusive "how many people named Erica
Klarreich" query and the postoperative infections query.

The best way to avoid the absurdities is for data curators to
ensure that the magnitude of the noise added to a query is comparable
to the true answer. But context-driven addition of noise would violate
the basic tenets of differential privacy. 114  To satisfy differential
privacy, the noise must be independent, not only of the true answer,
but also the size of the database.1 15 Legal scholars and policymakers
have overlooked this drawback.

B. Willful Blindness to Context

One of differential privacy's strongest and most attractive
claims is that it can-and in fact must-be applied without
considering the specifics of the queried database. 116 But as we saw
with the average income example, the blindness to context has harsh
consequences. If databases must protect Bill Gates, George Soros, and
other highly unusual individuals, then the curator has only two
realistic options: give up on utility, or give up on privacy.

When scholars and journalists provide examples of differential
privacy in action, they invariably use tables of counts to show how it
works. 117  But statistical research often involves the analysis of
numerical data. Our examples show that differential privacy is

114. See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91.
115. See id.
116. See id.
117. See Klarreich, supra note 7; Chin & Klinefelter, supra note 11, at 1433-35.
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unlikely to permit meaningful results to queries for averages and
correlations unless the data curator selects a very high E, but in that
case, the curator has abdicated his chance to protect privacy.

The natural desire to avoid absurd results has led some
supporters of differential privacy to mischaracterize, possibly even
misunderstand, what differential privacy demands and to insist that
the characteristics of a database, or the answer to a particular query,
has some influence over the noise that is added. l18 For example, Felix
Wu describes differential privacy as follows:

The amount of noise depends on the extent to which the answer to the question changes
when any one individual's data changes. Thus, asking about an attribute of a single
individual results in a very noisy answer, because the true answer could change
completely if that individual's information changed. In this case, the answer given is
designed to be so noisy that it is essentially random and meaningless. Asking for an
aggregate statistic about a large population, on the other hand, results in an answer
with little noise, one which is relatively close to the true answer. 1 19

Contrary to Wu's assertion, differential privacy noise is not a
function of the breadth of the query. Because the noise is based on
global sensitivity, for all databases that could possibly exist, the noise
added to any particular query response must be the same whether the
query involves a single person or a million. When it comes to counts
and tabular data, the noise added to a query on a large number of
people might be less distorting than noise of the same size added to a
query on a small number of subjects. But, with other analyses (like
correlation), the distortions will be equally severe no matter the n.120

Lest there be any doubt, Dwork herself has recently insisted, "Our
expected error magnitude is constant, independent of n [the number of
data subjects responsive to a query]."'121

A white paper from Microsoft's differential privacy research
team makes a similar error. 122 It states:

Distortion is introduced into the answers a posteriori. That is, the DP guard gets
answers based on pristine data, and then mathematically decides the right amount of
distortion that needs to be introduced, based on the type of question that was asked, on
the size of the database itself, how much its data changes on a regular basis, etc. 123

Wu and the authors of the Microsoft paper are unwittingly
rewriting how differential privacy works. Wu implies that what
matters is the influence that a particular piece of information can
have on the particular query that has been submitted. This would be a

118. See, e.g., Wu, supra note 9, at 1138.
119. Id.
120. See supra Part II.D.
121. Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 92.
122. See Microsoft, supra note 4, at 5.
123. Id.
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fabulous improvement for preserving the utility of a dataset, but it
cannot promise differential privacy because a series of queries could
reveal changes in the magnitude of the noise that would reveal
information about the underlying values. 124  Thus, the technical
literature on differential privacy has consistently maintained that the
magnitude of the noise must be independent of the size of the data
set, the magnitude of the true answer, and the type of query (except
in assessing Af, which requires an assessment of all possible query
responses across the universe of possible datasets). 125

Finally, Ed Felten, Chief Technologist of the Federal Trade
Commission, describes differential privacy as if it curbs the amount of
error around a particular response. He uses the following example:

Let's say [an adversary's] best guess, based on all of the available medical science and
statistics about the population generally. is that there is a 2% chance that I have
diabetes. Now if we give the [adversary] controlled access to my doctor's database, via a
method that guarantees differential privacy at the 0.01% level, then the analyst might
be able to adjust his estimate of the odds that I have diabetes-but only by a tiny bit.
His best estimate of the odds that I am diabetic, which was originally 2%, might go as
low as 1.9998% or as high as 2.0002%. The tiny difference of 0.0002% is too small to
worry about.

That's differential privacy.
1 26

This is not differential privacy at all. An adversary could
query the database for the proportion of patients in the doctor's
database who have diabetes. This ratio could significantly improve
the adversary's guess for Ed Felten's likelihood of having diabetes.
This is especially true if the doctor's practice is large enough so that
the noise does not drown out the true response.127 It is also especially
true if Ed Felten's doctor specializes in the treatment of diabetics. So
Felten's claim can only be correct if we assume that the proportion of
individuals with diabetes in his doctor's practice happens to be 2%,
just like the general public.

Felten's example illustrates the sort of willful blindness to
context that comes from a threat model orientation. By focusing
exclusively on the adversary, Felten fails to see the consequences to
legitimate research. In a realistic scenario, the number of patients in

124. Kobi Nissim et al., Smooth Sensitivity and Sampling in Private Data Analysis, in
STOC'07 Proceedings of the 39th Annual ACM Symposium on Theory of Computing 75, 78
(David S. Johnson & Uriel Feige eds., 2007).

125. See Bhaskar et al., supra note 2, at 216 ('The amount of noise introduced in the
[differentially private] query-response is ... [i]ndependent of the actual data entries . .

126. Felten, supra note 12.
127. Recall that the differentially private noise is independent from the size of the

database so that the reported answer approaches the true answer as the size increases.
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the doctor's database is likely to be a few thousand.128 A query
system using E = 0.0001 would have to add tremendous noise to each
response. 129 The answers are unlikely to be anywhere close to the
true value-whether the legitimate user queries the doctor's database
for a count of the number of patients with diabetes or asks point
blank "Does Ed Felten have diabetes?" The consequences to research
are an afterthought for the proponents of differential privacy.

The legal scholars and policymakers who endorse differential
privacy do so only when (and because) they think it works differently
than it really does. 130  Differential privacy eschews a nuanced
approach that takes into account the variety of disclosures relatively
likely to occur, the underlying data, and the specifics of a particular
query. This "one size fits all" solution has exactly the problems that
one would expect from a nonnuanced rule. It behaves like Procrustes's
bed, cutting off some of the most useful applications of a query system
without reflection on the costs.

C. Expansive Definitions of Privacy

Differential privacy is motivated by statistician Tore Dalenius's
definition of disclosure, which identifies any new revelation that can
be facilitated by a research database as a reduction of privacy. 131 As
Dalenius well knew, eliminating this type of disclosure is not only
impossible, it is not even the right goal. 132 Differential privacy makes
no differentiation between the types of auxiliary information that an
intruder may or may not have. Because it remains agnostic to these
types of considerations, the assumptions about what an attacker
might know are unrealistic and too demanding. In order to make
differential privacy protections manageable, data curators will be
tempted to choose a large value for e or to relax the standards in some
other way. But this will relax the privacy protections in a thoughtless
way, divorced from context, and thus runs the risk of exposing a few
data subjects to unnecessary risks. Embracing too expansive a
definition of disclosure creates the danger that curators will deviate
from the standard without assessing which disclosures are important

128. "The average US panel size is about 2,300." Justin Altschuler, MD, David
Margolius, MD, Thomas Bodenheimer, MD & Kevin Grumbach, MD, Estimating a Reasonable
Patient Panel Size for Primary Care Physicians with Team-Based Task Delegation, 10 Annals
Fam. Med. 396, 396 (2012).

129. The 1% to 99% range of the noise would be approximately -40,000 to +40,000.
130. See Wu, supra note 9, at 1137-40; Felten, supra note 12.
131. Tore Dalenius, Towards a Methodology for Statistical Disclosure Control, 5

STATISTISK TIDSKRI r 429, 433 (1977).
132. Id. at 439-40 ("It may be argued that elimination of disclosure is possible only by

elimination of statistics.").
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(e.g., an increased chance of inferring that Bob has HIV) and which
are not (e.g., a decreased chance of inferring that Bob is not a
billionaire).

The expansiveness of differential privacy comes from its
anticipation of all databases in the universe. Differential privacy
defines privacy breach as the gap in probabilities of observing a
particular response, not for the particular database in use, but for all
possible datasets X and X* that differ on, at most, one row. 133 This is
why we have to consider George Soros's income when we are dealing
with the income of the citizens of Booneville.

The rationale for this requirement comes from the fact that we
not only have to provide protection for the citizens of Booneville, but
we must also prevent the response from revealing that someone is not
a citizen of Booneville. This is true even if it is generally known that
George Soros is not a citizen of Booneville and that Booneville does not
tend to attract people with wealth. Thus, what may have looked like
an advantage of differential privacy-that it requires no assumptions
about what adversaries already know-is actually a stumbling block.
It causes differential privacy to obliterate accurate responses with
noise. By calibrating to the most extreme case (i.e., George Soros),
differential privacy protects everyone, but only at significant cost to
research.

This explains why differential privacy seems to work pretty
well for some counts of individuals but not so well for other variables.
For counts, every person exerts the same level of influence and Af = 1
regardless of who is or is not included in the database.134 But for other
variables, such as income, the influence exerted by an outlier is very
different than that exerted by nearly every other entry. Attempting to
protect George Soros's income information adds so much noise that it
overwhelms the information about the income of the average citizen
(from Booneville or any other city). Dwork obliquely acknowledges as
much when she says, "Our techniques work best - i.e., introduce the
least noise - when Af is small."1 35 What is left unsaid is that when Af
is very large, differential privacy simply breaks down.

Comparing two databases that differ in one record from the
universe of all databases leads to the popularized claim of differential
privacy "that it protects against attackers who know all but one

133. See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91-92.
134. See id. at 88-89.
135. Dwork, An Ad Omnia Approach to Defining and Achieving Private Data Analysis,

supra note 37, at 7.
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record." 136  The negative consequences of this requirement are less
well known. Differential privacy provides protection in anticipation of
the worst-case scenario, which is admirable, but impractical. We
could build every building as if it were Fort Knox-but at what cost?

D. Multiple Queries Multiply the Problems

The effect of differential privacy protections on each query is
cumulative. 137  This is one of the least discussed factors in the
implementation of differential privacy. Any reasonably sized
database-such as that of a healthcare provider-is likely to be
queried thousands of times. For databases released by government
agencies, such as the Census Bureau, the number of queries could
easily reach the millions. This is likely true for large databases held
by Facebook, Google, and others.1 38 If the curator provides responses
to a set of m separate queries with privacy parameter _ 1, E2 . ..... EM,

then the global privacy measure for the database is - = E 1z -q, and
thus the differential privacy risk e5 . 1 3 9  That is, the differential
privacy standard is the sum of all the query epsilons. 140 If the curator
wants to keep the global E under 10, he would have to set either Eq

(the E for each query) or m (the number of queries) to be quite small.
In either case, this severely limits the usefulness of the database.
Neither is desirable.

A majority of statistical analyses, such as hypothesis testing,
relies on at least the mean and variance-or in the case of multiple
variables, the means and the correlations. When every quantity is a
"noise-added" response, the effects of large noise-addition can lead to
meaningless, or even dangerous, conclusions.

136. Daniel Kifer & Ashwin Machanavajjhala, No Free Lunch in Data Privacy, in
SIGMOD '11 Proceedings of 2011 ACM SIGMOD International Conference on Management of
Data 193, 193 (2011).

137. See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 92.
138. See Olanoff, supra note 65.
139. See Dwork & Smith, supra note 14, at 137; Dwork, A Firm Foundation for Private

Data Analysis, supra note 19, at 91.
140. See Dwork & Smith, supra note 14, at 137; Dwork, A Firm Foundation for Private

Data Analysis, supra note 19, at 92. Returning to Chin and Klinefelter's analysis of responses to
30,000+ different Facebook queries, Chin and Klinefelter conclude that Facebook is likely using a
rounding function and a noise addition mechanism that is consistent with E, = 0.181 for each
query. Chin & Klinefelter, supra note 11, at 1433-40. For the set of 30,000+ queries as a whole,
this would imply that E = (0.181 x 30000) = 5430 which translates into a privacy risk ratio of e5430

which is so large that, for all practical purposes, it might as well be infinite. Whether the
mistake is Chin and Klinefelter's (for misidentifying differential privacy) or Facebook's (for
misapplying it), it shows a frequent, critical failure to understand that the response to every
query contributes to the adversary's ability to compromise the privacy of an individual, resulting
in wildly overstated descriptions of the privacy offered by differential privacy mechanisms.
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E. At the Same Time, Limited Definitions of Privacy

Differential privacy ensures that an individual's inclusion or
exclusion from the dataset does not change the probability of receiving
a particular query response by too much, but meeting this standard
does not necessarily guarantee privacy in the conventional sense.

First, differential privacy leaves the designation of - to the
discretion of the data curator.141 If the curator is committed both to
differential privacy and to maintaining the utility of the data query
system, he will be tempted to select a large 8 and to allow a large
number of queries. If the curator selects a large -, the standard will
be so relaxed that the benefits of differential privacy are wasted. For
example, suppose the curator selects E = 10. 10 sounds like a
reasonable enough number, but the privacy standard is actually e' .

So when E = 10, the ratio of probabilities for a result with and without
the inclusion of an individual can be over 22,000. The ratio just need
be less than e' 0 (about 22,026.3).142 With probabilities this different,
the curator would have more luck protecting the privacy of the data
subjects by adding random noise selected within some context-
appropriate bounded range. If the - is large, the protections offered
are hardly worth the effort. The nature of exponents is such that
small differences in 8 cause very large differences in privacy
protection. Table 11 shows the powers of e.

Table 11-Differential Privacy Standards (Ratio
of Probabilities) for Varying Selections of E

E e
E  

E ec

0.01 1.01 In(3) 3.00
0.05 1.05 2 7.39
0.10 1.11 5 148.41
0.25 1.28 10 22,026.47
0.50 1.65 25 7.2x10 10

In(2) 2.00 50 5.18x10 21

1.00 2.72 100 2.68x 10 43

Let us work through a quick example of what happens when
the curator decides to answer one thousand queries from the

141. See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 88.
142. Even seasoned researchers make the mistake of setting unreasonably high values

for e. For instance, Anne-Sophie Charest sets E = at 250, and David McClure and Jerome Reiter
set E = at 1000, which offers no guarantee of privacy whatsoever. See Anne-Sophie Charest, How
Can We Analyze Differentially-Private Synthetic Datasets?, 2 J. PRIVACY & CONFIDENTIALITY 21,
27 (2010); David McClure & Jerome P. Reiter, Differential Privacy and Statistical Disclosure
Risk Measures: An Investigation with Binary Synthetic Data, 5 TRANSACTIONS ON DATA PRIVACY
535, 536 (2012).
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Booneville City database (which may contain, in addition to income, a
lot of other information about the citizens of Booneville). For a single
query, we observe that the probability of observing a response within
+$1 million is approximately 3% (and 97% of the time it was higher
than this range). To be equitable, we assume that every query will be
answered with the same level of privacy (assuring both equally
accurate responses to all queries and equal privacy for all citizens)
resulting in Eq = (,/1000). This means that the noise added would
increase thousandfold.143 With one thousand queries, the observations
for average income over a small town would be laughably wrong. The
query system would provide responses within $1billion of the true
answer about 3% of the time. The rest of the time (the remaining
97%), the response will be greater than $1 billion or less than negative
$1 billion.

Dwork occasionally underplays the importance of the selection
of E to guard against potential privacy-invading uses. She states "if
the [differentially private] database were to be consulted by an
insurance provider before deciding whether or not to insure a given
individual, then the presence or absence of any individual's data in the
database will not significantly affect his or her chance of receiving
coverage."'144 But with a high enough E, an insurance adjustor could
take advantage of the lax standard. For example, suppose the
adjustor asks, "Does Jeff Jones have a congenital heart disease?" and -
is set to In(2). This means that the ratio of probabilities that the
database will give a particular response equals 2. Thus, if Jeff Jones
were to have the disease, it is twice as likely to observe a response
that he has the diseases compared to the response that he does not
have the disease.145 So when they receive a positive response, the
insurance company may want to play the odds and decline coverage.

The effects are worse for clusters of individuals. Consider an
insurance company employee who issues the query, "How many
individuals in the Jones family of 5 have a congenital heart disease?"
Assuming one or more of the individuals in this family does have the
congenital heart disease, the probability of a response indicating that

143. One of the interesting aspects of the Laplace distribution is that the noise for m
queries is a direct multiple of the noise for one query. The Laplace inverse cumulative
distribution function with mean zero is written as: -b x Sign(p - 0.5) x ln(i - 21p - 0.51) where b
is the shape parameter of the Laplace distribution and p is a random number between 0 and 1.
When a single query is answered, b = Af/E and when m queries are answered b' = f/(s/m) =
m(A f/E) = mb. For a given random number p, the noise using b' is m times the noise generated
using b.

144. Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 91
(emphasis omitted).

145. See id. at 91-92.
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one or more individuals in this family has the disease is 32 times (25)
more likely than a negative response because differential privacy
ensures only that each marginal individual contribute no more than a
doubling of the probability. For five individuals in a row, the ratio
would double five times. Now, the insurance adjustor is very likely to
decline coverage for the Jones family since the chance that all of them
don not have heart disease may be a paltry 1/33.146

F. Difficult Application

Because differential privacy techniques are agnostic to the
specific underlying database, one might get the impression that they
are easy to implement. This is not the case.

In order to create the appropriate Laplace noise distribution,
the data curator must identify and assess the global sensitivity (Af)
for every type of allowable query. 147 For some statistics, such as
counts, sums, and mean, the analysis is straightforward. For most
tabular data, 1f = 1.148 Sums and means require the curator to know
the largest values over the entire world's population for each variable,
but as long as they have access to some reliable descriptive
statistics 49, this is usually not too hard.

For analyses involving more complicated statistics,
determining global sensitivity is not an easy task. Consider the
illustration in which a user queries a database for the average income
of residents in Booneville, Kentucky. In order to compute Af, the data
steward will have to guess the income of the world's highest-paid
person. Error has serious consequences: under-specifying Af would
mean that differential privacy is not actually satisfied, but
over-specifying 1f will further degrade the quality of the output.
Statistical analysis often involves estimates of important statistical

146. Graham Cormode also provides an interesting example of a disclosure that can be
made while satisfying differential privacy, but which is avoidable with more traditional, context-
driven privacy measures. Cormode, supra note 2, at 1256-57.

147. See Dwork, A Firm Foundation for Private Data Analysis, supra note 19, at 92.
148. Even tabular data has the potential to cause confusion. Klarreich, author of the

Scientific American article, provides an illustration of a type of disclosure that occurs with
genotype frequencies. Klarreich, supra note 7. Unfortunately, in this situation, it would not be
possible to maintain the privacy parameter for each cell and the overall database at -. The data
involves frequencies of thousands of different single nucleotide polymorphisms (SNPs) and every
individual is represented in every SNP frequency. See id. The addition/deletion of one record will
modify every one of the SNP frequencies. To see an attack taking advantage of these
circumstances, see Daniel I. Jacobs et al., Leveraging Ethnic Group Incidence Variation to
Investigate Genetic Susceptibility to Glioma: A Novel Candidate SNP Approach, 3 FRONTIERS IN
GENETICS 203, 203 (2012).

149. Hopefully the curator's source for learning the global range does not employ
differential privacy.
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relationships between numerical variables such as variance,
regression coefficients, coefficient of determination, or eigen-values.
For these types of queries, determining global sensitivity will be very
challenging. Correctly choosing global sensitivity has drastic
consequences to utility-as we saw with the correlation example in
Part II.

Considering all of these limitations together, we must
circumscribe the practical applications for pure differential privacy to
the situations in which count queries have true answers that are very
large. Unless we alter the core purposes and definitions of differential
privacy, statisticians and policymakers should ignore the hype.

CONCLUSIONS

Differential privacy faces a hard choice. It must either recede
into the ash heap of theory or surrender its claim to uniqueness and
supremacy. In its pure form, differential privacy has no chance of
broad application. However, recent research by its proponents shows
a willingness to relax the differential privacy standard in order to
complex queries. Two such relaxations are often used.

The first, proposed by Dwork herself, requires that the
probability of seeing a response with a particular subject remain
within some factor of the probability of the same response without
that subject plus some extra allowance. 150 The problem with this
modification is that there is no upper bound on the actual privacy
afforded by this standard. 151 In some situations, this allowance may
be appropriate, but it would require the judgment of a privacy expert
based on context-the very thing differential privacy had sought to
avoid.

Ashwin Machanavajjhala developed another alternative for the
US Census Bureau's On the Map application. 152 This relaxation of
differential privacy allows curators to satisfy a modified differential
privacy standard while usually meeting strict differential privacy. For
some predesignated percentage of responses, the differential privacy

150. See Dwork & Smith, supra note 14, at 139. Mathematically, the relationship looks
like this:

P(R = rIX) < e' x P(R = rlX*) + 6 where 6 is small.
151. The extent to which actual probability ratio is different from the ratio that includes

or excludes a data subject is bounded by the e' + - & , but when P(R =rX') is very small (say

0.00001) and 6 = 0.01, the privacy ratio can exceed differential privacy standards by 1000. Even
though 8 is small, the risk of disclosure can be very large.

152. Ashwin Machanavajjhala et al., Privacy: Theory Meets Practice on the Map, in ICDE
'08 PROCEEDINGS OF THE 2008 IEEE 24TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING

277, 283 (2008).
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standard can be broken.153 This relaxation also undermines the
promise of privacy. 154 In the situations where differential privacy is
not satisfied, there is no upper bound on the risk of disclosing
sensitive information to a malicious user. However, this may be fine if
the curator crafts the deviations in a thoughtful way. Nonetheless,
the data curator would need to resort to judgment and context.

This progression by the differential privacy researchers to a
relaxed form is odd, given their view that historical definitions of
privacy in the statistical literature lack rigor. The differential privacy
community roundly dismisses traditional mechanisms for not offering
strong privacy guarantees, 155 but the old methods will often satisfy the
proposed relaxed forms of differential privacy as On the Map clearly
illustrates.156

As differential privacy experts grapple with the messy
problems of creating a system that gives researchers meaningful
responses, while also providing meaningful disclosure
prevention-albeit not differential privacy-they have come back to
earth and rejoined the rest of the disclosure risk researchers who toil
with the tension between utility and privacy.15 7 In its strictest form,
differential privacy is a farce. In its most relaxed form, it is no
different, and no better, than other methods.158

Legal scholars and policymakers should resist the temptation
to see differential privacy as a panacea, and to reject old disclosure
prevention methods as inadequate. Adopting differential privacy as a
regulatory best practice or mandate would be the end of research as
we know it. The answers to basic statistical questions-averages and
correlations-would be gibberish, and the standard would be very
difficult to apply to regression and other complex analyses.

153. See id. at 280-81.
154. For example, the authors go on to propose a relaxation of differential privacy that

satisfies differential privacy albeit with E = 8.6, which implies a privacy risk ratio of e8 6 =

5431.66. Id. at 284. This implies that, based on the responses (or in this case released data), we
can conclude the presence of an individual has probability that can be 5431.66 times higher than
the absence of an individual.

155. See Dwork, An Ad Omnia Approach to Defining and Achieving Private Data
Analysis, supra note 37, at 1 (criticizing disclosure prevention mechanisms for being syntactic
and ad hoc).

156. See Machanavajjhala et al., supra note 152, at 277.
157. See, e.g., Bhaskar et al., supra note 2, at 216 ("While the form of our guarantee is

similar to DP, where the privacy comes from is very different, and is based on: 1) A statistical
(generative) model assumption for the database, 2) Restrictions on the kinds of auxiliary
information available to the adversary.").

158. For example, differential privacy offers no greater security against Dinur-Nissim
"blatant non-privacy" unless the data curator strictly limits the number of queries that can be
issued to the system. Cf. Dinur & Nissim, supra note 23, at 203-04, 206. Other noise-adding
approaches, too, can avoid the Dinur-Nissim results by limiting the number of queries. See supra
note 28 and accompanying text.
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Differential privacy would also forbid public microdata releases-a
valuable public information resource. 159 Lest we end up in a land with
a negative population of 30 foot-tall people earning an average income
of $23.8 million per year, the legal and policy community must curb its
enthusiasm for this trendy theory.

159. See Barbara J. Evans, Much Ado About Data Ownership, 25 HARV. J.L. & TECH. 69,

76, 94 (2011) (discussing the value of compiling patient metadata for research).
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