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ABSTRACT

Aims. We study LQ Hya photometry for 1982–2014 with the carrier fit (CF) method and compare our results to earlier photometric
analysis and recent Doppler imaging maps.
Methods. As the rotation period of the object is not known a priori, we utilize different types of statistical methods first (least-squares
fit of harmonics, phase dispersion statistics) to estimate various candidates for the carrier period for the CF method. Secondly, a global
fit to the whole data set and local fits to shorter segments are computed with the period that is found to be optimal.
Results. The harmonic least-squares analysis of all the available data reveals a short period, of close to 1.6 days, as a limiting value
for a set of significant frequencies. We interpret this as the rotation period of the spots near the equatorial region. In addition, the
distribution of the significant periods is found to be bimodal, hinting of a longer-term modulating period, which we set out to study
with a two-harmonic CF model. A weak modulation signal is, indeed retrieved, with a period of roughly 6.9 yr. The phase dispersion
analysis gives a clear symmetric minimum for coherence times lower than and around 100 days. We interpret this as the mean rotation
pattern of the spots. Of these periods, the most significant and physically most plausible period statistically is the mean spot rotation
period 1.d60514, which is chosen to be used as the carrier period for the CF analysis. With the CF method, we seek any systematic
trends in the spot distribution in the global time frame, and locally look for previously reported abrupt phase changes in rapidly
rotating objects. During 2003–2009, the global CF reveals a coherent structure rotating with a period of 1.d6037, while during most
other times the spot distribution appears somewhat random in phase.
Conclusions. The evolution of the spot distribution of the object is found to be very chaotic, with no clear signs of an azimuthal
dynamo wave that would persist over longer timescales, although the short-lived coherent structures occasionally observed do not
rotate with the same speed as the mean spot distribution. The most likely explanation of the bimodal period distribution is attributed
to the high- and low-latitude spot formation regions confirmed from Doppler imaging and Zeeman Doppler imaging.

Key words. stars: activity – starspots

1. Introduction

LQ Hya (HD 82558) is a chromospherically active BY Draconis-
type star of the spectral type K2V (Cutispoto 1991; Covino
et al. 2001). It also shows a high level of Ca H&K emission
(log R′HK = −4.06, White et al. 2007), manifesting very high
level of magnetic activity. With an estimated mass of 0.8±0.1 M�
and age 51.0± 17.5 Myr (Tetzlaff et al. 2011), the star is consid-
ered a young solar analog. The star spins very fast, with the es-
timated rotation period being around 1.6 days (e.g., Jetsu 1993;
Berdyugina et al. 2002; Kovári et al. 2004; Lehtinen et al. 2012).

? Based on observations made with the Nordic Optical Telescope, op-
erated on the island of La Palma jointly by Denmark, Finland, Iceland,
Norway, and Sweden, in the Spanish Observatorio del Roque de los
Muchachos of the Instituto de Astrofisica de Canarias.
?? Table of minima is only available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A120

In addition to exhibiting strong magnetic activity indicators,
the star shows modulation in its light curve, as first proposed by
Eggen (1984) and confirmed by Fekel et al. (1986). This behav-
ior is interpreted as cool spots rotating with the stellar surface.
For this reason, photometric light curves have been used to deter-
mine the rotation period of the star. This simple picture might not
be applicable if the star exhibits latitudinal and/or radial surface
differential rotation analogous to the Sun, or latitudinal dynamo
waves, which is the solar case, as the sunspots form the well-
known butterfly diagram with cyclic behavior known as Spörer’s
law, and/or azimuthal dynamo waves (which can occur in the
rapid rotation regime, e.g., Lindborg et al. 2011). Indeed, based
on previous studies of LQ Hya photometry, it has become evi-
dent that no single period suitable exists for describing the phys-
ical system throughout the whole observational time span avail-
able. However, for shorter epochs, dominating periods have been
found. In Jetsu (1993) a good phase coherence was achieved
with a period of 1.d601136, Berdyugina et al. (2002) arrived at a
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period estimate of 1.d601052, Kovári et al. (2004) report a period
of 1.d60066, and the analysis of Lehtinen et al. (2012) gives a
period 1.d6043.

The surface differential rotation of the object has been es-
timated by either using photometric light curves (Jetsu 1993;
Berdyugina et al. 2002; You 2007; Lehtinen et al. 2012), or
spectroscopic observations analyzed with Doppler imaging (DI)
methods (Strassmeier et al. 1993; Saar et al. 1994; Rice &
Strassmeier 1998; Kovári et al. 2004) and Zeeman Doppler
imaging (ZDI) methods (Saar et al. 1994; Donati 1999; Donati
et al. 2003b; McIvor et al. 2004). It is customary to define the
differential rotation parameter as

k =
Ωeq −Ωpole

Ωeq
= 1 −

Ωpole

Ωeq
, (1)

describing both the magnitude and the type of the latitudinal ro-
tation law. Large values of k denote strong differential rotation,
positive signs corresponding to solar-like profiles with a faster
equator and a slower pole, negative to antisolar profiles with
faster poles and a slower equator. From photometry, only the
magnitude of k can be deduced, while using DI one can also de-
termine its sign. The values obtained from the fluctuations in the
photometric period range from k = 0.015 (Jetsu 1993) to 0.025
by (You 2007).

The DI and ZDI results of Saar et al. (1994) initially es-
timated an upper limit of differential rotation based on po-
lar “smearing” of k . 0.03 and further analysis by Kovári
et al. (2004), Donati et al. (2003a) indicate even weaker (k =
0.002...0.006) solar-like differential rotation. Because of the rel-
atively low v sin(i) of the object versus the required value for DI
techniques, the results show significant scatter (see, e.g., Barnes
et al. 2005). Obtaining a reliable value for differential rotation
using DI and ZDI requires a longer baseline of observations than
used in most studies (Strassmeier et al. 1993; Rice & Strassmeier
1998).

In general, the amount of differential rotation in this object
can be concluded to be very small compared to the solar value
of k ≈ 0.2. Hydrodynamical mean-field modeling of the rota-
tion law of this object by Kitchatinov & Olemskoy (2011) agrees
with the observations in the sense that the obtained profiles are
solar-like, and the magnitude falls within the observational range
(k = 0.028).

The DI and ZDI maps (e.g., Strassmeier et al. 1993; Saar
et al. 1994; Rice & Strassmeier 1998; Donati 1999; Donati et al.
2003b; Cole et al. 2014a) show both high- and low-latitude spot
activity on the object to the extent that Cole et al. (2014a) de-
fine the distribution over latitude to be bimodal. The relative
strength of the two latitudinal spot regions has been reported to
be highly variable over time so that during some epochs the near-
equator spots dominate, while during others the nearly polar fea-
tures are the strongest. The spot distribution from DI and ZDI
has been postulated to be concentrated onto active longitudes
during some epochs. Therefore, the spot distribution has occa-
sionally been highly non-axisymmetric (e.g., Saar et al. 1994),
but during different epochs no clear signs of active longitudes
have been found (e.g., Cole et al. 2014a). In addition, Cao & Gu
(2014) found rotational modulation of chromospheric emission
during 2006−2012, which indicates the presence and change of
chromospheric active regions over the surface of LQ Hya over
a considerable timespan. Moreover, a close spatial connection
between chromospheric active regions and photospheric regions
from previous studies was detected.

Many authors of photometric or DI studies have reported
the concentrations of the spot activity on certain longitudes

(Jetsu 1993; Berdyugina et al. 2002; Kovári et al. 2004; Lehtinen
et al. 2012). The periods producing the largest amount of phase
clustering and the phase separation of the “active longitudes”
vary significantly depending on the data set span and timing,
and also the method used, indicating that these structures are not
persistent, but rather may be changing strongly in time. For ex-
ample, Lehtinen et al. (2012) concluded that during 1988−2011,
two different periods describing structures with active longi-
tudes Pal = 1.d61208 and Pal = 1.d603693, the former appear-
ing around 1995 and the latter between the years 2003 and
2009, were needed to describe the phase clustering of the data.
In contrast, Berdyugina et al. (2002) used a light curve inver-
sion technique to recover spot phases and postulated the exis-
tence of two active longitudes about 180◦ apart, spanning the
entire 20 yr of the data set, and calculated a new rotation period
for the spot structure from the drift of these active longitudes,
Pal = 1.d601052 ± 0.d000014.

The mean brightness of the star exhibits obvious signs of
cyclic activity. Various determinations from photometry indicate
cycles of around six to seven years (e.g., Jetsu 1993; Strassmeier
et al. 1997; Cutispoto 1998; Oláh et al. 2009), while also coexist-
ing shorter (approximately three years, e.g. Messina & Guinan
2003) and longer (approximately 11 yr, e.g., Oláh et al. 2000)
cycles have been reported. Berdyugina et al. (2002), who postu-
lated coherent active longitudes during the time span of almost
20 yr, found a 7.7-yr cycle in the mean brightness, and addition-
ally a 5.2-yr cycle related to the regular change of the activity
level of the two active longitudes (flip-flop).

From various earlier studies, it is evident that the behavior
of the object is extremely complex and a systematic approach to
understanding these complexities is yet missing in the literature.
This is attempted in our study using the carrier fit (CF) method,
the essential properties of which are explained in Sect. 3.1. This
method has been previously successfully applied to study spot
activity in other types of stars: see Hackman et al. (2013) for
the analysis of FK Coma Berenices and Lindborg et al. (2013)
for the analysis of II Pegasi. As the rotation period of the star
is not known a priori, we search for the optimal carrier fre-
quency first using different kinds of statistical methods described
in Sects. 4.1−4.3. We then perform a global CF using the opti-
mal carrier frequency (Sect. 5.1), the aim being to search for any
persistent trends and/or phase disruptions. Finally, we perform
local CFs to study local segments in an attempt to identify in-
teresting phase behavior. Here we also make a comparison to
the continuous period search (CPS) method results by Lehtinen
et al. (2012) and the recent DI results of Cole et al. (2014a). In
Sects. 6 and 7, we discuss and conclude our findings.

2. Data

We use data consisting of nearly 32 yr of photometry from
three different sources, namely the photometry collected and
published in Berdyugina et al. (2002) from HJD = 2 445 275
(2 November 1982) to HJD = 2 452 053 (23 May 2001); the
published photometry of Lehtinen et al. (2012) from HJD =
2 447 141 (11 December 1987) to HJD = 2 455 684 (2 May
2011) obtained with the T3 0.4 m APT at the Fairborn
Observatory, Arizona; and finally unpublished photometry ob-
tained with the same telescope from HJD = 2 455 685 (3 May
2011) to HJD = 2 456 783 (5 May 2014). From these data
sources (see Fig. 1) we compiled two input data sets. First, we
rescaled T3-APT data to fit the data from Berdyugina et al.
(2002) and for overlapping observations, computed data points
as averages (maximum allowed time difference of 0.1 days
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Fig. 1. Combined data set from the three different sources. The data
set referred to as D1 consists of all available data, while data set D2
comprises only T3-APT data (Lehtinen + unpublished).

was used). As a result of this procedure we got a long
data set (hence D1) consisting of 3929 observations covering
11 508 days. We used this data set to perform periodicity anal-
ysis and optimal carrier period value estimation; the analysis is
presented in Sect. 4. For the CF analysis presented in Sect. 5,
we combined all data from T3-APT telescope, i.e., the data
published in Lehtinen et al. (2012) supplemented with the sea-
sons up to May 2014. As a result we got a homogeneous data
set (hence D2), which consisted of 2907 observations covering
9642 days. We denote this data set as homogeneous, as it was
observed with the same instrument with the same comparison
star (HD 82428). We also note that it is of better quality than the
D1 data.

3. Carrier fit method

3.1. Overview

A detailed description and the discussion of applicability of the
CF method can be found in Pelt et al. (2011); here we briefly
cover some of key aspects of this method. A CF model can be
described as a truncated, slowly modulated harmonic decompo-
sition of the signal:

f (t) = a0(t) +

K∑
k=1

(ak(t) cos(2πtkν0) + bk(t) sin(2πtkν0)), (2)

where ν0 is the carrier frequency, a0(t) is the time-dependent
mean level of the signal, K is the total number of harmon-
ics included in the model, describing the overtones of the ba-
sic carrier frequency. The low-frequency signal components,
ak(t) and bk(t), can be modeled by either splines or harmonics.
Depending on the time series in question, either one of these
approaches may be a more suitable choice, e.g., the spline ap-
proximation might be more suitable for cases where the signal is
known to abruptly change. However, generally the difference be-
tween goodness of fits (for definition, see Sect. 3.2) is marginal
if the number of free parameters for both methods are approxi-
mately the same. In the scope of the current study, we limit our-
selves to the option of harmonic modulators.

The value for the carrier frequency used in the above model
can be, for instance, the rotation period of the object, or any
other clocking frequency describing the system. In the case of
LQ Hya, however, the rotation period is not directly known, as
it is a single star. Therefore, we discuss various approaches to
carrier frequency (or period) selection below.

Following the notation used in Pelt et al. (2011), the trigono-
metric approximation of the slow-amplitude modulation curves
can be written as:

a(t) = ca
0 +

L∑
l=1

(
ca

l cos(2πtlνD) + sa
l sin(2πtlνD)

)
, (3)

b(t) = cb
0 +

L∑
l=1

(
cb

l cos(2πtlνD) + sb
l sin(2πtlνD)

)
, (4)

where L is the total number of harmonics used in the modulator
model and νD = 1/D = 1/C ·(tmax−tmin), where D is data period,
C is the coverage factor, and [tmin, tmax] is the time interval to be
fitted with the model. The data period D must be significantly
longer than the carrier period P0 = 1/ν0, and preferably it must
also be a little longer than the actual time span of the data, i.e.,
the coverage factor should be C ' 1.

3.2. Selection of free parameters

One of the crucial things to consider when applying the CF
method to real data are the suitable values of the free parame-
ters (ν0, K, L and C). As the selection of the carrier frequency ν0
is particularly important, we dedicate Sect. 4 to it. The methods
used for determining the values for other parameters will be dis-
cussed here. In general we need to run the computations with
all possible combinations of parameter values drawn from some
meaningful ranges and then estimate the goodness of fit for every
run using

R2 = 1 −

n∑
i=1

(yi − fi)2

n∑
i=1

(yi − y)2
, (5)

where n is the number of data points, yi is the value of the ith data
point, fi is the value of the fit corresponding to the time moment
of ith data point, and y is the mean of the values of all data points.
Qualitatively speaking, the goodness of fit compares the variance
of data points around the model to that of the data itself. In the
current study, we use two approaches: we start by analyzing the
full set of data as a whole (global fit) followed by the analysis
of seasonal data segments (local fit). In both cases, we aim for
as high R2 values as possible while avoiding the possibility of
either overfitting the data or fitting into the gaps.

Before continuing with the methods of parameter selection
we note that the suitable value for L is, first of all, dependent
on the value of the coverage factor C, which defines the pe-
riod of the slowest modulator in the model. It is reasonable to
adopt a value of the same order or little longer than the length of
the whole data set. This way we guarantee that the slowest de-
tectable changes in the data are taken into account by the model.
In the current study we have fixed C = 1.2.

The difficulty introduced by the gaps in the data constitutes
the so-called cycle count problem. The low-frequency modula-
tors L introduce variance around the carrier frequency. Here, we
need to keep in mind that the difference in cycle counts for these
maximum and minimum frequencies during the longest gap in
the data should be less than one to avoid phase match indetermi-
nacy. This can be concisely expressed by the following criterion:
(ν0 + νD)∆gap − (ν0 − νD)∆gap < 1, where ν0 is a high-frequency
carrier, νD is a low- frequency modulator, and ∆gap is the length
of the longest gap in the given data set. After replacing and sim-
plifying νD = L/D = L/C · (tmax − tmin), we obtain an estimate
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for the upper limit for L:

2L · ∆gap

C · (tmax − tmin)
< 1⇒ L <

C · (tmax − tmin)
2 · ∆gap

· (6)

Using this formula, we can estimate the maximum valid L for
the data set with the given time span and the longest gap.

In case of local fits, because of the low number of data points,
there exists a possibility of an overfit. We use Bayesian informa-
tion criterion (BIC) to determine the optimal values for K and L
in a similar way that was done in Lehtinen et al. (2011), the dif-
ferences being that we have two parameters in the model and we
omit the weights of the data points. More precisely, we search
for the minimum of the following criterion:

RBIC = n ln
(
σ2

)
+ ((2 + 4L)K + 2L + 1) ln n, (7)

where σ2 = 1
n−1

n∑
i=1

(yi − fi)2, and we have used the same nota-

tion as in Eq. (5). The first term of this equation describes the
quality of the fit and the second one adds a penalty proportional
to the total number of parameters in the model. Now, as we need
the information for possible primary and secondary minima to
be able to detect flip-flop type events, we omit K = 1 from the
set of trial values. For L we do not impose a lower limit, but we
will calculate the upper limit using Eq. (6) to check if the value
obtained from BIC is valid. Consequently we will use the mini-
mum of the values obtained from Eqs. (6) and (7) as the optimal
value. The practical application of this procedure is detailed in
Sect. 5.2.

In case of the global fit, the possibility of overfitting is quite
low as the presence of long seasonal gaps in the data signifi-
cantly lowers the maximum possible values for K and L. It is
quite probable that when increasing the number of parameters,
the model starts showing big distortions in the regions where
data is missing considerably earlier than the high value of R2

(e.g. 90 %) is achieved.
Before starting to measure the effect of the gaps on the

model, first we need to specify how long a region without data
qualifies as a gap. In our case, the data is divided into observa-
tional seasons where relatively densely spaced data is alternating
with slightly shorter ranges with no data at all. Based on a closer
look at the actual spacing of the data, we define the gap as any
region without data that is longer than 130 days. This defini-
tion leads to 27 segments with data and 26 gaps between them
(minimum being 139 and maximum 302 days). The length of the
homogeneous data set is 9642 days, thus using Eq. (6) with the
maximal gap size of 302 days we obtain a maximum value for L
to be 19. As explained in Sect. 4.1, this is too low value to cover
the full spectrum of the data. To eliminate this problem, one op-
tion would be to leave out all data points preceding the longest
gap and work with the truncated data set. By not doing so, on
the negative side, we lose the reliability of the model during this
single gap, but on the positive side, we still maintain a global
description for the maximum available time span. We must note,
however, that even when neglecting the cycle count problem, the
reliability of the model is still expected to decrease during all
seasonal gaps. Based on this consideration, we decided to keep
the full data set and expect the error estimates to reflect the re-
liability of the model sufficiently well (please refer to Sect. 3.4
for more details about error estimation).

The second longest gap in the data is 192 days long, increas-
ing the suitable value for L to 30. This number is also close
to the number of observing seasons, so that we could expect

good approximation of the seasonal variation by the term a0(t) in
Eq. (2). In choosing the suitable values of high-frequency com-
ponents K, there is not much room: on one hand K = 2 is the
lowest value meaningful in our analysis because of the same
considerations as pointed out in case of the local fits. On the
other hand, tests with K = 3 showed only a small positive ef-
fect in the achieved R2 value, while significantly increasing the
freedom of the model (distortions) in the region of gaps. Based
on these arguments, we decided to fix K = 2. The total num-
ber of parameters in our model is therefore 305, which means
approximately 10 data points per parameter.

After we fixed the optimal parameter values for the model,
we can further increase the goodness of fit by removing the 3σ
outliers to the initial fit from the data and then refitting again.
The outliers are either observationally unreliable points or pos-
sible flares, such as one that occurred around April 2000 or
HJD 2 451 650. In our case, we detected a total of 22 outliers.
The removal of these outliers leads to an approximately 3% in-
crease in R2 for global fit. Therefore, in all subsequent CF anal-
ysis (for global as well as for local) we used the data set with
outliers eliminated.

3.3. Visualization

To visualize the CF model, we use the same technique as in-
troduced in Pelt et al. (2011, p. 4, Sect. 2.6). Firstly, we di-
vide the whole time span into the number of bins with the length
of the chosen carrier period. Secondly, for each bin we normalize
the signal amplitude into range [−1, 1] and then plot it with the
corresponding time moment of the bin and the phase relative to
the carrier period. This normalization step is useful for making
the phase behavior of the signal comparable over the whole time
span. Without normalization the features during high amplitudes
will dominate the picture. Here we use both approaches for the
purpose of obtaining more information about the processes gov-
erning the star. At the bottom of the plot we include a so-called
“bar-code” to give information of the density of the data points
around the given time moments. Black indicates densely spaced
data, while yellow indicates sparsely spaced or no data at all.
Some previous examples using the given technique can be found
in Hackman et al. (2013), Lindborg et al. (2013).

3.4. Minima detection, error and significance estimation

Besides using CF method for visualizing the results, we deter-
mine primary and secondary minima from the model of global
fit and compare them to results obtained from DI analysis and
the earlier analysis of a shorter segment of the same data used
here with a different method (CPS; Lehtinen et al. 2012). Error
estimates for the minima are calculated by generating 1000 boot-
strap samples from the original data, by reshuffling the residuals
of the data points to the initial CF model allowing recurrences;
repeating the CF analysis for each new data set; and finally, ob-
taining the distributions for the minima. We mark a minimum
as being reliable if and only if the following two conditions
are satisfied for distributions both in time and magnitude: the
Kolmogorov-Smirnov test with preassigned significance level
0.01 against a normal distribution must pass and the bias of the
mean of the distribution from the original estimate should be less
than the standard deviation of the distribution. The error and sig-
nificance estimates for each minimum can be found along with
the full global fit data in the material published online.
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4. Methods and results for searching the optimal
carrier frequency

The selection of the optimal carrier frequency to analyze LQ Hya
light curves is far from a trivial task. There is a wide range of
different periods obtained from different data sets and using dif-
ferent methods. This is why we need a thorough analysis of the
periods to proceed with the CF method. Building on the solar
analogy, one might hypothesize that there are at least four types
of periodicities that one needs to deal with:

1. Behind all the observable activity is the stellar surface rota-
tion and its nonuniformities. In the solar case, the sunspots
quite closely follow the motion of the solar surface seen from
Dopplerograms; the only exception are the longitudinal ac-
tivity nests that have been reported to show motions that dif-
fer from the general pattern. In the absence of asteroseismic
data, it is impossible to distinguish between the motion of
the plasma and the spots themselves, and the determination
of the rotation period is out of the scope of this study.

2. Through photometry, one can hope at least to be able to de-
termine the mean rotation period of the spots on the stellar
surface, analogous to the Carrington rotation period of the
Sun.

3. Taking the DI and ZDI results of significant spot activity
in the low-latitude regions and solar-like rotation law of
LQ Hya as valid assumptions, one may also be able to de-
termine the spot rotation period near the equatorial region,
as this should arguably be the shortest period of rotational
origin seen in the periodograms.

4. Analogous to the periods derived for the longitudinal activity
nest on the solar surface for the azimuthal dynamo waves on
some more evolved rapid rotators, photometric studies can
be used to determine whether any longitudinal clustering oc-
curs and if the period of the active longitudes differs from
the mean rotation period of the spot distribution.

4.1. Least-squares fitting

For irregularly spaced data sets the most common procedure of
frequency analysis is a simple least-squares fit of a harmonic
waveform into the data with the range of some trial periods. The
particular computational schemes and descriptive statistics vary
(see, e.g., Barning 1963; Lomb 1976; Scargle 1982). In our anal-
ysis, we chose the simplest statistic, which measures the rele-
vance of the harmonic under discussion, namely its amplitude.

Before computing the amplitude spectrum, we removed the
seasonal means (de-trending) of the full LQ Hya V-band pho-
tometry data. The complexity of the spectrum, depicted in Fig. 2
in gray, is obvious and it is very hard to single out any promi-
nent peak from the forest of peaks in the spectrum. The anal-
ysis can and must be improved by removing the spurious peri-
ods rising from the gapped nature of the data. For this, we used
the so-called pre-whitening method (for a recent application of
the method, see, e.g., Reinhold & Reiners 2013). We iteratively
removed the most significant harmonics with estimated ampli-
tudes, and proceeded in the next step with the least squares fit
residuals. In this way we computed a set of the 100 strongest
amplitudes, which are depicted in Fig. 2 in black. These are not,
with high probability, aliases due to the most prominent yearly
gap structure with frequency offsets of ∆ν ≈ 1/365. Even af-
ter this cleaning procedure, we still have a very complex set of
different frequencies.

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.60 0.62 0.64 0.66

A
m

p
li

tu
d

e

Frequency (cyc/day)

Fig. 2. Amplitude spectrum for the important period range 1.5−1.7 days
(gray) and first 100 frequencies obtained by sequential prewhitening
procedure (black).
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Fig. 3. Set of 28 strongest amplitudes (black) and original amplitude
spectrum (gray). The horizontal line marks the cutoff level obtained
from 100 randomized samples.

A large part of the estimated frequencies with corresponding
amplitudes are well below the noise level and we can disregard
them. To estimate a suitable cutoff level, below which the peaks
are considered insignificant, we proceeded in the following way.
We built artificial data sets from the original by reshuffling them
in time. For every new data set, we found its strongest peak. We
then chose the amplitude cut-off level as a value of maximum
amplitude in 100 different random runs. This criterion is rather
conservative and we can be quite confident that the 28 periods,
shown in black lines in Fig. 3, whose amplitudes were higher
than the cutoff level (0.00385; indicated with a horizontal line
in Fig. 3), are not the results of random fluctuations. As seen
from the plot, the set of the selected peaks is now much more
localized. Among the peaks are practically all the periods that
have been proposed so far by different authors for different data
sets, see Table 1.

The selected set of periods lay in the interval
1.598406 . . . 1.622572 days (or in frequency terms
0.6163053 . . . 0.6256234 cycles per day). The center of the
full range interval is at νLS

0 = 0.6209644 (PLS
0 = 1.d6103984) and

this is the first logical candidate for the carrier frequency. The
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Table 1. Periods with strongest peaks in the spectrum compared to pre-
vious estimates.

Period Previous estimates Source
1.601279 1.601136 (Jetsu 1993)

1.601052 (Berdyugina et al. 2002)
1.600662 1.600881 (Strassmeier et al. 1997)

1.600834 (Berdyugina et al. 2002)
1.60066 (Kovári et al. 2004)

1.603893 1.6042 (Messina & Guinan 2003)
1.60369 (Lehtinen et al. 2012)

logic behind this choice is obvious: the full frequency range will
be covered on equal grounds.

Several authors have already reported on the period vari-
ability of LQ Hya. By using local fits, e.g., Messina & Guinan
(2003) give the period in the range 1.d5938−1.d6154 and You
(2007) report 1.d60094−1.d60918 range from their analysis. The
obtained range of periods is also in good agreement with a set of
rotation periods obtained from a simple spot modeling procedure
by Alekseev (2005). The time span for our main homogeneous
data set (D2) is around 9642 days. Correspondingly, the range of
rotation counts for the significant periods is 5942 . . . 6032 with
a difference of 90 rotations. For the carrier frequency around the
center of the estimated range, this allows up to 45 full phase cy-
cle runs in both directions. In Sect. 3.2, however, we concluded
that the optimal harmonic count for low-frequency modulation
curve is around 30 cycles. It follows that, in principle, the very
sharp (momentous) frequency jumps from one side of the range
to the other can become smoothed out to some extent.

On the other hand, the second longest seasonal gap in the
data is around 192 days and corresponding cycle counts are
199 . . . 120. Obviously, for the carrier periods in the middle of
the full range, the phase migration during the gaps is certainly
less than a full turn, cf. Eq. (6). For the longest gap in the data
(around 302 days), however, we can theoretically have a cycle
count error and consequently the approximated solution in this
region can not be regarded reliable.

Finally, one interesting observation that can be seen in Fig. 3
is that the distribution of the significant frequencies is bimodal,
i.e., there are two bunches of them. As seen from Table 1, typical
solutions are concentrated in the rightmost bunch of periods, the
cutoff being very sharp on the higher frequency (shorter period)
side.

The bimodal structure of the period distribution leads us to
another hypothesis that this is a case when a certain frequency in
between the two bunches is more or less periodically modulated
(with period around 2000−3000 days). This hypothesis was al-
ready set up in an earlier paper (see Berdyugina et al. 2002). To
check it again, we carried out the corresponding analysis for our
significantly longer data set D2.

4.2. Carrier from a multiperiodic model

The simplest conceivable model for the slowly modulated signal
is a time series that depends on the carrier period PMP

0 = 1/νMP
0

and modulating period Pmod = 1/νmod in a coupled way. That
means that all positive combination frequencies

νi, j = i × νMP
0 + j × νmod, i, j = −N, . . . ,N, (8)

can take part in waveforming. In the simplest case of N = 2,
there will essentially be 25 different trigonometric terms (con-
stant included) that must be fitted into the observed data using
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Fig. 4. Folded and stacked light curve model with periods PMP
0 =

1.d602680 and Pm = 2534.d6. This regular structure helps to describe
only R2 = 23.542% of overall variability.
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Fig. 5. Carrier fit obtained with the carrier PMP
0 = 1.d60268 obtained

from the two-periodic model of Sect. 4.2.

the least-squares method (see Berdyugina et al. 2002). The peri-
ods producing the best fit will then be used to build a final model.

We performed this kind of analysis for the data set D2.
The resulting pair of periods occurred at PMP

0 = 1.d602680 ±
0.d0000027 and Pmod = 2534.d6 ± 6.d6 (roughly 6.94 yr). The re-
sulting fit can be visualized by the same devices as the CF. We
divide the solution into period length fragments and stack them
properly. In Fig. 4 our solution is depicted. The R2 value for the
least squares fit for these two periods is quite low (23.6%). It is
remarkable that the obtained modulation period is very similar
to values often quoted as the long cycle length of LQ Hya (e.g.,
Jetsu 1993; Oláh et al. 2000; Berdyugina et al. 2002; Alekseev
2005). However, it is known that given cycle length is non-
stationary (e.g., Oláh et al. 2011), partially explaining the low
quality of the fit in our analysis.

If we now base our consideration on the idea that the possi-
ble doubly periodic component is a relevant aspect of the over-
all variability then we can use the computed carrier value as a
model-based carrier PMP

0 for the CF procedure. The result of this
analysis is shown in Fig. 5. Unfortunately, the regular structure
of the simple model is largely lost and a number of other vari-
ability elements dominate the picture.
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Fig. 6. Phase dispersion statistic D2(P) for a range of correlation
lengths. The dispersion spectrum becomes strongly asymmetric around
230 days and then splits into set of peaks.

4.3. Carrier from the phase dispersion analysis

From Fig. 3 we can well see that the period computed as a mean
from the formal range of significant periods is not very repre-
sentative because of the bimodal nature of the distribution. This
is also true if the peak with maximum amplitude was selected
as a carrier. A slightly better method would be the one used in
Lehtinen et al. (2012) where the best period was selected using
phase distributions of the light curve extrema. However, in this
case, the interplay between different frequencies can shift min-
ima or maxima and obscure the general picture.

To our understanding, the best method for computing the
mean period of spots comes from phase dispersion analysis (Pelt
1983; Lindborg et al. 2013). It is based on the following simple
statistic:

D2(P) =
1

2σ2

N−1∑
i=1

N∑
j=i+1

g(ti, t j, P,∆t)[ f (ti) − f (t j)]2

N−1∑
i=1

N∑
j=i+1

g(ti, t j, P,∆t)
, (9)

where f (ti), i = 1, . . . ,N is the input time series, σ2 is its vari-
ance, g(ti, t j, P,∆t) is the selection function, which is signifi-
cantly greater than zero only when

t j − ti ≈ kP, k = ±1,±2, . . . and (10)∣∣∣t j − ti
∣∣∣ ≤ ∆t. (11)

In the latter condition, ∆t is the so-called correlation length. For
the particular case when ∆t is longer than the full data span, the
D2(P) statistic is essentially a slight reformulation of the well-
known Stellingwerf statistic (Stellingwerf 1978). As the corre-
lation length is made shorter, we match nearby cycles in a pro-
gressively narrower region, and consequently estimate a certain
mean period, which need not be coherent for the full time span.
This is well illustrated in Fig. 6, where we show the D2(P) statis-
tic for the range of trial frequencies as function of the correlation
length, ∆t, using color contours. We see that for a small enough
correlation length the D2(P) statistic yields a rather symmetric
single minimum. Above that limit the frequency spectrum starts
to distort and eventually splits into separate branches. Finally,
at large correlation lengths we obtain a forest of minima similar
to the results presented in Sect. 4.1. We interpret this behavior in
the following way: for short coherence times, the periodogram is
dominated by the mean pattern of spot motions, while at longer
coherence times the signatures of more persistent spot structures,
the rotation of which differs from the mean spot flow, take over
and give the strongest signal.
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Fig. 7. Curves of the phase dispersion statistic D2(P) for different cor-
relation lengths in days: 100 (black), 200 (gray), and 300 (light gray).
Dashed curve corresponds to the best-fitting Gaussian to the curve with
correlation length 100 days.

Our aim is to determine the limiting correlation length at
which a single minimum is still obtained and use the corre-
sponding period of the phase dispersion minimum as a plausi-
ble carrier period. Here we must point out two problems: firstly
the minimum of D2(P) statistic is usually very wide, and sec-
ondly the shape of the peak somewhat deviates from symmetric
form (see for details Fig. 7). This prevents us from determining
a sufficiently accurate value of the minimum directly from the
curve of the statistic. Instead of that, we fit a Gaussian profile
to the curve of D2(P) statistic. Our task is to estimate the free
parameters of this Gaussian curve (mean µ and variance σ2) for
which the distance to the curve of the D2(P) statistic is minimal.
The value of the mean obtained this way represents the optimal
carrier frequency and the variance represents the scatter of the
periods around it. From our analysis, it turns out that, for a cor-
relation length of 100 days, the curve of the D2(P) statistic is
singular and relatively symmetric. Hence, we choose this cor-
relation length as the limiting length, and determine the mean
period from this curve. The best-fitting Gaussian has the mean
µ = 0.62300 and standard deviation σ = 0.00325 (both in cy-
cles per day). In the time domain the corresponding values are
PD2

0 = 1.d60514 and ∆P0
D2 ≈ 0.d0084. For comparison, a simi-

lar value, Pw = 1.d6043, was obtained by Lehtinen et al. (2012)
by calculating the weighted mean of the periods determined for
independent subsets of the whole data.

We estimated the significance of the mean cycle length PD2
0

by testing the null hypothesis that the peak of the minimum
is drawn from the distribution of random fluctuations. For that
purpose, we generated 1000 samples from the original data set
via reshuffling the measured magnitudes and then calculated the
value of the D2(P) statistic for each new data set using correla-
tion length of 100 days. In this manner, we obtained a distribu-
tion for the minimum of the D2(P) statistic caused by random
fluctuations. The results showed that in our case the null hypoth-
esis can be rejected with preassigned significance level of 0.05
as the minimum of the D2(P) for the original data remains well
below the 995th value from the sample distribution, which was
located around 0.97.
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Fig. 8. Phase diagram for global fit with carrier period PD2
0 =1.d60514, K = 2 and L = 30. On left with normalized amplitudes, on right with actual

magnitudes

We believe that the carrier value obtained using the D2(P)
statistic, which is computed for short correlation lengths, is well
grounded. The other values (the strongest peak in the spectrum,
central value of the range, mean value of the set of periods, peri-
ods based on extrema) tend to bring in an amount of contingency,
as using any of them would in practice mean choosing a certain
locally active period for the CF analysis of a global nature.

5. Carrier fit results

In the following we will use the obtained mean cycle length pe-
riod of the spots PD2

0 as the carrier period in Eq. (2), substituting
ν0 = 1/PD2

0 , and compute models of global as well as local fits.

5.1. Global fit

We perform a global CF analysis with the selected parame-
ters PD2

0 , K = 2, L = 30, and C = 1.2, which gives a model
with R2 = 91.7%. Consequently, the CF model describes a
rather large part of the overall input data variability. The result-
ing phase diagram is displayed in Fig. 8, from which it is evident
that the phase behavior is characterized by up- and downward
trends, while epochs during which the minima would occur at
constant phases are almost totally absent. On the one hand, the
slopes of the trends correspond to the different periods, and on
the other hand, the lengths and the locations of the trends give
hints of the “duty times” of these cycles (in other words when
and for how long these periods dominate). The most noticeable
feature is a downward trend during the years 2003−2009, which
roughly corresponds to the period 1.d6037 days, belonging to the
strongest peak found previously by frequency analysis. Another
prominent downward trend occurs during the years 1990−1994.
Average period describing this feature is around 1.d6033 days.
During other epochs the phase behavior is changing more rapidly
in time while the abrupt phase shifts seem to appear over the
whole time span, even during the strongest trends.

5.2. Local fits

In the current study, local analysis of the data is carried out
mainly for the purpose of visualizing the phase behavior of the
signal in more detail than it is possible with the global analy-
sis. Because there are insufficient number of modulators in the
global fit, the whole spectrum of the data is not covered. This
leads to the smoothing of the real signal on small timescales. To
get better results, we perform a local CF analysis similar to that

of Hackman et al. (2013) and Lindborg et al. (2013). Segments
contain a relatively low number of data points and in some cases
considerable gaps are present, thus the maximum allowed num-
ber of modulators is significantly smaller than that for the global
fit. Therefore one could assume that no higher precision in the
results is achievable. However, the reality is exactly the oppo-
site, we obtain better coverage of the spectrum for two reasons:
firstly, the spectrum of each separate segment is narrower than
that of the whole data set, and secondly, the frequencies of the
modulators in the model are much higher than those used in case
of the global fit.

Splitting the data into segments suitable for the local analysis
is done using the following rules: we start with the earliest data
point and calculate the difference in time between pairs of data
points next to each other di = ti− ti−1. If di < 130d the data point
at ti is added to the segment, otherwise a new segment is started
and the process is repeated. Using the above algorithm we ob-
tained 27 segments, the details of which are given in Table 2. The
CFs for each segment were applied with the period of the mean
cycle length PD2

0 = 1.d60514. We determined the number of har-
monics K and modulators L optimal for each segment by finding
the minimum for the BIC. For all segments, K = 2 turned out to
be suitable except for the segment 5, which had only 27 points
so that realistic modeling was impossible. Because of the cy-
cle count problem, L was further decreased for the segments 1
and 26. The exact number of parameters L used in the model
and the R2 value achieved for each segment are summarized in
Table 2. We can see that for most of the segments the goodness
of fit is even higher than 90%, but for segments 3, 10, 11, and
26 it is quite low. In case of the segment 26, this can be ex-
plained by a big gap in the data and the low number of points.
The other above mentioned three segments are, however, quite
densely populated. This might be an indication that the signal is
more complex in these segments than what is possible to model
with the given number of data points. The resulting phase dia-
grams for all 27 segments are shown in Fig. 9, where the primary
minima can be found by following black or dark blue features,
while secondary minima appear either as red features between
yellow features, or violet features between red features.

In Table 2 occurrences of flip-flops are marked with the “+”
symbol, totaling four events in segments 2, 11, 13, and 24. Other
types of disrupted phase behavior events are marked with “?”,
constituting the segments 1, 6, 8, 9, 12, 15, 22, 24, and 27.
These are either single phase jumps of primary minima or swaps
between primary and secondary minima less than 0.5 in phase.
Clear upward trends can be seen in segments 6, 12 14, 15, 22,
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Table 2. Summary of the local CF analysis results.

Segment HJD − 2 400 000 (Date) ∆Tseg ∆Tgap N L R2 Events
1 47 141 (1987-12-11) – 47 304 (1988-05-22) 164 47 42 2 96% ?
2 47 460 (1988-10-25) – 47 660 (1989-05-13) 201 8 215 1 80% +
3 47 832 (1989-11-01) – 48 027 (1990-05-15) 196 13 166 1 65% –
4 48 189 (1990-10-24) – 48 394 (1991-05-17) 206 39 46 1 93% –
5 48 696 (1992-03-14) – 48 759 (1992-05-16) 64 14 27 NA NA NA
6 48 911 (1992-10-15) – 49 132 (1993-05-24) 222 19 88 2 89% ?, /
7 49 277 (1993-10-16) – 49 499 (1994-05-26) 223 8 137 2 96% –
8 49 645 (1994-10-19) – 49 866 (1995-05-28) 222 14 129 2 96% ?
9 50 006 (1995-10-15) – 50 226 (1996-05-22) 221 11 152 2 84% ?
10 50 391 (1996-11-03) – 50 595 (1997-05-26) 205 12 148 1 65% –
11 50 736 (1997-10-14) – 50 955 (1998-05-21) 220 13 134 1 59% +
12 51 103 (1998-10-16) – 51 325 (1999-05-26) 223 8 188 2 85% ?, /
13 51 474 (1999-10-22) – 51 687 (2000-05-22) 214 10 126 3 95% +
14 51 861 (2000-11-12) – 52 052 (2001-05-22) 192 11 73 1 92% ?, /
15 52 214 (2001-10-31) – 52 421 (2002-05-26) 208 19 81 2 93% ?, /
16 52 582 (2002-11-03) – 52 785 (2003-05-25) 204 12 100 3 97% –/
17 52 977 (2003-12-03) – 53 149 (2004-05-23) 173 9 85 2 94% –
18 53 299 (2004-10-20) – 53 506 (2005-05-15) 208 21 92 2 94% –
19 53 660 (2005-10-16) – 53 876 (2006-05-20) 217 10 107 2 97% –
20 54 044 (2006-11-04) – 54 238 (2007-05-17) 195 8 101 2 99% –
21 54 400 (2007-10-26) – 54 599 (2008-05-12) 200 13 124 3 98% –
22 54 761 (2008-10-21) – 54 966 (2009-05-14) 206 25 70 2 96% ?, /
23 55 121 (2009-10-16) – 55 312 (2010-04-25) 192 15 97 2 95% –
24 55 499 (2010-10-29) – 55 690 (2011-05-08) 191 6 127 2 90% +
25 55 875 (2011-11-09) – 56 054 (2012-05-06) 179 12 116 3 99% –
26 56 226 (2012-10-25) – 56 426 (2013-05-13) 200 95 44 1 77% ?
27 56 589 (2013-10-23) – 56 783 (2014-05-05) 194 60 70 2 94% ?

Notes. Columns from left to right: segment number, start and end time epochs for the segment in HJD – 2 400 000 and corresponding dates, length
of the segment in days ∆Tseg, length of the longest gap ∆Tgap in days, number of observations N, number of modulators L, goodness of fit R2

and the type of the event that could be detected in the segment (if any). NA stands for the segment with not enough data points for meaningful
CF analysis, “–” for smooth phase behavior, “+” for disrupted phase behavior of flip-flop type, “?” for disrupted phase behavior that can not be
associated with a flip-flop type event, and “/” for phase drifts.

and a relatively gentle downward trend in segment 16. These are
marked with the symbol “/”’ in the same table.

A similar analysis was carried out by Lehtinen et al. (2012)
using the CPS method for the same data set, except for the last
three seasons. The results of this study are in agreement with
ours. Most of the interesting features can be seen on the phase
plots from both studies. Some differences occur for the seg-
ments 3 and 6 where some of the minima detected by CF are
absent in the case of CPS. For segment 19 there is no secondary
minima from CPS, but it can be seen during the first 20 days in
the case of CF. No comparison between the results is available
for segments 4 and 5 because of the low number of data points.

We have also calculated epochs of possible flip-flop events
from the global fit using the definition from Hackman et al.
(2013):

– the region of main activity shifts about 180 deg from the old
active longitude and then stays on the new active longitude;
or

– the primary and secondary minima are first separated by
about 180 deg, after which the secondary minimum evolves
into a long-lived primary minimum, and vice versa.

Two additional restrictions were added to the above scheme:
firstly, we counted only those events for which the phase shift
lies between 0.45 and 0.5; secondly, the primary and secondary
minima at the moment of flip-flop must be reliable according to
the error estimates from bootstrap runs. The results show that

four of the total six flip-flop events detected from global CF re-
side within the data, while two of these events occur in gaps.
Moreover, three of these events are located in the segments 2, 13,
and 24 for which we have also detected flip-flops from local fits.
One of the flip-flops, namely within segment 11, was detectable
only from the local fit. The epochs of all seven detected events
are depicted in Fig. 10 with thick green vertical lines. Example
of the global CF model around the flip-flop event in segment 2
can be seen in Fig. 11. Following the light curve from left to
right, we notice that the magnitude of the primary minima de-
creases while that one of the secondary minima increases. After
around HJD 2 447 490 both minima “swap” their magnitudes,
the change in phase corresponding to 0.5.

In Berdyugina et al. (2002) a 5.2 yr flip-flop cycle was re-
ported. In the light of our current study, this periodicity cannot be
confirmed: on the one hand, this is because of the small number
of events detected, and on the other hand, some of the detected
events are only separated by two or three years.

5.3. Comparison with Doppler imaging

Using our CF model for a global fit with the period of mean
cycle length of 1.d60514, we determined the epochs of primary
and secondary minima. In Fig. 10 these epochs are plotted
against the phase of the same period. Larger red and smaller
blue dots represent the locations of primary and secondary min-
ima, respectively. As noted above, 1000 bootstrap samples were
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Fig. 9. Phase diagrams of local fits with refined carrier period PD2
0 =1.d60514.

calculated for the global CF to obtain error estimates for the
minima. However, for a clearer visualization these are omitted
from the figure, but are included in the online material, where
the global CF solution is given.

In Cole et al. (2014a) the DI technique was applied to
spectrometry of seven observing seasons. The resulting surface
temperature maps were used to determine the epochs of the
temperature minima, interpreted as starspots, for every season.
Especially high activity level, i.e., a large number of cool spots,
was observed to occur during October 1999 to November 2000.
In Fig. 10 we plotted the retrieved spot epochs with orange cir-
cles, where the size of the circle reflects the temperature of the
given spot (a larger circle corresponds to a lower temperature).
On the same plot we also included the minima obtained from
the CPS method published in Lehtinen et al. (2012). Red pluses

and blue crosses represent the primary and secondary minima,
respectively.

As expected the minima obtained from the global fit serve
as the averaged values for the minima obtained from the CPS.
Agreement with the results from DI is also quite satisfactory.
There is a quite good match between DI and other models for
some of the minima found in seasons 3 to 7. Even though nei-
ther active longitudes nor flip-flop type events were seen in DI,
both global and local CF analysis reveal a possible flip-flop.
However, it is not reasonable to search for the full agreement
between photometry and DI. For instance, the photometry is
affected by the limb darkening and surface area projection ef-
fects of the active regions, so that one-to-one correspondence
between the strongest minima in photometry and the lowest tem-
perature regions in DI cannot be expected. We also note that the
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Fig. 11. Zoom-in to the global CF near the flip-flop event detected in
the segment 2. The data points are drawn as small rectangles.

observing seasons for spectrometry and photometry mostly do
not overlap. In addition a low signal-to-noise ratio as well as
less than ideal phase coverage for several observing seasons was
reported, which increases the uncertainties even further (Cole
et al. 2014a).

6. Discussion

If we make an assumption that the scatter around the mean pe-
riod is the result of differential rotation, we can use the half-
width of the minimum as an approximation for the standard
deviation. Based on this, we estimate the differential rotation
coefficient using the formula by Jetsu (1993)

k =
6∆PD2

0

PD2
0

, (12)

where in our case ∆PD2
0 ≈ 0.d0084 is taken as the σ of the clos-

est Gaussian curve to dispersion statistic with correlation length

of 100 days. Substituting the value into the equation leads to
k ≈ 0.032, which is in rough agreement with previous estimates
from photometry (e.g., Lehtinen et al. 2012; You 2007; Jetsu
1993), k = 0.015...0.025, but significantly larger than the values
obtained from DI (e.g., Kovári et al. 2004; Donati et al. 2003b),
k = 0.002...0.006. If we assume that the latitudinal dependence
of differential rotation is solar-like, i.e., follows the law

P(θ) = Peq/(1 − k sin2 θ), (13)

an estimate of the latitude corresponding to the mean
“Carrington” period PD2

0 can be calculated using the indica-
tive “equatorial” period obtained from the least-squares method
(1.d598406) and the differential rotation coefficient derived
above. This procedure yields θC ≈ 21◦. The Carrington latitude
would be considerably larger (30◦ up to the pole) if a differential
rotation coefficient from earlier studies, which all are smaller
than the value derived here, were used. Both the low and high
values of θC match with the latitudinal location of the spots de-
rived by DI during partially overlapping time epochs (Cole et al.
2014a). Although the bimodal distribution of periods in the least-
squares analysis shows more power in the short period (high
frequency) bunch of peaks, indicating for a slight dominance
of the low-latitude spot region, the situation remains inconclu-
sive and speculative. From theoretical grounds, spot formation
occurring in comparable latitudes to the Sun (solar Carrington
latitude 26◦) is rather unlikely, as in rapid rotators the strong
influence of Coriolis force is generally thought to lead into high-
latitude or polar spot formation(see, e.g., Schuessler & Solanki
1992). However, coexisting polar and low-latitude spot activity
has been found in the models of Işık et al. (2011), which com-
bine simple axisymmetric deep-seated dynamo models with 3D
flux transport models. This is especially apparent in their mod-
els of rapidly rotating solar-like and K-type main-sequence stars
with a comparable rotation rate to LQ Hya. These models also
predict a dominance by the polar region.
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The Coriolis number is an estimate of the strength of the
rotational influence over turbulent convection, and can be written
as (Saar & Brandenburg 1999)

Co = 4πτc/Prot, (14)

where Prot is the rotation period of the star and τc is the convec-
tive turnover time. Ossendrijver (1997) presented an extrapola-
tion method to the theoretical calculations of Kim & Demarque
(1996) to estimate the convective turnover time from the B−V in-
dex. Lehtinen et al. (2012) applied this technique and arrived at
an estimate of τc ≈ 33.5 days for LQ Hya. On the other hand,
they used their CPS method to compute the time scale of change,
denoted with Tc, for each individual data set investigated, and
as an average of all the analyzed segments, found a value of
50.5 days. As this quantity describes the typical time in which
changes in spot configuration occur, it can be postulated to have
some relation to the convective turnover time.

The Coriolis number of LQ Hya, based on the above stated
values of the turnover time, lies within the range 260−400.
These numbers are huge in comparison to the Sun with Co of
roughly 6 with the definition Eq. (14). In the study of Saar &
Brandenburg (1999) stars were observed to cluster on certain
activity branches, when their Coriolis number and rotational vs.
magnetic cycle periods, Prot/Pcyc, were plotted. LQ Hya was
termed an anomalous object, falling in the transition region be-
tween the active (A) and superactive (S) branches, based on the
values τc ≈ 20.9 days by Gunn et al. (1998) and Pcyc ≈ 7 yr by
Strassmeier et al. (1997) used back then. The majority of mag-
netic cycle determinations still falling into the range of six to
seven years, together with the usage of the alternative methods to
determine the convective turnover time to compute the Coriolis
number, would place the object to an even more anomalous place
in the diagnostic diagram, clearly further away from the other
stars (although only a few of them were identified) in the tran-
sition region. This makes LQ Hya a very fascinating object to
follow up and study further. These considerations, on the other
hand, might also indicate that the division into active and super-
active branches in the diagnostic diagram is not as meaningful as
the separation into the inactive and active branches (the so-called
Vaughan-Preston gap).

The difference between the retrieved mean rotation period of
the star and the most pronounced coherent phase structure dur-
ing 2003 and 2009 (Pcoh = 1.d6037) is roughly 0.00171 days.
During the aforementioned years, the trend in the phase-time di-
agram is nearly linear, the spot structure going faster (nearly lin-
ear downward trend) with respect to the mean rotation of spots.
Previously, this behavior has been seen on more evolved rapid
rotators (Lindborg et al. 2011; Hackman et al. 2013), and has
been interpreted as being due to either latitudinal differential ro-
tation or an azimuthal dynamo wave. The effect is definitely the
clearest in the primary component of the binary system II Peg,
where a clear linear trend is visible for over ten years, (see, e.g.
Lindborg et al. 2013), whereas only disrupted up- and down-
ward trends were seen in the single giant FK Com (Hackman
et al. 2013). The complexity level and the type of phase behav-
ior seen in FK Com are similar to those we report for LQ Hya;
this could be an indication of the binarity of II Peg having an in-
fluence on stabilizing the active longitudes in comparison to the
single stars, LQ Hya and FK Com, representing this class.

In the case of II Peg and FK Com, however, it was diffi-
cult to rule out the differential rotation scenario definitely, as
for instance in the case of II Peg, a similar magnitude of drift
could have been caused by an antisolar differential rotation pro-
file with k comparable to the values deduced from observations.

Also, in the case of LQ Hya, the situation is somewhat similar:
the deduced values of the differential rotation parameter k range
between 0.002 ... 0.032, the smallest values being obtained from
DI, the largest from photometry. The DI and ZDI studies (e.g.,
Strassmeier et al. 1993; Rice & Strassmeier 1998; Donati 1999;
Donati et al. 2003b; Kovári et al. 2004; Cole et al. 2014a) indi-
cate that the majority of the spot activity of LQ Hya occurs at two
different latitudinal regions, namely at high and nearly equatorial
regions. It cannot be ruled out that in this kind of system, spots
could be drifting from the high-latitude location to the lower lat-
itude location, in which case they would gradually attain a faster
rotation rate due to the most likely solar-like rotation law of the
object. The maximal latitude range of the drifting structure ver-
sus the mean spot latitude would be of the order of π/4, and
therefore the implied k for the spot structures roughly half of the
differential rotation parameter, i.e., kexp

dr = 0.001 ... 0.016. The
value that can be directly computed from the period difference
of the coherent structure and the mean movement of the spots
reads

kdrift
dr =

PD2
0 − Pcoh

PD2
0

≈ 1.1 × 10−3, (15)

which is close to the lower limit of the values derived from DI.
Therefore, again, there is certainly enough differential rotation
on the object to be the cause of the observed phase-time drift.
One must note that this drift would not cause strictly linear (but
curved) trends in the phase-time plots (see Pelt et al. 2011, for
a simulated example). One should also expect drifts from the
lower latitude spot band to the higher one, with opposite direc-
tion of the trend in the phase-time plots. These are indeed seen,
but with less pronounced phase coherence.

Alekseev (2005) also proposed, based on photometric spot
modeling, that a latitudinal dynamo wave, the spot activity mi-
grating from the equator poleward (the solar butterfly reversed),
is present on the object. The analysis of Lehtinen et al. (2012)
did not reveal these trends, nor does the CF analysis picture of
linear down- or upward trends support this picture.

The phase behavior, if not due to differential rotation nor
latitudinal dynamo waves, could also be a manifestation of an
azimuthal dynamo wave, predicted to be excited in rapid rota-
tors (e.g., Krause & Raedler 1980), verified from mean-field dy-
namo models (e.g., Moss et al. 1995; Küker & Rüdiger 1999;
Mantere et al. 2013), and also now found from direct numerical
simulations (Cole et al. 2014b). These dynamo waves most of-
ten behave as if detached from the overall rotation of the object,
moving with a different speed than the stellar surface. Their ro-
tation is rigid even in a differentially rotating object. Therefore,
a systematic linear phase drift could most directly be linked to
the presence of azimuthal dynamo waves. Dynamo theory, on
the other hand, serves no direct explanation as to why the lin-
ear trends are broken and reversed, which is clearly the case for
LQ Hya. It is, however, well known that the more supercriti-
cal a dynamo is, the more chaotic are the solutions (see, e.g.,
Brandenburg et al. 1989).

7. Conclusions

In this work we have presented an analysis of LQ Hya photom-
etry for 1982−2014. Several different statistical methods were
used first to nail down a suitable carrier frequency for our main
analysis tool, the CF method. From this preliminary analysis, we
learned several interesting points.
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Firstly, there is a certain cutoff in the spectrum at the high-
frequency end. This can be interpreted as a limiting value for the
spot cycle length at the low latitudes or near the equator of the
star. Secondly, an interesting feature appearing as the result of
the same analysis is the bimodal shape of the frequency spec-
trum. The explanation for this can be searched from different
causes, e.g., latitudinal distribution of the spots. From DI maps
for LQ Hya it has become evident that spot regions tend to lie
either on high or low latitudes while there seems to be spot-
less area on mid-latitude range (Cole et al. 2014a; Donati et al.
2003b). Other possible explanations might be either radial dif-
ferential rotation manifesting itself through different anchoring
depths for spots or hemispherical asymmetry.

In previous studies the focus has been on searching for ac-
tive longitudes on the star (Jetsu 1993; Berdyugina et al. 2002;
Kovári et al. 2004; Lehtinen et al. 2012). Here we took a differ-
ent approach by estimating the mean rotation period of the spot
structures on the star using the phase dispersion statistic D2(P).
This period is a close analog to the Carrington rotation period of
the Sun. In subsequent CF analysis, we used the obtained value
as a carrier period and produced the corresponding phase plots.
We noticed shorter and longer, nearly linear, trends with differ-
ent slopes reflecting the “duty times” of certain periods during
these time frames. Two epochs (1990–1994; 2003–2009) with a
downward trend are especially pronounced. The overall picture
is inconsistent with the antisolar butterfly diagram postulated by
Alekseev (2005). The possible sources of these trends include
disrupted azimuthal dynamo waves and solar-like latitudinal dif-
ferential rotation.

We also tried a multiperiodic model to describe the photom-
etry of LQ Hya. This, however, led to low R2 values and the reg-
ular structure of the simple model was lost in the phase diagram
of the CF. Therefore, we concluded this model to be barely suit-
able. However, this analysis led to a phase modulation timescale
of roughly 6.94 yr, which is close to values earlier derived from
the mean brightness variation of the star (Jetsu 1993; Strassmeier
et al. 1997; Cutispoto 1998; Oláh et al. 2009). From the global
CF, we calculated the phases of the minima and compared them
with the results obtained by Lehtinen et al. (2012) using the
CPS method. These two models appeared to be in good agree-
ment. Comparison with the results by Cole et al. (2014a) using
DI technique was challenging because of the lack of overlap of
the corresponding observing seasons. However, around late 1999
and late 2000 rough agreement between the epochs of the pho-
tometric minima and the DI spots can be seen.

We did qualitative analysis of the local CF for 27 observing
seasons. We detected four flip-flop type events from the phase
plots, and three of these matched the epochs of flip-flops ob-
tained from the global CF. The timing of the events appears to
be random, which excludes the possibility of the 5.2 yr cycle re-
ported by Berdyugina et al. (2002). Comparison of the phase
plots with those reported by Lehtinen et al. (2012) showed a
good agreement; a majority of features can be detected from both
analyses.
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