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ABSTRACT
Some chemically peculiar stars in the upper main sequence show rotational period variations
of unknown origin. We propose that these variations are a consequence of the propagation of
internal waves in magnetic rotating stars that lead to the torsional oscillations of the star. We
simulate the magnetohydrodynamic waves and calculate resonant frequencies for two stars that
show rotational variations: CU Vir and HD 37776. We provide updated analyses of rotational
period variations in these stars and compare our results with numerical models. For CU Vir,
the length of the observed rotational period cycle, � = 67.6(5) yr, can be well reproduced
by the models, which predict a cycle length of 51 yr. However, for HD 37776, the observed
lower limit of the cycle length, � ≥ 100 yr, is significantly longer than the numerical models
predict. We conclude that torsional oscillations provide a reasonable explanation at least for
the observed period variations in CU Vir.

Key words: MHD – stars: chemically peculiar – stars: early-type – stars: magnetic field –
stars: rotation.

1 I N T RO D U C T I O N

Chemically peculiar (CP) stars in the upper main sequence show
light variability attributed to rotational modulation of magnetic spots
of differing surface abundances. Radiative flux redistribution in the
spots results from various bound–free (ionization; Peterson 1970;
Lanz et al. 1996) and bound–bound atomic (line; Wolff & Wolff
1971; Trasco 1972; Molnar 1973) transitions. Surface abundance
maps derived from Doppler imaging (e.g. Lüftinger et al. 2003;
Silvester, Kochukhov & Wade 2014) can be used to predict the light
variability in CP stars (e.g. Krtička et al. 2015; Prvák et al. 2015).

The brightness variability in CP stars allows measurement of
their rotational periods. The strict periodicity observed in their light
curves allows precise determination of their periods with typical
relative uncertainties of the order of 10−6 – 10−5 (e.g. Adelman
2008). This facilitates the search for very minute changes in the ro-
tational periods. For single CP stars, the usual mechanisms of period
change are related to stellar evolution. Unfortunately, evolutionary
changes in stellar rotation (Ekström et al. 2012) are not detectable
in main-sequence stars (Mikulášek et al. 2014). As a result, most
CP stars have very constant rotational periods.

However, there are exceptions. The hottest CP stars with sur-
face magnetic fields and winds may show rotational braking as a
result of angular momentum loss via the magnetized stellar wind

� E-mail: krticka@physics.muni.cz

(ud-Doula, Owocki & Townsend 2009). This effect was discovered
in the helium-rich star σ Ori E by Townsend et al. (2010). Period
variations in HD 37776 discovered by Mikulášek et al. (2008b)
were also attributed to angular momentum loss. However, subse-
quent analysis of HD 37776 by Mikulášek et al. (2011a) revealed
a significant cubic term in the star’s ephemeris, inconsistent with
simple rotational braking. In the CP star CU Vir, intervals of rota-
tional braking were found to alternate with intervals of rotational
acceleration by Mikulášek et al. (2011a).

These new findings in stars HD 37776 and CU Vir need to be
explained. Here, we study the torsional oscillations that result from
the interaction of rotation and magnetic field (see Stȩpień 1998 for
a similar idea). Although originally introduced for other purposes
(cf. Mestel 2012, pp. 161–163, see also Mestel & Weiss 1987), we
show that the torsional oscillations are able to explain the period
variation in CU Vir.

2 TO R S I O NA L O S C I L L AT I O N S

We assume that the star is in equilibrium given by the solution of
the ideal magnetohydrostatic equation (e.g. Maeder 2009, p. 314)

0 = −∇p + 1

4π
(∇ × B) × B + ρgeff . (1)

The equation is written in a reference frame connected with the star
rotating rigidly with angular frequency �. Therefore, geff stands for

C© 2016 The Authors
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934 J. Krtička et al.

effective gravity that results from the gravitational and centrifugal
accelerations, and B is the magnetic field.

We will study the incompressible waves in such a star. The ve-
locity and magnetic field perturbation δv and δB shall fulfil the
linearized magnetohydrodynamic (MHD) equations in the form of
(c.f. Asai, Lee & Yoshida 2016)

∇ · δv = 0, (2)

ρ
∂δv

∂t
= 1

4π
(∇ × δB) × B + 1

4π
(∇ × B) × δB, (3)

∂δB
∂t

= ∇ × (δv × B). (4)

Taking partial derivative of equation (2) with respect to time and
using equation (3), we derive the wave equation

ρ
∂2δv

∂t2
= 1

4π
{∇ × [∇ × (δv × B)]} × B + 1

4π
(∇ × B)

× [∇ × (δv × B)]. (5)

As an application of equation (5), one can assume an axisym-
metric system following Mestel (2012, pp. 161–163, see also
Mestel & Weiss 1987) with δv ≡ (vR, vϕ, vz) = (0, Rδ�, 0) and
B ≡ (BR, Bϕ, Bz) = (BR, 0, Bz) in cylindrical coordinates R, ϕ,
and z. With constraint ∇ · B = 0, this leads to the wave equation in
the form of (Mestel & Weiss 1987)

ρ R2 ∂2δ�

∂t2
= 1

4π
B · ∇ [

R2 (B · ∇) δ�
]
. (6)

We note that the second term on the right-hand side of equation
(5) is zero because it is given by the vector product of two parallel
vectors.

Simple magnetic field configurations are unstable inside the stars
(e.g. Braithwaite 2007) and stable internal field is composed of
poloidal and toroidal field (Braithwaite & Nordlund 2006). How-
ever, there is no analytical description of such complex fields. Con-
sequently, to proceed in the analysis of torsional oscillations in
magnetic stars, we selected simple magnetic field configurations,
which may not fully describe the internal field.

The general wave equation describing the torsional oscillations
(equation 5) is very complicated, because it involves a double curl
operator and a double vector product. The resulting solution de-
scribes 3D oscillations of a star. Therefore, the solution of this
equation is cumbersome, even for numerical models. However,
only the azimuthal component of equation (5) is relevant to study
the rotational period variations in magnetic stars. Consequently, the
easiest way how to proceed is to find such magnetic field configu-
ration, for which only the azimuthal component of the right-hand
side of equation (5) is non-zero. Due to the first term on the right-
hand side of equation (5) including the vector product, this can be
achieved for magnetic fields with Bϕ = 0 (in cylindrical coordi-
nates R, ϕ, and z). The simplest form of wave equation contains
the derivatives with respect to only one spatial variable (e.g. R),
for which the angular velocity perturbations are functions of only
one spatial variable and time. This is fulfilled for magnetic fields
for which the radial component is a function of R only. The con-
straint ∇ · B = 0 then yields the magnetic field in the form of
B ≡ (BR, Bϕ, Bz) = (B(R), 0, −z/R d(RB(R))/dR).

We assume a magnetic field that has the above-mentioned form

B ≡ (BR, Bϕ, Bz) =
(

B, 0, −zB

R

)
, (7)

where B is a constant.1 Assuming the angular velocity perturbations
in the form of δv ≡ (vR, vϕ, vz) = (0, Rδ�, 0), the only non-zero
component of equation (5) gives the wave equation in the form of

ρ R2 ∂2δ�

∂t2
= B2

4π

∂

∂R

(
R2 ∂δ�

∂R

)
. (8)

For R ∂2δ�/∂R2 � ∂δ�/∂R, the wave speed is equal to the Alfvén
speed, vA = B/

√
4πρ. The field lines of the adopted magnetic field

(equation 7) lie in the equatorial plane for z = 0, and the more they
lie above (or below) the equatorial plane, the more they diverge from
the horizontal plane z = const. The magnetic field has therefore a
goblet-like structure. The Alfvén waves propagate along the field
lines and cause the torsional oscillations that are perpendicular to
the magnetic field. The field lines of equation (7) are also normal to
the stellar surface at the equatorial plane; therefore, the amplitude
of torsional oscillation is large in this region. The adopted magnetic
field has an internal stellar field that is similar in strength to the
surface field, which is not the case of dipole field model.

The wave equation (8) preserves its form for the scale transfor-
mations B′ = γ B and t′ = γ −1t, where γ is a constant. This means
that the solution of the wave equation for a given star is the same as
the solution for a magnetic field scaled by factor γ at a time scaled
by γ −1t.

A similar problem for more complex fields also leads to
the wave equation and resonant modes described in the follow-
ing text. Wave equations similar to equation (8) can be ob-
tained also for homogeneous magnetic field B = const. or for
magnetic field of Roberts (1981, see Braithwaite 2007), that in
spherical coordinates reads B ≡ (Br, Bϑ, Bϕ) = (B/2 cos θ (5 −
3r2/R2

∗), B/2 sin θ (6r2/R2
∗ − 5), 0) with B being constant.

3 N U M E R I C A L S I M U L AT I O N O F TO R S I O NA L
O S C I L L AT I O N S

For numerical simulations, we have rewritten equation (8) in a flux-
conservative form

∂u
∂t

= F
∂u
∂R

, (9)

where u ≡ (u1, u2)T = (∂δ�/∂t, R2B ∂δ�/∂R)T and F is a ma-
trix

F =

⎛
⎜⎝ 0

B

4πρR2

R2B 0

⎞
⎟⎠ . (10)

The density distribution for the solution of equation (9) was taken
from the MESA stellar evolutionary models (Paxton et al. 2011, 2013).
The boundary conditions were selected in a same fashion as bound-
ary conditions for stellar pulsations (Maeder 2009). We anticipate
that δ� is constant close to the stellar surface; therefore, we assume
a solid wall boundary condition for ∂δ�/∂R (or u2), whereas we
assume reflecting boundary condition for the inner boundary condi-
tion. Because the variables u1 and u2 are connected with a derivative,
we selected the boundary conditions for u1 in the opposite manner,

1 The magnetic field is oriented outwards (or inwards) in both stellar poles.
This can be avoided assuming the narrow current sheet in the region z ∈
〈−L/2, L/2〉 with L  R∗. The magnetic field is then B ≡ (BR,Bϕ, Bz) =
(B, 0, −zB/R) for z > L/2 and B ≡ (BR, Bϕ, Bz) = (−B, 0, zB/R) for
z < −L/2. This does not change the form of the resulting wave equation for
L → 0.

MNRAS 464, 933–939 (2017)
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i.e. reflecting boundary condition at the outer boundary and solid
wall boundary condition at the inner boundary. We introduce the
external forcing at the inner boundary, which seems to be more
physically meaningful.

The model equations are solved for z = 0. The wave equation
is independent of z; however, the boundary conditions and conse-
quently also the derived resonance frequencies depend on z. We
discuss the implications of this assumption in Section 6.

We solved equation (9) numerically using the leapfrog method
(Press et al. 2005). We used N equidistantly spaced grid points
R1, R2, . . . , RN within the stellar radius. We assumed no initial
perturbation, u(R, t = 0) = 0. The inner boundary conditions (at
R = R1) with external forcing were represented as

u1(R1, t) = −u1(R2, t) + A1 sin(ωt), (11)

u2(R1, t) = u2(R2, t) − A2 sin(ωt), (12)

where ω is the frequency of external forcing and A1 and A2 its
amplitudes. The subscripts of u denote its components, and the
subscript of the radius denotes individual grid points. We selected
R1 corresponding to the inner convection zone as derived from
the MESA models. The outer boundary conditions (at R = RN) are
represented as

u1(RN, t) = u1(RN−1, t), (13)

u2(RN, t) = −u2(RN−1, t). (14)

To avoid instabilities, the Courant–Friedrichs–Lewy condition was
used to limit the length of the time step. The selected time step was
a fraction of the minimum travel time of Alfvén waves across one
grid zone.

We used N = 1000 in our calculations. Because the Alfvén waves
are very fast close to the stellar surface, the time step required by
the Courant–Friedrichs–Lewy condition is very short, which results
in a prohibitively short time step for the calculations. To make
the calculations more tractable, we omit the surface layers from
our calculations. Since this typically corresponds to a very small
fraction of the stellar radius, this modification does not strongly
affect the final results. Because the wave equation (8) is linear,
the absolute scale of the external forcing amplitudes A1 and A2 is
unimportant for the subsequent numerical analysis.

4 A P P L I C AT I O N O F N U M E R I C A L
S I M U L AT I O N S TO I N D I V I D UA L S TA R S

4.1 Cu vir

An abrupt period increase in CU Vir (HD 124224) was reported
by Pyper et al. (1998) and Pyper, Stevens & Adelman (2013). On
the other hand, Mikulášek et al. (2011a) found evidence in the
available photometric and spectrophotometric measurements for
gradual long-term period variations (see also Stȩpień 1998) and
even detected intervals in which the period was decreasing. We
assumed the latter model of the period variations. For our analysis,
we selected the MESA solar-metallicity evolutionary model with an
initial mass of 3 M� at the age of 9 × 107 yr, which corresponds
to CU Vir parameters derived by Kochukhov & Bagnulo (2006).
We adopted Bp = 1 kG, which is representative of CU Vir’s surface
(Kochukhov et al. 2014). The radial boundaries of the computational
zone are at R1 = 0.159 R∗ and RN = 0.997 R∗, where R∗ is the
stellar radius as calculated by MESA models.

Figure 1. The waves connected with torsional oscillations in the model
stellar interior of CU Vir for ω = 3.76 × 10−8 s−1, which corresponds
to resonance. Upper panel: the variable u1 at different stages of the wave
evolution. The curves are denoted by the elapsed time in units of the period
of external forcing � = 2π/ω ≈ 5.3 yr. Middle panel: the behaviour of u1

at the outer boundary of the model. Lower panel: the evolution of δ� derived
from the numerical integration of u1.

In Fig. 1, we plot the solution to the wave equation (8) for ω =
3.76 × 10−8 s−1 (corresponding to a resonate overtone, see below),
A1 = 1 s−2, and A2 = 1 cm1/2 g1/2 s−2. The upper panel shows wave
solutions that grow in amplitude. The wave form remains roughly
constant with four knots for a specific value of ω. The lower panel
shows the outer boundary oscillating with a frequency ω and a
growing amplitude.

The observed frequencies are those with the largest growth rates
and are eigenfrequencies of the corresponding oscillator. Therefore,
we scanned all frequencies in the range of ω = 10−9 s−1 – 10−7 s−1

to find the maximum growth rate of the oscillations. The selected
frequencies roughly correspond to those detectable from observa-
tions with period � = 2 – 200 years. We allowed the system to
evolve for T = 600 years. The magnitude of the oscillations is

MNRAS 464, 933–939 (2017)



936 J. Krtička et al.

Figure 2. The dependence of the scale mean-squared wave amplitude at
the stellar surface [see equation (15)] on the frequency after T = 600 years
of wave evolution for CU Vir. The upper axis is labelled with corresponding
oscillation periods.

estimated from the variable 〈u2
1〉, defined as a mean value of the

square of u1 averaged over the period � = 2π/ω:

〈
u2

1

〉 = 1

�

∫ T

T −�

u2
1(RN, t) dt . (15)

In Fig. 2, we plot the results of the simulations. The amplitude
of 〈u2

1〉 has several sharp peaks at the basic frequency of the os-
cillator and its overtones. There is a maximum amplitude at the
period of about 51 years with overtones at higher frequencies. The
first overtones correspond to periods 15, 9, 7, and 5 years. The
basic period of 51 yr is roughly four times as long as the Alfvén
wave travel time between the boundaries of the computational zone,
which is 15 years. Therefore, in the basic mode the computational
zone accommodates one-fourth of the wave with a node at the inner
boundary and an antinode at the outer boundary. We note that it
might be better to scale 〈u2

1〉 by ω−1 in Fig. 2 to account for an
ω dependence of power on external forcing equation (13), but this
has little impact on the final results, because the derived peaks are
relatively sharp.

4.2 HD 37776

Rotational period variations in HD 37776 (V901 Ori) were detected
by Mikulášek et al. (2008b). A subsequent study by Mikulášek et al.
(2011a) provided additional support for complex period variations
in this star. For our analysis, we selected the MESA solar-metallicity
evolutionary model with an initial mass of 8 M� and an age of 3 ×
106 yr. This corresponds to HD 37776 parameters (Landstreet et al.
2007; Mikulášek et al. 2008b). The star has a very complex surface
magnetic field (Kochukhov et al. 2011); consequently, we selected
Bp = 10 kG, which roughly corresponds to the observed values. We
selected R1 = 0.203 R∗ and RN = 0.983 R∗ for the outer model
radius, where R∗ is the stellar radius as calculated by MESA models.

In Fig. 3, we plot the solution of wave equation (8) for ω = 1.1
× 10−7 s−1, A1 = 1 s−2, and A2 = 1 cm1/2 g1/2 s−2. The selected
frequency is slightly out of the resonance. The upper panel shows
a wave solution with variable amplitude. The wave form remains
roughly constant with one knot (for a given value of ω). The lower
panel of Fig. 3 shows that the outer boundary oscillates with fre-
quency ω and an amplitude affected by beating between the period
of external forcing and the eigenfrequency of the oscillator.

Figure 3. Model of waves connected with torsional oscillations in a stellar
interior corresponding to HD 37776 for ω = 1.1 × 10−7 s−1, which is slightly
out of the resonance. Upper panel: the variable u1 at different stages of the
wave evolution. The curves are denoted by the elapsed time in units of the
period of external forcing � = 2π/ω ≈ 1.8 yr. Middle panel: the behaviour
of u1 at the outer boundary of the model. Lower panel: the evolution of δ�

derived from the numerical integration of u1.

We scanned all the frequencies in the range ω = 10−9 s−1 –
10−6 s−1 to find the maximum growth rate of the oscillations. We
let the system evolve for T = 600 years. The resulting mean value
of the outer boundary amplitude averaged over the last period of
simulations 〈u2

1〉 [see equation (15)] is given in Fig. 4. The first three
resonance frequencies correspond to periods of 5, 1.6, and 1 yr. In
this case, the basic 5-yr period of torsional oscillations is roughly
four times the Alfvén wave travel time between the boundaries of the
computational zone, which is 1.6 years. The periods of oscillations
are significantly shorter than in the case of CU Vir due to stronger
surface magnetic field in HD 37776. This can be seen already from
the scaling relations given in Section 2 and from the results obtained
for CU Vir in Section 4.1.

MNRAS 464, 933–939 (2017)
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Figure 4. Same as Fig. 2, but for HD 37776.

5 C O M PA R I S O N O F N U M E R I C A L R E S U LT S
W I T H O B S E RVAT I O N S

To date, rotational period variations of CP stars were phenomeno-
logically described by simple polynomials and their combinations.
Our proposed explanation of the observed period variations requires
a new analysis of the data assuming sinusoidal period variations
(Mikulášek et al. 2011b).

The variations of the rotational period of CU Vir are derived from
the analysis of 18 267 individual photometric, spectroscopic, and
radiometric observations obtained from 1949 to 2015 (Mikulášek
et al. 2011a,2014) supplemented by additional new BV obser-
vations from the T3 0.4 m Automatic Photoelectric Telescope
(APT) at Fairborn Observatory in Southern Arizona. The avail-
able observations together with updated analysis of the period
changes will be described in a separate paper in detail (Mikulášek
et al., in preparation). We found that the instantaneous rotational
period P(t) varied nearly harmonically according to the simple
relation

P (t) = P0 + A sin

(
2 π

t − �0

�

)
, (16)

where t is a JDhel time, P0 = 0.520 694 24(4) d is the mean ro-
tational period, A = 2.167(8) × 10−5 d = 1.872(7) s is the
semi-amplitude of period variations, �0 = 2 466 530(16) =
1986.69(5), and � = 24 680(190) d = 67.6(5) years, is the length
of the period cycle P(t). The semi-amplitude of the cyclic (O–C)
changes

AO−C = A�

2 π P
(17)

is AO−C = 0.1635 d = 0.31 P . The period changes and the phase
shifts in days are presented in Fig. 5. Our observations extend nearly
over the entire cycle of period changes.

The predicted period of torsional oscillations in CU Vir agrees
well with time-scale of period variations observed in this star. More-
over, the period variations on the scale of 10 years (Mikulášek et al.
2011a) can be nicely explained by the higher overtones of the tor-
sional oscillations. Consequently, the torsional oscillations provide
a viable explanation of the period variations found in CU Vir.

Our second hot CP star with pronounced period variations is
HD 37776 (V901 Ori). Its period analysis is based on 3483 photo-
metric and spectroscopic observations obtained between 1976 and
2014 (Mikulášek et al. 2011a,2014) supplemented by additional
new BV observations from the T3 0.4 m APT. We find that changes
of its instantaneous rotational period of P(t) can be well approxi-

Figure 5. Variations of the rotational period in seconds and phase shifts in
days for CU Vir in the time interval 1949–2015. The observed values are
fitted by simple sine/cosine model with a period of � = 67.6 years.

Figure 6. The observed phase shifts in days for V901 Ori fitted with a sine
function with the minimal acceptable period � = 100 years.

mated by a parabola or a segment of a harmonic function of period
� with a maximum at the time Tmax (Fig. 6):

P (t) = Pmax + A

[
cos

(
2 π

t − Tmax

�

)
− 1

]
, (18)

where Pmax is the maximum rotational period, and the semi-
amplitude of the corresponding cyclic variations of (O–C) is given
by equation (17).

We are not able to determine the true value of the period cycle �,
only its lower limit: � ≥ 100 years. Therefore, Pmax

∼= 1.538 784 d,
A ≥ 1.42 × 10−4 d = 12.2 s, AO−C ≥ 0.54 d = 0.35 P , and Tmax ≥
2006.5, and HJD(Tmax) = 2453 910.

For HD 37776, the predicted torsional oscillation period cycle is
significantly shorter than the observed period cycle. This might be
explained by a difference between the surface and inner magnetic
field. The surface field of HD 37776 is very complex (Kochukhov
et al. 2011), and it may decay over time as seen in magnetic stars
found in open clusters (Landstreet et al. 2007). It is possible that
part of the observed decay may be connected with equalization of
the surface and inner magnetic field. However, it does not follow
from the simulations that the surface field is stronger than the inner
field (Braithwaite & Nordlund 2006).

On the other hand, there are still other possibilities that can
explain the observed period variations. Besides that excluded by
Mikulášek et al. (2008b), the most relevant could be the tidal

MNRAS 464, 933–939 (2017)
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interaction with an orbiting low-mass body (Mardling 2007). For
example, a possible scenario could include a low-mass object on a
non-synchronized precessing orbit. We postpone this possibility for
a future detailed study.

6 DISCUSSION

The model presented in this paper includes only the basic physics
describing the problem. Moreover, we solve the wave equation
for z = 0 only. In reality, the internal magnetic field has a more
complex structure, and stable internal magnetic fields are given
by the combination of poloidal and toroidal magnetic fields (see
Braithwaite & Nordlund 2006 and Braithwaite & Spruit 2015 for
a review). Because the wave equation (8) is specified on the field
lines, a more realistic field topology would lead to a lengthening of
the oscillation period on each field line (see also Link & van Eysden
2016). As the basic frequency differs on each field line, the basic
frequency of the global mode will be given by a weighted average
of individual frequency modes. The resulting phase mixing (e.g.
Heyvaerts & Priest 1983) may lead to the damping of oscillations,
but since the individual peaks in the periodogram are rather broad
(see Fig. 2), we expect that the oscillations may still be observable.

The magnetic field dominates the atmospheres of studied stars.
Therefore, their surface may resemble the crust of neutron stars
forcing the individual field lines to oscillate with the same frequency.
Consequently, the variations of rotational period of CP stars may
have the same explanation as quasi-periodic oscillations of neutron
stars. In this case, the frequencies of rotational period variations may
be associated with turning points or edges of the MHD continuum
(Levin 2007) or with normal oscillation modes (Lee 2008).

Another problem is connected with existence of two shallow
convection zones associated with local opacity enhancements inside
massive stars (e.g. Maeder, Georgy & Meynet 2008). However,
because these zones contain only a very small fraction of the stellar
mass, we expect that their existence does not significantly alter our
results.

Our model assumes small perturbations of otherwise uniform
stellar angular velocity. This does not seem to be in contradiction
with vertical differential rotation profiles derived from asteroseis-
mology in BA stars (Briquet et al. 2007; Kurtz et al. 2014). However,
angular momentum transport by, for example, internal gravity waves
(Rogers 2015) may lead to damping of torsional oscillations.

It is not clear what mechanism drives the torsional oscillations.
The forcing mechanism may be connected either with the core con-
vection zone or with winds blowing from the stellar surface. If
some Ap stars originate in binary star mergers (Maitzen, Paunzen
& Netopil 2008; Bogomazov & Tutukov 2009), then subsequent re-
laxation processes may provide a convenient mechanism that drives
the torsional oscillations. This would mean that CU Vir is a merger
product. This could possibly provide a consistent explanation of
circumstellar matter that is required to power the pulsed radio emis-
sion observed in CU Vir (Trigilio et al. 2000; Kellett et al. 2007).
An alternative explanation of line-driven wind mass-loss rate of
about 10−12 M� yr−1 (Leto et al. 2006) is problematic due to the
low effective temperature of the star (Krtička 2014).

The wave equation (8) is linear and so allows oscillations with
arbitrary amplitudes. This is unrealistic in nature, and several pro-
cesses may lead to damping of strong oscillations. One obvious
process is reconnection, which may occur in the case of oscillations
that are wound up too much. The oscillations may also be damped
due to vertical shear.

Another important question is connected with the fact that period
variations are detected in only a handful of magnetic stars, while the
light curves of most of them are adequately described with constant
periods (e.g. Adelman 2008; Mikulášek et al. 2008a; Wraight et al.
2012; Bernhard, Hümmerich & Paunzen 2015). While a lack of
suitable long observing series may provide an obvious answer for
many stars, more subtle reasons may be missing. However, since a
similar question is not clearly resolved in many notorious classical
pulsating stars, i.e. the question why there are stars that do not
pulsate in the instability strip (e.g. Fontaine et al. 2006; Balona et al.
2011; Saio, Georgy & Meynet 2013), we postpone this question for
a future study.

7 C O N C L U S I O N S

We simulated stellar torsional oscillations that result from the inter-
action of the internal magnetic field and differential rotation. The
simulations were calculated for the CP stars CU Vir and HD 37776,
which both have rotational period variations. We derived the inter-
nal structure of individual modes and calculated the wave resonance
frequencies, for which the amplitudes of surface angular frequency
variations are the largest. For each star, we found a basic frequency
and several high-order overtones.

We provide a new analysis of period variations in the stars CU
Vir and HD 37776 assuming periodic rotational period variations.
For CU Vir, the length of the rotational period cycle � = 67.6(5) yr
can be well reproduced by numerical models, which predict a cycle
length of 51 yr. The numerical model also predicts the variations
on the scale of about 10 yr in agreement with observations. Conse-
quently, the torsional oscillations provide a reasonable explanation
of the observed period variations of CU Vir. On the other hand, for
HD 37776 the observed lower limit of the period cycle, � ≥ 100 yr,
is significantly longer than the predicted cycle length of 5 yr. It is
immediately clear from the scaling of the wave equation with the
magnetic field and from the observed strength of the field that the
model cannot reproduce the observations of both stars. There may
be other possible explanations for the observed period variations in
HD 37776.
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Mikulášek Z. et al., 2008b, A&A, 485, 585
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