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Original research

A probabilistic approach to
identifying run scoring advantage
in the order of playing cricket

Manar D Samad1 and Sumen Sen2

Abstract

In the game of cricket, the decision to bat first after winning the toss is often taken to make the best use of superior

pitch conditions and set a big target for the opponent. However, the opponent may fail to show their natural batting

performance in the second innings due to several factors, including deteriorated pitch conditions and excessive pressure

of chasing a high target score. The advantage of batting first has been highlighted in the literature and expert opinions.

However, the effect of batting and bowling order on match outcome has not been investigated well enough to recom-

mend an adjustment of potential bias. This study proposes a probability-based model to study venue-specific scoring and

chasing characteristics of teams with different match outcomes. A total of 1117 one-day international cricket matches

held in ten popular venues are analyzed to show substantially high scoring likelihood when the winning team bat in the

first innings. In a high scoring match, results suggest that the same bat-first winning team is very unlikely to score or

chase the same high score if they bat in the second innings. We use the Bayesian rule to identify the bias in the scoring

likelihood due to the playing order (bat-first versus bat-second). The bias is adjusted by revising the second innings

target in a way that equalizes winning and run scoring likelihoods of both teams. The data and source code have been

shared publicly for future research in creating competitive match outcomes by eliminating the advantage of batting order

in run scoring.

Keywords

Choking, one-day international (ODI) match, performance analysis, sport analytics

Introduction

The game of cricket has more than two billion fans and

followers over the world with 104 cricket playing

nations. One-day international (ODI) and T-20 formats

are the most popular versions of cricket that are played

between teams in home-away series, world-cup tourna-

ments, and domestically at first class tournaments and

premium leagues. In the game of cricket, one team (team

A) bat first (first innings) to score runs by competing

against the bowling and fielding performance of the

opponent team (team B). In ODI, eleven players (ten

wickets) of team A bat in the first innings to score a

total run facing 50 overs (300 balls, 6 balls per over) of

bowling delivery of the opponent team B. Following a

half-time break, team B bat in the second innings to

chase the target score playing against 50 overs of bowl-

ing delivery of team A. Team A win, tie, or lose the

match if team B score less, equal, or more than the

first innings target score set by team A, respectively.
The same strategy is followed in the T-20 version of
the game, but each team is given only 20 overs (120
balls) to score or chase instead of 50 overs.

Unlike other sports such as soccer, hockey, and bas-
ketball, the game of cricket uniquely involves heavy
accounting and diverse statistics to evaluate or predict
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the performance of individual teams or players.
Statistical analyses may play a valuable role in deter-
mining an effective game strategy and team selection,1

analyzing outcome in the second innings based on the
target set in the first innings,2 assessing the perfor-
mance of players,3 studying the order of eleven players
during the batting session,4 and predicting the outcome
of a match.5,6

Therefore, historical data obtained from thousands of
ODI cricket matches along with data-driven statistical
methods can be valuable resources for coaching and
operational management, performance evaluation,
updating game rules, and forecasting results.7 One of
the most popular statistical models adopted in cricket
is the Duckworth-Lewis (DL) method that determines
a revised and fair target score when the game is inter-
rupted, and the match duration is shortened due to the
rain.8 In the past, the event of rain not only postponed
the match but also unfairly penalized one of the teams by
cutting their allotted overs for batting. The DL method
has been used for over two decades to set a reasonable
target by statistically considering partial match results
and resources (wickets and overs) available prior to the
rain. This method has been an active subject of research
and modification over the last two decades.9,10

Apart from rain interrupted events, there are numer-
ous implicit sources of bias that may unfairly favor one
team over the other.11 For example, it is inevitable that
home ground advantage is likely to favor the hosting
team in a cricket match.12 The innings played at night
time in a day-night match has shown a considerable
difference in outcome when compared to its counter-
part innings played in the daytime.13 One of the debat-
ed issues in cricket is the decision whether a team
should bat or bowl first following the toss of a fair
coin. This decision has been argued to give an advan-
tage to the toss winning team. Sood and Willis have
shown in a recent study that the winning of coin toss
has a significant effect on winning the game, especially
when the contesting teams have matching performance,
and the match is played in certain conditions such as in
the day-night format.14 In general, a team choose to
bat first expecting to set a high-scoring target using
superior field conditions in the first half of the match.
The pitch condition is expected to deteriorate over
time, which may eventually turn less favorable for bat-
ting in the second innings. In contrast to this notion,
the decision to bat first is also perturbed by a concern
that a ‘safe’ score for confirming victory is unknown
while batting in the first innings. Therefore, a team may
choose to bowl first when they prefer to have a ‘known’
target score to chase expecting that field conditions or
weather may rather turn unfavorable to bowlers in the
second innings. Eventually, the playing order (bat-first
versus bat-second) tends to favor one team over the

other, which may not always give both teams a fair
chance to score runs or win the match. Furthermore,
data from the last four world cup cricket tournaments
suggest that the teams winning the toss and deciding to
bowl first are victorious in less than 50% of similar
cases.15 This phenomenon reveals certain advantages
in batting first over bowling apparently due to several
confounding factors. In support of this observation,
Dawson et al. have concluded in their study that win-
ning the toss and batting first significantly increases the
chance of winning the match compared to the decision
of bowling first after winning the toss.16

Proposed research

In line with the above observations, we identify two
cases that may significantly bias the outcome of the
game due to the batting or bowling order. First, it is
widely known that chasing a target score of 300 and
above runs in the second innings is often more challeng-
ing than scoring such a high total in the first innings.
For example, it becomes even more challenging to chase
such a target in the fourth innings of a test cricket
match. There are only nine matches in over forty years
of world cup cricket history where the bat-second teams
have been successful in chasing a target score of 300 and
above runs. In contrast, there are at least 19 matches in
the 2019 world cup alone where the first innings scores
are more than 300 runs. Therefore, the decision to bat
first and consequently setting a big target can lower the
probability of successful chasing in the second innings
even with two equally competitive teams. Second, the
first innings batting experience is free of pressure from
chasing a target score, which is a psychological advan-
tage. The team batting in the second innings incur this
additional pressure, which is considered proportional to
the target score. The pressure of large target tempts the
bat-second team to take additional risks that may neg-
atively affect their natural batting performance. Even
highly competitive teams have been found vulnerable
to such high target pressure as their batting performance
often collapses after scoring unusually low total while
chasing a high target,17 which is often termed as ‘chok-
ing’ or ‘strangling’ and has been studied by Lemmer.18

All these phenomena do not guarantee a level playing
field for both teams since the playing order may ulti-
mately influence the outcome of the game. These issues
can negatively affect the excitement, competitiveness,
and spirit of the game in general.

All these statistics raise several research questions
that demand data-driven solutions.

• First, is there any run scoring advantage in the
first innings batting that might affect the outcome
of the game?

1012 International Journal of Sports Science & Coaching 16(4)



• Second, what would be the team’s score if they bat in

the second innings given the fact that they have

scored a” hard-to-chase” total in the first innings?
• Third, what would be a reasonable and competitive

target that accounts for the advantage of setting a

hard-to-chase score in the first innings?

Since there is no alternative to coin tossing, we have

used probability theory on venue-specific ODI match

results to investigate bias in run scoring distributions at

different playing conditions and match outcomes. A

statistical model has been proposed to capture venue-

specific scoring bias for two purposes: 1) identifying the

magnitude of bias in run scoring likelihood due to the

playing order and 2) recommending a revised second-

innings target that will equalize the winning and

scoring probability for both teams regardless of the

playing order.

Methodology

This study proposes a probability-based approach for

investigating potential bias in run scoring likelihood

due to the playing order in cricket. First, the run scoring

distributions of four-match cases are obtained and then

compared within each of ten ODI venues. The four

match cases are: 1) bat-first-win, 2) bat-first-lose, 3)

bat-second-win, 4) bat-second-lose. The run distribu-

tions are modeled using the negative binomial (NB) dis-

tribution since it effectively captures run distributions in

Scarf et al.19 Additionally, we compare the results of NB

distribution with those of logistic and normal distribu-

tions. The NB distribution function modeling a discrete

random variable x is shown below

Pðx; n; pÞ ¼ Cðxþ nÞ
CðnÞx! pnð1� pÞx (1)

The parameters of NB distribution (n and p) are

obtained using maximum likelihood estimates to yield

the probability mass function (PMF). For comparison,

probability density functions (PDF) of contribution
variable distributions are developed using the mean
and variance of the scores. The PMF or PDF repre-
sents the scoring probability distribution using random
variable X, P(X). Figure 1(a) shows the PDF of a
normal distribution. Considering a discrete random
variable X, the probability of scoring exactly Xt runs
P(X¼Xt) (e.g. 237 runs) is low when the discrete
sample space is large typically ranging from 100 runs
to 350 runs. Intuitively, the likelihood of scoring 200
and more runs in an innings is much higher than that of
scoring 300 and more runs. This leads to the definition
of cumulative PDF that represents the probability of
scoring up to Xt runs, P (X �Xt) by integrating or
summing the PDF or PMF from zero to Xt, respective-
ly as shown in Figure 1(b). We take the complement of
the CDF in equation (1) to model the run scoring like-
lihood such that the likelihood of scoring at least 200
runs P(X> 200) is higher than that of scoring at least
300 runs, P(X> 300), as shown in Figure 1(c)

PðX > XtÞ ¼ 1� PðX � XtÞ ¼ 1�
Xx¼xt

x¼0

Pðx; n; pÞ

(2)

where, P(X,n,p) is the best fitted PMF on the data. We
use the complement of CDF in subsequent compari-
sons among four match cases to investigate bias in
the likelihood of scoring runs.

Analysis of run scoring distribution

To adjust the bias in scoring likelihood, we use the
Bayesian rule to recommend a revised target score
that will equalize the likelihood of scoring and winning
for both teams irrespective of the playing order. First,
the variables and outcomes are identified for one-day
international (ODI) cricket matches. The match out-
come can be either win (W) or lose (L). Runs scored
is represented by the random variable S. First and
second innings batting conditions are represented by

(a) (b) (c)

Figure 1. (a) Probability density function, P(x), (b) cumulative density function (CDF) of P(X), and (c) complement of the CDF of runs
scored to represent the likelihood of scoring above X runs.
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BF and BS, respectively. We define the posterior
probability of winning a match given that the
team bat first and score at least Xf runs in the first
innings as P (WjS >Xf, BF). Using the Bayes’ rule,
this posterior winning probability can be calculated
as below

PðWjS > Xf;BFÞ ¼ PðS > Xf;BFjWÞ PðWÞ
PðS > Xf;BFÞ (3)

Similarly, the posterior probability of winning the
match given that the winning team bat in the second
innings and score Xs runs is as follows

PðWjS > Xs;BSÞ ¼ PðS > Xs;BSjWÞ PðWÞ
PðS > Xs;BSÞ (4)

Given a first innings score of at least Xf runs, the
minimum second innings target score Xs that will
equalize the winning probability of any team in a par-
ticular venue is obtained by equalizing equations (3)
and (4) as below

PðS > Xs;BSjWÞ
PðS > Xs;BSÞ ¼ PðS > Xf;BFjWÞ

PðS > Xf;BFÞ (5)

Applying the chain rule of conditional probability

PðS > XsjBS;WÞ PðBSjWÞ
PðS > Xs;BSÞ

¼ PðS > XfjBF;WÞ PðBFjWÞ
PðS > Xf;BFÞ (6)

Joint probability distributions in the denominator
can be expressed in terms of conditional probability
distributions as follows

PðS > XsjBS;WÞ PðBSjWÞ
PðS > XsjBSÞ PðBSÞ ¼

PðS > XfjBF;WÞ PðBFjWÞ
PðS > XfjBFÞ PðBFÞ (7)

PðS > XsjBS;WÞ ¼ PðS > XsjBSÞ
PðS > XfjBFÞ

PðBFjWÞ
PðBSjWÞ PðS

> XfjBF;WÞ
(8)

Here, the probability of batting first or second is
equal, P(BF)¼P(BS), considering the coin is fair.
Given the first innings score Xf, we assume that the
revised second innings score Xs will additionally

equalize the run scoring likelihood (in addition to the
winning probability) of both innings such that P (S
>Xf j BF)¼ P (S >Xs j BS). The revised equation is
as follows

PðS > XsjBS;WÞ ¼ C � PðS > XfjBF;WÞ (9)

Here, C¼ PðBfjWÞ
PðBSjWÞ is a constant ratio for a venue,

which is the ratio of probabilities of batting first and
second given that the team is victorious. When the like-
lihood of winning team batting in the first innings is
higher, the ratio will be greater than 1. Given the first
innings score Xf, the second innings score Xs that sat-
isfies the two conditions can be obtained by taking the
inverse of the CDF, P(S�XsjBS,W) as below

Xs ¼ Inv ðPðS � XsjBS;WÞÞ
¼ Inv ð1� C � PðS > XfjBF;WÞÞ (10)

Results and discussion

We have performed the development and analysis of
the proposed model in Python programming environ-
ment using the scipy, NumPy, and pandas pack-
ages20,21 and shared the source code, data, and
notebook in a GitHub repository (https://github.com/
mdsamad001/CricketStudy). The data set includes
scores and outcomes of 1117 ODI matches and is
obtained from the webpage of cricket-stats (http://crick
et-stats.net/genp/grounds.shtml) for the ten most pop-
ular international venues.

Table 1 presents a summary of the data set, includ-
ing mean scores and the percentage of matches won in
different playing orders and outcomes. The mean score
is not informative for comparison being a single point
in the probability distribution. We hypothesize that an
informative scoring bias can be obtained by comparing
the run distributions of two match cases instead of their
mean values. Furthermore, the winning percentage of a
match case (e.g., bat-first) alone may not reveal the
complex conditioning among the scoring likelihood,
playing order, and winning probability. We propose

that run distributions conditioned on winning proba-
bility will yield better insights into the scoring advan-
tage of the playing order.

Analysis of run scoring distributions

The probability distribution of runs scored at each
venue is studied by fitting the negative binomial distri-
bution. The NB distribution is one of the popular
choices for modeling count data like runs in cricket.
The overall distribution of runs scored across all

1014 International Journal of Sports Science & Coaching 16(4)
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venues is also modeled by the NB distribution. The

effect of playing order (batting and bowling order) on

scoring distribution is analyzed by categorizing the dis-

tributions into four match cases: 1) bat-first-win, 2)

bat-second-lose, 3) bat-first-lose, and 4) bat-second-

win. Figure 2 shows scoring distributions of four

match cases after fitting the NB distribution using all

venue data. This distribution fit shows that venue-

specific scores can follow the NB distribution. We com-

pare run scoring likelihoods between relevant match

cases as follows.

Bat-first-lose versus bat-second-win

Figure 3 shows that the run distributions of bat-first-

lose and bat-second-win are similar and overlapping

for all venues. This is intuitive since the bat-second-

win team will always score one or several runs more

than the bat-first-lose team in a successful run chase.

Table 1 shows this trend in the last two columns.

Including match outcomes from all ten venues, average

scores of bat-second-win and bat-first-lose are 203

and 201 runs, respectively (Table 1). In line with this

Figure 2. Fitting runs of four experimental cases using the negative binomial distribution.

Table 1. Summary of the one-day international cricket match data set used in this study.a

Total Bat-first-win Bat-second-lose Bat-second-win Bat-first-lose

Venue Year matches % Avg. score Avg. score % Avg. score Avg. score

Auckland 1976–2020 71 42.3 240 185 57.7 200 199

Bangalore 1974–2018 22 50.0 294 248 50.0 236 234

Harare 1992–2020 149 49.7 255 183 50.3 205 203

Lahore 1978–2015 58 56.9 266 205 43.1 233 231

Lords 1972–2019 62 48.4 268 215 51.6 218 216

Melbourne 1971–2019 145 49.7 245 191 50.3 202 201

Mirpur 2006–2018 107 46.7 261 194 53.3 203 201

Premadasa 1986–2019 118 58.5 266 196 41.5 204 202

Sharjah 1984–2019 236 53.8 252 189 46.2 195 192

Sydney 1979–2020 149 59.1 248 189 40.9 195 194

Overall 1117 51.5 260 200 48.5 203 201

aAverage runs are rounded off to the next integer value. Scores of bat-second-win teams and their opponent bat-first-lose teams are adjusted for

revised targets set by the Duckworth–Lewis method.
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Figure 3. Run scoring distribution of four cases related to two playing orders (Bat first, Bat Second) and two outcomes (win, lose) at
10 specific ODI venues. The complement of cumulative negative binomial distribution is fitted using actual score data. All venues show
a large discrepancy between the scoring likelihoods of ‘bat-first-win’ teams and their opponent ‘bat-second-lose’ teams. The dis-
crepancy in scoring likelihood is most prominent at two venues: Harare and Lahore.

1016 International Journal of Sports Science & Coaching 16(4)



observation, the difference in their scoring likelihoods

appears justifiably insignificant in Figure 3.

Bat-first-lose versus bat-second-lose

In contrast, the scoring likelihood of bat-second-lose

teams falls behind that of bat-first-lose teams at

almost all venues (Figure 3). That is, the first innings

batting yields a higher scoring likelihood than that of

the second innings batting even when both cases lose

the match. This discrepancy is indicative of a scoring

bias or advantage possibly due to the playing order.

This advantage in run scoring is more evident at

venues like Premadasa, Harare, Lahore and appears

lowest at Sharjah, Sydney, and Lords. The only excep-

tion is the venue at Bangalore where the bat-second-

lose scoring likelihood appears better than that of the

bat-first-lose case. This observation may be attributed

to the lowest sample size for Bangalore (only 22 ODI

matches have to be grouped into four match cases)

compared to other venues (Table 1).

Bat-first-win versus bat-second-lose

The discrepancy in scoring likelihoods appears to be

the largest when the bat-first team win the match

against the bat-second-lose team. Among all four

match cases, Figure 3 reveals that the bat-second-lose

and their opponent bat-first-win teams have the worst

and the best scoring performance, respectively. The

scoring likelihood of bat-first-win teams is far ahead

of those of the other three cases for all venues
(Figure 3). This result infers that the same high-
scoring team in the first innings is unlikely to score
so high in the second innings. This inference suggests
a scoring disadvantage for the bat-second team while
chasing a large target set by the bat-first team.

It is noteworthy that these discrepancies are venue-
specific under the assumption that stronger and weaker
teams have a similar likelihood of winning the toss or
batting in the first innings. Figure 4 shows the overall
scoring likelihood of four playing order-outcomes
obtained using all ten-venue data (1117 ODI match out-
comes). This overall scoring likelihood reveals discrepan-
cies similar to those found in most of the venue-specific
trends. Therefore, Figure 4 may serve as a general scoring
likelihood trend of ODI cricket match outcomes after
accounting for all venues, game strategies, and contexts.
Furthermore, the discrepancy in run scoring likelihood
can be even more striking in specific contexts, especially
when the stronger side gets the chance to bat first and sets
a large and unattainable target for the opponent.
Therefore, it is worth asking the question if the same
bat-first team could score the same unattainable score in
the second innings. Scoring likelihoods of different match
cases may inform us of the total runs that the bat-first-win
team would have scored if they bat in the second innings.
The difference in scoring likelihood due to the batting
order is expected to reveal a bias and subsequently rec-
ommends an adjusted target for the second innings.

Probabilistic model for revising target

The previous section reveals a higher scoring advantage
of bat-first-win teams compared to that of any other
three match cases. The high-scoring advantage can
yield a target score that becomes challenging to chase
while batting in the second innings. For example, the
world cup record of chasing the highest score is 329
runs whereas the first innings score has been as high
as 397 runs. There are at least eight matches in the 2019
cricket world cup alone with over 330 runs scored in
the first innings, which would require the opponents to
break the world cup record to win those matches. Data
suggest that there are only a handful of cases in world
cup cricket when a score of 300 runs and above
has been successfully chased in the second innings.
A simple breakdown of 1117 ODI match outcomes in
Table 2 reveals that bat-second teams are only 10%

Figure 4. Overall scoring likelihoods for four playing order and
outcome cases obtained using all ten-venue data (1117 ODI
match outcomes). This scoring distribution accounts for all
venues and game strategies.

Table 2. First innings scores and percentage of matches successful in chasing the first innings score (bat-second-win cases).

First innings score �150 �180 �200 �220 �240 �260 �280 �300 �320 �340

Matches successfully chased 44% 40% 35% 30% 25% 21% 17% 10% 13% 0.0%

Samad and Sen 1017



successful in chasing 300 and above runs. Notably, our

1117 ODI data include match results from 1971 to

2020, and matches played several decades ago used to

yield lower scores than what we see today.
Therefore, after observing a very high score in the

first innings, the game is often assumed to be over even

before playing the second innings of the match.

Commentary is often made highlighting that there

has been no record of chasing such a high score at

the particular venue. Therefore, the likelihood of chas-

ing such a high score in the second innings remains

extremely low. These observations go against ‘the

game of glorious uncertainties’ entitlement of cricket.
One naive approach to tackle this bias is to equalize

the scoring likelihood for both teams, especially in a big

scoring match. This equalization may be done by

adjusting an unusually big target score set in the first

innings considering a venue-specific or overall proba-

bilistic model. However, finding the cut-off score for

the adjustment is not a trivial task since such a cut-off

may change from decade to decade and from venue to

venue. Instead, our proposed model provides adjust-

ment of any second innings targets using equation

(10) that equalizes both the winning and scoring like-

lihoods of the competing teams. The extent of adjust-

ment varies across different first innings scores after

considering both winning and scoring likelihoods in

our model. In Table 3, we demonstrate the estimated

bias in the first innings scores for individual venues,

which is then used to revise the target scores. The selec-

tion of 300 and above runs is only to demonstrate the

bias and score adjustment for high scoring matches.

Similar bias and adjustment can be obtained for low

scoring matches since the bat-second scoring

distribution typically falls behind that of bat-first scor-
ing for a wide range of scores. For example, the model
will revise first innings scores of 200, 250, and 280 runs
in Auckland to 183, 226, and 259 runs, respectively.
Additionally, revised scores obtained from the normal
and logistic probability distributions are not too differ-
ent from those obtained using the negative binomial
distribution.

The mean run difference between the actual target
(first innings score) and the model revised target score
(see Table 3) is also a measure of bias for each venue.
Results suggest that the venue in Auckland has the
lowest mean difference and the one in Premadasa suf-
fers the highest mean difference for all three distribu-
tion models. The negative binomial distribution has
yielded the lowest mean differences in scoring among
the three distributions because the NB distribution is
known to best-fit run scoring data. The last row of
Table 3 shows the overall model results obtained
after fitting all 1117 match outcomes from all ten
venues. In all cases, the revised target score for the
second innings team is lower than that of the first
innings score to compensate for the high-scoring
advantage in the first innings.

Effects of playing order in cricket

The findings presented in previous sections require cau-
tious interpretation. First, the findings do not conclude
that batting in the first innings is generally preferable
or advantageous over batting in the second innings. A
team can score a decent total in the first innings and
can still lose the match. Therefore, the target score
adjustment may be recommended in proportion to
the first innings score to alleviate the scoring advantage

Table 3. Revised second innings target scores against first-innings scores (actual score).a

Actual target 300 315 330 340 350
Mean difference in runs

Venue Negative binomial distribution

Negative

binomial Normal Logistic

Auckland 283 301 320 332 345 10.8 12.6 1.2

Bangalore 241 251 261 268 275 67.0 65.8 65.4

Harare 276 289 312 327 342 19.0 31.0 30.4

Lahore 251 266 280 289 298 50.0 46.6 56.6

Lords 263 284 306 321 335 24.0 29.0 26.8

Melbourne 267 286 304 317 329 26.2 32.8 32.6

Mirpur 255 273 291 303 316 39.4 42.2 36.8

Premadasa 225 243 260 271 282 71.0 72.6 84.0

Sharjah 242 259 277 289 301 53.4 56.4 61.6

Sydney 230 247 263 274 285 67.2 68.6 82.8

Overall model 249 266 284 295 307 46.8 49.0 52.2

aThe revised scores are shown using the negative binomial distribution. The mean difference between actual and revised scores is shown for three

distributions: negative binomial, normal, and logistic. The overall model (probabilistic) includes data from all 1117 ODI matches and is not a mere

aggregation of 10 venue results. The 300þ runs cut-off is chosen for the demonstration of adjustment of high scores.
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of the bat-first teams. Second, a common strategy of
the team bowling in the first innings is to restrict the
bat-first innings score to a chasable target. This strat-
egy implies that above a certain score (often venue-
specific), the target becomes less and less chasable for
any team as reflected in our scoring likelihood data.
However, such a high score is relatively more achiev-
able in the first innings as we know from historical
data, which is also supported by our scoring likelihood
analysis. Third, the pressure from high target scores
tempts the bat-second teams to take additional stress
and risks, which the bat-first teams do not incur during
their batting performance. As a result, the second
innings batting can be vulnerable to collapse, which
has been studied as the choking effect in the litera-
ture.18 Our analysis reveals the worst run scoring like-
lihood of the bat-second-lose teams, which is possibly
due to the choking effect and underperformance of the
team under pressure. This particular scenario of the
game (not all 1117 matches satisfy this scenario) may
not give a level playing field for both contesting teams.
Therefore, an adjusted target may account for the addi-
tional pressure of batting in the second innings of high-
scoring matches.

Limitations

The goal of this study is to investigate run scoring
advantages in the playing order of cricket. The pro-
posed probabilistic model makes two assumptions to
determine the revised score that mitigates the bias pre-
sent in the first innings score. The model equalizes the
winning and scoring likelihood of both contesting
teams. The assumption of equal winning probability
alone, when the scoring probability is considered
unequal (P(S >Xf j BF) 6¼ P(S >Xs j BS)), complicates
the solution and does not yield a robust numerical solu-
tion for the revised score. A more conservative estimate
of the revised target (closer to the first innings actual
target score) may be obtained by relaxing one of the
two assumptions in the proposed model. While our
probabilistic model reveals bias in run scoring likeli-
hoods, the method for adjusting targets has limitations.
It will require further research to measure and consider
the choking effect in adjusting the second innings
target. Notably, not all target scores will onset choking,
which would require an estimation of an adjustment
factor that is proportional to the first innings score.
Several venues have a comparatively low sample size,
which is further reduced due to the grouping of samples
into four match cases. Therefore, venue-specific models
may not be reliable when the sample size is low. The
proposed model is not directly applicable to new
venues unless past data are considered from all other
existing venues in the model development. To ensure a

big sample size, match scores and outcomes over the

past fifty years of ODI history have been included in

the proposed models. However, the scoring trends and

likelihoods have changed significantly over several dec-

ades as they change from venue to venue. Therefore,

the proposed model will require modification focusing

on the current scoring trends in cricket. Furthermore,

there are no gold standards and benchmark data to

evaluate the performance of our proposed model

because of its empirical nature.

Conclusions

This study has investigated run scoring likelihood of

teams playing ODI cricket matches under varying play-

ing orders and at different venues. Our result from fifty

years of match data reveals a scoring advantage of bat-

first teams regardless of venues and strength of the

playing teams. The high scoring likelihood of all bat-

first-win cases infers that the bat-first-win team is very

unlikely to yield the same high score if they are sent to

bat in the second innings. Our proposed model cap-

tures gaps in venue-specific run scoring likelihood for

different match scenarios and recommends revised

target scores for the second innings. The revised

target score is obtained to ensure equal winning and

scoring probability at a particular venue. Despite lim-

itations in numerical computations, we believe that this

is one of the first studies to investigate run scoring

advantage in the order of playing cricket with a pre-

liminary solution. The proposed model can be used to

investigate ordering bias in other game design and

operations to subsequently recommend an adjustment

for ensuring a fair outcome.
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