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Potential Biological Control Agents for
Soilborne Fungal Pathogens in
Tennessee Snap Bean Farms
Jacqueline Joshua and Margaret T. Mmbaga
Tennessee State University, College of Agriculture, Department of Agricultural
and Environmental Sciences, Nashville, TN 37209

Additional index words. disease management, dual culture technique, Fusarium species,
Macrophomina root rot, rhizosphere, root rot pathogens

Abstract. Fungi isolated from snap bean roots and rhizosphere soil where fungicides are
not used included Fusarium oxysporum, Fusarium equiseti, Fusarium subglutinans,
Fusarium camptoceras, Fusarium chlamydosporum, Fusarium verticillioides, Fusarium
proliferatum, Fusarium acuminatum, Fusarium solani, Peyronellaea pinodella, Macro-
phomina phaseolina, and Glomerella guttata. Only P. pinodella, M. phaseolina, and
F. oxysporum were isolated on symptomatic plants. These soilborne fungi are common
pathogens of diverse host plants. Pathogenicity tests under controlled environment
demonstrated that these fungi were pathogenic on snap beans. Subsequently, bacterial
endophytes isolated from snap bean roots, papaya roots and stems, and dogwood stems
were evaluated as potential biological control agents against these diverse fungi. All
bacteria isolated, including Bacillus vallismortis (PS), Bacillus amyloliquefaciens
(Psl), Bacillus subtilis (Prt), Bacillus thuringiensis (Y and IMC8), Enterobacter sp. (E),
Stenotrophomonas sp. (B17A), and Serratia sp. (B17B) suppressed growth of the fungal
pathogens in vitro and formed clear inhibition zones in petri dish dual cultures. Growth
media taken from the inhibition zones suppressed growth of the fungal pathogens in the
absence of the bacterial cells, suggesting that the bacteria released unidentified
antagonistic biochemical substances into the media. This study constitutes an initial
screening of endophytes as biological control agents against diverse fungal pathogens and
forms a basis for the discovery of novel strains that can be further developed and
integrated into disease management systems for diverse fungal pathogens. Isolates
B. vallismortis (PS), B. amyloliquefaciens (Psl), B. subtilis (Prt), and B. thuringiensis
(Y IMC8) exhibited the best performance as potential biological control agents paving
the way for larger-scale in vivo studies and characterization of their interactions with
fungal pathogens.

Fungal pathogens impose major con-
straints on agricultural production globally
(Collinge et al., 2010). Disease management
strategies have relied heavily on conven-
tional chemical fungicides. Persistent chal-
lenges associated with the use of conventional
fungicides include toxicity to humans and non-
target organisms, environmental pollution, and
development of fungicide resistance (Barnard,
2010; Burns et al., 2013; Kelley et al., 2013;
Norgaard and Cedergreen, 2010). Attempts
to introduce eco-friendly microbial pesti-
cides as biological agents for combating fungal
pathogens have been hampered by the lack of

consistent field results. This problem has been
attributed to environmental fluctuations of tem-
perature, moisture, and nutrient availability
(Schisler et al., 2002), as well as harmful
effects of ultraviolet light (Tamez-Guerra
et al., 2000; Vorholt, 2012) and variable and
sporadic pathogen explosions (Fernando
et al., 2000; Francl et al., 1999). In address-
ing challenges imposed by fungal patho-
gens, there is a need to explore the use of
novel, robust, and naturally abundant endo-
phytes that colonize plants internally with-
out causing harm to their host plants. Such
organisms are likely to be less vulnerable to
external environmental fluctuations and are
more likely to be effective in the field envi-
ronments. Endophytes are thought to protect
their host plants from pathogens by producing
bioactive metabolites that enhance plant de-
fense systems against pathogens (Clay and
Schardl, 2002; Webber, 1981).

Snap bean (Phaseolus vulgaris), the sec-
ond most important vegetable in Tennessee
after tomatoes, was selected for this study. The
production of snap beans is also widespread
across the United States, with Tennessee
ranking fifth in production after Florida, Geor-
gia, California, and New York (USDA/NASS,
2015). Snap beans are susceptible to various

major soilborne pathogens such as Pythium
damping-off, wilt, and pod rot (variousPythium
species),Rhizoctonia,Fusarium (F. solani f. sp.
phaseoli and F. oxysporum f. sp. phaseoli),
Phytophthora spp., Sclerotium rolfsii, and Mac-
rophomina phaseolina (Bost et al., 2013). Seed
treatments with chemical fungicides have been
useful in managing soilborne pathogens because
these treatments protect plants during the seed-
ling stagewhen they aremost vulnerable and can
eliminate the need for foliar fungicide applica-
tions later in the season. Although the practice is
almost always effective, the chemical fungicides
kill nontarget organisms thatmayprovidenatural
protection to plants against pathogens. In addi-
tion, their nontarget environmental impacts in-
clude toxicity hazards to humans and animals
consuming treated plants. The development of
pathogen resistance to chemicals is an additional
problem that has led to the search for alternative
methods (Pertot et al., 2015). Furthermore, most
soilborne fungal pathogens form resting struc-
tures, such as sclerotia, oospores, and chlamydo-
spores, which have the ability to survive in the
soil for many years and are very difficult to
control (Bost, 2006;Bost et al., 2013). Biological
control agents (BCAs) can be helpful in de-
creasing the soil inoculum potential of soilborne
pathogens and therefore improve soil health and
overall health of plants (Pertot et al., 2015).

Root rot diseases accounted for estimated
losses of 30% in snap beans in Tennessee in
2002 (Bost et al., 2013). Most root rot
damage occurs when plants are young and
damage may remain minimal when plants are
growing vigorously and conditions for dis-
ease problems are unfavorable. However,
when environmental conditions favoring the
pathogen persist through flowering, yield
losses can approach 100%. Cultural practices
have been useful in combating root rot dis-
eases, and constitute the main method used in
organic production systems. However, the
practice does not provide adequate protection,
resulting in high yield losses and high prices of
organic produce. With increasing consumer
awareness of toxicity hazards posed by fungi-
cides, there is a growing demand for organic
produce, and new products suited to organic
production systems are needed not only to
reduce losses and boost production, but also
to reduce sale prices, especially in fruits and
vegetables. The use of beneficial microorgan-
isms as part of integrated disease management
systems can complement cultural practices
and improve disease management (Mmbaga
et al., 2018a; Pal and Gardener, 2011).

Our previous studies identified beneficial
bacteria that significantly suppressed powdery
mildew disease severity in flowering dogwood
(Mmbaga and Sauv�e, 2009; Mmbaga et al.,
2008, 2016). Some BCAs applied on the roots
suppressed powdery mildew on dogwood
foliage (Mmbaga et al., 2016), and were
effective against Macrophomina root rot
disease (Mmbaga et al., 2018b). The objectives
of this study were 1) to identify soilborne
pathogens from snap bean roots and rhizosphere
soil where fungicides are not used in organ-
ically produced snap beans, and 2) to screen
endophytic bacteria for bioactivity in
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suppressing growth of diverse soilborne fun-
gal pathogens and identify novel strains that
can be further developed as BCAs.

Materials and Methods

Isolation and identification of root rot
pathogens and endophytic BCAs. Isolation
of root rot pathogens in snap beans (Phaseolus
vulgaris) was conducted at four different
locations, including Tennessee State Uni-
versity (TSU) bean research fields, TSU out-
reach community gardens growing diverse
horticultural crops including snap beans and
other vegetables, and selected organic vegeta-
ble farms in Palmyra and Indian Mount, TN.
Each farm was inspected for symptomatic
plants that displayed growth stunting, wilting,
or leaf yellowing/browning or necrotic lesions
on the collar regions. Ten sample plants with
different symptoms were collected and taken
back to the laboratory for pathogen isolation.
Soil from around the roots (rhizosphere soil)
was also collected for the isolation of soil-
borne pathogens. Direct isolation of potential
pathogens from the symptomatic plants was
done by using small pieces of tissue in the root
and collar regions. The small plant tissues
were cleaned and surface disinfected by dip-
ping in 10% NaOCl for 2 min and then rinsed
twice in sterile water, blotted dry using heat-
sterilized paper towels, and plated on acidified
potato dextrose agar media (APDA) contain-
ing 0.1% lactic acid. Bacteria growing as
endophytes inside healthy and asymptomatic
plants were isolated from roots of beans, stems
and leaves of papaya (Carica papaya), and
stem of dogwood,Cornus florida. Small pieces
of the plant tissues were disinfected by dipping
in 10% NaOCl and plated on nutrient agar
media (NA), as described previously.

Isolation of soilborne pathogens from
rhizosphere soil was done by using a baiting
technique in which rhizosphere soil was
placed in large petri dishes and moistened
with sterilized water, two plates for each
sample. Based on our previous results in
which surface-disinfected carrots, apple,
pine needles, and leaves of Pieris japonica
were most effective in the isolation of di-
verse soilborne pathogens from rhizosphere
soil, these baits were selected and placed in
the soil for 48 h and then aseptically re-
moved, blotted dry using heat-sterilized tissue
paper, and plated on APDA. Pure cultures
were obtained by subculturing.

Pathogenicity tests on snap beans. A total
of 27 fungal isolates that exhibited different
morphological features were identified (Ta-
ble 1). Of these, 16 isolates were from plant
tissue and 11 isolates were from rhizosphere
soil. The isolates were tested for pathogenic-
ity on snap bean seedlings grown in clear
plastic containers lined with moist paper
towels and maintained in a growth chamber
at 24 to 26 �C and 12-h fluorescent light.
Plant inoculation with test isolates was done
7 d after sowing using 5-mm mycelial disks
placed on the plant roots, one disk per plant
with the mycelia touching the plant tissues;
controls used clean media disks. Each isolate

was tested on four plants arranged in a
randomized complete block design. Devel-
opment of root rot lesions was monitored and
evaluated 14 d after inoculation when some
roots were completely girdled with necrotic
lesions. Re-isolation from the lesions was done
and cultures were compared with the original
inoculum to confirm Koch’s postulates. The
pathogenicity tests were repeated once.

Identification and characterization of
fungal pathogens and endophytic biocontrol
agents. Fungal isolates, confirmed as patho-
gens in pathogenicity tests, were microscopi-
cally observed and grouped into morphological
types. Bacterial endophytes were observed and
characterized using colony morphology, Gram
staining, cell morphology, and DNA sequence
analysis. The DNA of fungal pathogens and
bacterial endophytes was extracted using
FastDNA kit (MP Biomedical, Solon, OH)
following the manufacturer’s instruction
manual. The concentration of the DNA and
relative purity was checked using a Nanodrop
Lite (Thermo Fisher Scientific, Wilmington,
DE). Two universal polymerase chain reaction
(PCR) primers, ITS1 (5#-TCC GTA GGT
GAA CCT TGC GG-3#) and ITS4 (5#-TCC
TCC GCT TAT TGA TAT GC-3#) were used
to amplify the ribosomal DNA (rDNA) from
fungi. Primer pairs RW01 (5#-AAC TGG
AGG AAG GTG GGG AT-3#) and DG74
(5#-AGG TGA TCC AAC CGC A-3#) were
used to amplify a 370 base pair (bp) region of
the 16S ribosomal RNA (rRNA) gene for
bacterial isolates.

The PCR analysis of the genomic DNA
was carried out in a final volume of 25 mL
with PCR buffer 1X (Promega, Madison,
WI), 2.5 mM MgCl2, 200 mM of each deoxy-
nucleoside triphosphate (dNTP), 100 pM of
primer, 100 ng genomic DNA, and 2.5 units
of Taq polymerase (Promega). Amplification
was carried out using a PTC 100 Thermal
Cycler (Boier Lifepro, Grand Island, NY)
programmed with an initial denaturation
temperature of 95 �C for 5 min, followed
by 34 cycles consisting of denaturation at
95 �C for 1 min, annealing of the primers
at 55 �C for 1 min, and 1-min initial exten-
sion at 72 �C followed by 10 min of final
extension at 72 �C.

Twenty microliters of the PCR amplified
products were separated on a 2% agarose gel
(w/v) (Phenix, Candler, NC) alongside 100-bp
ladder size standard to determine the size
and quality of DNA fragments. GelRed stain
(0.1 mg/mL) was used to aid nucleic acid
visualization. Electrophoresis was performed
at 50 to 60 V for 40 min in 1X Tris borate-
EDTA buffer. The gels were photographed
using Kodak Gel logic 200 (Carestream,
Rochester, NY) under ultraviolet light. The
PCR products were purified using the Exosap
DNA purification kit (Invitrogen, Life Tech-
nologies, Inc., Carlsbad, CA) following the
manufacturer’s recommended protocols. The
PCR products were sent to Eurofins genomics
(Louisville, KY) for sequencing. Sequences
were aligned using the online alignment tool
BLAST. Identification of each endophyte was
determined by comparing its DNA sequence

with sequences previously deposited in Gen-
Bank (NCBI) using the closest similarity
match at $99% identity.

Isolates that matched B. thuringiensis,
Bacillus cereus, and Bacillus anthracis were
examined for the presence of parasporal crys-
tals that are associated with B. thuringiensis
(Ejiofor and Johnson, 2002). Isolates were
incubated for 72 h on medium containing
yeast extract, (NH4)2 SO4, K2HPO4.3 H2O,
MgSO4.7 H2O, CaCl2.2 H2O, MnSO4.4
H2O, and glucose. A differential crystal
staining technique was then conducted fol-
lowing the protocol described by Ejiofor and
Johnson (2002). The presence of crystal pro-
teins produced during sporulation is solely
characteristic of B. thuringiensis and not the
related bacteria, B. cereus or B. anthracis,
which are human pathogens.

Screening of endophytes as BCAs of fungal
pathogens. Eight bacterial endophytes includ-
ing five presented in Table 2 and three (B17A,
B17B, and IMC8) previously isolated from
C. florida stem pieces and found to suppress
Erysiphe pulchra (Mmbaga et al., 2018b;
Rotich et al., 2019), were evaluated for anti-
microbial activity against 11 soilborne fungal
pathogens presented in Table 1 and Glomerella
acutata previously isolated as a soilborne path-
ogen. The antimicrobial activity was assessed
using a dual culture technique in which bacterial
endophytes and fungal pathogens were placed
at opposite sides of the petri plates containing
both potato dextrose agar (PDA) and NA at
1:1 v/v ratio to support growth of both the
fungal pathogens and the bacterial endo-
phytes. Initial inoculum consisted of mycelial
plugs of fungal pathogen (5-mm radius) from
7-d-old cultures grown on PDA, and 5-mm
plugs of bacterial endophytes collected from
24-h cultures grown on NA. The controls
consisted of fungal pathogens alone and en-
dophytes alone. All plates were incubated at
ambient temperature of 20 to 23 �C. The
effects of bacterial endophytes on growth of
the fungal pathogens were measured after 7-d
growth. Percentage growth inhibition (PGI)
was calculated using the formula: PGI (%) =
(GC –GE)/GC· 100 inwhichGC= growth of
fungal pathogen control plate and GE =
growth of fungal pathogen in the presence of
the endophytic bacteria. Each isolate was
evaluated with four replicates, and the study
was repeated once.

The data obtained were subjected to anal-
ysis of variance using SAS 9.4 software. Mean
values among treatments were compared by
using the least significant difference (LSD) test
at P = 0.05. Mean comparisons were conduct-
ed using Fisher’s LSD at P # 0.05.

Biochemical substances from endophytes
as potential mechanisms of antagonism to
fungal pathogens. This study was conducted
to assess the presence of antagonistic diffus-
ible metabolites in the media at the inhibition
zone between the endophyte and the fungal
pathogens. To ensure that the media from the
inhibition zone did not contain any bacterial
cells, 5.0-mm plugs of the media were plated
on NA and monitored for growth of bacte-
ria. Subsequently, bacteria-free 5.0-mm plugs
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from the inhibition zone were evaluated for
the ability to suppress growth of the fungal
pathogens by using dual cultures in which a
pathogen plug was placed at the center of the
85-mm petri dish and four 5-mm plugs of
bacteria-free agar from the inhibition zones
were placed at equidistant positions (2.75 cm)
from the pathogen plug. The control consisted
of one 5-mm pathogen plug at the center of the
85-mm petri dish and media plugs from non-
inoculated NA at equidistant positions from
the pathogen. Treatments were replicated four
times. All plates were incubated at 25 ± 2 �C,
arranged in a randomized complete block
design for 14 d. Growth of fungal pathogens
was measured and the pathogen growth in-
hibition by bacteria-free plugs was calculated
as explained previously. The experiment was
repeated once.

A second study was conducted to ascer-
tain if potent biochemical substances re-
leased by the BCAs can pass through a
0.22-mm filter membrane (Sigma Aldrich,
St. Louis, MO) into the media and inhibit
pathogen growth in the absence of the
bacterial cells. Sterile membrane filters were
overlaid on PDA/NA at the center of the 85-
mm petri plate and the selected endophytes
were placed at the center and allowed to
grow for 24 h; the membrane bearing the
bacterial culture was then removed from the
petri plate and a 5-mmmycelial plug of a fungal
pathogen (M. phaseolina) was placed at the
center of the plate where the membrane had
been laid. A control treatment consisted of
clean NA media plug and the pathogen
(M. phaseolina) placed at the center of the plate
where themembrane had been laid on the plate.
Plates were replicated four times and the

percentage inhibition of colony growth of the
fungal pathogen was measured and compared
with the control treatment as described pre-
viously.

Results

Isolation and identification of root rot
pathogens and endophytic BCAs. Only two
pathogens, P. pinodella and F. oxysporum,
were isolated from symptomatic plant tissue
that displayed shoot wilting, seedling stunting,
and brown root lesions (Table 1). Pathogenicity
tests of P. pinodella and F. oxysporum on snap
bean seedlings revealed root rot lesions that
developed on all inoculated plants, but not in
the noninoculated controls. The necrotic root
lesions were brown to reddish brown in color
and completely girdled the roots in 14 d after
inoculation. The pathogenicity test of other
fungi isolated from rhizosphere soil produced
root lesions that were similar to those produced
by P. pinodella and F. oxysporum with no
distinct symptom separation of the different
fungi. The re-isolation of fungi that were
morphologically similar to the original inocu-
lum confirmed Koch’s postulate and indicated
that the fungi were associated with the root
lesions. The initial field symptoms of shoot
wilting, seedling stunting, and brown root
lesions can be considered nondistinct. Thus,
it is possible that disease symptoms observed
in the field may be a result of a disease
complex from the two fungi or a disease
complex that involved other fungi in the
rhizosphere soil. Several fungi isolated from
the rhizosphere soil, including F. equiseti, F.
subglutinans,F. camptoceras,F. chlamydosporum,
F. verticillioides, F. proliferatum, and

M. phaseolina, have been reported to be path-
ogens in other plants (Table 1).

Of the different baits used to isolate fungi
from the rhizosphere soil, leaf discs of Pieris
japonica resulted in the isolation of the most
numerous fungal isolates, followed by pine,
carrot, and apples, respectively. Based on
previous results, these baits were most effec-
tive in the isolation of diverse soilborne
pathogens from rhizosphere soil. Morpholog-
ical characteristics of various Fusarium spe-
cies isolated from the rhizosphere soil were
consistent with the identified species accord-
ing to Nelson et al. (1983). Results from
pathogenicity tests in growth chamber exper-
iments showed that all the previously men-
tioned fungi were pathogenic on snap beans
and produced similar symptoms consisting of
brown to reddish-brown necrotic lesions on
snap bean roots of test plants, whereas the
PDA agar control did not cause symptoms.
This observation further suggested that these
fungi may have contributed to the seedling
stunting, leaf blight, shoot wilting, and brown
root lesions observed in the field.

Of the bacteria isolated as endophytes,
different morphological types were recog-
nized and identified. Bacillus strains were
most frequently isolated, Enterobacter sp.
being the only other genus (Table 2). Isolate
PS from papaya stem had the highest simi-
larity match to B. vallismortis at 99% (Gen-
Bank number KJ642605.1), isolate Prt from
papaya roots with 99% similarity match with
B. subtilis (GenBank number AB894357.1),
and Psl from papaya leaves having a similar-
ity match at 99% identity to two bacteria,
B. subtilis (GenBank number HQ266666.1)
and B. amyloliquefaciens (GenBank num-
ber KU551259.1). Isolate Y, endophytic in
dogwood, matched three Bacillus species,
B. anthracis, B. thuringiensis, and B. cereus,
at 99% identity (Table 2). Staining in isolate
Y revealed the presence of crystal proteins
with spherical or ovoid morphology and
confirmed that this isolate was B. thuringiensis
and not B. cereus orB. anthracis,which do not
form crystal proteins. Isolate E was identified
as Enterobacter sp. at 100% identity (Gen-
Bank number KJ526911.1).

Screening of the endophytes as BCAs for
diverse fungal pathogens. Results in dual
culture experiments showed that the selected
endophytes caused significant colony growth
inhibitions to seven species of Fusarium and
three other soilborne pathogens (Figs. 1 and
2). Different endophytes caused significant
growth inhibitions against diverse fungal
pathogens anddifferences in pathogen/endophyte
interactions were significant at P = 0.001.
Inhibition zones for M. phaseolina was
highest, and the degree of growth inhibition
by different endophytes is presented in Fig. 2.
The effect of the selected endophytes in
suppressing pathogen growth varied be-
tween pathogens (Figs. 1 and 2). All endo-
phytes were effective in inhibiting growth of
Fusarium species, especially F. verticillioides
and F. oxysporum (Fig. 1). Isolates Y and
IMC8, both B. thuringiensis, were the most
effective in inhibiting Fusarium species,

Table 1. Soilborne fungi isolated from snap bean roots and from their rhizosphere soil in Tennessee.

Sample ID Source Organism identity Accession no.
Percent
identity

Necrosis
incidencez

PA-SN1-L2 Snap bean Peyronellaea pinodella KM030324.1 100 20
PA-SN3-L1 Snap bean Fusarium oxysporum KF494076.1 100 30
PA-SN1-R1 Snap bean F. oxysporum KP942940.1 100 28
PA-SN4-R1 Snap bean F. oxysporum KM486071.1 99 28
JJ5 Soil F. oxysporum FJ605247.1 99 35
JJ5 Soil Fusarium equiseti AB425996.1 99 20
JJ8 Soil Fusarium subglutinans JN646040.1 100 30
JJ8 Soil Fusarium camptoceras EU520082.1 99 20
JJ9 Soil Fusarium chlamysosporum KM076600.1 99 20
JJ9 Soil Fusarium verticillioides KC752592.1 100 25
JJ10 Soil Fusarium proliferatum KJ608094.1 99 17
JJ11 Soil Fusarium acuminatum KF887088 99 17
JJ15 Soil Fusarium solani HQ262512 99 20
J116 Soil Macrophomina phaseolina JX945170 100 80
zIncidence of root necrosis in pathogenicity tests on snap beans varied from 17% to 80% of roots showing
root rot lesions with symptoms of brown to reddish-brown lesions.

Table 2. Molecular identification of endophytes isolated from different hosts and their identity based on
closest similarity match in DNA sequence with GenBank accessions.

Sample ID Source Organism identity Percentage identity Accession no.

PS Papaya stem Bacillus vallismortis 99 KJ642605.1
Prt Papaya root Bacillus subtilis 99 AB894357.1
Psl Papaya stem Bacillus amyloliquefaciens 99 KU551259
E Snap bean root Enterobacter sp. 100 KJ526911.1
Y Dogwood stem Bacillus anthracis 99 CP010852.1

Bacillus thuringiensisz 99 CP010577.1
Bacillus cereus 99 CP010577.1

zConfirmed identity based on Ejiofor and Johnson (2002).
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whereas isolates Prt, Ps, and Psl were most
effective against M. phaseolina and B17A
(Stenotrophomonas sp.), and B17B (Serratia
sp.), being least effective (Fig. 2).

Assessment of diffusible metabolites as
potential mediators of BCA antagonism. Us-
ing agar plugs from the growth inhibition
zone, free of bacterial cells, caused growth
inhibition of pathogens (Fig. 3A–C). The use

of growth media that was used to grow the
BCA on bacterial filter membranes caused
even more growth inhibition ofM. phaseolina
(Fig. 3D and E; Table 3). These observations
again suggest the presence of pathogen-
inhibiting diffusible metabolites produced
by the endophytes into growthmedia. Although
the presence of bacterial cells was most effec-
tive in suppressing fungal growth, growth in-

hibition was also observed in the absence of
bacterial cells.

Discussion

Most fungi isolated from the snap bean
fields not treated with chemical fungicides
were Fusarium species. Most of the fungi
were isolated from the rhizosphere soil and
not from plant roots. Similar observations
were reported by Avanzato and Rothrock
(2010). It is possible that the Fusarium
species may be weak pathogens of snap beans
in natural environments. The fungi isolated
from the rhizosphere soil (but not from snap
bean roots) produced necrotic lesions on snap
beans in growth chamber conditions. It is
possible that the growth chamber environ-
ment used for pathogenicity tests was more
favorable for disease development than the
field environment where the fungi were iso-
lated. However, the presence of these patho-
genic fungi in snap bean rhizosphere soil and
the proven pathogenicity of these fungi on
inoculated beans have implications regarding
their potential threat when conditions favor
plant infection or when another favorable
host is grown. Most of the Fusarium species
isolated in snap bean rhizosphere soil are well
known and widespread pathogens of corn,
causing stalk and ear rot worldwide (Nelson
et al., 1981, 1983). The presence of these
fungi in snap bean rhizosphere soil in organic
production fields may be significant not only
as potential root rot pathogens, but also as
toxin-producing fungi and potential contam-
inants of produce from these fields. Example,
F. subglutinans has been reported to produce
disease symptoms such as shoot and leaf
blight, shoot wilting, seedling stunting, heavy
colonization of coleoptiles, and node damage
on corn plants, but had no effect on seedling
emergence and survival (Aboul-Nasr andObied-
Allah, 2013). AlthoughF. subglutinanswas only
isolated from snap bean rhizosphere soil and not
from plant tissues, the symptoms observed in
field plants in our study could have been partly
caused by F. subglutinans. Other reports show
that F. subglutinans is a distinct species in the
Gibberella fujikuroi species complex and a
pathogen of Pinus patula seedlings. Similarly,
F. verticillioides (syn. F. moniliforme) were
isolated from soil, but not from plant tissue.
Other species isolated from bean rhizosphere
soil, such asF. camptoceras, F. acumintum, and
F. equiseti, F. chlamydosporum F. solani, F.
proliferatum, Fusarium graminearum, and F. oxy-
sporum, have widespread distribution, survive
a long time in crop debris and soil, and may
have been pathogens in a previous crop.
However, F. oxysporum was also isolated
from symptomatic snap beans. Because most
of these Fusarium species are toxin-producing
and have the ability to produce and accumu-
late mycotoxins in infected tissues, they po-
tentially endanger humans and animals,
subsequently causing food rejections (Aboul-
Nasr and Obied-Allah, 2013; Asran and
Buchenauer, 2002; Nelson et al., 1993). The
ability of the selected endophytic bacteria to
suppress growth of toxin-producing Fusarium

Fig. 2. The performance of bacterial endophytes in suppressing mycelial growth of diverse fungal
pathogens in dual cultures indicating their potential as biological control agents. Bacterial endophytes
PS (Bacillus vallismortis); Prt (Bacillus subtilis); Psl (Bacillus amyloliquefaciens); Y (Bacillus
thuringiensis) and E (Enterobacter), B17A (Stenotrophomonas sp.), B17B (Serratia sp.), IMC8 (B.
thuringiensis). Different letters in each fungal pathogen (column patterns) indicate statistical
differences at P = 0.05 according to SAS Prolog analysis.

Fig. 1. The performance of bacterial endophytes in suppressing mycelial growth of diverse Fusarium
species in dual cultures exhibiting their potential as biological control agents. Bacterial endophytes
IMC8 (Bacillus thuringiensis); Y (B. thuringiensis); B17A (Stenotrophomonas sp.); and B17B
(Serratia sp.). Different letters in each fungal pathogen (column patterns) indicate statistical
differences at P = 0.05 according to SAS Prolog analysis.
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species has significant implications beyond
the field production of snap beans, and may
be a resource in the management of toxin-
producing Fusarium species. Results from
this study identified isolates of Bacillus
species that have previously been docu-
mented to have an inhibitory effect on
fungal pathogens (Hallmann et al., 1997;
Heydari and Pessarakli, 2010). The isolation
and identification of these new isolates
presents potential new sources of BCAs for
diverse fungal pathogens, including toxin-
producing Fusarium species. Significant
differences in growth inhibition by different
endophytes against diverse fungal patho-
gens (P = 0.001) suggest that mixtures of

endophytes could be used in plant protection
for optimal control.

The DNA results of isolate Psl revealed its
identity as either a B. amyloliquefaciens or
B. subtilis strain, with both having 99%
identity, and so it was difficult to distinguish
them bymolecular techniques. This difficulty
was also reported by Hutsebaut et al. (2006),
in which B. subtilis and B. amyloliquefaciens
showed more than 99% similarity. They
reported insufficient dissimilarity in the spe-
cies of B. subtiliswhen pairwise alignment of
16S rRNA gene sequences analysis was done
(Hutsebaut et al., 2006). Although the use of
16S rDNA sequence analysis is very common
in assigning strains into different taxa, it is

difficult to detect any variation when dis-
tinguishing closely related organisms (De
Vos, 2002; Fox et al., 1992). The endophytes
matched tomembers of theB. subtilis group pose
particular identification problems: the B. subtilis
group consists of B. subtilis subsp. subtilis,
B. subtilis subsp. spizizenii, Bacillus mojavensis,
B. vallismortis, Bacillus clausii, Bacillus
atrophaeus, B. amyloliquefaciens, Bacillus
licheniformis, Bacillus sonorensis, Bacillus
firmus, Bacillus lentus, and Bacillus sporo-
thermodurans (Standards Unit, Microbiology
Services and PHE, 2015). Several studies have
been conducted attempting to distinguish Ba-
cillus species based on different phenotypic
characteristics, such as fatty acid composition,
pigmentation (Roberts et al., 1996), and
analytical profile index (Logan and Berkeley,
1984). Thus, confirmatory identities of these
endophytes require more studies using
whole-genome DNA sequence analysis. The
presence of crystal proteins (Ejiofor and
Johnson, 2002) indicated that our isolates Y
and a previously isolated endophyte of flower-
ing dogwood IMC8 are strains of B. thurin-
giensis. The effect ofB. thuringiensis isolates Y
and IMC8 in suppressing growth of fungal
pathogens is interesting in that B. thurin-
giensis is a well-known insect pathogen
widely used in commercial biological control.
Our recent studies showed that IMC8 has
suppressed powdery mildew disease severity
in C. florida (Rotich et al., 2019). Bacillus
isolates Psl, PS, and Prt suppressed phytoph-
thora root rot in bell pepper (Irabor and
Mmbaga, 2017) and soybean root rot caused
by F. oxysporum and Fusarium graminearum
(Zhang et al., 2009); their ability to suppress
diverse fungal pathogens increases their prom-
inence as potential BCAs.

The bacterium Enterobacter sp. was iso-
lated as an endophyte of snap bean roots from
a grower’s farm in Tennessee; however,
Enterobacter spp. is present almost every-
where in nature, particularly in the rhizo-
sphere and spermosphere of most plant
species (Haahtela et al., 1981; Ladha et al.,
1983). Some Enterobacter spp. have been
reported to promote plant growth (Deepa
et al., 2010; Ramesh et al., 2014), associated
with nitrogen fixing in rice (Ladha et al.,
1983) and control some plant diseases
(Howell et al., 1988; Mmbaga and Joshua,
unpublished). Isolates B17A (Stenotropho-
monas sp.) and B17B (Serratia sp.) have
previously demonstrated disease control against
powdery mildew and growth-promoting abili-
ties in C. florida (Mmbaga et al., 2018b) and
soybeans (Wahyudi et al., 2011).

Numerous bacterial strains have been
shown to protect plants against pathogens
and promote growth in different ways, such
as inhibition, competition, or increasing plant
resistance (Idris et al., 2007;Richardsonet al., 2009).
Several species, such asB. subtilis,B. licheniformis,
Bacillus pumilus, B. amyloliquefaciens, B. cereus,
and B. thuringiensis, have been reported to
suppress growthof various fungal pathogens, such
asRhizoctonia,Fusarium,Sclerotinia,Sclerotium,
Gaeumannomyces, Nectria, Pythium, Phytoph-
thora, and Verticillium species (Basurto-Cadena

Table 3. Growth inhibition of Macrophomina phaseolina colonies in dual culture by bacteria-free media
plugs taken from inhibition zones: 1) horizontal diffusion of metabolites released by endophytes and 2)
vertical diffusion through filter membranes overlaid on the media.

Bacterial
endophytesz

% growth
inhibitiony

Growth inhibition of M. phaseolina
colonies in the presence of diffusible metabolites

Bacteria-free plugs
from inhibition zonex,w

Bacteria-free plugs
underneath filter membranex,w

Bacterial
cell plugsy

IMC8 54.93 bc + ++ ++
Y 51.52 cd + ++ ++
E 51.63 cd + ++ ++
Prt 72.73 a ++ ++ +++
PS 66.29 ab + + +++
Psl 75.00 a + + +++
Control 0 – – NA
LSD(0.05) 11.91
zEndophytes IMC 8 and Y = Bacillus thuringiensis; PS (Bacillus vallismortis); Prt (Bacillus subtilis); Psl
(Bacillus amyloliquefaciens); E (Enterobacter), and Control (plain media). LSD = least significant
difference. No inhibition (–), slight inhibition of M. phaseolina (+), good inhibition (++), best
inhibition (+++). NA = not applicable, no bacterial cells.
yBacterial cells are present.
xHorizontal diffusion of metabolites from bacterial endophytes.
wNo bacterial cells present. Numbers followed by different letters are significantly different at P = 0.05.

Fig. 3. Effect of diffusible metabolites released by different Bacillus species into growth media inhibiting
M. phaseolinamycelial growth in culture in the absence of bacterial cells: (A) metabolites from the Prt
(Bacillus subtilis) inhibition zone, (B) metabolites from the IMC8 (Bacillus thuringiensis) inhibition
zone, (C) control treatment from plain nutrient agar (NA), (D) 100% growth inhibition of
Macrophomina phaseolina from biochemical substances from isolate Y (B. thuringiensis) grown on
a 0.22-mm filter membrane overlaid on potato dextrose agar (PDA)/NA media for 24 h and then
removed compared with (E) mycelial growth of M. phaseolina on plain PDA/NA.
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et al., 2012; Haleem Khan et al., 2011; Zhang
et al., 2009).

The screening of bacterial endophytes in
our in vitro studies showed clear inhibition
zones. The use of dual cultures is a rapid and
convenient method to evaluate endophytes
as potential BCAs against plant pathogens
before testing them on whole plants. Our
studies are supported by the approach of
Islam et al. (2005), who used the existence of
inhibition zones as criteria in screening and
selecting potential BCAs. Our studies showed
that the inhibition zones harbored unidentified
compounds, diffused into the media. Such
compounds inhibited fungal growth in the
absence of bacterial cells. Although the com-
pounds have not yet been identified, results
showed clearly that bioactive metabolites
were effective in suppressing fungal patho-
gens. This agrees with reports by Clay and
Schardl (2002), Webber (1981), Raaijmakers
et al. (2002), and Heydari and Pessarakli
(2010) that bacterial antagonists inhibit the
growth of fungal pathogens by excreting
antifungal metabolites, such as antibiotics,
toxins, and bio-surfactants, including vola-
tiles. The diffusion of the compounds to the
media where bacteria were grown on filter
membranes displayed greater inhibition, per-
haps because of higher concentrations where
the bacteria were grown on the micro filter
membranes (Fig. 3).

Differences in growth inhibition between
the isolates also suggested that different
bacterial endophytes may produce different
compounds and/or amounts of antifungal
substances. However, these differences in
the antagonistic effect against different path-
ogens suggest a possibility for using mixed
populations of endophytes to maximize con-
trol of fungal pathogen complexes. Isolates
B17A and B17B, previously isolated as
epiphytes of flowering dogwood, suppressed
powdery mildew disease severity and pro-
moted plant growth in dogwood plants even
when applied on the roots (Mmbaga et al.,
2016). The isolates also colonized dogwood
endophytically and were antagonistic to
Macrophomina root rot in this host (Mmbaga
et al., 2018b). Notwithstanding, this study
showed that B17A and B17B were most effec-
tive against F. oxysporum and F. verticillioides
and less effective against other soilborne fungi
tested, including M. phaseolina (Fig. 3). These
results suggest that there is some host specificity
as well as pathogen/endophyte specificity in
bioactivity of these endophytes. Endophytic
organisms used in this study are likely to
be naturally abundant and less vulnerable
to external environmental fluctuations, and
therefore more likely to confer effective
disease control in field environments. Such
BCAs can be integrated with other cultural
strategies, including sanitation and crop
rotation in a biological-based integrated
disease management system for maximized
disease control in organic farming.

Our results showed that the extent of
growth inhibition resulting from plugs taken
from bacteria-free inhibition zones was
greatly reduced compared with plugs con-

taining the bacterial cells (Table 3). The
pathogen inhibition evident in the absence
of the bacterial cells indicates that the se-
lected endophytes may not have to be phys-
ically present for pathogen inhibition to
occur, but the inhibition increased when
bacterial cells were present. These observa-
tions suggest that more than one mechanism
of action may be involved. Manipulating
such organisms to be ‘‘super producers’’ of
antagonistic metabolites may improve their
efficacy. Observations from this study create
considerable potential for the development of
disease management products that may be
compatible with organic production; how-
ever, more studies are needed to identify and
characterize the secondary metabolites and
test the organisms in vivo.
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