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Inoculation and amendment strategies influence switchgrass establishment 
in degraded soil 

E. Adeleke *, E. Dzantor (Kudjo), A. Taheri * 

Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, United States   

A R T I C L E  I N F O   
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A B S T R A C T   

Bioenergy feedstock production on degraded land can serve as a means for modulating land competition for food 
versus energy. Due to little or no agricultural value of degraded soil, fortification of the soil with an organic 
amendment or inoculum will improve biomass productivity. However, as farmers struggle to rejuvenate their 
degraded land, there is a need for a quick screening strategy to select the best method of enhancing cellulosic 
(switchgrass, SG) biomass production in degraded soil. The goal of this study is to evaluate the effects of soil 
amendment and inoculation strategies on biomass productivities of SG in a reclaimed surface-mined soil (RMS). 
Experiments were conducted in the greenhouse using moisture replacement microcosms (MRM) to screen strategies 
for enhancing biomass productivities of SG in a RMS. Strategies included soil amendment with organic by-products 
(poultry litter, paper mill sludge, and vermicompost), inorganic nutrients (nitrogen and phosphorus fertilizers), or a 
commercial preparation of endomycorrhizae fungi (AMF, BioVam). Experiments were implemented with ten (10) 
treatments with six replicates for each treatment. After eight weeks of incubation in MRM systems, inoculation of 
RMS with AMF produced the highest aboveground and total biomass (0.9 g and 1.77 g per microcosm container) at 
p < 0.05. The total biomass of commercial AMF significantly (p < 0.05) outperformed all other treatments in the 
order of AMF >AMF +VC > PMS +N >VC = PMS = PL > PMS + AMF >N + P > ASL > Control. This microcosm 
screening experiment served as a quick screening to establish that soil enhancement and inoculation strategies can 
enhance biomass productivities of SG in degraded soil.   

1. Introduction 

A growing concern on how to reduce pollution and make our envi-
ronment safer brought great attention to biofuel production. Biofuel, an 
environmental friendlier alternative to fossil fuel, has the ability to 
reduce carbon dioxide (CO2) and greenhouse gas (GHG) emission (Qin 
et al., 2011; Skevas et al., 2014). Bioenergy biomass production on 
degraded land has been suggested to free arable land for the production 
of food, fodder, and fiber (Lehmann and Rillig, 2015). It is vital to 
improve grassland cropping systems on degraded land by using con-
servative agricultural practices to reduce agricultural runoff of soil and 
nutrients, increase carbon sequestration (Mbuthia et al., 2015; Meh-
mood et al., 2016), and improve potential to rejuvenate the degraded 
land. 

Degraded land often results from soil contamination or deficiencies 
in plant nutrition (Lehmann & Rillig, 2015). To overcome this challenge 
preharvest soil fertilization is often carried out to enhance whole plant 
tissues for increased biomass yield (Sikström, 2001). The addition of 

fertilizer has been reported to effect changes in soil quality (Simmons & 
Coleman, 2008). An integral part of soil quality that is affected by 
fertilization includes carbon (C), nitrogen (N), microbial biomass and 
community of the soil (Acosta-Martinez et al., 2011; Acosta-Martínez, 
Zobeck, & Allen, 2004). Soil management practices, therefore, become 
critical since the application of fertilizer effect changes in structural and 
biochemical characteristics of soil microbial community (Al-Kaisi et al., 
2005; Mbuthia et al., 2015). 

An alternative approach to inorganic fertilizer is the application of 
beneficial or symbiotic soil microbes (especially arbuscular mycorrhizal 
fungi, AMF) that can form an integral section of the root to improve soil 
quality and enhance plant health. AMF are ubiquitous symbionts 
forming arbuscular mycorrhizas in the roots of most land plants. AMF 
can enhance biomass production of perennial grasses in arable soil 
(Adeleke & Dzantor, 2017). In addition, inoculation of consortium of 
plant growth promoting microbes will increase microbial diversity and 
high microbial diversity have been reported to enhance soil ecosystem 
functioning (Maron et al., 2018), although this is still debated (Chapin 
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et al., 1992; Cox et al., 2001; Setälä & McLean, 2004) as enormous di-
versity as a result of compositional shift may result in functional 
redundancy or equivalence that may not affect the ecosystem processes 
(Allison & Martiny, 2008). Although functional redundancy is difficult 
to achieve it may result from two situations, the first, when the taxa that 
makes up a newly derived community performs the similar function to 
the previous taxa in the old community and the second is when the new 
taxa may have different function but the effect of the function is the 
same when profiled at community level (Allison et al., 2014; Allison & 
Martiny, 2008). The increase in carbon source can reduce functional 
redundancy through combination of soil diversity with change in carbon 
cycling. It has been suggested that functional redundancy may be 
reduced with increasing carbon source and that coupling of soil diversity 
with carbon cycling may change consequently (Maron et al., 2018). 

Another alternative approach to improve soil fertility is by addition 
of allochthonous nutrients (referred to organic material that are not 
naturally present but anthropogenically added to the soil) with high 
carbon source. The application of organic residues has been well re-
ported to improve soil quality (Acosta-Martinez et al., 2011; Li et al., 
2015; Moland et al., 2018) while the microbial communities undergo 
rapid shift in response to the modification of environmental conditions 
(Tardy et al., 2015). Although the initial addition of high carbon sources 
may favorably increase the dominance of the copiotrophs over other 
populations, this dominance is later offset by resilience of oligotrophs 
and fungi (Tardy et al., 2015). The addition of organic allochthonous 
nutrients to degraded soil may therefore initiate a tripartite association 
between the organic amendment, plant and the stress-tolerant microbe 
in the soil (Vimal et al., 2017). The influence of organic nutrient on 
aboveground biomass enhancement in degraded soil with in situ spatial 
response of root system is not well documented. In this study we have 
decided to select switchgrass (SG) (Pannicum virgatum L.) as our crop of 
interest because of its importance as a model bioenergy crop. 

SG is a native warm season grass that has been designated as a model 
cellulosic bioenergy crop by the US (McLaughlin & Adams Kszos, 2005; 
Mitchell et al., 2016; Sanderson et al., 2006). SG is a herbaceous 
perennial species that forms extensive root systems in its rhizomes-that 
possess the nutrient storage potential at the end of the growing season. 
The emergence and early growth of shoot at the onset of a new growing 
(spring) season (Youngs and Somerville, 2012) is supported by the 
nutrient stored in the rhizome from previous season. This also allows SG 
to make only little investments into root biomass once the crop is suc-
cessfully established unlike in annual crops. SG has two types of roots, 
the seminal roots that emerges directly from the seed embryo to form 
deep fibrous roots and the nodal roots that emerges from the lower tiller 
nodes to form rhizomatous roots. The depth of SG root can be 3.05 m 
deep but majority of the root in is in the top 12 in. region of the soil 
profile (Mitchell et al., 2016). Most SG will be grown on degraded soil to 
avoid competition with food crops for arable land (Jiang et al., 2012; Liu 
et al., 2015). Therefore, it is imperative to evaluate on a case by case 
study the establishment of SG root in the degraded soil. In addition to the 
role of SG root in establishment, the root also play important role in 
plant-microbe association (Wagg et al., 2014). Association of plant 
growth microbe with the is crucial for plants survival in contaminated 
soil (Khan, 2006; Tahat & Sijam, 2012; Yang et al., 2015, 2016; Lenoir 
et al., 2016; Wang, 2017). Therefore, assessment of root development of 
SG is critical for plant establishment. The stress tolerant adaptive trait 
related to root physiology and morphology have been reported in SG 
(Barney et al., 2009; Meyer et al., 2014). Although, phenotyping root 
systems is integral to the discovery of genes responsible for root system 
architecture (RSA) traits, the constraints of studying root in soil and on 
the field remains germane (de Dorlodot et al., 2007; Ingram et al., 2012; 
Zhu et al., 2011). RSA can be defined as the spatial and temporal 
arrangement of the entire root system in the soil (Chen et al., 2018; 
Kochian, 2016; Zhu et al., 2011). Since, there is a large knowledge gap in 
SG RSA in degraded soil, we evaluated its root morphology and how it 
responds to soil amendment and inoculation strategies. 

Therefore, our objective is to evaluate the effects of soil amendment 
and inoculation strategies on biomass productivities of SG in a reclaimed 
surface-mined soil (RMS). We achieved this by conducting a greenhouse 
experiment where we used a moisture replacement microcosm (MRM) 
to screen strategies for enhancing biomass productivities of SG in a RMS. 

2. Materials and methods 

2.1. Soil 

RMS site was identified with the assistance of Tennessee Natural 
Resource Conservation Service (NRCS) in Eastern Tennessee (Latitude 
35◦59′32.6′′N Longitude 84◦39′52.2′′W). RMS is a reclaimed site where 
surface mining was historical conducted until the late 70′s. The mining 
was stopped in 1978 and thereafter, the land was reclaimed by recon-
struction of the top layer that was stripped off during mining. During 
growing season, the RMS site has a very sparse population of grasses that 
been majorly dominated by Andropogon virginicus (broomsedge). RMS 
demonstrated low biomass production (less than 0.5 kg per hectare) 
compared to arable land. Bulk soils were collected at the beginning of the 
growing season (April 2016) at 0-12 in. deep from the RMS site as the 
degraded soil. Specific permission was not required to collect the soil 
sample since the landowner and NRCS collaborated with this study and 
transportation of the soil samples was within the state. Armour silt loam 
(ASL), was collected as an arable soil comparison to degraded soil from 
Tennessee State University (TSU) Agricultural Research and Education 
Center, Nashville, TN (Latitude 36o10′42.9′′N Longitude 86o49′32.1′′W). 

Plant material Seeds of ‘Alamo’ variety of SG, a lowland ecotype, 
were obtained from Star Seed Inc., Osborne, KS. 

2.2. Commercial mycorrhiza 

Bag (11.25lbs) of commercial mycorrhiza - BioVam (containing 
Endomycorrhizae - approx. 80 spores g− 1, Ectomycorrhizae - approx. 
100 spores g− 1, Bacteria: Arthrobacter globiformis, Azotobacter chroo-
coccum, Azotobacter vinelandii, Bacillus subtilis, Pseudomonas alcaligenes, 
Pseudomonas fluorescens, Pseudomonas pseudoalcaligenes and Pseudo-
monas putida with estimated minimum viable cells of 20,000 g− 1, and 
other Fungi: Trichoderma harzianum and Trichoderma koningii with esti-
mated minimum cells of 10,000 g− 1) was obtained from T&J Enter-
prises, Spokane, WA. 

Vermicompost (VC) served as soil amendment and was purchased 
from Worm Power, Avon, NY. Pelletized poultry litter (PL) was pur-
chased from natural organic warehouse (NOW), Andover, KS. N-P-K 
analysis of the product was reported as 2–4-2. Paper mill sludge (PMS) 
was obtained from resolute forest products, Catawba, SC by gratis. 

Urea, N (46 0 0) and Phosphorus P (0 45 0) were purchased from 
Tennessee Farmers’ Cooperative, LaVergne, TN. 

2.3. Preparation of soil samples 

Bulk soils were sieved through 2 mm (#10) soil test sieve. The sieved 
soils were kept in the greenhouse at 12 ◦C and stored up in linear low- 
density polyethylene bag that is then placed in 5 US gallon bucket 
with lid cover to avoid drying or significant moisture loss. The gravi-
metric soil water content measured using HB43 halogen moisture 
analyzer (Mettler Toledo, Columbus, OH) was averagely 15.8% during 
storage. 

2.4. Plant incubation in moisture replacement microcosm system 

Seeds of SG were germinated in AMF-free nursery potting substrate 
within germination trays. Two seedlings of SG at three-leaf stage 
(approx. 4 weeks old) were transplanted into 50 ml conical tubes con-
taining appropriate soil treatments and incubated in MRM system as 
described by Le et al. (2011). Briefly, MRM system is a unit made up of 
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expanded polystyrene (EPS) foam boxes (Fig. 1) with 62.5 × 30 × 20 cm 
dimension that had been divided into two-halves (upper and lower 
compartment). The upper compartment had 36 holes drilled into it with 
approximately 3.5 cm × 2.5 cm separating each hole from one another. 
Each hole had 50 ml conical centrifuge tubes (ID: 27.7 mm ×OD: 
29.1 mm × Length: 114.4 mm × Cap Diam.: 35.2 mm; Corning, Inc, 
Corning, NY) that held soil inserted into it with a black O-ring 
(ID:33 mm ×OD:40 mm × TH:3.5 mm) hole sealing gasket washer fitted 

snugly on the conical tubes as a support. Insulated wicks (assembled 
from 3 mm × 150 mm replacement oil lamp wick, Amazon Inc, Bellevue, 
WA and ID:3mm ×OD:4.8 mm black nylon tubing, Grainger, Lake For-
est, IL) were inserted into the bottom end of the conical tubes (with hole 
of ~ 5 mm Diam.) such that it extended into one-third of the tubes and 
the remaining two-third extended into the reservoir. The lower 
compartment of the MRM system served as the reservoir which held 
approximately 9 L of distilled water. The wick served as a conduit that 

Fig. 1. Moisture replacement microcosm (MRM) system. (a) Illustrates the EPS box with upper and lower compartments. The upper compartment which is about 
10 cm in height fits tightly on the lower compartment. The upper compartment also had 36 holes (with each hole with 3.5 cm diameter with approximately 
3.5 cm × 2.5 cm spacing) drilled into it. The lower compartment (10 cm high) is the section of the EPS box that serves as the reservoir for the distilled water. (b) 
Illustrates the assembling of the conical centrifuge tube that is inserted into the hole of the EPS foam boxes. The centrifuge tube is inserted into the O-ring which fits 
snuggly on it and the wick is inserted into the bottom of the centrifuge tube up to a third of the section. After labeling and filling the centrifuge tubes with appropriate 
soil treatment, each assembled tube was inserted into the hole of the upper compartment and the remaining two-third of the wick extended into the water reservoir of 
the EPS foam box. 
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supplied distilled water via hydraulic gradient to the soil held in the 
conical tubes thereby creating an average soil moisture content of 
approximately 70% during plant incubation. The lower compartment is 
also laminated with a black plastic tarp to prevent leaching from the EPS 
foam boxes. The level of the water was checked and maintained at the 
same level (9 L) by topping the distilled water every 2 days as needed 
and refilling up to half the entire content every two weeks. This MRM 
system allowed economical amount of resource – degraded soil and 
water to be screened for biomass enhancement using amendment and 
inoculation strategies, thereby determining the right estimation of 
amendment or inoculum needed for rejuvenation of degraded soil. 

2.5. Optimization of commercial mycorrhiza inoculum experiment 

The optimum inoculum of the commercial mycorrhiza (AMF) used 
was determined prior to inoculation in MRM system. Four different 
inoculum ratios of commercial AMF 0, 3, 10, and 15% of total volume of 
ASL soil (50 ml ods) in the centrifuge tube was examined. Summarily, 
Sorghum bicolor seeds were surface sterilized by washing seeds with 
distilled water three times and the distilled water was decanted with the 
floating seeds. The remaining seeds (that submerged in the distilled 
water) were washed with 70% ethanol for 5 s and the solution was then 
decanted. The seeds were then soaked with 1% sodium hypochlorite 
solution plus 0.2 ml of Tween 20 for 15 min in a 250 ml beaker under a 
biosafety hood. The solution was strained off and the seeds washed again 
with 70% ethanol and the ethanol was decanted. The remaining seeds 
were then rinsed thoroughly with pre-sterilized distilled water. Average 
of ten seeds were placed on sterilized filter papers in a petri dish. The 
petri dishes were incubated in the dark at 25 ◦C for four days. After four 
days, sorghum seeds that had a radicle length of about 0.5 cm was used 
in this experiment. Each treatment was replicated three (3) times with 
two seedling per replicate. Sorghum seeds were used for the optimiza-
tion experiment based on previous studies (unpublished) that we 
conducted. 

2.6. Experimental design 

The experiment consisted of ten (10) treatments that were replicated 
six(6) times and arranged in completely randomized design in MRM 
system (Fig. S1). The treatments included single or combined amend-
ments with or without AMF inoculation of the RMS soil. Two (2) mm- 
sieved soil were mixed with or without appropriate amendment and/ 
or inoculum. Treatments consisted of urea and phosphorus amendment 
(N + P); poultry litter amendment (PL); vermicompost amendment (VC); 
paper mill sludge alone (PMS); BioVam commercial mycorrhiza alone 
(AMF); combination of paper mill sludge and BioVam commercial my-
corrhiza (PMS +AMF); combination of paper mill sludge and urea 
(PMS +N); combination of BioVam commercial mycorrhiza and ver-
micompost (AMF +VC); and the controls consisted of ASL and RMS 
without amendment or inoculum. The N and PL were applied to 
appropriately designated portions of soil to stimulate a nitrogen rate 
addition of 75mgN/Kg while P were applied to the appropriate amount 
of soil at a rate of 25mgP/Kg (50lbs/ac). 

2.7. Soil physicochemical analyses 

The initial pH(water), percentage of organic matter content, phos-
phorus, potassium, calcium, and magnesium of the RMS, ASL and PMS 
were determined. Several sub-samples of soils and amendment were 
taken and mixed thoroughly in a sterile whirl-pak bags (Nasco, Fort 
Atkinson, WI). Six different aliquots were thereafter taken from the soil 
consolidation and shipped for analysis to the Soil, Plant and Pest Lab-
oratory of University of Tennessee, at Ellington Agricultural Center, 
Nashville, TN. The summary of the limited physicochemical analyses of 
the degraded and arable soils used is summarized in Table 1. 

2.8. Determination of aboveground biomass 

After 8 weeks of incubation in the MRM system, the SG plant height 
was measured according to Andariese & Covington (1986) method. 
Summarily, each SG height was measured from the plant tiller base to 
the extended length of the longest blade. The plant height measurement 
was recorded to the nearest 0.25 cm using a metric scale (Fig. S2 A-B) 
and average height was determined for each treatment. The SG plant 
was harvested by clipping the entire above soil biomass as representa-
tive of the shoot. Shoot from each replicate was bagged separately and 
oven-dried to constant weight at 70 ◦C for 4 days as a measure of shoot 
dry weight. The belowground biomass (BGB) was extracted from the soil 
and washed under gentle stream of water as representative of the root. 
Thereafter, washed roots were dried with Kimberly-Clark wypall – X60 
(Kimberly Clark Coop., Roswell, GA) and transported to the lab for root 
image analysis. 

2.9. Quantification of mycorrhizal colonization of root 

Fine roots from the harvested SG roots were subsampled from each 
plant and used as representative for quantification of mycorrhizal 
colonization of the roots. The subsampled roots from each plant was cut 
into an average of 5 cm-long segments and placed into tissue processing 
cassettes. Each treatment had at least 100 samples of small root pieces 
that were then stained for quantification using modified method of 
trypan blue staining (Bernaola et al., 2018a, 2018b; Koske & Gemma, 
1989). Summarily, the appropriately labelled cassettes containing the 
pieces of roots subsampled from each plant was cleaned by rinsing in 
distilled water four times while straining the water out to avoid loss of 
roots. The clearing of the washed root samples was carried out in 2.5% 
KOH (w/v) at 90 ◦C for 20 min in a water bath. Cleared root samples 
were rinsed with distilled water to remove KOH and the samples were 
acidified for staining by immersion of cassettes holding the root samples 
in 2% HCl (v/v) at room temperature for 15 min. The cassettes con-
taining roots were then transferred into 0.05% trypan blue solution and 
incubated at 90 ◦C for 15 min in a water bath and then transferred into 
beaker containing lactoglycerol (1:1:1 of lactic acid, glycerin, and water 
(HPLC-high grade)) at 4 ◦C for 48 h for the de-staining of the roots. The 
roots were mounted on microscopic slide using lactoglycerol solution 
and covered with glass slips. Excess solution was strained from the slide 
and three microscopic slides containing randomly selected root frag-
ments were examined under compound microscope at 40× magnifica-
tion to affirm the amount of AMF that colonized each root fragment. 
Images of root observation were taken with camera attached to the 
microscope. The roots were observed for the presence of blue-stained 
hyphae, arbuscules or vesicles as indication of colonization by AMF 
from commercial inoculant or native soils. 

2.10. Root morphology 

Harvested SG roots were cleaned as described above and transported 
to root imaging lab. Six replicates per treatment with each replicate 
comprising of two plants given a total of 12 plants per treatment. The 
entire RSA parameter of each SG sample was acquired using an Epson 
Perfection V39 – flatbed scanner (Epson Inc., Long Beach, CA). Root 

Table 1 
Soil chemistry associated with soil and PMS used prior to amendment and 
inoculation. Phosphorus (P), Potassium (K), Calcium (Ca), Magnesium (Mg) are 
presented as parts per million (ppm). Percent organic matter (OM) and pH. ND – 
not detected.  

Samples pH(water) Organic matter (%) P K Ca Mg 

RMS  5.8 3.5  9.5 105 898 193 
ASL  5.6 2.4  39.5 48 812 188 
PMS  7.5 ND  96.6 ND – –  
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image processing of the acquired scanned root was analyzed using 
RootSnap software (CID Bioscience Inc., Camas, WA) and eleven root 
traits (root counts, total root length – TRL, total root volume – TRV, total 
root area – TRA, average root diameter – ARD, average root length – 
ARL, average root area – ARA, average root volume – ARV, average root 
angle – ARAngle, average start tip angle – ASTAngle, average end tip 
angle – AETAngle) were measured. After root imaging, the labelled bags 
of root were transported to the greenhouse support facility and oven- 
dried to constant weight at 70 ◦C for 4 days as a measure of root dry 
weight. All oven-dried shoot and root samples were weighed to the 
nearest 0.01 g. 

Plant morphometrics taken were used to estimate mycorrhizal de-
pendency (MD) and growth enhancement (GE) response to the soil 
treatment. The MD of plant is defined as the degree of plant growth 
change associated with mycorrhizal colonization (Tawaraya, 2003). The 
MD was calculated according to method of Awoyemi & Dzantor (2017) 
using the formula (1): 

MD(%) = ((DWi − − DWu)/DWi ) × 100 (1) 

DWi is the dry weight of plants in mycorrhizal inoculated soil and 
DWu is the dry weight of plants in mycorrhizal uninoculated soil. 

The GE of plant is defined as the growth response of plant associated 
with amendment applied to the soil. It is the degree of plant growth 
change associated with soil amendment expressed in percentages (%). 
GE was calculated using the formula (2): 

GE(%) = ((ALa − ALu)/ALu ) × 100 (2) 

ALa is the average length of plant tissue (shoot or root) in amended 
soil and ALu is the average length of the of plant tissue (shoot or root) in 
unamended soil. 

For the root morphometrics only, the specific root length (SRL), root 
tissue density (RTD), and root production (RP) were computed using the 
Eqs. (3), (4) and (5) according to Pérez-Jaramillo et al. (2017). 

SRL = Total root length(m)/Root dry weight(g) (3)  

RTD = root dry weight(g)/total root volume
(
cm3) (4)  

RP = Total root length(m)/soil weight(g, oven − dry − soil equivalent)
(5)  

2.11. Statistical analysis 

The results obtained for the optimization of AMF, plant height and 
biomass data were expressed as mean values, and the Pearson correla-
tion between biomass and plant height was expressed in graphs. The 
mean values obtained were subjected to one-way analysis of variance 
(ANOVA) and the outcome compared by Tukey’s range test. All statis-
tical analyses were performed using IBM SPSS Statistics for Windows, 
v25.0 (IBM Corp., NY, USA) and R software version 3.5.1 (R Core Team, 
2018) in R studio (RStudio Team, 2016). 

Root phenotypic traits measured with open root software was 
analyzed. Data were tested for normal distribution with Shapiro–Wilk 
test and inspected visually using density-plot. The homogeneity of 
variance was also tested using Levene test. ANOVA analysis was applied 
to the mean values for each trait and outcome was compared by Tukey 
HSD to determine significance between treatments. The obtained values 
were compared to the corresponding value of the untreated control 
(RMS) treatments. 

Comparison between the phenotypic traits measured was carried out 
for statistical relationships using spearman rank correlation coefficients 
(ρ) between traits. The tests for the degree of association between traits 
were calculated and reordered according to angular order of eigenvector 
(AOE) using R corrplot package. The AOE was calculated from the order 
of the angles ai, 

ai= {tan− 1(ei2/ei1), ifei1 > 0; tan− 1(ei2/ei1)+ , otherwise.

where e1 and e2 are the largest two eigenvalues of the correlation matrix 
(Friendly, 2002). 

Also, the correlation matrix was further arranged to depict the sig-
nificant correlation coefficient at 95% confidence interval. 

Multivariate statistical analysis of different phenotypic root traits 
was computed using R principal component analysis (PCA) and hierar-
chical cluster analysis (HCA). The HCA was carried out based on 
euclidean distances and complete linkage hierarchical clustering 
method of standardized sample data. The output of the HCA was visu-
alized as heatmap (a false colored image) and dendrogram using heat-
map function in stats package and the dendrogram enhanced with 
dendextend package (Fig. 9). Further exploratory data analysis of the 
measured traits for all the treatments (dataset) were visualized in a 
graphical output as PC1 (first principal component) vs PC2 (second 
principal component) according to the variation in the dataset using R 
FactoMineR package (Lê, Josse, & Husson, 2008) and visualized with 
factoextra package (Kassambara & Mundt, 2017) as shown in Fig. 10A,. 
Prior to PCA analysis, the variables were standardized due to the dif-
ference in scale of measurements (millimeters vs degree of angle) using 
the formula: 

(xi − mean(x) )/SD(x)

where mean(x) is the mean of x values, and SD(x) is the standard de-
viation (SD). The PCA plot of variables was classified using kmeans 
clustering algorithm which showed three clusters (Fig. 10B) of the 
measured traits. The clusters were further visualized using fviz_pca_var 
function in factoextra package. The individual observations (biological 
replicates) were grouped according to the treatments applied. 

The height, dry weight of shoot (ShootDW) and root (RootDW) were 
used as supplementary variable that was projected on the PCA variable 
plot (Fig. S3). 

3. Results 

3.1. Optimal AMF inoculum for biomass productivity 

Six plants per treatment level of AMF inoculum was monitored for S. 
bicolor above-ground biomass (AGB) enhancement. At the end of 
8 weeks, the dry weight of the harvested shoot showed that addition of 
3% AMF inoculum to RMS increased the AGB by 12.5% and further 
increased the AGB of 10% AMF inoculum by 137.5% (from 1.04 g to 
2.47 g) compared to the control. However, the increase of the AMF 
inoculum size to 15% did not increase the AGB compared to 10% but 
increased the biomass by 133% when compared to the control as shown 
in Fig. 2. 

3.2. Vermicompost and commercial AMF influenced plant height 

Twelve plants per treatment was examined for SG height measure-
ment. The measurement of plant height after 8 weeks showed incre-
mental difference between various treatments versus the untreated 
degraded soil (RMS). The order of increment was Control 
(RMS) <ASL =N + P = PMS +AMF < PL < PMS <AMF +VC <
PMS +N <VC <AMF (as shown in Fig. 3). The arable soil (ASL), N + P, 
and PMS +AMF soil treatments were able to increase (by about 26%) 
the SG plant height more than the degraded soil. The other treatments 
like PL, PMS, AMF +VC, and PMS +N also increased the SG plant height 
compared to RMS soil by 33, 48, 52 and 59% respectively. Although all 
these amendments showed increased plant height in SG, only the 
treatments VC and AMF significantly (p < 0.05) increased the SG height 
compare to RMS by 67 and 93% respectively as shown in Fig. 3. 
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3.3. Biomass characterization 

Twelve plants (six replicates) per treatment was analyzed for 
biomass characterization. Determination of dry weight (shoot, root and 
total) biomass after harvesting SG plants showed incremental differ-
ences for all soil amendments compared to the control (Fig. 4). The dry 
weight of the root biomass in AMF-amended soil (0.87 g/50 g ods) was 
significantly higher than that of unamended control soil – RMS (0.25), 
ASL (0.35), N + P (0.38), PMS +AMF (0.4), and VC (0.52) as shown in 
Fig. 4C. 

Similarly, AMF also significantly enhanced the dry weight of the 
shoot biomass compared to the RMS (Control), ASL, N + P, PMS +AMF, 
and PMS (0.9 g/50 g ods compared to 0.28, 0.38, 0.4, 0.45, and 0.57 
respectively) while the amendment of soil with PMS +N and AMF +VC 
also significantly enhanced the dry weight of SG shoot compared to the 

control (Fig. 4B). 
The dry weight of the total biomass showed similar trends as in the 

shoot and root biomass with the AMF-amended soil significantly 
enhanced more than the control, ASL, N + P, PMS +AMF, and PMS as 
shown in Fig. 4A. 

3.4. Correlation between height and dry weight 

Based on sixty (n = 60) observations for both plant morphometrics, 
the height and the dry weight of the SG shoot showed significant and 
positive correlation amongst all treatments applied (r = 0.63, 
P < 0.001). This correlation suggests that the aboveground biomass in-
crease as the height of the SG increases as shown in Fig. 5. 

3.5. Root colonization by AMF 

The microscopic analyses of the randomly selected root fragments 
that are representatives of the 10 treatments studied confirmed the 
colonization of SG roots by commercial AMF. The observation of some 
selected root as a representative of the entire plant root was important as 
the entire root could not be stained. The AMF and AMF +VC treatments 
showed the highest percentage of SG roots colonized by inoculated AMF 
compared to that of the (control) degraded soil (Table 2). However, 
some uninoculated roots showed colonization by AMF which could have 
been as a result of colonization by the native mycorrhizae in the soil. The 
significant increase in shoot biomass of AMF inoculated treatment can 
be attributed to enhancement by the AMF that colonized the root. 

3.6. Root phenotypic variation between treatments 

3.6.1. Phenotypic means 
The means of each phenotypic trait examined represent an average of 

six (6) replicates. All the phenotypic root traits (root counts, TRL, TRV, 
TRA, ARD, ARL, ARA, ARV, ARAngle, ASTAngle, AETAngle) of RSA 

Fig. 2. Screening RMS for the optimum BioVam commercial AMF inoculum 
ratio (percentage). 10% AMF inoculum showed the highest dry weight(g) of 
biomass and it was significantly (p < 0.05) different from control and 3%. Each 
value is mean of triplicates and each replicate consisted of 2 plant samples and 
the bars with different alphabet on it is significantly different at p < 0.05 as 
determined by Tukey HSD. The error bar = ± 1 SD. 

Fig. 3. Measurement of SG height after 8 weeks of incubation in MRM. Single treatments of commercial mycorrhiza and vermicompost were significantly (p < 0.05) 
higher than the plant height of the RMS (control soil). Treatment (TrtType) columns that do not share alphabets indicate significant differences in height between the 
ten treatments (α = 0.05). The error bar = ± 1 SE. (Abbreviations: AMF – commercial mycorrhizal fungi, AMF + VC - commercial mycorrhizal fungi and vermi-
compost, ASL – amour silt loam, N + P – nitrogen and phosphorus, PL – poultry litter, PMS – paper mill sludge, PMS + AMF - paper mill sludge and commercial 
mycorrhizal fungi, PMS +N - paper mill sludge and nitrogen, RMS – untreated and uninoculated soil, VC – vermicompost). 
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evaluated showed significant differences at p < 0.05. 
Root Count. The mean of total root counted ranged from 7.33 (±0.42, 

SE) to 36.17 (±1.1, SE) for all SG grown on control, amended and/or 
inoculated treatments. Compared with the control, the SG grown in 
AMF +VC and AMF soil treatments significantly increased root count by 
306 and 393% respectively, and root count for both treatments 
(AMF +VC and AMF) were significantly more than the root counted for 
all other soil amendments (Fig. S4A). The root count of AMF +VC and 

AMF may have increased relative to other soil treatments because of the 
colonization of arbuscular mycorrhizae that led to early establishment of 
SG and subsequently enhanced the fine roots production. 

Total root length (TRL). The total root length is the addition of all 
individual root length (seminal and lateral roots) that was quantified. 
The mean of total root length ranged from 1390.23 (±90, SE) to 
7980.28 mm (±448, SE) for all SG grown on control, amended and/or 
inoculated treatments. Compared with control, the SG grown in PL, 

Fig. 4. Measurements of SG total biomass (A), shoot biomass (B), and root biomass (C) after 8 weeks of incubation in MRM. The treatments presented in columns are 
mean values ± standard errors (n = 12 for total biomass and n = 6 for shoot and root biomass). Treatment columns that do not share alphabets indicate significant 
differences between the ten treatments (α = 0.05). SG was grown in either untreated soil (ASL and RMS-Control), single amended soil (PL, VC, PMS, AMF) or 
combined amended soil (N + P, PMS + AMF, PMS +N, AMF + VC). The error bar = ± 1 SE. (Abbreviations: AMF – commercial mycorrhizal fungi, AMF + VC - 
commercial mycorrhizal fungi and vermicompost, ASL – amour silt loam, N + P – nitrogen and phosphorus, PL – poultry litter, PMS – paper mill sludge, PMS +AMF - 
paper mill sludge and commercial mycorrhizal fungi, PMS +N - paper mill sludge and nitrogen, RMS – untreated and uninoculated soil, VC – vermicompost). 
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PMS +AMF, PMS, AMF +VC, VC, and AMF soil treatments increased 
the total root length by 67, 72, 77, 220, 234, and 474% respectively, 
while TRL of AMF +VC, VC, and AMF treatments were significantly 
longer that of all other treatments (Fig. S4B). The resultant increase of 
TRL in AMF +VC, VC and AMF relative to other soil treatments may 
have resulted from the single effect of VC amendment or AMF inocula-
tion and combined effect of AMF +VC treatment on enhancement of 
root length. 

Total root area (TRA). The total surface area was measured as a 
polygonal shape of the area occupied by the 2D image of the root system. 
The mean of the total root area ranged from 2277.01 (±117, SE) to 
16751.76 mm2 (±722, SE) for all SG grown on control, amended and/or 
inoculated treatments. Compared with the control, the total root area of 
SG grown in AMF treatment increased by 338% (Fig. S4C). The total 
surface area of the AMF inoculated soil increased significantly compared 
to the control, this is consistent with the increased TRL and root count. 

Total root volume (TRV). The mean of the total root volume ranged 
from 331.46 (±59, SE) to 6436.34 mm3 (±230, SE) for all SG grown on 
control, amended and/or inoculated treatments. Compared with con-
trol, the SG grown in N + P, AMF +VC, and AMF soil treatments 
increased the total root volume by 338, 363, and 956% respectively and 
these treatments were significantly larger than the TRV of all other 
treatments (Fig. S4D). 

Average root diameter (ARD). The mean of the root diameter ranged 
from 0.5 (±0.06, SE) to 1.38 mm (±0.04, SE) for all SG grown on con-
trol, amended and/or inoculated treatments. Compared with control, 
the ARD of SG grown in AMF, and N + P soil treatments increased by 50, 
and 125% respectively (Fig. S4E). 

Average root length (ARL). The mean of the seminal root length 
ranged from 158.24 (±6, SE) to 553.83 mm (±15, SE) for all SG grown 
on control, amended and/or inoculated treatments. Compared with 

control, the ARL of SG grown in PL, PMS, PMS +AMF, VC, AMF +VC, 
and AMF showed increased root length of 65, 93, 120, 140, 207, and 
233% respectively (Fig. S4F). 

Average root area (ARA). The mean of the root area ranged from 
255.36 (±7, SE) to 941.74 mm2 (±8, SE) for all SG grown on control, 
amended and/or inoculated treatments. Compared with control, the 
ARA of SG grown in VC, PMS, PMS +AMF, PL, N + P, AMF +VC, and 
AMF soil treatments increased by 66, 69, 80, 84, 103, 110, and 269% 
respectively (Fig. S4G). 

Average root volume (ARV). The mean of the average root volume 
ranged from 51.24 (±2, SE) to 259.52 mm3 (±11 SE) for all SG grown on 
control, amended and/or inoculated treatments. Compared with con-
trol, the ARV of SG grown in AMF +VC, N + P, and AMF soil treatments 
increased by 78, 83, and 206% respectively (Fig. S4H). 

Average root angle (ARAngle). The mean of the average root angle 
ranged from 23 (±1, SE) to 67◦ (±2, SE) for all SG grown on control, 
amended and/or inoculated treatments. Compared with control, the 
ARAngle of all SG grown in amended and/or inoculated treatments 
decreased in the order of RMS > PMS =ASL > PMS +
N > PL >VC >AMF +VC > PMS +AMF >N + P >AMF, with AMF 
showing the largest decrease by 66% (Fig. S4I). 

Average starting tip angle (ASTAngle). The mean of the average 
starting tip angle ranged from 29 (±1, SE) to 67◦ (±2, SE) for all SG 
grown on control, amended and/or inoculated treatments. Compared 
with control, the ASTAngle of SG grown in PMS soil treatments 
increased by 30% while ASTAngle of other soil treatments, VC, 
AMF +VC, PMS +N, AMF, N + P, and PMS +AMF decreased by 19, 20, 
25, 35, 35, and 44% respectively (Fig. S4J). 

Average ending tip angle (AETAngle). The mean of the average ending 
tip angle ranged from 30 (±2, SE) to 71◦ (±2, SE) for all SG grown on 
control, amended and/or inoculated treatments. Compared with 

Fig. 5. Correlation between height and dry weight of shoot biomass. Blue line and the shaded area represent best line of fit and its standard error, respectively. Based 
on n = 60 observations, the dry weight and height showed a statistically significant (p < 0.001) positive linear relationship (Pearson’s r = 0.63). 

Table 2 
Root colonization (RC) of SG 8 weeks after incubation in degraded soil.  

Treatment AMF + VC AMF N + P PL PMS + AMF PMS + N PMS VC ASL Control 

RC (%) 55 68 15 20 45 40 30 25 20 5  

E. Adeleke et al.                                                                                                                                                                                                                                 



Ecological Indicators 121 (2021) 107068

9

control, the AETAngle of SG grown in ASL and PMS soil treatments 
increased by 31 and 62% respectively (Fig. S4K). 

3.6.2. Correlation of phenotypic parameters 
Phenotypic correlations of the root morphological traits appeared to 

cluster into three categories according to their AOE and associations 
between them: (a) the root angle traits; (b) the root diameter; and (c) the 
root lengths, the root areas, the root volumes, and root count (Fig. 6). 
The root angle traits (AETAngle, ASTAngle and ARAngle) were all 
negatively correlated with other phenotypic traits varying from highly 
negatively correlated to slightly negatively correlated or neutral asso-
ciation (ρ varied between − 0.75 and − 0.06). However, the negative 
correlation was not significant for association between AETAngle vs 
TRA, AETAngle vs TRL, AETAngle vs RootCount, AETAngle vs ARL, 
ASTAngle vs TRA, and ASTAngle vs ARL. Meanwhile, the intra- 
relationships between the root angle traits were significant and highly 
positive correlation, AETAngle vs ASTAngle (ρAETAngle, ASTAngle = 0.78), 
AETAngle vs ARAngle (ρAETAngle, ARAngle = 0.57) and ASTAngle vs 
ARAngle (ρAETAngle, ASTAngle = 0.69). 

The ARD showed slightly negatively correlated association with 
ASTAngle (ρARD, ASTAngle = -0.37), AETAngle (ρARD, AETAngle = -0.43), 
and ARAngle (ρARD, ARAngle = -0.47). However, ARD showed signifi-
cantly and slightly positively correlated association with TRA (ρARD, 

TRA = 0.28), ARA (ρARD, ARA = 0.38), TRV (ρARD, TRV = 0.45), and ARV 
(ρARD, ARV = 0.49). The association between ARD vs TRL, RootCount and 
ARL were not significant. 

All the remaining root traits showed significant relationship varying 
from highly positively correlated to slightly positively correlated asso-
ciation (ρ varied between 0.47 and 0.95). The ARA showed significantly 

and highly positively correlated association with TRA (ρARA, TRA = 0.63), 
ARL (ρARA, ARL = 0.72), RootCount (ρARA, RootCouunt = 0.82), TRL (ρARA, 

TRL = 0.87), ARV (ρARA, ARV = 0.91), and TRV (ρARA, TRV = 0.95). The 
TRV showed significantly and highly positively correlated association 
with ARL (ρTRV, ARL = 0.65), TRA (ρTRV, TRA = 0.65), TRL (ρTRV, 

TRL = 0.85), RootCount (ρTRV, RootCount = 0.86), and ARV (ρTRV, 

ARV = 0.93). The ARV showed significantly and highly positively corre-
lated association with TRA (ρARV, TRA = 0.65), TRL (ρARV, TRL = 0.79), 
RootCount (ρARV, RootCount = 0.82), and ARL (ρARV, ARL = 0.58). The TRA 
showed significantly and highly positively correlated association with 
TRL (ρTRA, TRL = 0.59), and RootCount (ρTRA, RootCount = 0.59) except 
ARL (ρTRA, ARL = 0.47) that was slightly positively correlated associa-
tion. The TRL showed significantly and highly positively correlated as-
sociation with RootCount (ρTRL, RootCount = 0.82), and ARL (ρTRL, 

ARL = 0.83) while the RootCount showed significant and highly posi-
tively correlated association with ARL (ρ RootCount, ARL = 0.78). 

Correlations between root phenotypic traits and aboveground plant 
morphometrics varied from slightly negatively correlated to positively 
correlated association (ρ varied between − 0.39 and 0.56). The height 
showed slightly negatively correlated with root angle traits (AETAngle, 
ρHeight, AETAngle = -0.07; ASTAngle, ρHeight, ASTAngle = -0.01; and ARAngle 
ρHeight, ARAngle = -0.39) and ARD (ρHeight, ARD = -0.07) while been posi-
tively correlated to other root traits TRA (ρHeight, TRA = -0.07), ARV 
(ρHeight, ARV = 0.28), TRV (ρHeight, TRV = 0.35), ARA (ρHeight, TRV = 0.42), 
TRL (ρHeight, TRL = 0.56), RP (ρHeight, SRP = 0.56), RootCount (ρHeight, 

RootCount = 0.37), and ARL (ρHeight, ARL = 0.52) as shown in Fig. S5. The 
correlation of other aboveground morphometrics (ShootDW and 
TotalDW) vs root phenotypic traits showed similar trend as those 
observed with the height measurements. These trends from ShootDW 

Fig. 6. Correlation plot of root 
morphology parameters at confidence 
level = 0.95 and significance 
level = 0.05. The upper triangular part of 
the matrix plot displayed in circle rep-
resents the correlation value that ranged 
between − 1 (red and negative correla-
tions) and + 1 (blue and positive corre-
lations) while the lower triangular part 
displayed the correlation in numbers. In 
addition to the correlogram, the cross 
(X) are added to the plot with no signif-
icant coefficient, that is, correlations 
with p-value > 0.05 that are considered 
as insignificant.   
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and TotalDW were slightly negatively correlated with root angle and 
positively correlated to other root traits (Fig. S5). 

3.7. Mycorrhizal dependency and growth enhancement response of SG in 
degraded soil 

The MD and GE of SG grown in degraded soil using different inoc-
ulation and amendment strategies are shown in Table 3. The result 
showed that MD increased in AMF inoculated treatments except for 
treatment where AMF and PMS were combined. The GEr (root) 
increased with the inoculation of AMF and all amended soil treatments. 
The GEs (shoot) followed similar trend with the root (as AMF and 
AMF +VC enhanced shoot biomass the most) except for PMS +N that 
had an inverted trend as it performed the better among amendment 
strategies for shoot enhancement (Table 3). 

3.8. Specific root length, root tissue density and root length production 

The specific root length (SRL, is the ratio of the root length to the dry 
weight of the root, m/g) of the of SG grown in VC soil treatment was 
different from other soil treatments (Fig. 7A). The amendment of soil 
with VC increased the SRL of SG grown by 90% when compared to the 
control. Increased SRL and reduced diameter depicts, increased thinner 
roots that may have improve water uptake. The root tissue density (RTD, 
is the ratio of the root dry weight to the total root volume) of the SG 
grown in PMS +N treatment was different from other soil treatments as 
shown in Fig. 7B. The amendment of soil with PMS +N increased RTD of 
the SG by 400% more than the control soil treatment. The root length 
production (RP, is the ratio of the total root length to the oven-dry 
weight volume of the soil, m/cm3) of the SG grown in all the soil 
treatments were similar to the trend of the total root length. The values 

Table 3 
Mycorrhizal dependency (MD) and growth enhancement (GE) of SG 8 weeks after incubation in degraded soil.  

Treatment AMF + VC AMF N + P PL PMS + AMF PMS + N PMS VC 

MD (%)  20.8  68.5  –  – − 25.9 0  – 0 
GEr (%)  220.4  474.0  55.1  67.5 72.2 25.1  77.5 234.0 
GEs (%)  62.6  90.0  27.5  42.6 28.5 64.4  59.3 76.0  

Fig. 7. Boxplot of computed root morphometrics of SG grown in different soil treatments. (A). The specific root length (SRL) is the ratio of total root length to the 
root dry weight. (B). The root tissue density (RTD) is the ratio of the root dry weight to the total root volume calculated as g/cm3. The total root length and total root 
volume were measured using RootSnap software. Boxplot with different alphabets indicate statistically significant differences (Tukey HSD test). Statistically sig-
nificant differences were determined by one-way ANOVA (p < 0.05) (Abbreviations: AMF – commercial mycorrhizal fungi, AMF + VC - commercial mycorrhizal fungi 
and vermicompost, ASL – amour silt loam, N + P – nitrogen and phosphorus, PL – poultry litter, PMS – paper mill sludge, PMS +AMF - paper mill sludge and 
commercial mycorrhizal fungi, PMS +N - paper mill sludge and nitrogen, RMS – untreated and uninoculated soil, VC – vermicompost).. 
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of the result can be used to also extrapolate the production rate (in km. 
m− 3. yr− 1) by predicting from the time (t) used for the experiment which 
is approximately 0.15 years. Compared with control treatment, the soil 
treatment amended and/or inoculated with AMF, VC, AMF +VC, PMS, 
PMS +AMF, and PL increased the RP by 474%, 234%, 220%, 78%, 72%, 
and 67% respectively as shown in Fig. 8. 

3.9. Assessment of root responses to amendment and inoculation 
strategies by PCA and HCA methods 

PCA and HCA was performed on root phenotypic data acquired 
8 weeks after transplanting SG into degraded soil, in order to assess the 
contributions of each trait to the response of amendment and inocula-
tion strategies. 

Based on the HCA, the variable can be clustered to two main groups 
that consisted of the root count; all the root length, area, and volume; 
and the root diameter traits in a group (blue) and the other main group 
(orange) consisting of all the root angle traits. The blue group (made up 
of traits TRV, ARA, ARV, Root Count, TRA, TRL, ARL and ARD) showed 
similarities among the samples and clear contrast to the orange group 
(made up of ASTAngle, AETAngle, and ARAngle). The clustering of the 
individual samples along the row revealed three main groups shown as 
purple (AMF), light blue (AMF +VC, PMS, ASL, and Control) and green 
(N + P, PL, PMS +N, VC, and PMS +AMF). The green cluster is the most 
diversified group based on the soil enhancement strategies. The light 

blue group is the next diversified with the PMS, ASL, and control 
treatment showing a strong differentiation between the blue and orange 
variables. The purple group is the only cluster with a single treatment 
(AMF) and also showed strong difference between the blue and orange 
variables (Fig. 9). To have a more resolved difference between generated 
clusters we proceed on using PCA which will allow differentiate between 
enhancement strategies while also highlighting the major clusters 
among the traits. A major reason for taking this step forward is depicted 
in the heatmap where the most distinct cluster (purple group) had a 
sample from the AMF +VC treatment. Visualizing this kind of overlap 
prompted for further classification of the cluster using PCA. 

Based on the PCA, the first five components (Dimension 1 to 5) 
explained 94.2% of the variance among the traits. However, the ma-
jority of this variance is explained by the first two principal components 
(Dimensions 1 and 2), that explained 77% of the total variation among 
the root traits (Fig. S6). Dim 1, the first principal component, explained 
59.4% of the total variation and the traits that contributed majorly to 
this component were ARA, TRV, ARV, TRL, RootCount, and ARAngle. 
Dim 2, the second principal component, explained 17.6% of the total 
variation with the traits AETAngle, ASTAngle, and ARD contributing 
majorly to the component (Fig. S7). The individual observations on the 
principal components generated coordinates that were plotted as the 
PCA plot. These coordinates were then grouped according to the treat-
ment applied to the degraded soil while ellipses were added with a 95% 
confidence level added as the center of the ellipses. The observations can 

Fig. 8. Boxplot of root length production parameter of SG grown in different soil treatments. The root length production is the ratio of the total root length to the soil 
calculated as m/cm3. Boxplot with different alphabets indicate statistically significant differences (Tukey HSD test). Statistically significant differences were 
determined by one-way ANOVA (p < 0.05) (Abbreviations: AMF – commercial mycorrhizal fungi, AMF +VC - commercial mycorrhizal fungi and vermicompost, ASL 
– amour silt loam, N + P – nitrogen and phosphorus, PL – poultry litter, PMS – paper mill sludge, PMS +AMF - paper mill sludge and commercial mycorrhizal fungi, 
PMS +N - paper mill sludge and nitrogen, RMS – untreated and uninoculated soil, VC – vermicompost). 
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be classified into 3 groups based on the PCA scores and ellipse overlap. 
The first group (those that have approximately − 2 or lower on Dim1) as 
the soil treatments that showed low enhancement; the second group 
(those that ranges from approximately 0 to + 2 on Dim1) as those soil 
treatments that had moderate enhancement; and the third group (those 
have approximately + 4 or above on Dim1) as the soil treatment that 
showed high enhancement of SG root (Fig. 10A). 

The graph of all variables (Fig. 10B) showed similar variable point to 
the same section of the plot while the negatively correlated variable 
point to the opposite side of the plot. The classification of the variables 
based on their k mean resulted in 3 clusters. Cluster 1 is the ARD, cluster 
2 included TRV, ARA, ARV, Root Count, TRA, TRL, and ARL; and cluster 
3 is comprised of the root angle traits, ASTAngle, AETAngle, and 
ARAngle. The variables are also plotted such that the closer the arrow is 
to the outside circle the higher the correlation or contribution to the 
principal components. 

After plotting the variables that allowed for better classification of 
the traits into separate clusters it was of interest to use the data previ-
ously generated by the PCA to predict the coordinates of supplementary 
variables (height, root dry weight and shoot dry weight). The variables 
were first standardized and then the coordinates computed before 
plotting them on the variable plot (Fig. S3). The coordinates of the test 
variables were calculated as correlation between the variables and the 
principal components (the product of the loadings and standard devia-
tion of the principal component) using factoextra package in R. 

4. Discussion 

Rejuvenation of degraded land proffer a solution that can restore 
poor soil to arable state and mitigate adverse effect of contaminated soil 
on human or environmental health. The use of organic amendments to 
improve physical properties of poor soil has been reported in a number 
of studies (Hornick and Parr, 1987; Mbuthia et al., 2015; Karimuna 
et al., 2016) but have not been broadly investigated in combination with 
AMF inoculant. More so, the screening of amendments and inoculum 
that is needed to enrich the soil will help against over fertilization, 
leaching of nutrient into the soil (Cui, et al., 2010; Fernández-Escobar 
et al., 2006; Geng et al., 2019; Song et al., 2016) while also allowing 
selection of the best treatment for soil restoration. 

The commercial mycorrhiza (AMF) product used in this experiment 
improved biomass production for both aboveground and belowground 
biomass. This phenomenon has been investigated in different type of 
growth system (Berdeni et al., 2018; Cobb et al., 2018; Hahl et al., 2017; 
Moland et al., 2018; Ren et al., 2017). However, in this study, we 
screened amendment and inoculation strategies for enhancing biomass 
productivities of SG in RMS using a unique system that allowed us to 
investigate the impact of single strategy (inoculation or amendment) 
and combined strategy (inoculation and amendment) all within the 
same MRM system. Specifically, for the amendments we used three 
organic amendments - VC, PMS, and PL- and one inorganic amendment - 
N + P, while we used a commercial preparation of AMF that contains 
various species of endomycorrhizae. This experiment was carried out in 
an MRM system that allowed enough moisture delivery (approximately 

Fig. 9. Hierarchical clustering and heatmap of root 
traits measured 8 weeks after inoculation and 
amendment of the degraded soil (control). The chart 
represents the variables (in columns) vs individual 
sample (in rows). The data of each sample plotted for 
the heat map was standardized to generate a zero 
mean and unit variance. These scaled values were 
plotted in orange-yellow color scale using stats and 
dendextend package for the heatmap and clustering 
respectively. The orange color represents low value 
while the yellow color represents high value. The 
clustering analysis of the variables revealed two 
major groups shown as blue (TRV, ARA, ARV, Root 
Count, TRA, TRL, ARL and ARD), and orange 
(ASTAngle, AETAngle, and ARAngle). The clustering 
of the individual samples revealed three main groups 
shown as purple (AMF), light blue (AMF + VC, PMS, 
ASL, and Control) and green (N + P, PL, PMS + N, 
VC, and PMS +AMF).   
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70%) to the soil without necessarily causing flooding that will inhibit the 
establishment of AMF (Hartmond, et al., 1987; Miller & Sharitz, 2000; 
Ma et al., 2014) in SG roots. 

Previous studies have reported that colonization rate does not always 
translate to enhancement of biomass by different strains of arbuscular 
mycorrhizae fungi colonized (Corkidi et al., 2005). As different strains 
may contribute different effect towards plant growth (Allen et al., 2003; 
Linderman & Davis, 2004; Corkidi et al., 2005) so there is need to 
correlate the colonization of plant root with enhancement. In this study, 
the commercial AMF used at the optimum inoculum increased the AGB 
of S. bicolor by 137.5% compared to the uninoculated (or native 
mycorrhizae) control soil. Tae et al. (2002), Eo & Eom (2009), and Kim 
et al. (2017), all reported positive growth increase in the AGB of 
S. bicolor inoculated by AMF. 

The use of organic amendment increased the height of SG compared 
to the control soil. The amendment of degraded soil with VC, PMS +N, 
PMS, PL, N + P increased the height of SG compared to the control soil. 
In addition, inoculation of poor soil with AMF and the combination of 
the AMF with VC significantly improved the height of the SG. This is in 
agreement with the studies of Corkidi et al. (2005) that reported in-
crease in height and leaves (DW) of plant inoculated with commercial 
mycorrhizae compared to their control. Furthermore, the height and the 
dry weight of the AGB showed significantly positive correlation. 

The dry weight of the AGB, BGB and total biomass followed similar 
trend as the height with the AMF alone and AMF +VC treatments 
significantly enhancing the SG biomass 8 weeks after transplanting. The 

addition of commercial AMF improved the plant growth despite the low 
phosphorus and high copper presence in the degraded soil. Mycorrhizal 
have been reported to be more active in soil with low phosphorus con-
tent (Hetrick, et al., 1996; Shaheen & Tsadilas, 2013). Also endomy-
corrhizae is reported to alleviate heavy metal toxicity (Cicatelli et al., 
2012; Schneider et al., 2013; Aghababaei et al., 2014; Berruti et al., 
2015; Awoyemi & Adeleke, 2017; Awoyemi et al., 2019) by inducing 
heavy metal transporter ATPase 5 (HMA5) in root for copper efflux 
(Andrés-Colás et al., 2006; Kobayashi et al., 2008; Palmer and Guerinot, 
2009) or chelation of heavy metal in rhizospheric soil leading to metal 
dilution in plant tissue (Begum et al., 2019). 

The colonization of the root by the endomycorrhizae from the 
commercial AMF was significant in the AMF and AMF +VC treatment 
while there was low colonization in other inoculated treatment. The 
colonization of roots that led to significant biomass increase within 
8 weeks is in line with the results of Corkidi et al., (2005) and Faye et al., 
(2013) who both stated 6 weeks was enough to establish good mycor-
rhizal colonization of root. 

The enhancement of the dry weight of BGB 8 weeks after trans-
planting changed the root phenotypic trait in the SG plant. The positive 
influence of inoculation with commercial AMF and addition of soil 
amendment changed the root system architecture of the AMF and 
AMF +VC treatment. However, the root system architecture of the AMF 
treatment showed the most apparent change as the length and shape 
phenotypic traits- root count, TRL, TRA, TRV, ARD, ARL, ARA and ARV- 
all significantly increased while the angular phenotypic traits- ARAngle, 

Fig. 10A. PCA plot of the entire SG root traits. Eclipse grouping of the entire data set by treatments. PCA plot of individuals with added ellipses having a 95% 
confidence level (0.95) at the center of the ellipses. The individual values are grouped together on the plot based on similarity of the reading. The coordinates of each 
group of eclipse is calculated as the mean coordinates of each individual reading within the group and this is represented as the bigger shape in the center of 
the eclipse. 
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ASTAngle and AETAngle- were significantly lower than the root traits of 
the SG in uninoculated/unamended treatment. There were a lot of in-
fluence and variability with other treatments on phenotypic traits which 
is in line with the results of Eo & Eom (2009) and Hetrick et al., (1996) 
who reported that root morphology, RSA and soil nutrients influence 
mycorrhizal responsiveness or symbiose in their host plant (gramineae). 
SG belong to the family gramineae that have been reported as an 
important group of plants that form symbiotic association with AMF 
(Gutjahr, et al., 2009, 2015). In addition, Gutjahr et al. (2015) and 
Bernaola et al. (2018) studies on rice root system reported that fine roots 
are not susceptible to colonization and that large lateral roots are more 
susceptible to colonization than the fine lateral roots that may even 
never be colonized which agrees with our findings that ARD played 
important role in mycorrhizal responsiveness in AMF-only treatment but 
was not significant in other treatment except in the N + P treatment 
which was the only inorganic amendment applied to the degraded soil. 
The role of AMF in improving the root lengths traits and reducing the 
root angle traits singled out the treatment as a suitable candidate for 
enhancing drought tolerance while concomitantly using the AGB as 
biofuel feedstock or forage purposes. However, the unresolved question 
in this experiment is whether the enhancement of SG is only as a result of 
mycorrhizal, and if so, which species of the AMF or possibly beneficial 
bacteria in our commercial AMF product was responsible. Although it 
has been reported that combinations of AMF have different effects 
(Bernaola et al., 2018a; Berruti et al., 2015; Cruz & Ishii, 2012; Porras- 
Soriano, et al., 2009; Roger et al., 2013) and that role of colonized AMF 
species extends beyond plant growth enhancement (Ramasamy et al., 

2011). 
Plant functional traits have been reported to improve soil properties 

and it has also been considered as a crucial regulator of important 
ecosystem function and services – like soil nutrient dynamics and 
availability (Faucon et al., 2017). Our findings are in agreement with 
this report as soil amendments and inoculation has influenced root traits 
that are important drivers of nutrient dynamics and soil fertility. Phys-
iological root traits are the functional traits that are involved in nutrient 
dynamics and availability by modifying nutrient speciation and influ-
encing amendment decomposition for nutrient release (Faucon et al., 
2017, 2015; Hobbie, 2015; Roumet et al., 2016). Assimilation of 
nutrient released as protons or carboxylates to solubilize the inorganic 
and organic phosphorus in the rhizosphere can be enhanced by the 
presence of AMF. The combined effects of AMF and fine roots have been 
reported as a key force that drives soil aggregation (Bardgett et al., 
2014) as glomalin released by AMF serve as a binding agent. Further-
more, the role of improving AGB of SG by the combined effects of AMF 
and fine roots makes it a suitable combined treatment for high biomass 
yield that can result in initial net energy value (Schmer et al., 2008) that 
will result in higher ethanol yield. 

The phenotypic correlation among root traits allowed us to cluster 
the traits into 3 groups – root length and shape group, diameter group, 
and the angle group- based on their association and this cluster is similar 
to what we also found with the PCA variable plot that showed the same 
group. The correlation between the root length and shape group was 
very strong (Fig. 10B). This association contributed to majority of the 
first principal component of the PCA result while the diameter and angle 

Fig. 10B. Dim1 represents the principal component (PC) 1 and Dim2 is the PC2. The PC1 was able to explain 59.4% of the total variable while PC2 was able to 
explain 17.6% of the total variable. The three clusters in the graph were determined using the kmeans clustering function in R. The first cluster is made up of the ARD; 
the second cluster is RootCount, TRV, TRA, TRL, ARV, ARA, and the ARL; and the third cluster is AETAngle, ASTAngle, and the ARAngle. 
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group contributed to the second principal component of the PCA result. 
The combination of HCA and PCA to explore the individual sample 
allowed to cluster the variability in our result to three major groups of 
high, medium and low enhanced root phenotypes. The highly enhanced 
root samples composed of AMF treatment only, reaffirm the benefit of 
AMF in establishment of seedling and early growth in poor soil, this is in 
line with our previous findings in fly ash contaminated soil (Awoyemi 
et al., 2019). The medium-enhanced root was topped by AMF +VC 
which showed synergistic association between AMF and VC, this is in 
agreement with the findings of Ramasamy et al. (2011) who reported the 
synergistic effects of AMF and plant growth promoting rhizobacteria 
play in the role of improving soil fertility and plant health. The lowly- 
enhanced roots were those that showed very little enhancement 
compared to the unamended/uninoculated soil. They hardly showed 
any enhancement in the combination of both inoculation and amend-
ment strategies 8 weeks after transplanting. Using PCA predictive model 
for supplementary variables of height, dry weight of shoot and root also 
showed that the predicted variables are strongly correlated to the length 
and shape group. However, their contribution to the first principal 
component was very low. 

The SRL and RTD that explained accumulation of root biomass per 
meter and root biomass per volume respectively showed significant in-
crease in the VC and PMS +N treatment but was not able to contribute 
significant information to explain biomass accumulation in the root 
further. RP is the amount of root length that is produced per volume of 
soil per 8 weeks after transplanting. This provided valuable information, 
with similar trend to the total root length and height. The production of 
root length showed AMF, VC, and AMF +VC were significantly different 
from others. 

Finally, GEr and GEs percentage increase affirm that AMF, VC and 
AMF +VC were the best treatment for biomass enhancement in the RMS 
soil. In addition, the mycorrhizal dependency showed that AMF had the 
highest dependency followed by AMF +VC which is in agreement with 
the studies of Beltrano et al. (2013) which reported a higher mycorrhizal 
dependency and enhancement of plant shoot and root biomass in 
mycorrhizal plant than non-mycorrhizal plant. However, paper mill 
sludge had an inhibitory effect on colonization of mycorrhizal in plant 
root at the early stages which is also responsible for the negative effect of 
the mycorrhizal dependency in PMS +AMF treatment. The high carbon 
content of PMS may have been responsible for anti-synergistic effect on 
AMF by offsetting the balance of the soil C-N ratio therefore allowing the 
dominance of copiotrophic population and other fungi like Trichoderma 
sp. Although this treatment may have hindered early establishment of 
the SG, a long-term study may provide better insight as the copiotroph 
dominance wane into equilibrium. However, growth inhibition and 
stunted growth was also noted in all the PMS amendment within the first 
3 weeks which may be due to increased water holding capacity of this 
treatment resulting in excessive moisture or nitrogen immobilization 
due to high C/N ratio created by PMS addition. Therefore, there is need 
to exercise caution in application of PMS to degraded soil. 

A major limitation of our experiment is the inability to understudy 
the amendment and inoculation strategy on a long-term study. Trans-
ferability of our result to field study also require caution as other envi-
ronmental conditions may influence repeatability in the field. The 
application of AMF treatment at field scale may also pose a challenge 
especially when scaling up our application rate. Therefore, exploring the 
native AMF of each degraded soil for future studies may make a sig-
nificant difference especially when combined with organic amendment 
like VC or PMS. 

5. Conclusions 

This study reveals that there is strong correlation between the height 
and dry weight of AGB that allowed us to select four treatments that 
distinctly showed enhancement by both inoculation and amendment 
strategies - AMF, AMF +VC, VC, PMS +N - for further investigation in 

mesocosm or field study. Although the use of commercial AMF only is 
not feasible in a large-scale field trial, the combination of AMF +VC 
would be more suitable approach for biomass establishment, enhance-
ment and soil health improvement in mesocosm and field trials. 

The diversity observed in shoot and root dry weight and other root 
traits showed that combination of inoculation and amendment strategies 
require prior screening before application in degraded soil in order to 
select the best treatment for enhancing plant biomass and improving soil 
health. Also, the diversity observed among the root traits require further 
investigation to determine nutrient accumulation as well as heavy metal 
content in the plant root. 

Future studies about accumulation of biomass during its enhance-
ment would be beneficial by determining the relative growth rate of the 
SG when the experiment is carried out on a longer term or more than one 
harvest. 
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