Tennessee State University Digital Scholarship @ Tennessee State University

Sociology Faculty Research

Department of Sociology

5-18-2017

A multifactorial obesity model developed from nationwide public health exposome data and modern computational analyses

LisaAnn S. Gittner Texas Tech University

Barbara J. Kilbourne Tennessee State University

Ravi Vadapalli Texas Tech University

Hafiz M.K. Khan Texas Tech University

Michael A. Langston University of Tennessee, Knoxville

Follow this and additional works at: https://digitalscholarship.tnstate.edu/sociology-faculty

🗸 Part of the Medicine and Health Sciences Commons, and the Statistical Models Commons

Recommended Citation

LisaAnn S. Gittner, Barbara J. Kilbourne, Ravi Vadapalli, Hafiz M.K. Khan, Michael A. Langston, "A multifactorial obesity model developed from nationwide public health exposome data and modern computational analyses", Obesity Research & Clinical Practice, Volume 11, Issue 5, 2017, Pages 522-533, ISSN 1871-403X, https://doi.org/10.1016/j.orcp.2017.05.001.

This Article is brought to you for free and open access by the Department of Sociology at Digital Scholarship (a) Tennessee State University. It has been accepted for inclusion in Sociology Faculty Research by an authorized administrator of Digital Scholarship (a) Tennessee State University. For more information, please contact XGE(a)Thstate.edu.

Title:

A Multifactorial Obesity Model Developed from Nationwide Public Health Exposome Data and Modern Computational Analyses

Authors: LisaAnn S. Gittner^{1,2*} Department of Political Science Department of Public Health Lisa.gittner@ttu.edu

Barbara J. Kilbourne³ Department of Sociology Bkilbourne@tstate.edu

Ravi Vadapalli¹ Ravi Vadapalli High Performance Computing Center, Information Technology Division Ravi.Vadapalli@ttu.edu

Hafiz M. K. Khan² Department of Public Health Hafiz.khan@ttuhsc.edu

Michael A. Langston⁴ Department of Electrical Engineering and Computer Science langston@eecs.utk.edu

- 1 Texas Tech University 2500 Broadway Lubbock, TX 79409 USA
- Texas Tech University Health Science Center 3601 4th Street Lubbock, TX 79430 USA
- 3 Tennessee State University 3500 John A Merritt Blvd Nashville, TN 37209 USA
- 4 University of Tennessee 1520 Middle Drive Knoxville, Tennessee 37996 USA

^{*}Corresponding author

Abstract:

Statement of the Problem: Obesity is both multifactorial and multimodal, making it difficult to identify, unravel and distinguish causative and contributing factors. The lack of a clear model of etiology hampers the design and evaluation of interventions to prevent and reduce obesity.

Methods: Using modern graph-theoretical algorithms, we are able to coalesce and analyze thousands of oft inter-dependent variables and interpret their putative relationships to obesity. Our modeling is different from traditional approaches; we make no a priori assumptions about the population, and model instead based on the actual characteristics of a population. Paracliques, noise-resistant collections of highly-correlated variables, are differentially distilled from data taken over counties associated with low versus high obesity rates. Factor analysis is then applied and a model is developed.

Results and Conclusions: Latent variables concentrated around social deprivation, community infrastructure and climate, and especially heat stress were connected to obesity. Infrastructure, environment and community organization differed in counties with low versus high obesity rates. Clear connections of community infrastructure with obesity in our results lead us to conclude that community level interventions are critical. This effort suggests that it might be useful to study and plan interventions around community organization and structure, rather than just the individual, to combat the nation's obesity epidemic.

Key Words:

Obesity Modeling, Graph-Theoretical Algorithms, Factor Analysis

INTRODUCTION

The costs of obesity in the U.S. are staggering — \$195 billion annually in ill health and lost worker productivity,¹ with economic impacts of 4.1% of the US Gross Domestic Product (\$663 billion). Worse, the prevalence and associated costs of obesity are still growing.² By 2030, the direct US healthcare costs of obesity are predicted to be \$860-960 billion.³ Greater than 6.1 million children (2-10 years), 7.7 million adolescents (11-19 years),^{4,5} and 72 million adults⁶ are overweight/ obese — *one-fourth of the entire U.S. population!*

The obesity epidemic is complex and difficult to address, in large part because the pathway to obesity is multifaceted and factors act at micro-, meso-, exo- and macro-levels. Further complicating the development of effective interventions and policies, obesity factors may be differentially associated across place. Moreover, obesity does not seem to have easily-identifiable causal pathways. Rather, it has many interactions between multi-modal factors (Chronological, Environmental; Country/State, Community; Neighborhood, Individual) that are posited to cause obesity.⁷ Identifying each of the factors, however, does not appear to get us any closer to slowing the obesity epidemic. Thus, multi-factorial pathways to obesity create a unique problem when trying to establish public health action points.

Obesity interventions and policies are often designed to focus on a single level, without considering how geography moderates the ways factors can affect obesity. Presently, we are able to describe the rise in obesity rates and the factors that are suspect in obesity development. But studies tend to be contradictory; for every study with one conclusion, we seem to have another concluding just the opposite. There is also a lack of clarity about when and how to intervene in order to reduce overall obesity rates. Current interventions are not even grounded as part of a systematic whole. The situation is made all the more difficult by a lack of agreement on which factors drive obesity and on which obesity model captures all spatial and temporal factors.⁸

Research Problem

Approaches to obesity intervention occur at various levels, from individual to neighborhood to community to state to country. Interventions also occur at different ages, from childhood to adolescence to adult.⁹ Obesity interventions tend to be either 1) direct actions to change an individual' s energy balance or 2) indirect actions to modify structures that support direct actions.⁹ Nevertheless, there is scant available evidence for the overall effectiveness of any approach to stem the epidemic proportions of obesity developing in a population.⁹ It is

difficult to perform randomized controlled trials in the real world, and thus, we are left with gaps in our

<u>understanding about how to develop a comprehensive obesity intervention</u>. Research does show that many interventions aiming to prevent obesity have the potential to generate additional long-term health benefits by delaying the onset of obesity-related diseases,¹⁰ but the actual efficiency of individual interventions on reducing population obesity is unknown. All proposed obesity interventions have one thing in common: an intervention starting point was not located within a well-defined obesity model.

Modeling with complex network analysis has the potential to develop a multi-modal, multi-factorial model grounded in space and time for obesity that can be used as the base to inform and address the obesity epidemic. We have modeled the development of obesity in the geographic United States from 2000 to 2010. We used our public health exposome database for the modeling (explained in the sequel).¹¹ Our approach innovates obesity modeling by building on previous applications of complex network analysis using county-level data focusing on pre-term birth,¹² black male premature mortality and lung cancer mortality.¹³ By contrasting counties with relatively low rates of obesity with those with relatively high rates, we begin the complex process of determining which factors contribute to the epidemic and which may potentially be malleable to intervention.¹⁴⁻¹⁶

METHODS

Background

The exposome has been proposed as an alternative way to look at the cumulative effects of exposures throughout the life course, including those that can cause poor health outcomes such as obesity. Many different types of exposure may have effects on the development of obesity. While behavior and genetics are known to play a role, we are just beginning to explore effects due to exposure. A main goal of this work is to use the exposome to identify and unravel shared mechanisms and common biological pathways underlying obesity development, which then have direct implications for the development of targeted individual and community obesity interventions.¹¹ An exposome approach combines exposure science and social-ecological models in order to provide insights into the underlying causal mechanisms through which environmental exposures affect individual obesity that may then lead to population-level obesity. Traditional exposure science models typically examine the impact of the environment on disease through a narrow reductionist approach, supported by discipline-driven theories that lead to focused assessments, models, and analytics. <u>Our approach</u>

is different.¹¹ We conceptualize the cumulative effects of exposures across the lifecycle (from conception to death) to examine dynamic, multi-dimensional inter-relationships between all levels of the environment with obesity development.¹¹ Thus, environmental dependency can be explored as a pathway to obesity. Past exposome science has been rather limited, because it has focused largely on the effects of endogenous exposures such as a specific chemical pollutant on a specific disease, sub-populations, time period or geographic region. We have expanded the exposome concept further to include endogenous and exogenous exposure mechanisms, processes and outcomes with mediating and moderating factors at both the individual and population health levels (i.e. factors such as: 1) weather/ climate, 2) environmental pollutants-air and water borne, 3) sociocultural by race and ethnicity, deprivation-segregation/ isolation, risk behaviors- purchasing patterns/ seeking healthcare, community health-diabetes/ infant mortality/ disability/ healthcare infrastructure, 4) policy -food access/ government program participation and economic factors-housing stock/ education/ marital status/ income/ occupation). These we call the Public Health exposome.¹¹ The Exposome provides more insight into health outcomes. "...the distinction between people and places, composition and context, is somewhat artificial. People create places, and places create people"¹⁷ to understand health risks, individuals need to be placed both spatially in a geographic location and also temporally by their age; only then can we begin to look at all the factors that create specific health outcomes.

Our data contains approximately 12,000 public health variables that have been geocoded spanning the years 1990 to 2010. These variables can be grouped into five broad categories: <u>social indicators</u> (descriptors of social/economic conditions such as poverty, crime, demographic characteristics, racial segregation and unemployment found in an area or population); <u>built factors</u> (attributes of places we live, work, play, learn and pray, with measures of both quality, quantity and access), <u>natural environment measures</u> (exposure measures of air, climate, water, land and pollutants), <u>health factors</u> (mortality, morbidity, screening, behaviors and disease specific indicators), and <u>policy items</u> (governmental laws, ordinances, regulations and programs that have either a direct or indirect impact on health). These variables are stored in a database that allows for rapid extraction and query. Database structure allows for storage in arbitrary format, which eliminates the need for extensive data cleaning and manipulation prior to analysis.¹⁸

Before proceeding, we briefly outline our approach. We first split exposome data into quintiles using the adult obesity rate from 2009. Next, we separate the highest and lowest quintiles for differential graph-theoretical

analysis¹³. Using results of this analysis, we then identify latent constructs by factor analysis use these constructs to study hidden networks and relationships in the data.

Computational Analysis

In order to identify and amass variable subsets possessing quantifiable measures of similarity, we extracted two sets of paracliques,^{19,20} one from counties in the highest 2009 obesity quintile (n= 781), the other from the lowest 2009 profile (n= 797). Paracliques were computed as follows. A symmetric correlation matrix was first created, whose entries represented correlation coefficients between variables. From this matrix a weighted correlation graph was built, in which vertices represented variables and edges were annotated with coefficients. Spectral methods²¹ were next applied to compute thresholds, resulting in cutoffs of 0.62 for counties where obesity rates are high, and 0.61 for counties where they are low. We then extracted paracliques for each set of counties, and analyzed correlations to adult obesity that were at least 0.30.²² With data dimensionality thereby greatly reduced, exploratory factor analysis became feasible. In order to create latent constructs that measured structural concepts related to obesity, we used factor analysis for two purposes. Initially, factor analysis with an orthogonal rotation was used as a data reduction technique and to explore the relationships between variables and the underlying concept associated with each paraclique. These initial factor analyses determined the factor loadings and the direction of the loadings for each variable within each paraclique. Graph Analysis was used to connect the paracliques in Figures 1 and 2. Paracliques are developed which have pairs of its vertices composed of densely packed variables connected by an edge. There is no directionality between the paracliques, just evidence the paracliques are connected. High and low construct structures before inclusion post-processing are depicted in Figures 1 and 2, respectively. Based on these analyses, we created a conceptually purer set of latent constructs by including only variables with a relatively high factor loading (an absolute value 0.45). Varimax rotation was used, and factor solutions were determined for each paraclique, some of which yielded single variable constructs while others produced multivariable constructs. Paracliques were thus used to isolate latent constructs, iterating until all factor loadings were at least 0.45 in the principal components matrix, where 0.45 was chosen to maximize cogency and reduce noise in the constructs.^{23,24} This facilitated the creation of latent constructs that hone in specifically on each structural concept, and allows for the calculation of reliability scores for each latent construct. We then re-applied spectral methods, this time to set construct graph inclusion limits, which were 0.43 in the high

obesity counties and 0.29 in the low. Variables correlated to and factoring with obesity were used to develop multi-factorial models of obesity contributors. Correlation coefficients between the latent constructs was used to connect the latent constructs in Figures 3 and 4; the positive and negative associations between the latent constructs provide directionality (i.e. positive or negative). Figures 3 and 4 show these 'purer' structures after inclusion criteria were applied. We discuss these relationships in the next section.

RESULTS

This study provides a county-level analysis of social and environmental predictors of obesity, in 3106 U.S. counties of greater than 100,000 persons, using an exposome database of routinely collected public health variables (public health exposome dataset) and novel computational analyses. County obesity percentages in 2009 ranged from 11.7% in Routt County, CO, to 43.7% in Greene County, AL.

<u>*High Obesity Counties*</u> **Table 1** lists variables contained in 22 paracliques extracted from high obesity county data. The high obesity county paracliques (i.e. in **Table 1**) are distributed by their connections into four groups as shown in **Figure 1**: (1) Healthcare Infrastructure, Providers, and Crime, (2) White Affluence and Education, (3) Poverty, Disability Climate, Pollution and Minority Population Interaction, and (4) Pollution and Population. There are also 5 unattached paracliques.

Table 3 elucidates the connections between the variables by splitting constructs into separate positive and negative latent constructs (i.e. all variables in a construct either are positively or negatively associated with obesity). The variables are distributed into 21 latent constructs for high obesity counties. Associations between the latent constructs in **Table 3** are shown as lines (*Either positive or negative associations to each other;*

there is no directionality, rather there are positive and negative associations emanating from correlations.) in

Figure 3 for the high obesity counties. Twenty (20) of the latent constructs are connected to each other. Some of the constructs have numerous connections to the other constructs: White Income, Education & Occupational Attainment (15); Distance to the Grocery Stores (11); Median Household Income (11); Disability (10). There is large connectedness of the constructs with each other and with obesity, only one construct was not connected to any other construct.

<u>Low Obesity Counties</u> The low obesity counties are different, **Table 2** shows the variables in the 17 paracliques for the low counties. The low county paracliques (i.e. in **Table 2**) are distributed by their connections into 5 groups as shown in **Figure 2**: 1) Healthcare Infrastructure- Hospitals, 2) White Affluence

Education, Family Structure, Disability and Food Insecurity, 3) White Marriage and Housing Stock and Politics 4) Climate and Pollution and 5) Age, Aging and Aging Infrastructure. There are also 21 unattached paracliques.

Table 4 elucidates the connections between the variables in the low counties by again splitting the constructs into separate positive and negative latent constructs (i.e. all variables in a construct either are positively or negatively associated with obesity). The variables are distributed into 23 latent constructs for the low obesity counties. Associations between the latent constructs in **Table 4** are shown as lines (*Either positive or negative associations to each other; there is no directionality, rather there are positive and negative associations emanating from correlations.*) in **Figure 4** for the high obesity counties. Twenty-one (21) of the latent constructs are connected to each other and 2 are connected to no other construct (**Figure 4**). Some of the constructs have numerous connections to the other constructs: Inequity, Food Access & diabetes (13); Black Population, Segregation, Poor Birth outcomes; Life Expectancy (11); Depravation (11); Low White education & high disability (10).

Differences between high and low counties. High counties showed more connectedness between segregation and population race variables with obesity. In the high counties government policies such as food and healthcare programs were centrally placed between the latent constructs. Whereas in the low counties, there was more connectedness between the majority population's indicators of poverty (income, education, marital status, disability) with obesity. Income and distance to grocery stores were centrally placed between the latent constructs.

DISCUSSION

Traditional models typically have examined the impact of factors on obesity through *"a reductionist approach, supported by discipline-driven theories that have led to narrowly focused assessments, models, and analytics"*.¹¹ Relational data is a common form of data in the social sciences, where relationships among factors represent the central object of inquiry. The data can be represented as a network, or mathematical graph, with a set of nodes and another set of edges. Graph theoretically, it then becomes possible to represent a network and measure the density of the nodes. Our study developed an expositional approach supported by big data interpreted through the viewpoints from a transdisciplinary team. Our work expands the calls for social

network and system dynamic modeling to include as many factors as possible that may potentially explain the complex connection between obesity and the environment. Many system dynamic models are based on the contagion theory where social influence creates a desired weight that is then passed through a population.²⁵ Our modeling is different because we make no a priori assumptions about the population and we model based on the actual characteristics of a population.¹³ It may not be immediately clear what kinds of network properties are relevant; in fact, that might be precisely the question in which we are interested in the first place. For many factor relationships, theory may suggest that current statistical models do not look beyond more than one or two connections of neighboring factors, so adequately modelling statistics such as the graph analysis might be expected to better show higher-order connections correctly.²⁶ We stress that nodal covariate information is vital to any attempt at modelling complex multifactorial diseases, and the particular covariates of importance will not be the same for all situations.

Our modeling augments agent based modeling because we can pinpoint the social factors most tightly connected to obesity in populations. Agent based modeling has found that social norms create an environment that either selects or deselects for the development of obesity.²⁵ This is similar to what we have found that majority population (white) affluence and high educational attainment is tightly and negatively connected to obesity, while conversely, an environment of predominantly blue collar workers or with high levels of poverty appear obesequence. In counties where obesity is higher, a lack of resources-poverty couples with segregation, poor birth outcomes and disability connect to obesity. In counties where obesity is relatively low, majority population income, disability and access to healthy foods are connected with obesity. Although these results replicate previous findings in agent based modeling, our approach shows that known variables associated of obesity combine in different ways when comparing both types of counties. Also, the strength of these previously documented variables sometimes vary in their association with obesity. Social network analysis has shown that interaction opportunities change distributions of various factors in a system of people.²⁷ Thus obesity development may change depending upon the interaction opportunities in the high versus low counties. Social depravation and low SES may have more of an effect on obesity development in counties where obesity rates are low, creating pockets of poverty and obesity in a relatively affluent normal weight population. In counties with high obesity rates, there may be systemic poverty, segregation, social depravation so the effects of each individual factor on obesity development is lessened and the structural

supports such as government programs may have more impact on driving obesity development. Our model points to structure of the counties changing the distribution of factors related to obesity; some factors are more densely interacting with other factors in low versus high obesity counties.

The connection between obesity and climate and heat stress in humans has not been widely reported.²⁸ The cause-and-effect chain from climate change to changing patterns of human health and phenotypes is extremely complex and multifactorial (socioeconomic status, public health infrastructure, access to medical care, nutrition, types of agricultural crops produced, safe water, and sanitation).²⁹ Epigenetics (phenotype selection) is mediated through environmental exposures raising the possibilities of reciprocal feedbacks loops between the climate and human health outcomes caused by phenotype expression. We found a link between obesity and climate temperature, especially heat stress. In both high and low obesity counties an association between climate and pollution with obesity was observed. When looking at low obesity counties, climatic conditions and particulate matter pollution are unconnected with the web of variables tapping differing types of social disadvantage. In high obesity counties these factors are integrated into social disadvantage. Climate, temperature, heat stress derived from the paracliques differ when comparing low and high obesity counties. The climate variables are split between two paracliques in the low obesity counties and pollution variables are intermixed within climate paracliques. Climate and pollution tend to be distinct within the high obesity counties. In high obesity counties contains variables indicating particulate matter pollution, adverse birth outcomes, food insecurity and measures of socio-economic deprivation are all inter-related with the climate and connect to obesity.

Future Directions

Obesity modeling is the equivalent of the 18th-century maps used by epidemiologist, John Snow to understand and address the cholera epidemic.³⁰ On those maps, there was error between maps and the cholera data they represent, but, "...*The map was not a stand-alone analytic tool but one summarizing (and locating) a wealth of data...*"³⁰ Our purpose has been to apply state-of-the-art computational tools to generate hypotheses that can model the multi-factorial components of obesity. We suggest where it might be useful to study and plan interventions, but also to identify relationships that might be places to begin to unravel obesity etiology. Our obesity modeling is a starting point to be built upon as we and others compile more comprehensive evidence

base for appropriate policies, interventions and resource allocation to reduce the obesity epidemic. We are currently funded to expand the modeling from the population to the individual level. Multi-level modeling will expand the prediction of disease risk and better pinpoint points for intervention that can leverage into better health outcomes.

Limitations

Our methodology allowed a relatively hypothesis-free approach to the investigation of county variation in obesity rates, but the method was not completely hypothesis free, because prior assumptions influenced the choice of variables that were included in the public health exposome dataset. A wide variety of variables was provided but the variables were limited to publicly available data and included a large amount of health service and census data variables. In addition, only a decade (2000-2009) was included in the current analysis; expansion of the time frame of variables would provide a more complete model of obesity etiology.

Acknowledgements

This research has been supported in part by the National Institute on Minority Health and Health Disparities under grant 3P20MD000516-08S2, and by the National Institute on Alcohol Abuse and Alcoholism and the National Institute on Drug Abuse under grant R01AA018776. Support has also been provided by the National Science Foundation under award 1238338 I/UCRC for the Center for Cloud and Autonomic Computing at Texas Tech University (CAC@TTU).

References

- 1. Finkelstein E, Trogdon J, Cohen J, Dietz W. Annual medical spending attributable to obesity: Payerand service-specific estimates. *Health Aff (Millwood).* 2009;28(5):w822-w831.
- 2. Dobbs R, Sawers C, Thompson F, et al. *Overcoming Obesity: An initial economic analysis.* London, UK: McKinsey Global Institute; November 2014 2014.
- 3. Binns C, Low WY. Obesity: upsetting the public health balance. *Asia Pac J Public Health.* 2013;25(2):121-123.
- 4. Ogden C, Carroll M, Flegal K. High body mass index for age among US children and adolescents, 2003. *Jama.* 2008;299(20):2401-2405.
- 5. Garcia V. Comment on: Laparoscopic Roux-en-Y gastric bypass versus laparoscopic adjustable gastric banding: five years of follow-up. *Surg Obes Relat Dis.* 2010;6(5):475-476.
- 6. CDC. Obesity Halting the Epidemic by Making Health Easier. At a Glance 2011. In: National Center for Chronic Disease Prevention and Health Promotion Division of Nutrition PA, and Obesity, ed. Washington, DC2011.
- 7. Myslobodsky M. Gourmand savants and environmental determinants of obesity. *Obesity reviews : an official journal of the International Association for the Study of Obesity.* 2003;4(2):121-128.
- 8. Bures RM, Mabry PL, Orleans CT, Esposito L. Systems Science: A Tool for Understanding Obesity. *Am J Public Health.* 2014(0):e1-e1.
- 9. Gortmaker SL, Swinburn B, Levy D, et al. Changing the Future of Obesity: Science, Policy and Action. *Lancet.* 2011;378(9793):838-847.
- 10. Lehnert T, Sonntag D, Konnopka A, Riedel-Heller S, König HH. The long-term cost-effectiveness of obesity prevention interventions: systematic literature review. *Obesity reviews.* 2012;13(6):537-553.
- 11. Juarez PD, Matthews-Juarez P, Hood DB, et al. The Public Health Exposome: A Population-Based, Exposure Science Approach to Health Disparities Research. *International journal of environmental research and public health*. 2014;11(12):12866-12895.
- 12. Kershenbaum AD, Langston MA, Levine RS, et al. Exploration of preterm birth rates using the public health exposome database and computational analysis methods. *International journal of environmental research and public health*. 2014;11(12):12346-12366.
- 13. Langston MA, Levine RS, Kilbourne BJ, et al. Scalable Combinatorial Tools for Health Disparities Research. *International Journal of Environmental Research and Public Health.* 2014;11(10):10419-10443.
- 14. Levine RS, Kilbourne BA, Rust GS, et al. Social determinants and the classification of disease: descriptive epidemiology of selected socially mediated disease constellations. *PLoS One.* 2014;9(11):e110271.
- 15. Bradley EH, Curry LA, Ramanadhan S, Rowe L, Nembhard IM, Krumholz HM. Research in action: using positive deviance to improve quality of health care. *Implementation Science*. 2009;4(1):25.
- 16. Marsh DR, Schroeder DG, Dearden KA, Sternin J, Sternin M. The power of positive deviance. *Bmj.* 2004;329(7475):1177-1179.
- 17. Roux AD. The examination of neighborhood effects on health: conceptual and methodological issues related to the presence of multiple levels of organization. *Neighborhoods and health.* 2003:45-64.
- Pavlo A, Paulson E, Rasin A, et al. A comparison of approaches to large-scale data analysis. Paper presented at: Proceedings of the 2009 ACM SIGMOD International Conference on Management of data2009.
- 19. Hagan RD, Langston MA, Wang K. Lower Bounds on Paraclique Density. *Discrete Applied Mathematics.* 2016;204:208-212.
- 20. Chesler EJ, Langston MA. Combinatorial Genetic Regulatory Network Analysis Tools for High Throughput Transcriptomic Data. In: Eskin E, ed. *Systems Biology and Regulatory Genomics*. Vol 4023: Springer; 2006:150–165.
- 21. Perkins AD, Langston MA. Threshold Selection in Gene Co-Expression Networks Using Spectral Graph Theory Techniques. *BMC Bioinformatics*. 2009;10.
- 22. Lynch S. Using Statistics in Social Research. New York: Springer Science + Business Media; 2013.
- 23. Lawlor DA, Ebrahim S, May M, Davey Smith G. (Mis)use of factor analysis in the study of insulin resistance syndrome. *American journal of epidemiology.* 2004;159(11):1013-1018.

- 24. Sakkinen PA, Wahl P, Cushman M, Lewis MR, Tracy RP. Clustering of procoagulation, inflammation, and fibrinolysis variables with metabolic factors in insulin resistance syndrome. *American journal of epidemiology*. 2000;152(10):897-907.
- 25. Shoham DA, Hammond R, Rahmandad H, Wang Y, Hovmand P. Modeling Social Norms and Social Influence in Obesity. *Current Epidemiology Reports*. 2015;2(1):71-79.
- 26. Hunter DR, Goodreau SM, Handcock MS. Goodness of Fit of Social Network Models. *Journal of the American Statistical Association.* 2008;103(481):248-258.
- 27. Burt RS, Kilduff M, Tasselli S. Social network analysis: Foundations and frontiers on advantage. *Annual review of psychology.* 2013;64:527-547.
- 28. Gittner L, Kilbourne B, Kilbourne K, Chun Y. Climate Change and the Rise of Obesity. *J J Environ Sci.* 2015;1(2):09.
- 29. Ross MG, Desai M. Gestational programming: population survival effects of drought and famine during pregnancy. *American Journal of Physiology Regulatory, Integrative and Comparative Physiology.* 2004;288(1):R25-R33.
- 30. Koch T. The Map as Intent: Variations on the Theme of John Snow. *Cartographica*. 2004;39(4):1-14.

Original Paraclique	Paraclique Clusters	Variables	Zero- order correlation with obesity	P- value	Factor loading on latent construct
		RATE_ACTMDS_FEDNONFED	-0.263	< 0.001	0.984
		RATE_ACTMDS_NONFED	-0.262	< 0.001	0.985
		RATE_ANEST_TOT_PC	-0.263	< 0.001	0.891
		RATE_CARDIO_TOT_PC	-0.161	< 0.001	0.895
	ime	RATE_MDS_PC_OFFBASED	-0.29	< 0.001	0.959
PHYSICIAN	Cr	RATE_MDS_SPEC_TOT_PC	-0.218	< 0.001	0.963
PROVIDERS	ure, Providers, and	RATE_MDS_TOT_PTCARE_NONFED	-0.266	< 0.001	0.988
		RATE_MDS_TOT_SPEC_OFFBASED	-0.255	< 0.001	0.948
		RATE_NEURO_TOT_PC	-0.163	< 0.001	0.845
		RATE_OPTH_TOT_PC	-0.234	< 0.001	0.846
		RATE_RADONC_TOT_PC	-0.157	< 0.001	0.737
	ruct	RATE_SURG_SPEC_TOT_PC	-0.227	< 0.001	0.95
PHYSICIAN	rast	RATE_INTMED_SPEC_TOT_PC	-0.181	< 0.001	0.985
SPECIALITY	Infi	RATE_NEURSURG_TOT_PC	-0.128	< 0.001	0.882
PROVIDERS	are	RATE_PLASTIC_TOT_PC	-0.210	< 0.001	0.857
	lthc	RATE_COMM_HOSP_BEDS	-0.009	0.625	0.901
	Hea	RATE_LICENS_NH_HOSP_BEDS	-0.031	0.081	0.914
Hospital Capacity/		RATE_LICENS_SHRTRM_HOSP_BEDS	-0.011	0.522	0.902
Nursing Home		RATE_LICENS_SHRTRM_NH_HOSP_BEDS	-0.028	0.120	0.924
		RATE_SHRTTERM_HOSP_BEDS	-0.006	0.736	0.902
		RATE_SHRTTERM_NH_HOSP_BEDS	-0.026	0.141	0.931

Table 1. High Obesity Paracliques that represent County Relationships

		RATE_TOTAL_INPT_BEDS	0.002	0.897	0.877
		RATE_TOT_NH_HOSP_BEDS	-0.030	0.094	0.921
		Grndtot_rate	0.004	0.851	0.873
CRIME		p1prpty_rate	-0.066	0.006	0.961
		p1tot_rate	-0.033	0.165	0.964
		RATE_COMM_HOSP_ADM	0.003	0.854	0.972
LICODITAL		RATE_HOSP_ADMISSION	0.007	0.678	0.971
CAPACITY AND		RATE_MED_SRG_ADULT_BEDS	0.046	0.011	0.77
ADMISSIONS		RATE_OP_ROOMS	-0.129	0.103	0.892
		RATE_SHRTTERM_HOSP_ADM	0.008	0.65	0.973
	ion	Income_Less_Pov_W	0.273	< 0.001	-0.863
		Median_House_Inc_W	-0.378	< 0.001	0.93
WHITE INCOME		Per_Cap_Inc_W	-0.456	< 0.001	0.856
WHITE INCOME		SNAP_W	0.348	< 0.001	-0.744
	ıcat	mhhinwt	-0.34	< 0.001	0.91
	Edı	povwt	0.247	< 0.001	-0.847
	and	Educ_Less_HS_F_W	0.476	< 0.001	0.871
	nce	Health_Status	0.479	< 0.001	0.843
	flue	Laborforce16_64_BF	-0.283	< 0.001	-0.818
LOW WHITE EDUCATION AND	e Af	Laborforce16_64_WF	-0.283	< 0.001	-0.818
EDUCATION AND HIGH DISABILITY	Vhite	PERCNT_MEDCR_ENROL_DISABL_HI	0.436	< 0.001	0.937
	5	PERCNT_MEDCR_ENROL_DISABL_SMI	0.442	< 0.001	0.942
		PERCNT_MEDCR_ENROL_DISABL_TOT	0.436	< 0.001	0.937
		edlowwt	0.5	< 0.001	0.877

URBANICITY	t and ion	Nitrous_Oxide_NEI_Sum_LBSQM	-0.21	< 0.001	0.923
		Population_Density	-0.13	< 0.001	0.874
	itior	uc1	-0.124	< 0.001	0.759
POPULATION	Pop	POP	-0.225	< 0.001	0.944
SIZE	Ā	TOTPOP_2005	-0.194	< 0.001	0.988
	ų	ALE	-0.61	< 0.001	-0.846
OUALITY OF	ictio	PERCNT_MEDCD_ELIG_MALES	0.445	< 0.001	0.834
LIFE FROM	tera	PERCNT_MEDCR_MEDCD_DUAL_ELIG	0.435	< 0.001	0.817
BIRTH	n In	Under_18	0.403	< 0.001	0.854
	atio	f_divorce	0.41	< 0.001	0.81
	Ind	Av_Per_Dem	-0.006	0.753	-0.228
MAIODITY	Ainority Po	Av_Per_Rep	0.017	0.336	0.213
POPULATION,		PERCNT_WHITE_POPULATION	-0.349	< 0.001	0.919
POLITICAL		Per_Dem_04	0.049	0.006	-0.246
ENGAGEMENT & BIRTHS TO	nd h	Per_Dem_08	-0.055	0.002	-0.202
UNMARRIED	on a	Per_Rep_04	-0.035	0.053	0.24
WOMEN	luti	Per_Rep_08	0.064	< 0.001	0.181
	Pol	Unmarried	0.443	< 0.001	-0.919
	ate,	Iblack2000	0.387	< 0.001	0.882
HICH DEDCENT	lima	Iwhite2000	-0.208	< 0.001	-0.791
BLACK	ty C	LBW	0.368	< 0.001	0.837
POPULATION, SEGREGATION, WITH POOR BIRTH	ilidi	PCT_NHBLACK08	0.468	< 0.001	0.927
	Disa	PERCNT_AFRICAN_AM_POP	0.464	< 0.001	0.928
	rty,	Per_Low_Literacy	0.287	< 0.001	0.706
OUTCOMES	OVEI	Premature	0.457	< 0.001	0.794
	Po	f_2575	-0.16	< 0.001	-0.731

INFOLIALITY	GINI2000	0.19	< 0.001	0.761
FOOD ACCESS &	PCT_DIABETES_ADULTS	0.739	< 0.001	0.833
DIABETES	PCT_HHNV1MI	0.467	< 0.001	0.85
	MED_HH_INC	-0.459	< 0.001	-0.806
	PCT_FREE_LUNCH08	0.495	< 0.001	0.787
	PCT_POV_LT18	0.464	< 0.001	0.856
POVERTY,	PERCHLDPOV	0.361	< 0.001	0.491
PUBLIC ASSISTANCE &	PERCNT_FOODSTAMP_RECIPNTS	0.522	< 0.001	0.819
INCOME	PERCNT_MEDCD_ELIG_FEMALES	0.458	< 0.001	0.876
	PERCNT_MEDCD_ELIG_TOT	0.461	< 0.001	0.871
	PERSIST_POVERTY	0.361	< 0.001	0.292
	POV_RATE	0.477	< 0.001	0.825
	MILK_PRICE	0.022	0.218	0.977
FOOD PRICES	MILK_SODA	0.142	< 0.001	0.906
	PC_FATS	-0.02	0.273	-0.823
FOOD HABITS &	PC_SNACKS	-0.102	< 0.001	0.917
COST – Fruit/ Vegetables/	PC_PREPFOOD	-0.092	< 0.001	0.95
Processed Snacks	PC_FRUVEG	-0.21	< 0.001	0.832
	AvgDailyMaxHeatIndexF	0.49	< 0.001	0.864
CLIMATE	DAYS_HI_100	0.269	< 0.001	0.847
	DAYS_HI_90	0.331	< 0.001	0.961
	DM_Heat	0.461	< 0.001	0.834
	DM_Temp	0.267	< 0.001	0.968
	Temp_min	0.399	< 0.001	0.933
	land_surf_night	0.377	< 0.001	0.882

	sunlight	-0.071	< 0.001	0.717
НЕАТ.	NOR_FPM_H_2	0.537	< 0.001	0.943
POLLUTION &	Pollution_Heat_Index	0.553	< 0.001	0.949
PRECIPITATION	precip	0.369	< 0.001	0.791
PHYSICIAN	percent_gen_intmed_45_64yr	-0.044	0.036	0.934
INTERNAL MED &	percent_gen_intmed_under_45yr	0.052	0.014	-0.934
SPECIALTIES	percent_med_spec_45_64yr	-0.064	0.002	0.935
PROVIDER AGE	percent_med_spec_under_45yr	0.095	< 0.001	-0.933
	percent_fam_med_45_64yr	-0.016	0.402	-0.936
PHYSICIAN FAM	percent_fam_med_under_45yr	-0.047	0.013	0.943
MED & GPS	percent_tot_gps_45_64yr	-0.037	0.045	-0.914
	percent_tot_gps_under_45yr	-0.073	< 0.001	0.926
	rate_mds_fm_tot_pc	-0.173	< 0.001	0.981
PHYSICIANS	rate_mds_gp_tot_pc	-0.156	< 0.001	0.982
GP	rate_mds_tot_fm_offbased	-0.172	< 0.001	0.982
	rate_mds_tot_gp_offbased	-0.155	< 0.001	0.981
	rate_actv_do_fednonfed	-0.062	0.001	0.987
PHYSICIANS DO	rate_actv_do_nonfed	-0.262	< 0.001	0.988
	rate_do_tot_ptcare	-0.062	0.001	0.948
	BC_W	0.388	< 0.001	-0.914
WHITE	BC_WM	0.404	< 0.001	-0.931
EDUCATION AND	Educ_Col_F_W	-0.484	< 0.001	0.935
ATTAINMENT	Educ_Col_M_W	-0.489	< 0.001	0.961
	edhighwt	-0.494	< 0.001	0.955

Original Paraclique	Paraclique Clusters	Variables	Zero- order correlation with obesity	P- value	Factor loading on latent construct
		Age_65_84	-0.056	0.002	0.939
		MEDIAN_AGE	-0.154	< 0.001	0.925
		MEDIAN_AGE_FEMALE	-0.118	< 0.001	0.937
		MEDIAN_AGE_MALE	-0.193	< 0.001	0.888
	е	MEDIAN_AGE_WHITE_NON_HISPANIC	-0.046	0.011	0.838
AGE STRUCTURE+	ctur	MEDIAN_AGE_WHITE_NON_HISP_FMLE	-0.006	0.749	0.832
MEDICARE	d Aging Infrastru	MEDIAN_AGE_WHITE_NON_HISP_MALE	-0.084	< 0.001	0.818
DISADILITI		PERCNT_MEDCAR_ELIG	0.066	< 0.001	0.817
		PERCNT_MEDCR_ENROL_AGED_DSBL_HI	-0.082	< 0.001	0.935
		PERCNT_MEDCR_ENROL_AGED_DSBL_SMI	-0.084	< 0.001	0.933
	g an	PERCNT_MEDCR_ENROL_AGED_DSBL_TOT	-0.082	< 0.001	0.935
	Agin	PERCNT_WH_MALES_65_PLUS	0.95	< 0.001	0.885
SHORT TERM	.ge, /	PERCNT_POP_SNF	0.077	< 0.001	0.856
NURSING	A	RATE_SNF_CERT_BEDS	0.076	< 0.001	0.972
FACILITIES		RATE_SNF_TOT_BEDS	0.073	< 0.001	0.971
AGE STRUCTURE		Age_85_and_Over	-0.047	0.009	0.926
+ MEDICARE PART		PERCNT_MEDCAR_DRUG_ENROL	0.196	< 0.001	0.869
D		PERCNT_WH_FEMALES_65_PLUS	0.2	< 0.001	0.922

 Table 2. Low Obesity Paracliques that represent County Relationships

		Gen_Hosp_Bed_300_rate	-0.021	0.253	0.661
		RATE_ALC_CHEM_DEPEND_BEDS	-0.001	0.954	0.492
		RATE_BASSINETS	-0.02	0.274	0.759
		RATE_CARD_INTSV_CARE_BEDS	-0.024	0.185	0.779
		RATE_COMM_HOSP_ADM	0.003	0.854	0.951
		RATE_HOSP_ADMISSION	0.007	0.678	0.953
		RATE_ISOLATION_RMS	-0.039	0.031	0.682
HOSDITAI	als	RATE_MED_SRG_ADULT_BEDS	0.046	0.011	0.664
CAPACITY-	ospit	RATE_MED_SRG_PED_BEDS	-0.008	0.65	0.849
BEDS/SUR/ICU	e- H(RATE_NEONAT_INTSV_BEDS	-0.037	0.04	0.847
	ctur	RATE_OBSTET_BEDS	-0.037	0.04	0.845
	stru	RATE_OP_ROOMS	-0.029	0.103	0.863
	nfra	RATE_OTH_INTENSV_CARE_BEDS	-0.015	0.392	0.642
	are I	RATE_SHRTTERM_HOSP_ADM	0.008	0.65	0.953
	lthc	RATE_SURG_OPS_INPT	-0.017	0.337	0.9
	Hea	RATE_SURG_OPS_OUTPT	-0.013	0.46	0.832
		RATE_SURG_OPS_TOTAL	-0.016	0.383	0.909
		RATE_COMM_HOSP_BEDS	-0.009	0.625	0.97
		RATE_HOSP_BEDS	-0.007	0.713	0.926
HOSPITAL CAPACITY-BEDS ONLY		RATE_LICENS_HOSP_BEDS	-0.01	0.574	0.871
		RATE_LICENS_SHRTRM_HOSP_BEDS	-0.011	0.522	0.915
		RATE_SHRTTERM_HOSP_BEDS	-0.006	0.736	0.971
		RATE_TOTAL_INPT_BEDS	0.002	0.897	0.954

		RATE_LICENS_NH_HOSP_BEDS	-0.031	0.081	0.975
ΗΟΣΡΙΤΑΙ		RATE_LICENS_SHRTRM_NH_HOSP_BEDS	-0.028	0.12	0.972
CAPACITY-NH		RATE_NURSHOME_HOSP_ADM	-0.033	0.068	0.685
BEDS		RATE_SHRTTERM_NH_HOSP_BEDS	-0.026	0.141	0.977
		RATE_TOT_NH_HOSP_BEDS	-0.03	0.094	0.98
HOSPITAL		RATE_INTSV_CARE_BEDS	-0.023	0.21	0.691
CAPACITY - OUTPAT VIS/ ICU		RATE_OUTPT_VISITS_GENHOSP	-0.033	0.068	0.97
BEDS		RATE_OUTPT_VISITS_OTH	-0.046	0.01	0.958
		Av_Per_Dem	-0.006	0.753	-0.998
	Stock and Politics	Av_Per_Rep	0.017	0.336	0.998
		Per_Dem_04	0.049	0.006	-0.97
POLITICS		Per_Dem_08	-0.055	0.002	-0.978
		Per_Rep_04	-0.035	0.053	0.98
		Per_Rep_08	0.064	< 0.001	0.98
	sing	Housing_Owner_W	0.181	< 0.001	-0.73
	Hou	Housing_Rent_W	-0.181	< 0.001	0.73
	and	Marital_Status_Mar_W	-0.005	0.782	-0.919
WHITE MADDIACE	iage	Marital_Status_Mar_WF	-0.019	0.285	-0.834
STATUS/ WHITE	Iarr	Marital_Status_Mar_WM	0.009	0.608	-0.869
HOUSING STOCK	ite N	Marital_Status_Sing_W	-0.163	< 0.001	0.925
	Whi	Marital_Status_Sing_WF	-0.214	< 0.001	0.864
		Marital_Status_Sing_WM	-0.143	< 0.001	0.899

		BC_W		< 0.001	-0.863
		BC_WM	0.404	< 0.001	-0.881
	y	Educ_Col_F_W	-0.0484	< 0.001	0.918
WHITE	curit	Educ_Col_M_W	-0.489	< 0.001	0.944
EDUCATION/	Inse	Median_House_Inc_W	-0.378	< 0.001	0.826
INCOME	boo	PERCNT_WHCOLLAR_WRKR	-0.452	< 0.001	0.858
	nd F	Per_Cap_Inc_W	-0.453	< 0.001	0.886
	ity a	edhighwt	-0.494	< 0.001	0.938
	sabili	mhhinwt	-0.34	< 0.001	0.793
	, Dis	Income_Less_Pov_W	0.273	< 0.001	0.903
WHITE POVERTY	ture	MED_HH_INC	-0.459	< 0.001	-0.864
	Struc	povwt	0.247	< 0.001	0.924
	uily S	PERCNT_MEDCR_ENROL_DISABL_HI	0.436	< 0.001	0.987
DICADILITY	Fam	PERCNT_MEDCR_ENROL_DISABL_SMI	0.442	< 0.001	0.985
DISABILITY	tion,	PERCNT_MEDCR_ENROL_DISABL_TOT	0.436	< 0.001	0.987
	lucat	SNAP_W	0.348	< 0.001	0.794
	te Ed	Educ_Less_HS_F_W	0.476	< 0.001	0.959
WHITE LOW EDUCATION	nenc	Educ_Less_HS_M_W	0.484	< 0.001	0.964
	AffT	edlowwt	0.5	< 0.001	0.974
WHITE DIVORCE	hite	Marital_Status_SWD_W	0.255	< 0.001	0.999
	M	Marital_Status_SWD_WF	0.242	< 0.001	0.906
		Marital_Status_SWD_WM	0.213	< 0.001	0.883
FOOD		PCT_FREE_LUNCH08	0.495	< 0.001	0.869

INSECURITY		PCT_POV_LT18	0.464	< 0.001	0.927
		PERCNT_FOODSTAMP_RECIPNTS	0.522	< 0.001	0.935
		PERCNT_MEDCD_ELIG_FEMALES	0.458	< 0.001	0.945
		PERCNT_MEDCD_ELIG_MALES	0.445	< 0.001	0.944
		PERCNT_MEDCD_ELIG_TOT	0.461	< 0.001	0.956
		POV_RATE	0.477	< 0.001	0.913
		AvgDailyMaxHeatIndexF	0.49	< 0.001	0.939
		DM_Heat	0.461	< 0.001	0.911
Pollution and Heat	Climate and Pollution	NOR_FPM_H_2	0.537	< 0.001	0.903
		Pollution_Heat_Index	0.553	< 0.001	0.955
		land_surf_night	0.377	< 0.001	0.859
		DAYS_HI_100	0.269	< 0.001	0.911
		DAYS_HI_90	0.331	< 0.001	0.974
IEMPERATURE		DAYS_MX_T_90	0.134	< 0.001	0.882
		DM_Temp	0.297	< 0.001	0.928
		BPRTRATE	0.488	< 0.001	0.834
BLACK		Iblack2000	0.387	< 0.001	0.922
POPULATION		PCT_NHBLACK08	0.468	< 0.001	0.979
		PERCNT_AFRICAN_AM_POP	0.464	< 0.001	0.981
ENVIRONMENT/ NO S/ PM/ VOLATILE/ POP DENSITY/ WHITES -No CAR		Nitrogen_Oxides_NEI_Sum_LBSQM	-0.064	< 0.001	0.828
		Nitrous_Oxide_NEI_Sum_LBSQM	-0.21	< 0.001	0.861
		PM2_5_Primary_FiltCond_NEI_Mean_LBSQM	-0.023	0.209	0.892
		PM_Condensible_NEI_Mean_LBSQM	-0.015	0.455	0.633

	Population_Density	-0.13	< 0.001	0.888
	Volatile_Organic_Compounds_NEI_Mean_LBSQM	-0.024	0.178	0.851
	nocarwt	0.057	0.002	0.654
FOOD-FRUIT/	FRUVEG_PREPFOOD	-0.233	< 0.001	0.952
VEG/ MEAT/ PREP	PC_FRUVEG	-0.21	< 0.001	0.891
FRUIT AND VEG	PC_MEAT	0.062	0.001	0.84
	RATE_ACTMDS_FEDNONFED	-0.263	< 0.001	0.985
	RATE_ACTMDS_NONFED	-0.262	< 0.001	0.986
	RATE_ANEST_TOT_PC	-0.263	< 0.001	0.883
	RATE_CARDIO_TOT_PC	-0.161	< 0.001	0.892
	RATE_DERM_TOT_PC	-0.202	< 0.001	0.805
	RATE_GASTRO_TOT_PC	-0.173	< 0.001	0.851
	RATE_INTMED_SPEC_TOT_PC	-0.181	< 0.001	0.884
PHYSICIANS (INTERNAL MED	RATE_INTMED_TOT_PC	-0.218	< 0.001	0.89
& SPECIALTIES-	RATE_MDS_PC_HOSP_RES	-0.104	< 0.001	0.827
ANEST, CARDIO, NEURO & SURG)	RATE_MDS_PC_OFFBASED	-0.29	< 0.001	0.927
	RATE_MDS_SPEC_TOT_PC	-0.218	< 0.001	0.977
	RATE_MDS_TOT_PTCARE_NONFED	-0.266	< 0.001	0.982
	RATE_MDS_TOT_SPEC_HOSP_RES	-0.109	< 0.001	0.816
	RATE_MDS_TOT_SPEC_OFFBASED	-0.235	< 0.001	0.936
	RATE_NEURO_TOT_PC	-0.163	< 0.001	0.848
	RATE_NEURSURG_TOT_PC	-0.128	< 0.001	0.714
	RATE_OTOLARYN_TOT_PC	-0.126	< 0.001	0.787

	RATE_PATH_TOT_PC	-0.173	< 0.001	0.87
	RATE_PEDS_SPEC_TOT_PC	-0.099	< 0.001	0.725
	RATE_PEDS_TOT_PC	-0.224	< 0.001	0.829
	RATE_PSYCH_TOT_PC	-0.283	< 0.001	0.773
	RATE_PULM_TOT_PC	-0.145	< 0.001	0.774
	RATE_RADONC_TOT_PC	-0.157	< 0.001	0.714
	RATE_SURG_GEN_TOT_PC	-0.147	< 0.001	0.792
	RATE_SURG_SPEC_TOT_PC	-0.227	< 0.001	0.933
	HSNF_Age_Sex_Race_Adj_05	0.124	< 0.001	0.945
HENE/ TMD	HSNF_Price_Age_Sex_Race_Adj_05	0.229	< 0.001	0.95
HSNF/ IMR	TMR_Age_Sex_Race_Adj_05	0.131	< 0.001	0.95
	TMR_Price_Age_Sex_Race_Adj_05	0.25	< 0.001	0.947
	IM_Neonatal	0.305	< 0.001	0.806
	IM_Postneonatal	0.333	< 0.001	0.73
INFANT MORTALITY	IM_Wh_Non_Hisp	0.239	< 0.001	0.909
	Infant_Mortality	0.395	< 0.001	0.958
	W_Infant_Mort_Rate_99_08	0.375	< 0.001	0.801
	PCT_HHNV10MI	0.066	< 0.001	0.875
DISTANCE TO	PCT_HHNV1MI	0.468	< 0.001	0.722
GROCERY/ DRIVING	PCT_LOWI10MI	-0.01	0.568	0.824
	PCT_LOWI1MI	0.38	< 0.001	0.866
PHYSICIAN FAM	PERCENT_FAM_MED_45_64YR	-0.016	0.402	-0.936
MED & GPS	PERCENT_FAM_MED_UNDER_45YR	-0.047	0.013	0.943

	PERCENT_TOT_GPS_45_64YR	-0.037	0.045	-0.914
	PERCENT_TOT_GPS_UNDER_45YR	-0.73	< 0.001	0.926
POPULATION	РОР	-0.225	< 0.001	0.97
SIZE	TOTPOP_2005	-0.194	< 0.001	0.97
	Iwhite2000	-0.208	< 0.001	-0.913
	PCT_HISP08	-0.271	< 0.001	0.83
POP WHITE AND	PCT_NHWHITE08	-0.179	< 0.001	-0.921
HISPANIC/ LOW	PERCNT_HISPANIC_POP	-0.263	< 0.001	0.824
LIT	PERCNT_NONENG_SPEAK_OVER18YRS	-0.222	< 0.001	0.792
	PERCNT_WHITE_POPULATION	-0.349	< 0.001	-0.71
	Per_Low_Literacy	0.287	< 0.001	0.825
	PERCNT_AGR_FRST_MIN_WRLR	-0.023	0.197	0.798
RURAL ENVIRONMENT	PERCNT_RURAL_FARM	-0.065	< 0.001	0.969
	PERCNT_RURAL_NONFARM	0.065	< 0.001	-0.969
	PM10_Filterable_NEI_Mean_LBSQM	-0.062	0.001	0.971
ENVIRONMENTAL/ PM	PM10_Primary_FiltCond_NEI_Mean_LBSQM	-0.055	0.002	0.954
	PM2_5_Filterable_NEI_Mean_LBSQM	-0.011	0.528	0.938
	Grndtot_rate	0.004	0.851	0.873
CRIME	p1prpty_rate	-0.066	0.006	0.961
	p1tot_rate	-0.033	0.165	0.964
	RATE_MDS_OTHMED_HSP_FT	-0.12	< 0.001	0.82
HOSPITAL F/T STAFF	RATE_MDS_OTHSPEC_HSP_FT	-0.115	< 0.001	0.863
	RATE_MDS_TOT_PC_HOSP_FT	-0.107	< 0.001	0.917

		PERCNT_MEDCR_ENROL_AGED_HI	-0.157	< 0.001	0.996
MEDICARE FLIGIBILITY		PERCNT_MEDCR_ENROL_AGED_SMI	-0.162	< 0.001	0.986
		PERCNT_MEDCR_ENROL_AGED_TOT	-0.151	< 0.001	0.995
		RATE_MDS_FM_TOT_PC		< 0.001	0.981
PHYSICIANS RATE		RATE_MDS_GP_TOT_PC		< 0.001	0.982
FAM MED & GP		RATE_MDS_TOT_FM_OFFBASED	-0.172	< 0.001	0.982
		RATE_MDS_TOT_GP_OFFBASED	-0.155	< 0.001	0.981
		Marital_Status_Mar_B	-0.051	0.006	0.895
BLACK		Marital_Status_Mar_BM	-0.03	0.117	0.91
MARRIAGE STATUS		Marital_Status_Sing_B	-0.036	0.054	-0.888
		Marital_Status_Sing_BM	-0.019	0.307	-0.907
		RATE_ACTV_DO_FEDNONFED	-0.062	0.001	0.987
PHYSICIANS DO		RATE_ACTV_DO_NONFED	-0.064	< 0.001	0.988
		RATE_DO_TOT_PTCARE	-0.062	0.001	0.948
DUVCICIAN		PERCENT_GEN_INTMED_45_64YR	-0.044	0.036	0.934
INTERNAL MED &		PERCENT_GEN_INTMED_UNDER_45YR	-0.052	0.014	-0.934
SPECIALTIES		PERCENT_MED_SPEC_45_64YR	-0.064	0.002	0.935
TROVIDER MOL		PERCENT_MED_SPEC_UNDER_45YR	-0.095	< 0.001	-0.933
		PCH_REDEMP_WICS	-0.018	0.341	-0.643
WIC PROGRAM		PCH_WICS	-0.063	0.001	0.966
		PCH_WICSPTH	-0.051	0.005	0.966
		PERCNT_FEMALES_LT65_NO_HLTH_INS	-0.178	< 0.001	0.989
NO HEALTH		PERCNT_LT65_NO_HLTH_INS	-0.178	< 0.001	1
INSURAINCE		PERCNT_MALES_LT65_NO_HLTH_INS	-0.171	< 0.001	0.99

Original Paraclique Cluster	Latent Construct Cluster	Latent Construct	Variables Included	Factor loading on Latent Construct
irs,	lers		RATE_ACTMDS_FEDNONFED	0.984
vide	ović		RATE_ACTMDS_NONFED	0.985
Pro	c Pr		RATE_ANEST_TOT_PC	0.891
re,]	re &		RATE_MDS_PC_OFFBASED	0.959
ime	Healthcare Infrastructur	PHYSICIAN PROVIDERS Alpha= 0.987 PHYSICAN SPECIALITY PROVIDERS	RATE_MDS_SPEC_TOT_PC	0.963
Healthcare Infrastru and Cr			RATE_MDS_TOT_PTCARE_NONFED	0.988
			RATE_MDS_TOT_SPEC_OFFBASED	0.948
			RATE_OPTH_TOT_PC	0.846
			RATE_SURG_SPEC_TOT_PC	0.95
			RATE_PLASTIC_TOT_PC	NA
		WHITE INCOME Alpha= 0.949	mhhinwt	0.954
put			Median_House_Inc_W	0.977
n ice :			Per_Cap_Inc_W	0.928
luen atio		WHITE DAVEDTV	Income_Less_Pov_W	0.935
Affl		Alpha=0.878	SNAP_W	0.864
lite . E			povwt	0.891
MM		WHITE HIGH	Educ_Col_F_W	0.974
		EDUCATION	Educ_Col_M_W	0.977

 Table 3. Latent Construct High Obesity County Relationships (all variables correlate to obesity with r> 0.430)

		Alpha=0.978	edhighwt	0.984
Population and Pollution		URBANICITY & POLLUTION	Nitrous_Oxide_NEI_Sum_LBSQM	NA
		POPULATION SIZE	РОР	NA
ion	mo		PERCNT_MEDCD_ELIG_MALES	0.852
racti	E Fr	DEPRIVATION	PERCNT_MEDCR_MEDCD_DUAL_ELIG	0.842
Inte	Life	Alpha=0.860	Under_18	0.864
ion	bi Bi		f_divorce	0.801
nd Minority Populati	Qualit	AVERAGE LIFE EXPECTANCY	ALE	NA
	Majority Population, Political Engagement & Births To Unmarried Women	MAJORITY POPULATION	PERCNT_WHITE_POPULATION	NA
		BIRTHS TO UNMARRIED WOMEN	Unmarried	NA
ion a	Black Population, With Poor Birth Itcomes		Iblack2000	0.906
olluti			LBW	0.867
Ite, I		% BLACK POPULATION, SEGREGATION, POOR	PCT_NHBLACK08	0.945
Clima		BIRTH OUTCOMES	PERCNT_AFRICAN_AM_POP	0.946
lity c	C O	11pma - 0.720	Per_Low_Literacy	0.643
isabil	h Per grega		Premature	0.815
ty, D	Hig	WHITE ISOLATION	Iwhite2000	NA
Pover	anty, Food Acces s &	INEQUALITY, FOOD ACCESS & DIABETES	PCT_DIABETES_ADULTS	0.891

		Alpha = 0.741	PCT_HHNV1MI	0.891
	Income	MEDIAN HOUSEHOLD INCOME ALL POPULATION	MED_HH_INC	NA
	e &		PCT_FREE_LUNCH08	0.877
	anc		PCT_POV_LT18	0.95
	ssist		PERCHLDPOV	0.759
	c As	POVERTY	PERCNT_FOODSTAMP_RECIPNTS	0.92
	ildu	Alpha=0.957	PERCNT_MEDCD_ELIG_FEMALES	0.899
verty Pr	y P		PERCNT_MEDCD_ELIG_TOT	0.906
	vert		PERSIST_POVERTY	0.721
	Po		POV_RATE	0.94
		FOOD HABITS & COST – Fruit/ Vegetables/ Processed Snacks	PC_FRUVEG	NA
			AvgDailyMaxHeatIndexF	0.871
			DAYS_HI_100	0.874
			DAYS_HI_90	0.972
		CLINIATE Alpha= 0.963	DM_Heat	0.886
			DM_Temp	0.945
			Temp_min	0.892
			land_surf_night	0.674
		HEAT, POLLUTION & PRECIPITATION	NOR_FPM_H_2	0.943
			Pollution_Heat_Index	0.949

	Alpha = 0.876	precip	0.791
ТПУ	LOW WHITE EDUCATION AND HIGH DISABILITY <i>Alpha</i> = 0.959 FEMALE LABORFORCE <i>Alpha</i> = 1.000	Educ_Less_HS_F_W	0.884
ABII		edlowwt	0.899
EDIS		PERCNT_MEDCR_ENROL_DISABL_HI	0.957
IIIGH		PERCNT_MEDCR_ENROL_DISABL_SMI	0.96
N, FEN		PERCNT_MEDCR_ENROL_DISABL_TOT	0.957
ATIC		Health_Status	0.887
OUC		Laborforce16_64_BF	1
K M		Laborforce16_64_WF	1
LIHM	WHITE BLUE COLLAR	BC_W	0.991
TOW	Alpha=0.982	BC_WM	0.991
Phyicians DO	PHYSCIANS DO	rate_actv_do_nonfed	NA

Original Paraclique Cluster	Latent Construct Cluster	Latent Construct	Variables Included	Factor loading on Latent Construct
ging and jing ructure	Age & icare	Male Age Structure+ Medicare	PERCNT_MEDCAR_ELIG	0.927
Age, A£ Age, Ag Infrast	Male . Med	Alpha = 0.824	PERCNT_WH_MALES_65_PLUS	0.927
White Marriage Status/ White Housing Stock		White Marriage Status/ White Housing Stock	Marital_Status_Sing_WF	NA
	/hite Education/ Income	Blue Collar Whites	BC_W	0.960
Structure ity		Alpha = 0.945	BC_WM	0.960
		White Workers Education and Income Alpha = 0.503	Educ_Col_F_W	0.938
			Educ_Col_M_W	0.949
nily ecui			Median_House_Inc_W	0.830
Far Inse			PERCNT_WHCOLLAR_WRKR	0.853
on, od			Per_Cap_Inc_W	0.899
Eo	y W		edhighwt	0.952
and	/ert	White Poverty	Income_Less_Pov_W	0.944
nce E ility	e Pov	Alpha = 0.878	povwt	0.944
ffluer Disab	Whit	Median Household Income All Population	MED_HH_INC	NA
te A		Disability Alpha = 0.896	mhhinwt	0.987
Whi			PERCNT_MEDCR_ENROL_DISABL_SMI	0.985
-			PERCNT_MEDCR_ENROL_DISABL_TOT	0.987

 Table 4. Latent Construct Low Obesity County Relationships (all variables correlate to obesity with r> 0.290)

			Educ_Less_HS_F_W	0.959
		White-Low Education Alpha = 0.959	Educ_Less_HS_M_W	0.964
		edlowwt	edlowwt	0.974
		White Divorce	Marital_Status_SWD_WF	0.895
		Alpha = 0.751	Marital_Status_SWD_WM	0.895
			PCT_FREE_LUNCH08	0.869
			PCT_POV_LT18	0.927
			PERCNT_FOODSTAMP_RECIPNTS	0.935
		Food Insecurity	PERCNT_MEDCD_ELIG_FEMALES	0.945
		Alpha = 0.947	PERCNT_MEDCD_ELIG_MALES	0.944
			PERCNT_MEDCD_ELIG_TOT	0.956
			POV_RATE	0.913
ate and Pollution Pollution and		Climate Alpha = 0.932	AvgDailyMaxHeatIndexF	0.939
	and		DM_Heat	0.911
	tion		NOR_FPM_H_2	0.903
	Illo		Pollution_Heat_Index	0.955
	L		land_surf_night	0.859
			DAYS_HI_100	0.925
Clin		Temperature	DAYS_HI_90	0.987
•		Ациа – 0.743	DM_Temp	0.935
ģ			BPRTRATE	0.834
ack latio		Black Population	Iblack2000	0.922
opul		Alpha = 0.719	PCT_NHBLACK08	0.979
4			PERCNT_AFRICAN_AM_POP	0.981
Environment/ NO S/ PM/ Volatile/ Pop Density/ Whites -No Car	Pollutant Nitrous Oxide	Environment/ Nitrous Oxide	Nitrous_Oxide_NEI_Sum_LBSQM	NA

Fruit/ Meat/ uit And eg	uit / e Cost	Food-Fruit/ Veg/ Meat/ Prep	FRUVEG_PREPFOOD	0.955
Food- Veg/ Prep Fr V	Fr Veggi	Alpha = 0.903	PC_FRUVEG	0.955
4			RATE_ACTMDS_FEDNONFED	0.987
ltie			RATE_ACTMDS_NONFED	0.987
ecia			RATE_ANEST_TOT_PC	0.882
č Sp & S			RATE_DERM_TOT_PC	0.794
ed &		Physicians (Internal Med &	RATE_INTMED_TOT_PC	0.913
Net Net		Specialties-Anest, Cardio,	RATE_MDS_PC_OFFBASED	0.959
rnal dio,		Neuro & Surg)	RATE_MDS_SPEC_TOT_PC	0.977
Car		Alpha = 0.921	RATE_MDS_TOT_PTCARE_NONFED	0.989
ns (] est, -			RATE_MDS_TOT_SPEC_OFFBASED	0.961
Ane			RATE_PEDS_TOT_PC	0.868
hysi			RATE_PSYCH_TOT_PC	0.802
<u> </u>			RATE_SURG_SPEC_TOT_PC	0.937
HSNF/ TMR		HSNF/ TMR	TMR_Price_Age_Sex_Race_Adj_05	NA
ity			IM_Neonatal	0.806
rtal			IM_Postneonatal	0.73
Mo		Infant Mortality Alpha = 0.054	IM_Wh_Non_Hisp	0.909
ant			Infant_Mortality	0.958
Inf			W_Infant_Mort_Rate_99_08	0.801
DISTANCE TO GROCERY/ DRIVING URIVING		Distance to Grocery/ Driving	PCT_HHNV1MI	0.94
	Alpha = 0.869	PCT_LOWI1MI	0.94	

Physician Fam Med & GPS		Young General Practice Physicians	PERCENT_TOT_GPS_UNDER_45YR	NA
Population		Population	РОР	NA
nic/	nd acy	Hispanic Pop/ Low Lit Alpha = 0.848	Per_Low_Literacy	0.723
Pop White And Hispar Low Lit White Hispanic a Isolation Low Liters	nic a iter:		PCT_HISP08	0.962
	spar w L		%_HISPANIC_POP	0.952
	His Lo		% NONENG SPEAK OVER18YRS	0.923
	ite tion	White Population/Segregation Alpha=0.935	Iwhite2000	0.969
	Wh Isola		PERCNT_WHITE_POPULATION	0.969

Figure 1. High Obesity Paracliques that Represent County Relationships (Disconnected paracliques that do not have any variables that correlate with obesity are not shown)

Figure 2. Low Obesity Paracliques that Represent County Relationships (Disconnected paracliques that do not have any variables that correlate with obesity are not shown)

Figure 3. Latent Construct High Obesity County Relationships (all variables correlate to obesity with r> 0.430)

Figure 4. Latent Construct Low Obesity County Relationships (all variables correlate to obesity with r> 0.290)