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Abstract

Background—The pro-inflammatory cytokines, tumor necrosis factor (TNF)-α, and interleukin 

(IL)-17, have been implicated in the pathogenesis of liver fibrosis. In this study, we investigated 

the role of TNFα and IL-17 towards induction of profibrotic factor, periostin.

Methods—HepG2 cells were cultured and treated with inflammatory cytokines, TNFα and 

IL-17. Computational promoter sequence analysis of the periostin promoter was performed to 

define the putative binding sites for transcription factors. Transcription factors were analyzed by 

Western blot and Chromatin Immunoprecipitation. Periostin and transcription factor expression 

analysis was performed by RT-PCR, Western blot, and fluorescence microscopy. Type I collagen 

expression from fibroblast cultures was analyzed by Western blot and Sircol soluble collagen 

assay.

Results—Activation of HepG2 Cells with TNFα and IL-17 enhanced the expression of periostin 

(3.5 and 4.4 fold, respectively p<0.05) compared to untreated cells. However, combined treatment 

with both TNFα and IL-17 at similar concentration demonstrated a 13.3 fold increase in periostin 

(p<0.01), thus suggesting a synergistic role of these cytokines. Periostin promoter analysis and 

specific siRNA knock-down revealed that TNFα induces periostin through cJun, while IL-17 
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induced periostin via STAT-3 signaling mechanisms. Treatment of the supernatant from the 

cytokine activated HepG2 cells on fibroblast cultures induced enhanced expression of type I 

collagen (>9.1 fold, p<0.01), indicative of a direct fibrogenic effect of TNFα and IL-17.

Conclusion—TNFα and IL-17 induced fibrogenesis through cJun and STAT-3 mediated 

expression of profibrotic biomarker, periostin. Therefore, periostin might serve as a novel 

biomarker in early diagnosis of liver fibrosis.
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Introduction

Chronic liver disease is one of the top fifteen leading causes of death in the United States 

(Murphy et al., 2010). Most common causes of chronic liver disease include: viral hepatitis, 

alcoholism, metabolic and autoimmune diseases (Schuppan and Afdhal, 2008). The 

progression from healthy liver tissue to cirrhosis is mediated by a chronic inflammatory 

reaction eventually leading to the excess deposition of extracellular matrix proteins 

(Friedman, 2008). The inflammatory reaction is considered to be the key predictor of disease 

progression (Argo et al., 2009; Asselah et al., 2005). The accumulation of ECM proteins 

distorts the hepatic architecture by forming a fibrous scar, and the subsequent development 

of nodules of regenerating hepatocytes leading to cirrhosis. Hepatic fibrosis is generally 

considered to be an irreversible process manifested by a collapse in the hepatic parenchyma 

and its substitution with a collagen-rich tissue (Bataller and Brenner, 2005). Animal models 

and cell culture studies on liver fibrogenesis led to the identification of key fibrotic 

biomarkers (Hayashi and Sakai, 2011). Research and understanding in the pathogenesis of 

liver fibrosis could aid the development of novel therapeutic strategies to prevent and 

possibly reverse the disease progression.

Inflammation is an important starting event of liver fibrosis (Czaja, 2014). Inflammatory 

cytokine levels are elevated independently of the etiology of the underlying liver disease 

(Tilg et al., 2006). Among the pro-inflammatory cytokines, tumor necrosis factor-alpha 

(TNFα) is a potent cytokine that exerts pleiotropic inflammatory and immunological 

functions by triggering downstream signaling events leading to hepatic fibrosis (Osawa et 

al., 2013). Levels of circulating TNFα are increased in patients with liver fibrosis and are 

associated with poor prognosis (Odeh et al., 2005). Further in an experimental cholestasis 

induced by bile duct ligation TNFα and IL-6 were elevated indicating the pathogenic nature 

of these cytokines (Gabele et al., 2009; Odeh, 2007). Hepatic macrophages in chronic liver 

inflammation exhibit high levels of TNFα expression (Zimmermann et al., 2012). TNFα has 

also been demonstrated to induce fibrosis in other models. In a model of pulmonary fibrosis, 

TNFα receptor knockout mice were protected from the development of fibroproliferative 

lesions (MacEwan, 2002). Also, hepatic injury following administration of the hepatotoxin 

carbon tetrachloride was inhibited in TNFα knockout mice (Sudo et al., 2005). Along with 

TNFα alpha another inflammatory cytokine IL-17 has been implicated in the liver fibrosis 

(Tang et al., 2011). IL-17A plays a critical role in neutrophil recruitment, angiogenesis, 

inflammation, and autoimmune disease that has been previously described extensively 
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(Miyamoto et al., 2003), including in pulmonary and cardiac fibrosis via IL-17 receptor 

mediated signaling (Gasse et al., 2011; Zhu et al., 2011). Although these cytokines induce 

fibrotic events, to date, very limited data is available on fibrotic biomarkers with therapeutic 

value.

Periostin is a 90-kD secretory protein, playing an important role in the development of 

bones, teeth and tumor progression (Hamilton, 2008; Ruan et al., 2009). Recent evidence 

suggests that expression of periostin is involved in various pathophysiological statuses of 

fibrosis, including the healing process in myocardial infarction, pulmonary fibrosis and bone 

marrow fibrosis (Oka et al., 2007; Oku et al., 2008). Studies from lung models indicate that 

periostin contributes to the formation of fibrosis in response to inflammatory cytokines 

(Sidhu et al., 2010). In this report, we demonstrate that TNF and IL-17 exert a synergistic 

effect on HepG2 cells through two different signaling pathways leading to enhanced 

periostin expression and eventual induction of Type I collagen expression, a potential 

pathogenic mechanism in liver fibrosis.

Materials and Methods

Cell culture

HepG2 cells were obtained from the American Type Culture Collection (HB-8065, ATCC, 

Manassas, VA) and cultured in cell basal essential media (30–2003, ATCC, Manassas, VA) 

along with the media supplements as recommended by the manufacturers (Sarma et al., 

2014). Normal neonatal human fibroblasts (PCS-201-010™, ATCC, Manassas, VA) and 

normal adult human dermal fibroblasts (PCS-201-012, ATCC, Manassas, VA) were also 

obtained from the same vendor and cultured as per the manufacture’s protocol. Cell lines 

were frozen in liquid vapor nitrogen at −130°C until use. Upon thawing, cells were 

maintained in 5% CO2 incubator in sterile essential media at 37°C. Cells were then 

stimulated with varying concentration (0–1000 ng/mL) of TNF or IL-17 or both (Life 

Technologies, Grand Island, NY) for 48–72 hours. Specific siRNA (Santa Cruz Biotech, 

Dallas, TX) mediated gene knock-down of STAT-3 (sc-29493) and cJun (sc-29223). The 

knockdown efficiency was measured by qPCR. All experiments were performed in 

triplicates.

Total protein extraction and Western blot analysis

Total proteins were extracted from cells with lysis buffer (50mM HEPES [pH 7.6], 150mM 

NaCl, 1% Triton X-100, 30mM Na4P2O7, 10% glycerol, 1mM benzamidine, 1mM DTT, 

10µg of leupeptin/ml, 1mM phenylmethylsulfonyl fluoride 50mM NaF, 1mM sodium 

orthovandate, 10mM sodium pyrophosphate decahydrate, 10mM β-glycerophosphate 

(Sigma Aldrich, MO) (Tiriveedhi et al., 2012a). After cell lysis, the supernatant was 

collected and run at 15,000 × g for 15min at 4°C.

Nuclear Protein extraction

Nuclear proteins were extracted from HepG2 cells with initial resuspension in Buffer 1 with 

protease and phosphatase inhibitors (100mM HEPES, 5mM KCl, 0.5mM MgCl2, 0.1mM 

EDTA, 1mM DTT, 10µg/mL of aprotinin A, 10µg/mL of leupeptin, 1 mM PMSF, 50mM 
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NaF, 1mM sodium orthovandate, 10mM sodium pyrophosphate decahydrate, 10mM β-

glycerophosphate) and later resuspended in equivolume mix of Buffer 1 and Buffer 2 

(12.25mL of Buffer 1 + 250µL NP-40) to extract the cytosolic proteins from the supernatant. 

The resultant pellet of cell lysates were centrifuged at 12,000 × g for 1min at 4°C, and the 

remaining nuclear material were solubilized in Buffer 3 (250mM HEPES, 350mM NaCl, 

10% sucrose, 1mM EDTA, 1mM DTT, 10µg/mL of aprotinin A, 10µg mL of leupeptin, 

1mM PMSF) (Tiriveedhi et al., 2012a).

Protein concentration was determined with a Bradford assay kit from Bio-Rad 

(Philadelphia.PA). Total proteins were separated on a 4–12% sodium dodecyl sulfate-

polyacrylamide gradient gel and electrophoretically transferred onto a nitrocellulose 

membrane. The membranes were blocked overnight at 4°C in Tris-buffered saline with 

0.05% Tween 20 (5% nonfat milk in 10mM Tris-HCl-100mM NaCl-0. 1% Tween 20, pH 

7.4). The membranes were incubated first with Abs specific for total and phosphorylated 

forms at room temperature with primary Abs diluted 1 in 1,000 in blocking buffer for 2hrs, 

and then with a horseradish peroxide-conjugated secondary IgG mAb diluted 1 in 5,000 for 

1hr. All primary and secondary Abs were obtained from Santa Cruz Biotech (Dallas, TX). 

The following specific primary antibodies to periostin (sc-67233), STAT-3 (sc-482), c-Jun 

(sc-1694), and Actin (sc-10731) were utilized. Phosphorylated forms were probed with 

phospho-specific primary antibodies: Ser-727-p-STAT-3 (sc-21876) Thr-183/Tyr185/c-Jun 

(sc-293136), respectively. The membrane was developed using the chemiluminescence kit 

(Millipore) and analyzed on using Bio-Rad Universal Hood II (Hercules, CA). 

Morphometric analysis was done using the software provided by the company.

mRNA expression analysis

Expression profiles of intracellular signalling genes in the HepG2 cells were analyzed using 

the FAM-labeled RT-PCR primers for Periostin (Hs01566748_m1), c-Jun 

(Hs99999141_s1), Stat-3 (Hs01051722_s1), GADPH (Hs402869), Actin (Hs4333762T), 

and Type I collagen (Hs01103892_g1) obtained from Applied Biosystems/Life 

Technologies (Grand Island, NY) as per the manufacturer’s recommendation. Briefly, total 

RNA was extracted from 106 cells using TRIzol reagent (Sigma–Aldrich, St Louis, MO) 

(Tiriveedhi et al., 2012b). RNA samples were quantified by absorbance at 260nm. The RNA 

was reverse-transcribed and RT-PCR (real time PCR) was performed in a final reaction 

volume of 50µL using iCycler 480 Probes Master (Roche Diagnostics, Indianapolis, IN). 

Each sample was analyzed in triplicate. Cycling conditions consisted of an initial 

denaturation of 95°C for 15min, followed by 40 cycles of 95°C for 30s, followed by 61°C 

for 1min.

Immunofluorescence microscopy

For staining of periostin, 50,000 HEPG2 cells were grown on coverslips in 24-well plates 

(Sarma et al., 2014). Cells were fixed with 4% paraformaldehyde and permeabilized with 

0.1% Triton X-100. 2% normal goat serum in DPBS (Dulbecco’s phosphate-buffered saline, 

Life Technologies, Grand Island, NY) with 1% BSA, 0.1% Tween 20 was used for blocking 

and washing. The specific primary antibodies and corresponding PE-conjugated 

immunofluorescence antibodies (eBioscience, SanDiego, CA) were used. The images were 
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captured using an Eclipse 80i fluorescence microscope (Nikon, NY) and processed using 

Metamorph version 6.3r2 software (Molecular Devices, CA).

Plasmids and siRNA constructs

For the reporter constructs, the periostin promoter regions (−4000 to +50 bp) were amplified 

from human genomic DNA (Zyagen, CA) by PCR using iProof High-Fidelity DNA 

Polymerase (Bio-Rad, CA). The PCR products were subcloned into the pGL4.11 vector 

(Promega, WI) upstream of a luciferase gene using the KpnI/EcoRV restriction sites. 

Computational analysis to identify promoter-bound transcription factors was done using the 

Transcription Element Search System (TESS) (http://www.cbil.upenn.edu/cgi-bin/tess/tess).

Luciferase reporter assay

HepG2 cells (1 × 105) were transfected in 24-well plates with 1 µg pGL4.11 luciferase 

reporter vector driven by the periostin promoters, or with 2 µg control vector (Sarma et al., 

2014). For transfection of HEPG2 cells (ATCC), 0.2×105 cells were seeded into each well 

of a 24 well plate and grown for 24–48 hours. On the day of transfection, medium was 

changed and 500 ng of DNA was transfected using Lipofectamine™ LTX and Plus Reagent 

(Invitrogen, NY). For siRNA delivery 0.1×105 cells were grown in each well of a 24 well 

plate for 24–48 hours in antibiotic free medium and 80 pico moles of siRNA were 

transfected using Lipofectamine™ RNAiMAX (Invitrogen, NY). Cells were harvested 48 

hours post transfection and efficiency was measured by qPCR, immunostaining and western 

blot.

Chromatin Immunoprecipitation

Chromatin immunoprecipitation (ChIP) was carried out with ChIP-IT Express (Active 

Motif, CA) according to the manufacturer's instructions (Sarma et al., 2014). One 

microgram of Abs for control IgG, c-Jun, or STAT3, was used to immunoprecipitate DNA-

protein complexes. CCL2 promoter regions were amplified using PCR and resolved on 2% 

agarose gels. The images were acquired with the Chemidoc XRS System (Bio-Rad).

Co-immunoprecipitation

For cJun and STAT-3 immunoprecipitation HepG2 cells were washed with cold DPBS, and 

lysed for 30 min on ice with 0.5 mL of lysis buffer (10 mM Tris-HCl pH 7.5, 0.4 M NaCl, 

1% NP-40, 0.4% Triton X-100, 0.2% sodium deoxycholate, 1 mM EDTA, protease 

inhibitors (Roche), 1 mM PMSF). To the lysis buffer 0.5 mL of dilution buffer (10 mM Tris-

HCl pH 7.5, 1 mM EDTA, protease inhibitors, 1 mM PMSF) was added, followed by 

centrifugation at 17,000 × g for 30 min. The supernatant was transferred and 1 µg normal 

mouse IgG or mouse anti-cJun or mouse anti-STAT-3 were added. After overnight 

incubation at 4°C, 30 µL Protein G beads were added to lysates and incubated for 2 hours. 

Beads were washed with 700 µL of wash buffer (10 mM Tris-HCl pH 7.5, 0.2 M NaCl, 

0.5% NP-40, 0.2% Triton X-100, 0.1% sodium deoxycholate, 1 mM EDTA, 1× protease 

inhibitors, 1 mM PMSF) five times, 3 min each time followed by centrifugation at 1,800 × g 

for 3 min at 4°C. Beads were then washed with cold DPBS and bound proteins were eluted 

by boiling with 30 µL of 2× SDS buffer (0.1 M Tris-HCl pH 6.8, 3.5% SDS, 10% Glycerol, 
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2 mM DTT, 0.004% bromophenol blue) for 10 min. Proteins were subjected to SDS-PAGE 

(4–12% gel) and immunoblotting. cJun or STAT-3 were detected with a rabbit anti-cJun or a 

rabbit anti-STAT-3 respectively.

Enzyme-linked immunoassay (ELISA)

The secretory extracellular periostin in the cell supernatant was quantitatied by ELISA. 

Periostin ELISA was performed as per the manufacturer’s protocol (BioVision Inc, Milpitas, 

CA). Given the limitation of the detection, the supernatant was diluted 1:1000 and quantified 

with a standard curve using the manufacturer provided standards. Detection at 450 nm was 

performed using EMax Plus spectrophotometer and data analysis was carried out using 

software provided by the manufacturer (Molecular Devices, Sunyvale, CA).

Collagen Assay

Total soluble collagen content in cell lysates was measured using Sircol soluble collagen 

assays (CRLS1000) as described in the manufacturer’s protocol (Accurate Chemical ad 

Scientific Corp, Westbury, NY) (Sidhu et al., 2010). Cells were prepared by washing with 

cold PBS solution, treated with 0.5 M acetic acid, freeze/thawed, and digested with pepsin 

overnight at 4 °C. Samples were centrifuged to remove insoluble debris then incubated with 

Sircol dye reagent for 30 min at room temperature on a shaker. Samples then spun to pack 

the insoluble collagen–dye complex and excess liquid decanted off. One milliliter of alkali 

reagent was then added and mixed to dissolve bound dye and samples were assayed at 540 

nm on a EMax Plus spectrophotometer and data analysis was carried out using software 

provided by the manufacturer (Molecular Devices, Sunyvale, CA). Collagen standards were 

used as controls.

Statistical analysis

Data are expressed as mean ± SEM from four independent studies. Statistical differences 

between means were analyzed using a paired or unpaired Student’s t test. A p-value of less 

than 0.05 was considered significant. All data analysis was obtained using Origin 7 software 

(Origin Labs, Northampton, MA) or GraphPad5 (Graph Pad Software, LaJolla, CA).

RESULTS

Increased expression of periostin upon activation of Hep-G2 cells with TNFα and IL-17

Studies in the literature have reported the role of TNFα and IL-17 in hepatic fibrosis. As 

periostin is a key pro-fibrotic signal molecule and biomarker, we performed experiments to 

determine the role of these pro-inflammatory cytokines in the expression of the periostin 

protein. We have treated the HepG2 cells, a perpetual hepato carcinoma cell line, with 50 

ng/mL of either TNFα, or IL-17, or a combination of both cytokines. As shown in figure 

1A, intracellular immunohistochemical staining of HepG2 cells for periostin demonstrated 

an increased expression of the protein following co-treatment with both TNFα and IL-17. 

This is further verified by western blot analysis (figure 1B). Quantitative mRNA analysis of 

the periostin (figure 1C) demonstrated that under basal conditions there was minimal to no 

expression of periostin (1.0 ± 0.2 fold), but following treatment with either TNFα or IL-17 

alone there was a significant elevation of periostin mRNA expression (3.5 ± 1.1 fold and 4.4 
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± 0.9 fold, respectively p<0.05). However, a co-treatment of both TNFα and IL-17 

demonstrated a 13.3±3.8 fold increased expression (p<0.05) over the basal conditions. 

Importantly, treatment with anti-inflammatory cytokine IL-10 demonstrated no enhanced 

expression of periostin (0.5 ± 0.3 fold, p=0.83) over basal conditions. Further dose-

dependent studies were performed using various concentrations (1 to 1000 ng/mL) of TNFα 

and Il-17. As shown in figure 1D and E, individual treatment with these pro-inflammatory 

cytokines only induced a maximum of 3.5 fold enhanced expression even at 1000 ng/mL 

concentration, as against 13.3 fold expression with co-treatment (50 ng/mL of TNFα+50 

ng/mL of IL-17). Thus we demonstrate that co-treatment with TNFα and IL-17 caused 

approximately a 4 fold increase above the individual cytokine treatment with either TNFα or 

IL-17. It is important to note in dose response curves (figure 1D ad E) that individual 

treatment with 50 ng/mL TNFα or IL-17 lead to almost (>90%) saturation kinetics for that 

specific cytokine. These data indicate that TNFα and IL-17 exert a synergistic effect. 

Furthermore, as the synergistic effect was shown to be higher than the individual saturation 

effect, this strongly suggests a possibility of two different pro-fibrotic signaling mechanisms 

induced by these two cytokines.

Specific Modulation of periostin expression by cJun and STAT3

Based on our previous studies (figure 1) we performed experiments to determine the 

transcription factors to specifically delineate the pro-fibrotic signaling events mediated by 

TNFα and IL-17. Towards this, we have initially analyzed various transcription factors by 

quantitative RT-PCR and found that cJun and STAT-3 demonstrated significantly enhanced 

expression. The other transcription factors which we tested and did not induce a significant 

change under our current experimental conditions were AP-1, p38, STAT-1, STAT-2, 

STAT-5, Akt, mTOR. Western blot (and phosphoblot) studies (figure 2A) following 

treatment with 50 ng/mL of TNFα on Hep G2 cells for 30 minutes demonstrated is an 

enhanced expression and phosphorylation of cJun while similar dose and conditions with 

IL-17 induced an enhanced expression and phosphorylation of STAT-3. However, co-

treatment with TNF and IL-17 demonstrated expression and phosphorylation of both cJun 

and STAT-3. Quantitative analysis by qRT-PCR demonstrated that there was a 4.4 fold 

upregulation of total cJun (figure 2B) following treatment with TNFα, which did not 

increase further upon co-treatment with both TNFα and IL-17. Similarly, there was a 3.7 

fold upregulation in total STAT-3 (figure 2C) following treatment with IL-17, which did not 

increase further change upon co-treatment with both TNFα and IL-17. These data support 

our previous assertion that TNFα and IL-17 potentially induce periostin expression through 

two different signaling factors.

To confirm that TNFα and IL-17 induce separate pro-fibrotic signaling we performed 

siRNA knockdown experiments specific for cJun and STAT-3. As shown in figure 2D, 

siRNA knockdown of cJun and STAT-3, individually, following co-treatment with TNFα 

and IL-17 demonstrated reduced intracellular staining for periostin. As expected, combined 

knock-down of both cJun and STAT-3 completely abolished the periostin expression. This is 

further verified by western blot analysis (figure 2E). Quantitative mRNA analysis of the 

periostin (figure 2F) demonstrated that cJun knock-down reduced the periostin expression to 

5.1± 1.8 fold, while STAT-3 knock-down reduced the periostin expression to 4.6± 1.5 fold 
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in previously TNFα and IL-17 co-treated HepG2 cells. As noted earlier in figure 2F, TNFα 

and IL-17 co-treatment induced periostin expression (13.3±2.8 fold over basal untreated 

levels). Taken together these data confirm that TNFα and IL-17 induce pro-fibrotic 

signaling molecule, periostin, in two apparently different signaling mechanisms.

Identification of putative DNA binding transcription factors in the periostin promoter 
regions

To determine the role of TNFα and IL-17 in periostin expression, the luciferase reporter 

construct (figure 3A) containing the −4,000-bp region of the human periostin gene promoter 

was transfected into HepG2 cells and treated with TNFα or IL-17 or both, and luciferase 

activity was measured. An increase in the periostin reporter activity was observed in TNFα 

(6.5 fold, figure 3B) and IL-17 (7.8 fold, figure 3C) treated cells compared to the untreated 

cells. Further co-treatment with both TNF and IL-17 demonstrated a 26.3 fold increase 

(figure 3D) in Luciferase activity compared to the untreated cells. These data were in line 

with our earlier data (figure 1–3) supporting our contention that TNF and IL-17 work 

synergistically to ehance periostin expression. Also, this strongly suggests that TNF and 

IL-17 activates periostin through modulation of upstream transcription factors cJun and 

STAT-3.

To further specifically identify the putative DNA binding sequences for the transcription 

factors in the periostin promoter regions, a computational analysis of −4,000 bp of the 

promoter region was performed using TESS. This bioinformatics analysis identified 12 

putative DNA binding sites for for c-Jun (TGAGTCA; TGAC/GTCA), and one site for 

STAT3 (TTCTTTTGAA) at the bp −2657 position (figure 3A) with putative cJun and 

STAT-3 binding sequences close proximity to each other, suggesting that these two 

transcription factors may be part of a transcriptional-regulatory complex that mediates 

periostin expression. To demonstrate that these transcription factors regulate periostin 

expression, HepG2 cells were transfected with the truncated periostin reporter construct and 

treated with TNFα, or IL-17 or both (figure 3B–D). As shown in figure 3B, following 

treatment with TNFα various truncated regions showed significant decrease (>40% loss of 

activity) in reporter activity compared to the non-truncated periostin reporter activity. Of 

note, the mutation at −3857 (*TGAGTCA) resulted in highest (>80%) loss of activity. Thus 

strongly suggesting that this putative sequence region interacts with the cJun following 

TNFα treatment to enhance periostin expression. Similarly, following treatment with IL-17 

among various truncated regions the mutation at −2657 (*TTCTTTTGAA) resulted in 

highest (>80%) loss of activity compared to the non-truncated periostin reporter activity. As 

expected, these two mutants demonstrated highest loss of activity following co-treatment 

with TNFα and IL-17 (figure 3D), this strongly suggesting a cooperation between the 

factors in regulating periostin expression.

To determine whether cJun and STAT3 bind to adjacent DNA binding sites on the periostin 

promoter to form a transcriptional-activation DNA-protein complexes, TNFα, IL-17 or both, 

treated HepG2 cells were immunoprecipitated with anti-cJun, or anti-STAT3, or control 

IgGs. The chromatin immunoprecipitation (ChIP) and PCR using primers specific for 

periostin promoter regions (figure 3E, black bars) demonstrated that cJun, and STAT3 bind 
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to the periostin promoter (figure 3E). cJun binds strongly to the −4000 to −3000 bp region 

and STAT-3 binds to −3000 to −2000 bp region of the PCR amplicon. The DNA binding 

pattern of cJun and STAT-3 strongly correlates with the locations of the consensus binding 

sites on the periostin promoter determined by Luciferase reporter activity (figure 3B–D). 

ChIP with the control IgGs did not enrich periostin promoter regions, demonstrating the 

specificity for these transcription factors. No binding was observed in PCRs carried out with 

primers specific for the 300 to+50 bp region of the ACTIN (ACT1) promoter that lacks these 

binding sites (figure 3E). The protein-protein complexes were immunoprecipitated with anti-

cJun or anti-STAT-3 or isotype control IgGs and western blot analysis was performed to 

probe for the other protein (figure 3F, upper panel: probe with c-Jun antibody and protein 

complex pulled down with Stat-3 antibody; lower panel probe with Stat-3 antibody and 

protein complex pulled down with c-Jun antibody) supported our contention from the 

chromatin immunoprecipitation findings that cJun and STAT-3 were complexed together on 

the periostin promoter. Taken together, these data clearly demonstrate that the transcription 

factors cJun and STAT-3 synergistically interact and are part of a larger transcription-

regulatory complex enhancing the periostin gene expression.

Type I Collagen-I expression following activation of fibroblasts with periostin supernatant

Both TNFα and IL-17 have been implicated in collagen deposition in liver fibrosis. Periostin 

being a secretory protein should be secreted into the supernatant by the HepG2 cells 

following cytokine stimulation. We therefore determined the direct periostin mediated 

fibrotic effect of TNF and IL-17 by treating the fibroblasts with supernatants taken from the 

HepG2 cells treated with TNFα, or IL-17, or both. The HepG2 cells were first stimulated by 

either TNFα, or IL-17, or both for 48 hours, following which the cells were washed and the 

fresh media with not stimulating cytokines was added. The supernatant from this replaced 

media was obtained after 24 hours and utilized for periostin quantization and fibroblast 

stimulation. As shown figure 4A, following treatment of HepG2 cells with TNFα and IL-17 

there was increased in the secretion of the periostin into the supernatant (4.3 ± 0.52 µg/mL), 

as compared with individual TNFα (1.2 ± 0.26 µg/mL) or IL-17 (1.3 ± 0.31 µg/mL) 

stimulation. Normal neonatal human fibroblasts (figure 4B) and normal adult human dermal 

fibroblasts (figure 4C) were treated with supernatant for untreated HepG2 cells showed 

basal level of type I collagen expression (1.0±0.3 fold). The normal neonatal human 

fibroblasts (figure 4D) treated with supernatant from HepG2 cells treated with TNFα 

(2.4±0.5 fold, p<0.05) and IL-17 (3.3±0.4 fold, p<0.05) increase in collagen type I 

expression. As expected, the fibroblasts treated with supernatant from HepG2 cells co-

treated with TNFα and IL-17 (9.1±1.8 fold, p<0.01) increase in collagen type I expression. 

Sircol color assay for the soluble collagen expression from normal neonatal human 

fibroblasts (figure 4E) demonstrated that treatment of these cells with supernatant from 

HepG2 cells induced basal levels of collagen expression (2.7±0.6 µg/mL) while supernatant 

from HepG2 cells treated with TNFα (5.2±0.9 µg/mL, p<0.05), IL-17 (5.9±1.1 µg/mL, 

p<0.05), and TNFα and IL-17 (10.1±2.3 µg/mL, p<0.01) induced enhanced collagen 

expression. Similarly normal human adult dermal fibroblasts (figure 4F) treated with 

supernatant from HepG2 cells treated with TNFα (1.7±0.4 fold, p<0.05) and IL-17 (2.1±0.5 

fold, p<0.05) increase in collagen type I expression. As expected, the normal human adult 

dermal fibroblasts treated with supernatant from HepG2 cells co-treated with TNFα and 
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IL-17 (6.1±1.1 fold, p<0.01) increase in collagen type I expression. Sircol color assay for 

the soluble collagen expression from normal human adult dermal fibroblasts (figure 4G) 

demonstrated that treatment of these cells with supernatant from HepG2 cells induced basal 

levels of collagen expression (0.6±0.2 µg/mL) while supernatant from HepG2 cells treated 

with TNFα (2.8±0.6 µg/mL, p<0.05), IL-17 (3.9±0.7 µg/mL, p<0.05), and TNFα and IL-17 

(7.8±1.9 µg/mL, p<0.01) induced enhanced collagen expression. These findings from two 

different fibroblast cell lines confirm that TNFα and IL-17 induce periostin mediated 

fibrosis which might potentially explain for the inflammatory cytokine mediated liver 

fibrosis in cirrhotic patients.

Discussion

Liver fibrosis and cirrhosis represent the final common pathway of all chronic liver diseases 

(Xu et al., 2012). It results in liver failure and portal hypertension and is associated with an 

increased risk of liver cancer (Gines et al., 2004). Advanced hepatic fibrosis is characterized 

by an accumulation of type I and III collagens (Iredale, 2007). Further, models of liver 

fibrosis, which include cell culture, animal and explanted human tissue, have demonstrated 

that live fibrosis is a highly dynamic example of solid organ wound healing (Bataller and 

Brenner, 2005). Currently the only effective available treatment for cirrhosis is liver 

transplantation (Murray and Carithers, 2005). However, shortages of organs and the 

presence of concurrent diseases in the donors limit the availability of this treatment to all 

patients (Murray and Carithers, 2005). Clearly, development of novel anti-fibrotic therapies 

are needed to improve the morbidity and mortality of these patients (Cohen-Naftaly and 

Friedman, 2011). Increased understanding of the pathogenesis of liver fibrosis in past two 

decades lead to the identification of the main cellular effectors of liver fibrosis, the key 

cytokines regulating the fibrotic process, and the determinants of ECM turnover, 

highlighting an array of potential therapeutic approaches that could be developed in the near 

future (Cohen-Naftaly and Friedman, 2011).

Evidence on the role of periostin in liver diseases is limited. To date, the majority of reports 

on periostin in liver have ben predominantly from liver tumors and bile duct carcinomas 

(Riener et al., 2010). However, periostin has been extensively studied in various 

inflammatory lung diseases. Takayama et al (Takayama et al., 2006) using a murine model 

for bronchial asthma have demonstrated that periostin plays a key role in alveolar sup-

epithelial fibrosis under stimulation of pro-inflammatory cytokines IL-4 and IL-13. Later 

studies by Fahy and colleagues (Woodruff et al., 2007; Woodruff et al., 2009) have 

confirmed the upregulation of periostin in asthma patients. The pathological role of periostin 

and the precise molecular mechanisms leading to inflammation induced upregulation of 

periostin still remain unknown. In line with these published data, our current studies 

demonstrate that pro-inflammatory cytokines TNFα and IL-17 work synergistically towards 

enhanced expression of periostin (figure 1) in HepG2 cells, thus suggesting a potential role 

of periostin in liver inflammatory injury. Furthermore, it of interest to note that, not just 

limited to liver, the synergistic effect of TNFα and IL-17 have also been noted in other 

inflammatory diseases such as psoriasis leading to altered keratinocyte differentiation 

(Chiricozzi et al., 2011).
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Inflammatory cytokines, TNFα and IL-17, have been implicated in several fibrotic and liver 

diseases (Osawa et al., 2013; Tang et al., 2011). Therefore, in our current report we studied 

the molecular events leading to the upregulation of periostin in liver cells following 

stimulation with pro-inflammatory cytokines TNF and IL-17. Murine TNFα receptor knock 

out models have demonstrated that TNFα stimulated collagen synthesis, increased 

expression of TIMP-1, and decreased activity of MMP-2 (Theiss et al., 2005; Verrecchia et 

al., 2002). Similar to TNFα, Meng et al. (Meng et al., 2012), using a murine liver fibrosis 

model have demonstrated that hepatic stellate cells activation by IL-17 induces collagen 

deposition and fibrosis using a STAT-3 signaling mechanism. In our current studies we 

demonstrated that TNFα and IL-17 exert synergistic effect towards enhanced expression of 

periostin. TNFα induced expression of periostin through the transcription factor c-Jun, while 

IL-17 induced expression through STAT-3 (figure 3). Both these transcription factors act on 

the periostin promoter forming a transcription regulator complex, and there by inducing 

periostin expression (Figure 4). We have previously demonstrated that STAT-3 plays a 

criticial role in IL-6 induced CCL2 expression in hepatitis patients developing cirrhosis and 

acute liver failure (Sarma et al., 2014). In line with our current studies, Kluwe et al (Kluwe 

et al., 2010) have previously demonstrated that in carbon tetrachloride induced murine liver 

fibrosis model, inhibition of c-Jun inhibits the development and progression of hepatic 

fibrosis. Further, it is of interest to note that patients with chronic hepatitis C who displayed 

decreased fibrosis in response to the angiotensin receptor type 1 blocker losartan showed 

decreased cJun expression and phosphorylation (Kluwe et al., 2010). The role of IL-17 

mediated collagen deposition in a matrix metaloproteinase (MMP) mediated manner was 

also established in other chronic inflammatory diseases such as rheumatoid arthritis (Koshy 

et al., 2002). The c-Jun/JNK pathway is known to induce fibrosis in kidney (Ma et al., 2007) 

and lung diseases (Tiriveedhi et al., 2012a). Previous studies in our lung transplant models 

demonstrated that cJun activation by hypoxia inducble factor (HIF1α) potentially induced 

VEGF upegulation with potential fibrotic effect (Tiriveedhi et al., 2012a). Prele et al have 

demonstrated that STAT-3 is the key central factor in inducing idiopathic pulmonary 

disease, a fibrotic lung disease (Prele et al., 2012). Transcription factor STAT-3 is involved 

in JAK/STAT signaling pathway. Mice with STAT-3-deficient hepatocytes exhibit defects 

in their ability to induce acute phase response genes such as, serum amyloid protein, 

fibrinogen, haptoglobin, serum amyloid A protein, and hemopexin in response to 

inflammatory cytokine activation (Alonzi et al., 2001). This body of evidence along with our 

current studies strongly suggest the potential application of periostin, c-Jun, and STAT-3 as 

potential fibrotic biomarkers with potential anti-fibrotic drug target application. Our current 

study was limited with the high concentration of cytokines needed for cell culture studies. 

Therefore further studies in animal models and human diseases studies are warranted.

Conclusion

Currently, liver biopsy is the only clinical diagnostic method for diagnosis of liver fibrosis 

(Bataller and Brenner, 2005). Although this technique has the advantage of staging the liver 

fibrosis, characterizing the parenchymal architecture, a number of inherent problems also 

limit the accuracy of liver biopsy in determining fibrosis stage (Adams, 2011). It has been 

estimated a standard liver biopsy represents 1/50 000th of the liver, and thus sampling error 
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is a significant problem (Adams, 2011). The mere invasive nature of this procedure, limits 

the use only on patients with high degree of suspicion. A development of less-invasive 

fibrotic biomarker detection strategy would be a futuristic diagnostic strategy. Using indirect 

liver enzyme markers such as aminotransferases would not be a good marker for fibrotic 

activity (Rosenberg et al., 2004). Currently, inflammatory cytokine levels (TNFα, TGFβ etc) 

are the employed as anecdotal markers of fibrotic activity (Rosenberg et al., 2004). Periostin 

being a secretory protein could be a potential biomarker for liver fibrosis. Further clinical 

research to ascertain the sensitivity and specificity of periostin as a novel fibrotic biomarker 

could be immensely beneficial in the early diagnosis of patients potentially developing liver 

fibrosis.
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HepG2 Liver hepatocellular carcinoma cell line
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Research Highlights

• TNFα, and IL-17 have been implicated in the pathogenesis of liver fibrosis.

• TNFα through induction of cJun and IL-17 through induction of STAT-3 exert a 

synergistic effect on the expression of periostin.

• Periostin induces collagen deposition.

• Therefore, periostin could be used a novel biomarker for early liver fibrosis.
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Figure 1. 
Increased periostin expression in HepG2 cells following stimulation with TNFα and IL-17. 

(A) Immunostaining of HepG2 cells with periostin following treatment with with TNFα (50 

ng/mL), or IL-17 (50 ng/mL) or both (TNFα-50 ng/mL and IL-17–50 ng/mL). Periostin 

probed with rabbit anti-human primary antibody at 1: 100 and later probed by PE-

conjugated oat anti-rabbit secondary antibody at 1:200. (B) Western blot analysis of 

perisotin expression in the hepG2 cells. The cell lystate probed by appropriate primary and 

secondary antibody. The representative periostin protein band at 93 kDa is shown. Anti-
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inflammatory cytokine IL-10 was utilized as negative control at two concentrations 50 and 

100 (2×) ng/mL. (C) Periostin mRNA expression analyzed by quantitative RT-PCR. 

Quantitation done by ΔΔcT method normalized for GADPH expression. (D and E) Dose 

dependent changes in the mRNA expression of periostin in the HepG2 cells following 

stimulation by TNFα (0–1000 ng/mL) (D) and IL-17 TNFα (0–1000 ng/mL) (E). All data 

represented as mean values ± SEM from four independent experiments.
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Figure 2. 
Induction of transcription factors cJun and STAT-3 in HepG2 cells following stimulation 

with TNFα and IL-17, respectively. (A) Western blot analysis was performed to determine 

the protein level expression of cJun (43 kDa), p-cJun (43 kDa), STAT-3 (86 kDa), p-

STAT-3 (86 kDa), STAT-6 (116 kDa), and Actin (43 kDa) for both total and active 

phosphorylated forms analyzed after 30 min stimulation with TNFα, or IL-17 or both; (B 

and C) quantitative mRNA expression of cJun (B), and STAT-3 (C) by qRT-PCR analyzed 

after 30 min stimulation with TNFα, or IL-17 or both. Quantitation done by ΔΔcT method 
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normalized for GADPH expression. (D) Immunostaining of HepG2 cells with periostin 

following treatment with with both TNFα and IL-17, and specific siRNA knock down of 

cJun and STAT-3. (E) Western blot analysis of perisotin expression in the hepG2 cells 

following stimulation with TNFα and IL-17 along with cJun and STAT-3 knock-down by 

specific siRNA. Scramble siRNA usd as negative control. (F) Periostin mRNA expression 

analyzed by quantitative RT-PCR in the hepG2 cells following stimulation with TNFα and 

IL-17 along with cJun and STAT-3 knock-down by specific siRNA. Quantitation done by 

ΔΔcT method normalized for GADPH expression. All data represented as mean values ± 

SEM from four independent experiments.
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Figure 3. 
cJun and STAT-3 bind to periostin promoter and activate transcription. (A) Schematic of the 

periostin gene promoter cloned in the luciferase reporter. Computational analysis of −4000 

bp upstream of the open reading frame using the Transcription Element Search System 

(TESS). The lines in the schematic at −3857 and −2657 represent the predicted consensus 

binding sites in the DNA for transcription factors cJun and STAT-3, respectively. (B–D) 

HepG2 were transfected with luciferase reporters driven by deletion constructs of periostin 

promoter (−4000 to+50 bp; −4000 to −1000 bp; −4000 to −2000 bp; −4000 to −3000 bp; 
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−2000 to +50 bp; mutation *Δ2657 bp/−4000 to +50 bp; and mutation *Δ3857 bp/−4000 to 

+50 bp) construct and stimulated with TNFα (B), or, IL-17 (C), or both (D). Firefly 

luciferase activity was measured 48 hours after transfection and normalized to a Renilla 

luciferase internal control. The numbers represent fold-change over the control vector 

(average of three independent experiments); error bars represent S.D. (E) Periostin promoter 

showing binding sites for cJun and STAT-3. The black horizontal bars represent regions 

amplified by the PCR primers. Chromatin was immunoprecipitated with anti-cJun or anti-

STAT-3 or isotype control IgG from HepG2 cells following stimulation with both TNFα 

and IL-17. Segments of the periostin promoter were amplified by PCR. The first three lanes 

show immunoprecipitated with chromatin (ChIP) and the fourth lane show input chromatin 

(Input). ACTIN promoter amplification is shown as the negative control (F) Co-

Immunoprecitation of protein-complex extracted by anti-STAT-3 and anti-cJun and Western 

blot analysis to probe with the opposite antibody (upper panel: probe with c-Jun antibody 

and protein complex pulled down with Stat-3 antibody; lower panel probe with Stat-3 

antibody and protein complex pulled down with c-Jun antibody).
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Figure 4. 
Induction of Collagen expression following activation of fibroblasts with periostin rich 

supernatant. (A) Quantitative ELISA analysis of the periostin secreted into the supernatant 

by HepG2 cells following stimulation with TNFα, or IL-17, or both. (B) Western blot 

analysis of the Type-I Collagen expressed by the normal neonatal human fibroblasts 

following treatment with supernatant from HepG2 cells stimulated with TNFα, or IL-17 or 

both. (C) Western blot analysis of the Type-I Collagen expressed by the normal adult human 

dermal fibroblasts following treatment with supernatant from HepG2 cells stimulated with 

TNFα, or IL-17 or both. (D) Densitometric analysis to determine quantitative expression of 

Collagen-I in normal neonatal human fibroblasts (under various conditions mentioned in B). 

(E) Sircol assay to demonstrate the expression of soluble collagen by fibroblasts in normal 

neonatal human fibroblasts (under various conditions mentioned in B). (F) Densitometric 

analysis to determine quantitative expression of Collagen-I in normal adult human dermal 

fibroblasts (under various conditions mentioned in C). (G) Sircol assay to demonstrate the 

expression of soluble collagen by fibroblasts in normal adult human dermal fibroblasts 
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(under various conditions mentioned in C). All data represented as mean values ± SEM from 

four independent experiments.
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