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Abstract. In this paper we propose a new statement of the spatial increasing resolution
problem of MODIS-like multi-spectral images via their fusion with Lansat-like imagery
at higher resolution. We give a precise definition of the solution to the indicated problem,
postulate assumptions that we impose at the initial data, establish existence and uniqueness
result, and derive the corresponding necessary optimality conditions. For illustration, we
supply the proposed approach by results of numerical simulations with real-life satellite
images.
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1. Introduction

Following in some aspects the paper [5], we propose a new variational approach
to the spatial increasing resolution of multi spectral MODIS-like images via their
fusion with Lansat-like imagery at higher resolution. Our approach is based on the
variational model in Sobolev-Orlicz space with a non-standard growth condition
of the objective functional and on the assumption that, to a large extent, the
image topology in the each spectral channel is contained in the topographic map
of its spectral energy. We discuss the well foundedness of the above approach, the
consistency of the corresponding variational problem, and show that this problem
admits a unique solution. We also derive some optimality conditions and supply
our approach by results of numerical simulations with the real satellite images.
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2. Preliminaries

We begin with some notation. Let Ω ⊂ R2 be a bounded open set with a
Lipschitz boundary ∂Ω. Let I : Ω → Rm, with m > 3, be a multispectral image
containing the usual R, G, B channels IR, IG, IB, and arguably some others ones
like the infrared channel INIR, i.e.,

I(x) = [IR(x), IG(x), IB(x), . . . ]t ∈ Rm, ∀x ∈ Ω.

We say that YI : Ω → R is the panchromatic component of the multispectral
image I : Ω → Rm (or in other words YI is the spectral energy coming from the
RGB-channels) if the following representation

YI(x) = αRIR(x) + αGIG(x) + αBIB(x), ∀x ∈ Ω

holds for some weight coefficients αR, αG, αB > 0. In particular, if

αR = 0.299, αG = 0.587, αB = 0.114

then YI can be interpreted as the luma component of I and it represents the
perceptual brightness of the multispectral image I : Ω→ Rm.

For each λ ∈ R, we define the upper level set of the spectral energy YI as
follows

Xλ = {x ∈ Ω : YI(x) > λ} .

Then the spectral energy YI can be recovered from its level sets by the reconstruc-
tion formula

YI(x) = sup {λ : x ∈ Xλ} , ∀x ∈ Ω.

Hereinafter, we will refer to the family of connected components of the upper level
sets of YI as the topographic map of YI .

Let SH ⊂ Ω and SL ⊂ Ω be two sample grids on Ω such that

SH =

{
(xi, yj)

∣∣∣∣ x1 = xH , xi = x1 + ∆H,x(i− 1), i = 1, . . . , Nx,
y1 = yH , yj = y1 + ∆H,y(j − 1), j = 1, . . . , Ny,

}
,

SL =

{
(xi, yj)

∣∣∣∣ x1 = xL, xi = x1 + ∆L,x(i− 1), i = 1, . . . ,Mx,
y1 = yL, yj = y1 + ∆L,y(j − 1), j = 1, . . . ,My,

}
,

where Nx >> Mx and Ny >> My.
Let H : Ω → R3 be a given multispectral (Landsat-like) image which is

sampled at the grid of high resolution SH . We suppose that, in practice, this
image can be identified with an 3-D array

H =


 HR(xi, yj)
HG(xi, yj)
HB(xi, yj)

 , i = 1, . . . , Nx, j = 1, . . . , Ny

 .
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Let L : Ω→ R4 be a given multispectral (MODIS-like) image which is sampled
at the grid of low resolution SL, and it has 4 spectral channels R, G, B, and NIR.
So, we can indentify this image with an 4-D array

L =




LR(xi, yj)
LG(xi, yj)
LB(xi, yj)
LNIR(xi, yj)

 , i = 1, . . . ,Mx, j = 1, . . . ,My

 .

The problem, we are going to consider, can be formally stated as follows:
Using only the data H : SH → R3 and L : SL → R4, we have to increase the
resolution of the four-band image L : SL → R4 via its fusion with the three-band
image H : SH → R3 at higher resolution such that the following properties for
the retrieved high resolution multispectral image I : SH → R4 would be satisfied:

(i) The image I : Ω → R4 we are going to retrieve, should be of bounded
variation, I ∈ BV (Ω;R4).

(ii) The topographic maps for each spectral channel at higher resolution must
have a similar structure to the topographic map of the spectral energy YH
coming from the RGB-channels of H : SH → R3.

(iii) The spectral energies YI and YH should be as close as possible with respect
to the L2(Ω)-norm.

(iv) The sampled values of I : Ω→ R4 on the grid of low resolution SL should be
as close as possible in L2-metric to the multispectral imagery L : SL → R4.

(v) The NIR-channel INIR for the retrieved high resolution multispectral image
I : Ω → R4 should be in the same regression relationship with IR, IG, IB
channels as LNIR with LR, LG, LB, that is, if

LNIR(xi, yj) = γRLR(xi, yj)+γGLG(xi, yj)+γBLB(xi, yj), ∀ (xi, yj) ∈ SL

is a linear regression model which is fitted using the least squares approach,
then

INIR(xi, yj) = γRIR(xi, yj) + γGIG(xi, yj) + γBIB(xi, yj), ∀ (xi, yj) ∈ SH

with the same regression coefficients γR, γG, γB ∈ R.
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3. Auxiliaries

3.1. BV -Space

By BV (Ω) we denote the space of all functions u ∈ L1(Ω) for which their
distributional derivatives are representable by finite Borel measures in Ω, i.e.ˆ

Ω
u
∂φ

∂xi
dx = −

ˆ
Ω
φdDiu, ∀φ ∈ C∞0 (Ω), i = 1, 2

for some R2-valued measure Du = (D1u,D2u) ∈ M2(Ω). It can be shown that
BV (Ω), endowed with the norm

‖u‖BV (Ω) = ‖u‖L1(Ω) + |Du|(Ω)

is a Banach space, where

|Du|(Ω) :=

ˆ
Ω
d|Du|

= sup
{ˆ

Ω
udivϕdx : ϕ ∈ C1

0 (Ω;R2), |ϕ(x)| 6 1 for x ∈ Ω
}

(3.1)

stands for the total variation of u in Ω. It is clear that |Du|(Ω) =
´

Ω |∇u| dx if u
is continuously differentiable in Ω.

The following embedding results for BV -function plays a crucial role for
qualitative analysis of variational problems that we study in this paper.

Proposition 3.1. [4, p.378] Let Ω be an open bounded Lipschitz subset of R2.
Then the embedding BV (Ω;RM ) ↪→ L2(Ω;RM ) is continuous and the embeddings
BV (Ω;RM ) ↪→ Lp(Ω;RM ) are compact for all p such that 1 6 p < 2. Moreover,
there exists a constant Cem > 0 which depends only on Ω and p such that for all
u in BV (Ω;RM ),(ˆ

Ω
|u|p dx

)1/p

6 Cem‖u‖BV (Ω;RM ), ∀ p ∈ [1, 2].

According to the Radon-Nikodym theorem, if u ∈ BV (Ω) then there exists
∇u ∈ L1(Ω;R2) and a measure Dsu singular with respect to the 2-dimensional
Lebesgue measure L2 Ω restricted to Ω, such that Du = ∇uL2 Ω +Dsu.

We recall that if u ∈ BV (Ω), then almost all its level sets {x ∈ Ω : u(x) > λ}
are sets of finite perimeter. Hence, at almost all points of almost all level sets of
u ∈ BV (Ω) we may define a normal vector θ(x). This vector field of normals θ(x)
can be also defined as the Radon-Nikodym derivative of the measure Du with
respect to |Du|, i.e., it formally satisfies the following relations

(θ,Du) = |Du| and |θ| 6 1 a.e. in Ω.

In the sequel, we will refer to the vector field θ as the vector field of unit normals
to the topographic map of a function u. Further information on BV -functions and
their properties can be found in [1, 4].
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Remark 3.1. In practice, at the discrete level, θ(x, y) can be defined by the rule
θ(xi, yj) =

Du(xi,yj)
|Du(xi,yj)| when Du(xi, yj) 6= 0, and θ = 0 when Du(xi, yj) = 0.

However, as was mentioned in [5], a better choice for θ(x, y) would be to compute
it as ξ(t) = DU(t,·)

|DU(t,·)| for some small value of t > 0, where U(t, x, y) is a solution
of the following initial-boundary value problem with 1D-Laplace operator in the
right hand side

∂U

∂t
= div

(
DU

|DU |

)
, t ∈ (0,+∞), (x, y) ∈ Ω, (3.2)

U(0, x, y) = u(x, y), (x, y) ∈ Ω, (3.3)
∂U(0, x, y)

∂ν
= 0, t ∈ (0,+∞), (x, y) ∈ ∂Ω. (3.4)

As a result, for any t > 0, there can be found a vector field

ξ ∈ L∞(Ω;R2) with ‖ξ(t)‖L∞(Ω;R2) 6 1

such that

(ξ(t), U(t, ·)) = |DU(t, ·)| in Ω, ξ(t) · ν = 0 on ∂Ω, (3.5)

and Ut(t, x, y) = div ξ(t, x, y) in the sense of distributions on Ω for a.a. t > 0.
We notice that following this procedure, for small value of t > 0, we do not

distort the geometry of the function u(x, y) in an essential way. Moreover, it can
be shown that this regularization of the vector field θ(x, y) = DU(x,y)

|DU(x,y)| satisfies
condition div θ ∈ L2(Ω).

3.2. On Orlicz Spaces

Let p(·) be a measurable exponent function on Ω such that

1 6 α 6 p(x) 6 β <∞ a.e. in Ω, (3.6)

where α and β are given constants. Let p′(·) = p(·)
p(·)−1 be the corresponding

conjugate exponent. It is clear that

1 6
β

β − 1︸ ︷︷ ︸
β′

6 p′(x) 6
α

α− 1︸ ︷︷ ︸
α′

a.e. in Ω, (3.7)

where β′ and α′ stand for the conjugates of constant exponents. Denote by Lp(·)(Ω)
the set of all measurable functions f(x) on Ω such that

´
Ω |f(x)|p(x) dx <∞. Then

Lp(·)(Ω) is a reflexive separable Banach space with respect to the Luxemburg norm
(see [7, 8] for the details)

‖f‖Lp(·)(Ω) = inf
{
λ > 0 : ρp(λ

−1f) 6 1
}
, (3.8)
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where ρp(f) :=
´

Ω |f(x)|p(x) dx.
It is well-known that Lp(·)(Ω) is reflexive provided α > 1, and its dual is

Lp
′(·)(Ω), that is, any continuous functional F = F (f) on Lp(·)(Ω) has the form

(see [21, Lemma 13.2])

F (f) =

ˆ
Ω
fg dx, with g ∈ Lp′(·)(Ω).

As for the infimum in (3.8), we have the following result.

Proposition 3.2. The infimum in (3.8) is attained if ρp(f) > 0. Moreover,

if λ∗ := ‖f‖Lp(·)(Ω) > 0, then ρp(λ
−1
∗ f) = 1. (3.9)

Taking this result and condition 1 6 α 6 p(x) 6 β into account, we see that

1

λβ∗

ˆ
Ω
|f(x)|p(x) dx 6

ˆ
Ω

∣∣∣∣f(x)

λ∗

∣∣∣∣p(x)

dx 6
1

λα∗

ˆ
Ω
|f(x)|p(x) dx,

1

λβ∗

ˆ
Ω
|f(x)|p(x) dx 6 1 6

1

λα∗

ˆ
Ω
|f(x)|p(x) dx.

provided λ∗ > 1. And we arrive at the reverse inequality if 0 < λ∗ < 1. Hence,
(see [7, 8, 20] for the details)

‖f‖α
Lp(·)(Ω)

6
ˆ

Ω
|f(x)|p(x) dx 6 ‖f‖β

Lp(·)(Ω)
, if ‖f‖Lp(·)(Ω) > 1,

‖f‖β
Lp(·)(Ω)

6
ˆ

Ω
|f(x)|p(x) dx 6 ‖f‖α

Lp(·)(Ω)
, if ‖f‖Lp(·)(Ω) < 1,

(3.10)

and, therefore,

‖f‖α
Lp(·)(Ω)

− 1 6
ˆ

Ω
|f(x)|p(x) dx 6 ‖f‖β

Lp(·)(Ω)
+ 1, ∀ f ∈ Lp(·)(Ω), (3.11)

‖f‖Lp(·)(Ω) =

ˆ
Ω
|f(x)|p(x) dx, if ‖f‖Lp(·)(Ω) = 1. (3.12)

The following estimates are well-known (see, for instance, [7, 8, 20]): if f ∈
Lp(·)(Ω) then

‖f‖Lα(Ω) 6 (1 + |Ω|)1/α ‖f‖Lp(·)(Ω), (3.13)

‖f‖Lp(·)(Ω) 6 (1 + |Ω|)1/β′ ‖f‖Lβ(Ω), β′ =
β

β − 1
, ∀ f ∈ Lβ(Ω). (3.14)

Let
{
fk ∈ Lp(·)(Ω)

}
k∈N be a given sequence, where the exponent p ∈ C(Ω)

satisfies property (3.6). We say that the sequence
{
fk ∈ Lp(·)(Ω)

}
k∈N is bounded

if (see [15, Section 6.2])

lim sup
k→∞

ˆ
Ω
|fk(x)|p(x) dx < +∞. (3.15)
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Definition 3.1. A bounded sequence
{
fk ∈ Lp(·)(Ω)

}
k∈N is weakly convergent in

the Orlicz space Lp(·)(Ω) to a function f ∈ Lp(·)(Ω), if

lim
k→∞

ˆ
Ω
fkϕdx =

ˆ
Ω
fϕ dx, ∀ϕ ∈ C∞0 (R2). (3.16)

For our further analysis, we make use of the following lower semicontinuity
property of the Lp(·)-norm with respect to the weak convergence in Lp(·)(Ω) (we
refer to [21, Lemma 13.3] for details).

Proposition 3.3. If a bounded sequence
{
fk ∈ Lp(·)(Ω)

}
k∈N converges weakly

in Lα(Ω) to f , where α > 1 is defined in (3.6), then f ∈ Lp(·)(Ω), fk ⇀ f in
Lp(·)(Ω), and

lim inf
k→∞

ˆ
Ω
|fk(x)|p(x) dx >

ˆ
Ω
|f(x)|p(x) dx. (3.17)

Remark 3.2. Arguing in a similar manner as in [21, Lemma 13.3] and using the
estimate

lim inf
k→∞

ˆ
Ω

1

pk(x)
|fk(x)|pk(x) dx >

ˆ
Ω
f(x)ϕ(x) dx−

ˆ
Ω

1

p′k(x)
|ϕ(x)|p′(x) dx,

which is valid for any smooth function ϕ, it is easy to show that the lower
semicontinuity property (3.17) can be generalized as follows

lim inf
k→∞

ˆ
Ω

1

p(x)
|fk(x)|p(x) dx >

ˆ
Ω

1

p(x)
|f(x)|p(x) dx. (3.18)

We need the following result that leads to the analog of the Hölder inequality
in Lebesgue spaces with variable exponents (for the details we refer to [7, 8]).

Proposition 3.4. If f ∈ Lp(·)(Ω)N and g ∈ Lp′(·)(Ω)N , then (f, g) ∈ L1(Ω) and
ˆ

Ω
(f, g) dx 6 2‖f‖Lp(·)(Ω)N ‖g‖Lp′(·)(Ω)N . (3.19)

3.3. Sobolev Spaces with Variable Exponent

We recall here the well-known facts concerning the Sobolev spaces with variable
exponent. Let p(·) be a measurable exponent function on Ω such that 1 < α 6
p(x) 6 β <∞ a.e. in Ω, where α and β are given constants. We associate with it
the so-called Sobolev-Orlicz space

W 1,p(·)(Ω) :=

{
y ∈W 1,1(Ω) :

ˆ
Ω

[
|y(x)|p(x) + |∇y(x)|p(x)

]
dx < +∞

}
(3.20)

and equip it with the norm ‖y‖
W

1,p(·)
0 (Ω)

= ‖y‖Lp(·)(Ω) + ‖∇y‖Lp(·)(Ω;R2).



On Satellite Data Fusion 61

It is well-known that, in general, unlike classical Sobolev spaces, smooth
functions are not necessarily dense in W = W

1,p(·)
0 (Ω). Hence, with the given

variable exponent p = p(x) (1 < α 6 p 6 β) there can be associated another
Sobolev space with variable exponent,

H = H1,p(·)(Ω) as the closure of the set C∞(Ω) in W 1,p(·)(Ω)-norm.

Since the identity W = H is not always valid, it makes sense to say that an
exponent p(x) is regular if C∞(Ω) is dense in W 1,p(·)(Ω).

The following result reveals an important property ensuring the regularity of
exponent p(x).

Proposition B.1. Assume that there exists δ ∈ (0, 1] such that p ∈ C0,δ(Ω).
Then the set C∞(Ω) is dense in W 1,p(·)(Ω), and, therefore, W = H.

Proof. Let p ∈ C0,δ(Ω) be a given exponent. Since

lim
t→0
|t|δ log(|t|) = 0 with an arbitrary δ ∈ (0, 1], (3.21)

it follows from the Hölder continuity of p(·) that

|p(x)− p(y)| 6 C|x− y|δ 6

[
sup
x,y∈Ω

‖x− y|δ log(|x− y|−1)

]
ω(|x− y|), ∀x, y ∈ Ω,

(3.22)
where ω(t) = C/ log(|t|−1), and C > 0 is some positive constant.

Then property (3.21) implies that p(·) is a log-Hölder continuous function. So,
to deduce the density of C∞(Ω) in W 1,p(·)(Ω) it is enough to refer to Theorem
13.10 in [21].

4. Main Assumptions

Let H : SH → R3 and L : SL → R4 be given digital images. Hereinafter, we
assume that their continuous counterparts H : Ω→ R3 and L : Ω→ R4 are such
that

YH ∈ BV (Ω) and YL ∈ L2(Ω), (4.1)

where YH and YL stand for the spectral energies of theH and L images, respectively.
Before proceed further, we associate with the spectral energy YH the so-called

texturity characteristic p : Ω→ R following the rule

p(x) := F(YH(x)) = 1 + g (|(∇Gσ ∗ YH) (x)|) , ∀x ∈ Ω, (4.2)

where g:[0,∞)→ (0,∞) is the edge-stopping function which we take it in the form
of the Cauchy law g(t) = 1

1+(t/a)2
with an appropriate a > 0, (∇Gσ ∗ YH) (x)

determines the convolution of function YH with the two-dimensional Gaussian
filter kernel Gσ,

Gσ(x) =
1

2πσ2
e−
|x|2

2σ2 , x ∈ R2, (4.3)

(∇Gσ ∗ YH) (x) :=

ˆ
Ω
∇Gσ(x− y)YH(y) dy, ∀x ∈ Ω. (4.4)
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Here, the parameter σ>0 determines the spatial size of the image details which
are removed by this 2D filter.

Since the magnitude g (|(∇Gσ ∗ YH) (x)|) is close to one at those points, where
the spectral energy YH is slowly varying, and this value is close to zero at the
edges of YH , it follows that the function p(x) can be interpreted as a texturity
characteristic of the panchromatic image YH .

The following result plays a crucial role in the sequel.

Lemma 4.1. Let YH ∈ L1(Ω) be a given spectral energy. Let

p = 1 + g (|(∇Gσ ∗ YH)|)

be the corresponding texturity characteristic. Then

p ∈ C0,1(Ω), (4.5)
α := 1 + δ 6 p(x) 6 β := 2, ∀x ∈ Ω, (4.6)

where δ =
a2

a2 + ‖Gσ‖2C1(Ω−Ω)
‖YH‖2L1(Ω)

.

Proof. By smoothness of the Gaussian filter kernel Gσ, we have

|(∇Gσ ∗ YH) (x)| 6
ˆ

Ω
|∇Gσ(x− y)|YH(y) dy 6 ‖Gσ‖C1(Ω−Ω)‖YH‖L1(Ω),

p(x) = 1 +
a2

a2 + (|(∇Gσ ∗ YH) (x)|)2

> 1 +
a2

a2 + ‖Gσ‖2C1(Ω−Ω)
‖YH‖2L1(Ω)

, ∀x ∈ Ω.

From this the existence of a positive value δ ∈ (0, 1) such that estimate (4.6) holds
true follows. Combining this fact with maxx∈Ω |p(x)| 6 β := 2, we arrive at the
announced estimate (4.6).

As for the property (4.5), we make use of the estimate

|p(x)− p(y)| 6 a2

∣∣∣∣∣∣ |(∇Gσ ∗ YH) (x)|2 − |(∇Gσ ∗ YH) (y)|2(
a2 + |(∇Gσ ∗ YH) (x)|2

)(
a2 + |(∇Gσ ∗ YH) (y)|2

)
∣∣∣∣∣∣

6
2‖Gσ‖C1(Ω−Ω)‖YH‖L1(Ω)

a2
||(∇Gσ ∗ YH) (x)| − |(∇Gσ ∗ YH) (y)||

6
2‖Gσ‖C1(Ω−Ω)γ

2
1 |Ω|

a2

ˆ
Ω
|∇Gσ(x− z)−∇Gσ(y − z)| dz, ∀x, y ∈ Ω, (4.7)

with γ1 = maxx∈Ω |YH(x)|. Then, by smoothness of the function ∇Gσ(·), we
deduce: there exists a positive constant CG > 0 such that

|p(x)− p(y)| 6
2‖Gσ‖C1(Ω−Ω)γ

2
1 |Ω|CG

a2
|x− y|, ∀x, y ∈ Ω.
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Setting C :=
2‖Gσ‖C1(Ω−Ω)γ

2
1 |Ω|CG

a2
, we finally see that

p(·) ∈ S =

{
h ∈ C0,1(Ω)

∣∣∣∣∣ |h(x)− h(y)| 6 C|x− y|, ∀x, y,∈ Ω,

1 < α 6 h(·) 6 β in Ω.

}
(4.8)

The algorithm that we propose to realize for the spatial interpolation of
MODIS-like multi-band color images to the Landsat-like imagery at high resolution,
is essentially grounded on the following key assumptions.

Assumption 1. The MODIS image L : SL → R4 and the Landsat image H :
SH → R3 are rigidly co-registered.

This means that there exists an affine transformation F : R2 → R2 of the
form

F(x) = Bx+ a, ∀x ∈ R2, (4.9)

where

a =

[
a1

a2

]
and =

[
b11 b12

b21 b22

]
such that the MODIS-like image after the affine transformation L

(
F−1(·)

)
: SL →

R4 and Landsat-like image H : SH → R3, after the bilinear resampling to the grid
of low resolution SL, could be successfully matched.

In practice, the co-registration procedure can be realized using, for instance,
the open-source LSReg v2.0.2 software [16, 19] that has been used in a number
of recent studies [9, 17], or the rigid co-registration approach that was recently
developed by the EOS Company [11,12]. However, in both cases, in order to find
an appropriate affine transformation, we propose to apply the above mentioned
procedure not to the original images, but rather to their spectral energies

YL(xi, yj) = αRLR(xi, yj) + αGLG(xi, yj) + αBLB(xi, yj), ∀ (xi, yj) ∈ SL

and

YH(xi, yj) = αRHR(xi, yj) + αGHG(xi, yj) + αBHB(xi, yj), ∀ (xi, yj) ∈ SH ,
(4.10)

where the last one should be previously resampled to the grid of low resolution
SL.

Assumption 2. The low resolution pixels in the image L : SL → R4 are formed
from the high resolution pixels of I : SH → R4 by a low pass filtering (the
se-called subsampling procedure).
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As a consequence of this Assumption, we can suppose that there exists an
impulse response K such that

L(xi, yj) = [K ∗ I] (xi, yj), ∀ i = 1, . . . ,Mx, ∀ j = 1, . . . ,My. (4.11)

where [K ∗ I] stands for the convolution operator. In particular, ifK = [kp,q]p,q=1,...,K

is a squared matrix, then

[K ∗ I] (xi, yj) =
K∑
p=1

K∑
q=1

kp,qI(xi−p+1, yj−q+1)

provided I(x, y) = 0 if (x, y) 6∈ Ω. For practical implementation, we usually set

kp,q =
1

K2
, ∀ p, q = 1, . . . ,K

with an appropriate choice of K ∈ N.

Assumption 3. The spectral energy YI of the retrieved high resolution multispectral
image I : Ω→ R4 is an element of the Sobolev space with variable exponent
W 1,p(·)(Ω), where p(·) is defined in (4.2), and

YI(x) = αRIR(x) + αGIG(x) + αBIB(x), ∀x ∈ Ω

with αR = 0.299, αG = 0.587, and αB = 0.114.

Assumption 4. The topographic maps for each spectral channels IR, IG, IB,
and INIR of the retrieved image I : Ω→ R4 have a similar structure to the
topographic map of the spectral energy YH of the Landsat image H : Ω→
R3.

As follows from this Assumption, all spectral channels of the retrieved image
should share the geometry of the panchromatic image YH in Ω. It means that,
due to the property YH ∈ BV (Ω), for almost all points of almost all level sets of
YH we can define a normal vector θ(x), i.e., it formally satisfies (θ, YH) = |∇YH |
and |θ| 6 1 a.e. in Ω (see Remark 3.1 for the details). So, if θ ∈ L∞(Ω,R2) is
a vector field with indicated properties, it follows that θ(x) has the direction of
the normal to the level lines of YH . Therefore, the counterclockwise rotation of
angle π/2, denoted by θ⊥, represents the tangent vector to the level lines of YH .
In this case, if the spectral channels of I : Ω → R4 share the geometry of the
panchromatic image YH , we have(

θ⊥,∇Ii
)
R2

= 0, i ∈ {R,G,B,NIR} in Ω.

5. Statement of the Spatial Interpolation Problem

The problem of spatial interpolation of the MODIS-like image L : SL → R4

to the resolution of three-band Landsat-like image H : SH → R3 consists in the
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restoration of the four-band image I : Ω→ R4 such that properties (i)–(v) would
be satisfied. To do so, we propose at the first stage to compute the high resolution
images IR, IG, IB : Ω→ R as a solution of the following constrained minimization
problem

inf
(IR,IG,IB)∈Ξ

J (IR, IG, IB) , (5.1)

where Ξ denotes the set of admissible images, and J (IR, IG, IB) stands for the
energy functional. Here, we define the set Ξ as follows: (IR, IG, IB) ∈ Ξ if and
only if

(A) (IR, IG, IB) ∈W 1,p(·)(Ω;R3), where p(·) stands for the texturity characteristic
of the spectral energy YH ∈ BV (Ω);

(B) the following pointwise inequalities

0 6IR(x, y) 6 max
(xi,yj)∈SL

LR(xi, yj) a.e. in Ω, (5.2)

0 6IG(x, y) 6 max
(xi,yj)∈SL

LG(xi, yj) a.e. in Ω, (5.3)

0 6IB(x, y) 6 max
(xi,yj)∈SL

LB(xi, yj) a.e. in Ω. (5.4)

hold true.

As for the energy functional J : Ξ→ R, we construct it in the form

J = J0 + γJ1 + λJ2 + µJ3, (5.5)

where

J0 (IR, IG, IB) =

ˆ
Ω

1

p(x)
|∇IR(x)|p(x) dx+

ˆ
Ω

1

p(x)
|∇IG(x)|p(x) dx

+

ˆ
Ω

1

p(x)
|∇IB(x)|p(x) dx (5.6)

J1 (IR, IG, IB) =

ˆ
Ω

∣∣∣ (θ⊥,∇IR) ∣∣∣α dx+

ˆ
Ω

∣∣∣ (θ⊥,∇IG) ∣∣∣α dx
+

ˆ
Ω

∣∣∣ (θ⊥,∇IB) ∣∣∣α dx, (5.7)

J2 (IR, IG, IB) =

ˆ
Ω

[αRIR + αGIG + αBIB − YH ]2 dx, (5.8)

J3 (IR, IG, IB) =

Mx∑
i=1

My∑
j=1

([K ∗ IR] (xi, yj)− LR(xi, yj))
2

+

Mx∑
i=1

My∑
j=1

([K ∗ IG] (xi, yj)− LG(xi, yj))
2

+

Mx∑
i=1

My∑
j=1

([K ∗ IB] (xi, yj)− LB(xi, yj))
2 , (5.9)
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and
θ(x, y) =

DU(t, x, y)

|DU(t, x, y)|
for small values of t > 0. (5.10)

Here, the exponent α > 0 is defined by (4.6), and U(t, x, y) is the solution of the
parabolic problem (3.2)–(3.4) with the initial condition

U(0, x, y) = YH(x, y) = αRHR(x, y) + αGHG(x, y) + αBHB(x, y), ∀ (x, y) ∈ Ω.

The main motivation for such choice of the energy functional is rather clear.
As follows from (5.9), each term in J3 (IR, IG, IB) represents an L2-distortion
between a particular spectral channel in the MODIS image L : SL → R4 and the
corresponding channel of the retrieved image I : SH → R4 which is resampled to
the grid of low resolution SL. So, the J3-term should be minimal and it is mainly
motivated by Assumption 2.

As for the term J2 (IR, IG, IB), it reflects the fact that the spectral energy
YI = αRIR + αGIG + αBIB of the retrieved image should be as close as possible
to the spectral energy of the Landsat image H : SH → R3. We interpret this
closedness in the sense of L2-norm.

Now about the term J1 (IR, IG, IB). As was mentioned before, the main goal,
we are going to follows in the spatial interpolation problem, is to preserve the
following property: the geometry of each spectral channels in the retrieved image
should be as close as possible to the geometry of the spectral energy of the Landsat
image H : SH → R3. Formally, it means that the following relations have to be
satisfied(

θ⊥,∇IR
)
R2

= 0,
(
θ⊥,∇IG

)
R2

= 0,
(
θ⊥,∇IB

)
R2

= 0 a.e. in Ω.

Hence, the magnitude
ˆ

Ω

[∣∣∣ (θ⊥,∇IR) ∣∣∣α +
∣∣∣ (θ⊥,∇IG) ∣∣∣α +

∣∣∣ (θ⊥,∇IB) ∣∣∣α] dx
must be small enough, where θ = θ(x, y) stands for the vector field of unit normals
to the topographic map of the spectral energy YH = αRHR + αGHG + αBHB.

The first term J0 (IR, IG, IB) is the regularization. Since p(x) ≈ 1 in places
in Ω where edges or discontinuities are present in the spectral energy YH of the
image H, and p(x) ≈ 2 in places where YH(x) is smooth or contains homogeneous
features, the main benefit of the model (5.1) is the manner in which it accommo-
dates the local image information. The places where the gradient is sufficiently
large (i.e. likely edges), we deal with the so-called TV-based diffusion [18], whereas
the places where the gradient is close to zero (i.e. homogeneous regions), the model
becomes isotropic. Specifically, the type of anisotropy at these ambiguous regions
varies according to the strength of the gradient. This enables the model to have a
much lower dependence on the approximation schemes for the variable exponent
p(x) and other thresholds.
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We are now in a position to define what we mean by the solution of spatial
interpolation problem that was stated in Section 2. Taking into account the
properties (i)–(v) that we imposed and the structure of the energy functional
J : Ξ → R, we say that a four-band image I0 =

[
I0
R, I

0
G, I

0
B, I

0
NIR

]t
: SH → R4

is the result of fusion of MODIS-like multi spectral image L : SL → R4 with the
Landsat-like color image H : SH → R3 at higher resolution if:

• the triplet
(
I0
R, I

0
G, I

0
B

)
is a solution of constrained minimization problem

(5.1), i.e.,(
I0
R, I

0
G, I

0
B

)
∈ Ξ and J

(
I0
R, I

0
G, I

0
B

)
= inf

(IR,IG,IB)∈Ξ
J (IR, IG, IB)

• The spectral channel I0
NIR : Ω→ R is defined as follows

I0
NIR(x, y) = γRI

0
R(x, y) + γGI

0
G(x, y) + γBI

0
B((x, y), ∀ (x, y) ∈ Ω,

where γR
γG
γB

 =

ˆ
Ω

 L2
R LRLG LRLB

LRLG L2
R LGLB

LRLB LGLB L2
B

 dx

−1 ˆ
Ω

 LNIRLR
LNIRLG
LNIRLB

 dx.
(5.11)

Here, the last equality is a formal representation of the solution to the following
linear regression problem

ˆ
Ω

[γRLR + γGLG + γBLB − LNIR]2 dx
γR,γG,γB−→ inf .

Remark 5.1. As an alternative way to define the NIR spectral channel I0
NIR,

we can propose the following one: define I0
NIR as a solution of the constrained

minimization problem
Z
(
I0
NIR

)
= inf

I∈ΞNIR
Z (I) ,

where

Z (I) =

ˆ
Ω

1

p(x)
|∇I(x)|p(x) dx+ γ

ˆ
Ω

∣∣∣ (θ⊥,∇I) ∣∣∣α dx
+ λ

ˆ
Ω

[
γRI

0
R + γGI

0
G + γBI

0
B − I

]2
dx,

ΞNIR =

{
I ∈W 1,p(·)(Ω) : 0 6 I(x, y) 6 max

(xi,yj)∈SL
LNIR(xi, yj) a.e. in Ω

}
,

and the weight coefficients γR, γG, γB are defined by (5.11).



68 P. I. Kogut, O. P. Kupenko, M.V. Uvarov

Remark 5.2. Another variant for the setting of the spatial interpolation problem
is to consider, instead of the energy term J1 in (5.5), the following functional (this
approach was firstly proposed in [5])

J1 (IR, IG, IB) =

(ˆ
Ω
|∇IR| dx+

ˆ
Ω
IR div θ dx

)
+

(ˆ
Ω
|∇IG| dx+

ˆ
Ω
IG div θ dx

)
+

(ˆ
Ω
|∇IB| dx+

ˆ
Ω
IB div θ dx

)
.

The main motivation for such choice of the functional J1 is rather clear. Since
the geometry of each spectral channel in the retrieved image should be as close as
possible to the geometry of the spectral energy of the Landsat imageH : SH → R3,
it means that the following relations have to be satisfied

|∇IR| = (θ,∇IR) , |∇IG| = (θ,∇IG) , |∇IB| = (θ,∇IB) , a.e. in Ω.

Hence, the magnitudeˆ
Ω

[(|∇IR| − (θ,∇IR)) + (|∇IG| − (θ,∇IG)) + (|∇IB| − (θ,∇IB))] dx

must be small enough, where θ = θ(x, y) stands for the vector field of unit normals
to the topographic map of the spectral energy YH = αRHR +αGHG +αBHB. By
default, we assume that this field is zero along the boundary ∂Ω. Then, making
use of the Green’s formula, we deduce:ˆ

Ω
(|∇IR| − θ · ∇IR) dx =

ˆ
Ω
|∇IR| dx+

ˆ
Ω
IR div θ dx,

ˆ
Ω

(|∇IG| − θ · ∇IG) dx =

ˆ
Ω
|∇IB| dx+

ˆ
Ω
IB div θ dx,

ˆ
Ω

(|∇IB| − θ · ∇IB) dx =

ˆ
Ω
|∇IB| dx+

ˆ
Ω
IB div θ dx.

6. Existence Result and Optimality Conditions

6.1. On Existence and Uniqueness of Retrieved Image at High
Resolution

We begin this section with the following existence result.

Theorem 6.1. Let H : SH → R3 and L : SL → R4 be given images such that
their spectral energies satisfy conditions (4.1). Then, under Assumptions 1–4,
there exists a unique triplet (IR, IG, IB) ∈ Ξ ⊂ BV (Ω;R3) such that (IR, IG, IB)
is a minimizer to constrained minimization problem (5.1).
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Proof. First of all, we notice that minimization problem (5.1) is consistent, more-
over, J (IR, IG, IB) < +∞ for each feasible triplet (IR, IG, IB) ∈ Ξ. Indeed, in
view of the pointwise estimates (5.2)–(5.4), we have IR, IG, IB ∈ L2(Ω). Hence,

J2 (IR, IG, IB) < +∞.

It remains to notice that the inclusion I ∈W 1,p(·)(Ω;R4) and the estimatesˆ
Ω

∣∣∣ (θ⊥,∇IA) ∣∣∣α dx 6 ‖θ‖αL∞(Ω;R2)‖∇IA‖
α
Lα(Ω;R2)

by (3.13)–(3.15)
6 (1 + |Ω|) ‖θ‖αL∞(Ω;R2)‖∇IA‖Lp(·)(Ω;R2)

6 (1 + |Ω|) ‖θ‖αL∞(Ω;R2)‖IA‖W 1,p(·)(Ω;R2), A ∈ {R,G,B}

imply J1 (IR, IG, IB) < +∞. As a result, consistency of the problem (5.1) immedia-
tely follows from (5.5)–(5.9) and definition of the set Ξ.

Let
{

(IkR, I
k
G, I

k
B)
}
k∈N ⊂ Ξ be a minimizing sequence to the problem (5.1). i.e.,

lim
k→∞

J (IkR, I
k
G, I

k
B) = inf

(IR,IG,IB)∈Ξ
J (IR, IG, IB) .

Then there exists a constant Ĉ > 0 such that

sup
k∈N
J (IkR, I

k
G, I

k
B) 6 Ĉ.

From this and (5.5), we deduce thatˆ
Ω

1

p(x)

[
|∇IR(x)|p(x) + |∇IG(x)|p(x) + |∇IB(x)|p(x)

]
dx 6 Ĉ, (6.1)

ˆ
Ω

[
αRI

k
R + αGI

k
G + αBI

k
B − YH

]2
dx 6 Ĉ. (6.2)

Since α := 1 + δ 6 p(x) 6 β := 2 for all x ∈ Ω, it follows from (6.1) and (3.11)
that

sup
k∈N

[
‖∇IR‖αLp(·)(Ω;R2)

+ ‖∇IG‖αLp(·)(Ω;R2)
+ ‖∇IB‖αLp(·)(Ω;R2)

]
6 α

(
Ĉ + 3

)
.

(6.3)
On th other hand, utilizing estimate (6.2) and non-negativity of IkR, I

k
G, I

k
B, and

YH , we obtain ˆ
Ω

[
αRI

k
R + αGI

k
G + αBI

k
B

]2
dx 6 2Ĉ + 2

ˆ
Ω
Y 2
H dx.

Hence,

(1 + |Ω|)−1 sup
k∈N
‖IkR‖2Lp(·)(Ω)

by (3.14)
6 sup

k∈N
‖IkR‖2L2(Ω) 6 2α−2

R

[
Ĉ + ‖YH‖2L2(Ω)

]
,

(1 + |Ω|)−1 sup
k∈N
‖IkG‖2Lp(·)(Ω)

by (3.14)
6 sup

k∈N
‖IkG‖2L2(Ω) 6 2α−2

G

[
Ĉ + ‖YH‖2L2(Ω)

]
,

(1 + |Ω|)−1 sup
k∈N
‖IkB‖2Lp(·)(Ω)

by (3.14)
6 sup

k∈N
‖IkB‖2L2(Ω) 6 2α−2

B

[
Ĉ + ‖YH‖2L2(Ω)

]
.

(6.4)
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As a result, it follows from (6.3) and (6.4) that

sup
k∈N
‖IkR‖W 1,p(·)(Ω) = sup

k∈N

[
‖IkR‖Lp(·)(Ω) + ‖∇IkR‖Lp(·)(Ω;R2)

]
6 QR,

sup
k∈N
‖IkG‖W 1,p(·)(Ω) = sup

k∈N

[
‖IkG‖Lp(·)(Ω) + ‖∇IkG‖Lp(·)(Ω;R2)

]
6 QG,

sup
k∈N
‖IkB‖W 1,p(·)(Ω) = sup

k∈N

[
‖IkB‖Lp(·)(Ω) + ‖∇IkB‖Lp(·)(Ω;R2)

]
6 QB

withQA =
[
2 (1 + |Ω|)α−2

A

(
Ĉ + ‖YH‖2L2(Ω)

)]1/2
+
[
α
(
Ĉ + 3

)]1/α
,A ∈ {R,G,B}.

Thus, the sequence
{

(IkR, I
k
G, I

k
B)
}
k∈N ⊂ Ξ is bounded in W 1,p(·)(Ω;R3). The-

refore, in view of Proposition 3.3, there exists a subsequence of{
(IkR, I

k
G, I

k
B)
}
k∈N
⊂ Ξ,

still denoted by the same index, and functions (I0
R, I

0
G, I

0
B) ∈ W 1,p(·)(Ω;R3) such

that

(IkR, I
k
G, I

k
B) ⇀ (I0

R, I
0
G, I

0
B) weakly in W 1,p(·)(Ω;R3), (6.5)

(IkR, I
k
G, I

k
B) ⇀ (I0

R, I
0
G, I

0
B) weakly in W 1,α(Ω;R3), (6.6)

(IkR, I
k
G, I

k
B)→ (I0

R, I
0
G, I

0
B) strongly in Lα(Ω;R3), (6.7)

and
ˆ

Ω

1

p(x)
|∇I0

R|p(x) dx 6 lim inf
k→∞

ˆ
Ω

1

p(x)
|∇IkR|p(x) dx, (6.8)

ˆ
Ω

1

p(x)
|∇I0

G|p(x) dx 6 lim inf
k→∞

ˆ
Ω

1

p(x)
|∇IkG|p(x) dx, (6.9)

ˆ
Ω

1

p(x)
|∇I0

B|p(x) dx 6 lim inf
k→∞

ˆ
Ω

1

p(x)
|∇IkB|p(x) dx. (6.10)

Moreover, passing to a subsequence if necessary and taking into account the
inequalities (5.2)–(5.4) and (3.13), we have:

(IkR(x, y), IkG(x), IkB(x))→ (I0
R(x), I0

G(x), I0
B(x)) for a.e. x ∈ Ω, (6.11)

(IkR, I
k
G, I

k
B) ⇀ (I0

R, I
0
G, I

0
B) weakly in L2(Ω;R3), (6.12)(

θ⊥,∇IkA
)
⇀
(
θ⊥,∇I0

A

)
weakly in Lα(Ω) for A ∈ {R,G,B}. (6.13)

Hence, without loss of generality, we can suppose that the limit triplet (I0
R, I

0
G, I

0
B)

satisfies the pointwise restrictions (5.2)–(5.4), and, as a consequence, we deduce:
(I0
R, I

0
G, I

0
B) ∈ Ξ is a feasible solution to the problem (5.1).
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Let us show that (I0
R, I

0
G, I

0
B) ∈ Ξ is a minimizer to the problem (5.1). Indeed,

utilizing convergence properties (6.5)–(6.12), we get

lim inf
k→∞

J0(IkR, I
k
G, I

k
B)

by (6.8)–(6.10)
> J0(I0

R, I
0
G, I

0
B),

lim inf
k→∞

J1(IkR, I
k
G, I

k
B)

by (6.13)
> J1(I0

R, I
0
G, I

0
B),

lim inf
k→∞

J2(IkR, I
k
G, I

k
B)

by (6.12)
> J2(I0

R, I
0
G, I

0
B),

lim inf
k→∞

J3(IkR, I
k
G, I

k
B)

by (6.11),(6.12)
> J3(I0

R, I
0
G, I

0
B).

Hence, lim infk→∞ J (IkR, I
k
G, I

k
B) > J (I0

R, I
0
G, I

0
B), and, therefore,

inf
(IR,IG,IB)∈Ξ

J (IR, IG, IB) = lim
k→∞

J (IkR, I
k
G, I

k
B) = lim inf

k→∞
J (IkR, I

k
G, I

k
B)

> J (I0
R, I

0
G, I

0
B) > inf

(IR,IG,IB)∈Ξ
J (IR, IG, IB) .

Thus, (I0
R, I

0
G, I

0
B) is a minimiser to the problem (5.1).

It remains to show that (I0
R, I

0
G, I

0
B) is a unique minimizer for this problem.

Indeed, let us assume the converse. Let (I0
R, I

0
G, I

0
B) ∈ Ξ and (I∗R, I

∗
G, I

∗
B) ∈ Ξ

be two minimizers for the problem (5.1). Then by the strict convexity of norm
‖ · ‖L2(Ω) and convexity of the set of feasible solutions Ξ, we have

J
(
I0
R + I∗R

2
,
I0
G + I∗G

2
,
I0
B + I∗B

2

)
<

1

2
J (I0

R, I
0
G, I

0
B) +

1

2
J (I∗R, I

∗
G, I

∗
B)

= inf
(IR,IG,IB)∈Ξ

J (IR, IG, IB)

which brings us into a conflict with the initial assumptions. Thus, (I0
R, I

0
G, I

0
B) is

a unique minimizer to the problem (5.1). The proof is complete.

For further convenience, we rewrite the energy functional J : Ξ → R in the
integral form. To this end, we set: let δ(i,j) be the Dirac’s delta on the point
(i.j) ∈ Ω. Let ΠL =

∑
(i,j)∈SL δ(i,j) be the Dirac’s comb on Ω defined by the grid

SL. Then we may write J3 in integral terms

J3 (IR, IG, IB) =
∑

A∈{R,G.B}

ˆ
Ω

ΠL ([K ∗ IA] (x)− LA(x))2 dx, (6.14)

where LA, A ∈ {R,G.B} denotes an arbitrary extension of LA(i, j) as continuous
functions from SL to Ω. Since the terms above are multiplied by ΠL, the integral
terms in (6.14) do not depend on the particular extensions of LA, A ∈ {R,G.B}.



72 P. I. Kogut, O. P. Kupenko, M.V. Uvarov

6.2. Optimality Conditions

In order to derive some optimality conditions to the problem (5.1) and charac-
terize its solution (I0

R, I
0
G, I

0
B), we check that the functional J : Ξ→ R is Gâteaux

differentiable. To this end, we note that

|∇I0
A(x) + t∇hA(x)|p(x) − |∇I0

A(x)|p(x)

p(x)t

→
(
|∇I0

A(x)|p(x)−2∇I0
A(x),∇hA(x)

)
as t→ 0

almost everywhere in Ω for all A ∈ {R,G.B} and h = (hR, hG, hB) ∈W 1,p(·)(Ω)3.
Indeed, by convexity, we have |ξ|p − |η|p 6 2p

(
|ξ|p−1 + |η|p−1

)
|ξ − η|. Then

∣∣∣∣∣ |∇I0
A(x) + t∇hA(x)|p(x) − |∇I0

A(x)|p(x)

p(x)t

∣∣∣∣∣
6 2

(
|∇I0

A(x) + t∇hA(x)|p(x)−1 + |∇I0
A(x)|p(x)−1

)
|∇hA(x)|

6 const
(
|∇I0

A(x)|p(x)−1 + |∇hA(x)|p(x)−1
)
|∇hA(x)|. (6.15)

Taking into account that

‖|∇I0
A(x)|p(·)−1‖Lp′(·)(Ω;R2)

by (3.11) and (3.7)
6

(ˆ
Ω
|∇I0

A(x)|p(x) dx+ 1

) 1
2

by (3.11)
6

(
‖∇I0

A|2Lp(·)(Ω;R2)
+ 2
) 1

2
,

ˆ
Ω
|∇I0

A(x)|p(x)−1|∇hA(x)| dx
by (3.19)

6 2‖|∇I0
A(x)|p(x)−1‖Lp′(·)(Ω)‖hA(x)|‖Lp(·)(Ω),

and
´

Ω |∇hA(x)|p(x) dx
by (3.11)

6 ‖∇hA‖2Lp(·)(Ω)
+ 1, we see that the right hand side

of inequality (6.15) is an L1(Ω) function. Therefore,

ˆ
Ω

|∇I0
A(x) + t∇hA(x)|p(x) − |∇I0

A(x)|p(x)

p(x)t
dx

→
ˆ

Ω

(
|∇I0

A(x)|p(x)−2∇I0
A(x),∇hA(x)

)
dx as t→ 0

by the Lebesgue dominated convergence theorem for each h = (hR, hG, hB) ∈
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W 1,p(·)(Ω;R3) and A ∈ {R,G.B}. Thus,

lim
t→0

J0

(
I0
R + thR, I

0
G + thG, I

0
B + thB

)
− J0

(
I0
R, I

0
G, I

0
B

)
t

=

ˆ
Ω

(
|∇I0

R(x)|p(x)−2∇I0
R(x),∇hR(x)

)
dx

+

ˆ
Ω

(
|∇I0

G(x)|p(x)−2∇I0
G(x),∇hG(x)

)
dx

+

ˆ
Ω

(
|∇I0

B(x)|p(x)−2∇I0
B(x),∇hB(x)

)
dx. (6.16)

Arguing in a similar manner, it can be shown that (see [2, Section A 14] for
the details)

lim
t→0

J1

(
I0
R + thR, I

0
G + thG, I

0
B + thB

)
− J1

(
I0
R, I

0
G, I

0
B

)
t

= α

ˆ
Ω

∣∣∣(θ⊥,∇I0
R

)∣∣∣α−2 (
θ⊥,∇I0

R

)(
θ⊥,∇hR

)
dx

+ α

ˆ
Ω

∣∣∣(θ⊥,∇I0
G

)∣∣∣α−2 (
θ⊥,∇I0

G

)(
θ⊥,∇hG

)
dx

+ α

ˆ
Ω

∣∣∣(θ⊥,∇I0
B

)∣∣∣α−2 (
θ⊥,∇I0

B

)(
θ⊥,∇hB

)
dx. (6.17)

Setting

Λ = θ⊥
(
θ⊥
)t

=

[
θ⊥1 θ

⊥
1 θ⊥1 θ

⊥
2

θ⊥2 θ
⊥
1 θ⊥2 θ

⊥
2

]
,

the Gâteaux differential of J1 can be rewritten as follows

lim
t→0

J1

(
I0
R + thR, I

0
G + thG, I

0
B + thB

)
− J1

(
I0
R, I

0
G, I

0
B

)
t

= α

ˆ
Ω

∣∣∣(θ⊥,∇I0
R

)∣∣∣α−2 (
Λ∇I0

R,∇hR
)
dx

+ α

ˆ
Ω

∣∣∣(θ⊥,∇I0
G

)∣∣∣α−2 (
Λ∇I0

G,∇hG
)
dx

+ α

ˆ
Ω

∣∣∣(θ⊥,∇I0
B

)∣∣∣α−2 (
Λ∇I0

B,∇hB
)
dx. (6.18)

As for the rest terms in the cost functional J : Ξ→ R, we have the following
representation for their Gâteaux derivatives (for the proof and its substantiation
we refer to [13, Section 3]).

Proposition 6.1. Let H : SH → R3 and L : SL → R4 be given images such
that their spectral energies satisfy conditions (4.1) Then the functionals J2,J3 :
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L2(Ω;R3)→ R are convex and Gâteaux differentiable in L2(Ω;R3) with

J ′2(I0)[h] = 2
∑

A∈{R,G.B}

ˆ
Ω
αA
(
αRI

0
R + αGI

0
G + αBI

0
B − YH

)
hA dx, (6.19)

J ′3(I0)[h] = 2
∑

A∈{R,G.B}

ˆ
Ω

ΠL

([
K ∗ I0

A

]
− LA

)
[K ∗ hA] dx

= 2
∑

A∈{R,G.B}

ˆ
Ω

ΠL

[
K∗ ∗

([
K ∗ I0

A

]
− LA

)]
hA dx, (6.20)

for all h = (hR, hG, hB) ∈ L2(Ω;R3).

We are now in a position to derive an optimality system for a unique minimizer
(I0
R, I

0
G, I

0
B) ∈ Ξ ⊂ BV (Ω;R3) to constrained minimization problem (5.1). Following

the standard technique which is based on the use of the Lagrange principle [10]
and utilizing Proposition 4.4, we arrive at the following result.

Theorem 6.2. Let (I0
R, I

0
G, I

0
B) ∈ Ξ be a minimizer of constrained minimization

problem (5.1). Then the following relations hold true

−div
(
|∇I0

A(x)|p(x)−2∇I0
A(x)

)
− γα div

(∣∣∣(θ⊥,∇I0
A

)∣∣∣α−2
Λ∇I0

A

)
+2λαA

(
αRI

0
R + αGI

0
G + αBI

0
B − YH

)
+2µΠL

[
K∗ ∗

([
K ∗ I0

A

]
− LA

)]
= 0 a.e. in Ω, (6.21)

0 6 I0
A 6 max

(xi,yj)∈SL
LA(xi, yj) a.e. in Ω, (6.22)(

∇I0
A, ν

)
= 0 on ∂Ω, (6.23)

for A ∈ {R,G,B}.
Remark 6.1. In practical implementation, it is reasonable to define an optimal
triplet (I0

R, I
0
G, I

0
B) using a ’gradient descent’ strategy. Following the standard

procedure, we can start from some initial RGB-components (I∗R, I
∗
G, I

∗
B) and then

to solve the following initial value problem for the system of quasi-linear parabolic
equations with 2D elliptic operators in their principle part and Nuemann boundary
conditions
∂I0

R

∂t
−div

(
|∇I0

R(x)|p(x)−2∇I0
R(x)

)
= γα div

(∣∣∣(θ⊥,∇I0
R

)∣∣∣α−2
Λ∇I0

R

)
− 2λαR

(
αRI

0
R + αGI

0
G + αBI

0
B − YH

)
− 2µΠL

[
K∗ ∗

([
K ∗ I0

R

]
− LR

)]
,

∂I0
G

∂t
−div

(
|∇I0

G(x)|p(x)−2∇I0
G(x)

)
= γα div

(∣∣∣(θ⊥,∇I0
G

)∣∣∣α−2
Λ∇I0

G

)
− 2λαG

(
αRI

0
R + αGI

0
G + αBI

0
B − YH

)
− 2µΠL

[
K∗ ∗

([
K ∗ I0

G

]
− LG

)]
,

∂I0
B

∂t
−div

(
|∇I0

B(x)|p(x)−2∇I0
B(x)

)
= γα div

(∣∣∣(θ⊥,∇I0
B

)∣∣∣α−2
Λ∇I0

B

)
− 2λαB

(
αRI

0
R + αGI

0
G + αBI

0
B − YH

)
− 2µΠL

[
K∗ ∗

([
K ∗ I0

B

]
− LB

)]
,
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∇I0

R, ν
)

= 0,
(
∇I0

G, ν
)

= 0,
(
∇I0

B, ν
)

= 0 on ∂Ω,

0 6 I0
A 6 max

(xi,yj)∈SL
LA(xi, yj) a.e. in Ω ∀A ∈ {R,G,B},

I0
R(0, x) = I∗R, I

0
G(0, x) = I∗G, I

0
B(0, x) = I∗B, ∀x ∈ Ω,

where we propose to take the triplet (I∗R, I
∗
G, I

∗
B) as a result bicubic interpolation

of the MODIS-like image L : SL → R4 onto the entire domain Ω.

7. Numerical Experiments

Fig. 7.1. The MODIS image with resolution 350m/pixel

In order to illustrate the proposed algorithm for the spatial increasing resolution
problem of MODIS-like multi-spectral images via their fusion with Lansat-like
imagery at higher resolution. As input data we have used a MODIS image of
some region with resolution 350m/pixel (see Fig. 7.1). This region represents a
typical agricultural area with medium sides fields of various shapes.

We also have the image of the same territory with resolution 25m/pixel that
was made by Lansat satellite at higher resolution. Figure 7.2 shows the spectral
channels of this image.

Figure 7.3 displays the reconstructed images corresponding to the data given
by Figures 7.1 and 7.2. In order to validate the obtained result, we have provided
the following calculations.

• Closednees of the means ρ2 = |Mean I −MeanL| = 0;

• Closedness of the variances ρ3 = 100 |Var I−VarL|
VarL ≈ 6%;

• ERGAS metric

ERGAS = 100
h

l

√√√√1

3

3∑
k=1

(
RMSE(k)

µ0(k)

)2

= 2.24,

where h/l is the ratio between the size of the high spatial resolution image
pixel and the size of the pixel in the MODIS-like image.
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Fig. 7.2. The Lansat image with resolution 25m/pixel

It is worth to notice that in view of the suggestions of Prof. L. Wald, if the
ERGAS value is less than 3, the spectral quality of an image is satisfactory.
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