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Abstract. Late blight, caused by Phytophthora infestans (Mont.) de Bary, is a devastating 
disease of potato (Solanum tuberosum L.). To identify potential sources of resistance to the 
disease, 32 clones received from the National Potato Research Program (NPRP) were 
evaluated under natural conditions at the National Maize Research Program Rampur, 
Chitwan in 2018 and 2019. Potato cultivars Desire, Kufri Jyoti, and Farmers local were used 
as moderately resistant, susceptible, and highly susceptible checks, respectively. The 
experiments were laid out in α-lattice design with two replications. Each experimental plot 
of 3.6 m2 was seeded as two 3m long rows with 0.6 and 0.25 m row and plant spacing, 
respectively. Agronomic practices were followed as recommended by NPRP. The disease 
severity was measured based on a percentage of leaf area infected using disease scale of (1 
to 9) at three times in seven days intervals. Disease severity values were converted into the 
area under disease progress curve (AUDPC). During harvest, the total yield and its 
components were recorded. Potato clones differed significantly (P ≤ 0.01) for disease 
severity, yield, and yield components. The results revealed high genetic variability, 
heritability, and genetic gain for disease parameters, tuber yield, and its components. Six 
clones (CIP311622.9, PRP277072.122, PRP146971.135, PRP147072.27, CIP311350.27, 
and PRP146971.117 had lower area under disease progress curve AUDPC) values (274.25 
to 421.03), showed higher resistant in both years and yielded more tuber yield (~20 t/ha) than 
other clones. These clones could be used to develop late blight resistant, high yielding potato 
varieties.  
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1. Introduction  

Potato is a successful crop in enabling smallholder farmers to achieve food security and tackle 

poverty with the most diverse distribution patterns globally [1] and is predominantly cultivated 

in places where poverty, starvation, and malnutrition are all quite high. After wheat and rice, the 

potato is currently the world's third-largest staple food for human consumption [2], despite the 

fact that a major percentage of potato products are utilized for seed and animal feed. Potato is 
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mostly produced as a cash crop and is a significant source of revenue in Nepal. The crop is grown 

during winter season, either as a monoculture or in combination with maize, wheat, or rice. Recent 

statistics showed that potatoes are currently being grown on an estimated 193,997 hectares in 

Nepal with a production of about 3,112,947 mt [3]. The current national yield of potato in Nepal 

is about 16.05 t/ha [3] which is very low as compared to the attainable yield and yield of 

neighboring countries due to various biotic, abiotic, and socio-economic constraints. Potatoes face 

high production losses caused mainly by a diversity of pests and diseases. Potato crop can be 

harmed by about 160 diseases and disorders. Among these, 50 of which are caused by fungi, 10 

by bacteria, 40 by viruses, and others by non-parasitic diseases [4]. Among fungi, late blight 

caused due to oomycete fungi Phytophthora infestans (Mont.) de Bary, represents the most 

devastating disease for potato worldwide. High levels of moisture are necessary for the lesion 

development and infection. Thus, the disease will spread rapidly, infects vegetative tissues, and 

kill the plant in a couple of days [5]. The pathogen feeds on the dying, necrotized cells, and in 

high humidity, white mildew growth appears on the leaves, reflecting sporangiophores and 

sporangia that arise through the stomata [6]. A large number of genes involved in pathogenicity, 

calcium signaling, and metabolism are either up-regulated or transcribed in waves during spore 

development and germination [7], while fatty acid biosynthesis genes are down-regulated [8]. 

This pathogen can cause annual losses of 16% of the global potato production [9]. The incidence 

of late blight is expected to accelerate globally under highly unpredictable weather conditions, 

mainly affecting the range of cultivated areas in developing countries [10].  

Chemical fungicides are still the most often used method for late blight management, making late 

blight one of the world's major drivers of pesticide usage. Every year, the need for weekly 

fungicide treatments generates a billion-dollar market globally [9]. The widespread use of 

pesticides in potatoes is a major source of worry for both humans and the environment, and it 

must be addressed via the development and more thorough application of Integrated Pest 

Management (IPM) techniques. The application of host resistance is the most successful strategy 

for combating late blight. The advent of early and high-yielding varieties resistant to P. infestans 

has been a long-standing aim of potato breeding. Late blight may be handled with less fungicide 

utilizing genetic resistance, either by reducing the fungicide dose or by using longer treatment 

intervals [11]–[15]. The adoption of resistant cultivars might considerably minimize late blight 

losses, particularly in developing nations such as Nepal. Although the use of resistant varieties is 

considered to be an innovative approach to late blight disease management, planting susceptible 

varieties are still practiced by many wholesalers and processing industries, resource-poor farmers 

[16]. The inclusion of a wider range of genetic resistance in disease control strategies reduces the 

usage of fungicides, lowers production costs, and reduces harm to human health and the 

environment. 



Indonesian Journal of Agricultural Research Vol. 04, No. 02, 2021  107 

 

The main objective of the present study was to evaluate and identify sources of late blight 

resistance in potato clones and to contribute genetic gain in tuber yield and its components in the 

terai area of Nepal. 

2. Materials and Methods 

2.1.  Potato Cultivars and Planting 

Thirty-two clones developed by International Potato Center (IPC) and Potato Research Program 

(PRP) were received from the National Potato Research Program, Khumaltar, Nepal. Desire 

(moderately resistant), Kufri Jyoti (susceptible) and Farmers local (highly susceptible) were used 

checks and screened at the National Maize Research Program Rampur, Chitwan during the winter 

season for two consecutive years 2018 and 2019 under natural epiphytotic conditions. The 

research area is located at 27037' N latitude and 84025' E longitude, at an altitude of 256 masl, and 

has a subtropical climate. The experiments were laid out in α-lattice design with two replications 

in two consecutive years. Each experimental plot of 3.6 m2 was seeded as two 3m long rows with 

0.6 and 0.25 m row and plant spacing, respectively. As a baseline dosage, plant nutrients in the 

form of N, P205, and K20 (100:100:60 kg NPK/ha) were placed to the furrows and filled with soil 

via urea, di-ammonium phosphate, murate of potash, and compost at 20 t/ha. Sprouted potato seed 

tubers of about same physiological age were planted in ridges at a depth of 5-6 cm. Irrigation was 

provided at 40 and 60 days after planting followed by two manual weeding and earthing up.  

2.2. Disease Assessment 

Disease severity was measured in percentage basis following the initial appearance of disease in 

the plot, three times at seven-day intervals, using a disease scale ranging from 1 to 9 [17]. Disease 

severity was converted into the area under disease progress curve (AUDPC) according to [18]. 

The relative AUDPC (rAUDPC) was also calculated as per [19]. All accessions were classified 

into five groups highly resistant (HR), resistant (R), moderately resistant (MR), susceptible (S), 

and highly susceptible (HS). Based on pooled mean AUDPC values < 250 were grouped into 

highly resistant: 250 to 450 = resistant, 451 to 650 = moderately resistant, 651 to1200 = 

susceptible and >1200 = highly susceptible.  

2.3. Yield and Agronomic Assessment 

Total yield was calculated from the net harvested area (3.6 m2) at the time of harvesting for each 

trial plot. Tubers were cleaned well, and each grade was weighed individually from each plot. 

Each net plot's tuber weight was calculated. The data were then converted in tons per hectare 

(t/ha). Data related to leaf length (cm), leaf width (cm), plant height (cm), and main stem/plant 

were recorded during peak vegetative stage of the crop. 
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2.4. Data Analysis 

Data for AUDPC, disease score, severity, intensity, and yield parameters were subjected to 

analysis of variance (ANOVA). The phenotypic and genotypic variance and coefficients of 

variation were estimated according to the methods suggested by [20]. Heritability (H2) in a broad 

sense was computed using the formula described previously [21], [22] Genetic advance (GA) for 

each trait was computed using the formula of [21], [23]. Phenotypic and genotypic correlations 

between tuber yield and genotype resistance traits were estimated using the method described 

previously [24]. Genotypic and phenotypic correlation coefficients between disease parameters, 

yield, and yield components in potato clones were computed to obtain better estimates of the 

associations between tuber yield and disease resistance. Analyses of variance were performed for 

each trait for each year and combined to detect differences among the potato clones using META-

R software developed by CIMMYT [25]. 

3. Results and Discussion  

The analysis of variance revealed highly significant (P < 0.01) differences among the 32 clones 

for all the recorded traits during the winter season of 2018 and 2019 (Table 1). 

Table 1. Descriptive Statistics of Potato Clones for the Traits Recorded During Two 
Consecutive Years at Rampur, Chitwan, Nepal 

Traits 
Year 2018 Year 2019 

Mean ± SEm Range Sig. 
CV 
% 

Mean ± SEm Range Sig. 
CV 
% 

PDI% (55 
DAP) 

†30.72 ± 1.83 12.15 - 67.45 ** 4.86 34.37 ± 2.43 11.08 -74.37 ** 4.75 

PDI% (62 
DAP) 

48.30 ± 2.38 16.25 - 78.95 ** 3.16 48.96 ± 3.17 12.21 - 99.90 ** 3.29 

PDI% (69 
DAP) 

67.29 ± 3.09 23.25 - 97.65 ** 1.77 65.80 ± 3.46 21.08 - 99.90 ** 1.79 

AUDPC 875.73 ± 41.91 331.20 - 1398.15 ** 2.10 693.30 ± 41.13 205.91 - 1289.82 ** 1.89 

DI % 67.56 ± 2.84 22.64 - 97.35 ** 2.25 68.52 ± 2.96 13.64 - 96.00 ** 5.17 

Leaf length 
(cm) 

5.86 ± 0.15 3.95 - 7.95 ** 2.11 5.81 ± 0.13 3.95 - 7.80 ** 2.09 

Leaf width 
(cm) 

3.88 ± 0.11 2.45 - 5.65 ** 2.94 3.83 ± 0.09 2.65 - 5.50 ** 2.82 

Plant height 
(cm) 

24.26 ± 0.99 11.45 - 42.35 ** 5.06 24.32 ± 0.91 11.60 - 46.15 ** 8.14 

Main 
stem/plant 

4.27 ± 0.17 2.15 - 9.75 ** 2.64 4.14 ± 0.17 1.80 - 9.70 ** 4.75 

Yield (t/ha) 9.83 ± 1.06 1.42 - 30.72 ** 10.45 9.26 ± 1.07 0.80 - 29.11 ** 12.18 

Note: †means of two replications, **- significant at ≤ 0.01 p level, Sig = significance; SEm = standard 
error mean; CV = coefficient of variation; PDI = percent disease index; DAP = days after planting; 
AUDPC = area under disease progress curve; DI = disease incidence; cm = centimeter; % = 
percentage, t/ha = ton per hectare 

This showed that there was enough diversity in the genotypes to allow for the selection of better 

and desired clones for future development. Range, mean, and standard error were computed to 

evaluate the degree of existing variability in the current clones (Table 1-2). The range, on the 

other hand, is a basic way of estimating variability that simply shows observed phenotypic 

variability. The AUDPC was ranged between 205.91 to 1398.15 with the mean value of 784.52 ± 
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30.34. Similarly, the yield of of tuber was ranged between 0.80 to 30.72 t/ha with the mean yield 

of 9.54 ± 0.75 t/ha (Table 2). It also showed within range of co-efficient of variation for all the 

traits. The phenotypic variants for all of the characteristics were larger than the genotypic 

variations (Table2), presumably due to a non-genetic factor that played a major role in the 

expression of these features. The characteristics with the highest phenotypic and genotypic 

variations were tuber yield, Percent Disease Index (PDI), AUDPC, and Disease Incidence (DI) 

(Table 2). 

Table 2. Variation, Heritability, and Genetic Advance in Potato Clones for Late Blight Disease 
and Yield Traits during 2018-2019 at Rampur, Chitwan, Nepal 

Traits Mean ± SEm Range 
PCV 
(%) 

GCV 
(%) 

H2B 
GA 

(5%) 
GA 

(% of mean) 
PDI% (55 DAP) 32.54 ± 1.53 11.08 – 74.37 50.48 50.24 0.94 31.85 97.88 

PDI% (62 DAP) 48.63 ± 1.98 12.21 – 99.90 43.38 43.27 0.93 40.41 83.11 

PDI% (69 DAP) 66.55 ± 2.31 21.08  – 99.90 39.07 39.03 0.98 52.65 79.12 

AUDPC 784.52 ± 30.34 205.91 – 1398.15 41.39 41.34 0.97 648.03 82.60 

DI % 68.04 ± 2.04 13.64 – 97.35 33.89 33.68 0.98 46.69 68.62 

Leaf length (cm) 5.83 ± 0.10 3.95 – 7.95 18.45 18.32 0.97 2.15 36.85 

Leaf width (cm) 3.85 ± 0.07 2.45 – 5.65 20.18 19.97 0.96 1.53 39.72 

Plant height (cm) 24.29 ± 0.67 11.45 – 46.15 31.08 30.35 0.98 15.19 62.54 

Main stem/plant 4.21 ± 0.12 1.80 – 9.75 31.21 30.97 0.97 2.63 62.42 

Yield (t/ha) 9.54 ± 0.75 0.80 – 30.72 88.52 87.72 0.98 17.05 178.70 

Note: SEm = standard error mean; PCV = phenotypic coefficient of variation; GCV = genotypic 
coefficient of variation; H2B = Broad sense heritability; GA (5%) = genetic advance at 5% selection 
intensity; CV = coefficient of variation; PDI = percent disease index; DAP = days after planting; 
AUDPC = area under disease progress curve; DI = disease incidence; cm = centimeter; % = 
percentage; t/ha = ton per hectare 

The phenotypic coefficient of variation has a greater numerical value than its genotypic 

equivalent, suggesting that apparent variation is caused not just by genes but also by 

environmental influences. For the majority of the traits, a small difference between PCV and GCV 

was observed (Table 2). For the majority of the recorded traits (Table 2), high heritability 

combined with high genetic gain as a percent of means was seen, indicating the majority of 

additive genetic influence in the determination of these traits. It also suggested that selecting for 

these characteristics might be beneficial for future clone improvement. However, significant 

heritability with modest genetic advance as a percent of mean was seen in leaf length and leaf 

breadth, demonstrating the importance of dominant genetic influences in the determination of 

these components and the need for careful selection to achieve the desired changes in the 

characteristics. Estimates of high heritability and high genetic gain both should be examined 

together to get a more accurate conclusion [23]. The heritable component of variation serves as 

the foundation for phenotypic performance-based selection. The mean tuber yield and disease 

parameters of high yielding (top 7) and low yielding (below 7) potato clones were shown in figure 

1.  
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Figure 1. Tuber Yield and Late Blight Disease Parameters of High Yielding (Top 7) and Low 

Yielding (Below 7) Potato Clones at Rampur, Chitwan, Nepal during 2018-2019 

The yield components of high yielding (top 7) and low yielding (below 7) potato clones were 

shown in figure 2. 

 

Figure 2. Yield Components of High Yielding (Top 7) and Low Yielding (Below 7) Potato 
Clones at Rampur, Chitwan, Nepal during 2018-2019 

The genotypic correlation coefficients were generally greater than the phenotypic correlation 

coefficients. Higher genotypic correlations than phenotypic may be attributed to the environment 

altering or concealing the manifestation of these characteristics under examination as explained 

by [26]. The fact that genotypic correlation was larger than phenotypic correlation suggested an 

inherent link between different traits [23]. The positive and highly significant (P < 0.01) genotypic 

and phenotypic correlations were observed between all the disease parameters i.e. the three 

disease index, AUDPC, and disease incidence (Table 3). The strong negative and highly 

significant (P < 0.01) correlations were observed between tuber yield and disease parameters 

(PDI, AUDPC, and disease incidence) both at the genetic and phenotypic levels. The tuber yield 

was positively and significantly correlated with leaf length, leaf width, and plant height both at 

the genetic and phenotypic levels. Most of the yield attributing components like leaf length, leaf 

Tuber yield (t/ha) Disease severity  (%) Disease incidence %

High yielding clones  (top 7) Low yielding clones (below 7)

Leaf length (cm) Leaf width (cm) Plant height (cm)

High yielding clones  (top 7) Low yielding clones (below 7)
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width, and plant height except branches were negative and significantly correlated with all the 

recorded disease parameters (Table 3). 

Table 3. Genotypic Correlation in Above Diagonal and Phenotypic Correlation in Below 
Diagonal of Late Blight Disease, Yield, and Yield Components in Potato Clones during 2018-

2019 at Rampur, Chitwan, Nepal 

Traits PDI_I PDI_II PDI_III AUDPC DI% LL (cm) LW (cm) 
PHT 
(cm) 

Main 
stem 

YLD 
(t/ha) 

PDI_I   0.92** 0.80** 0.94** 0.84** -0.62** -0.66** -0.53** -0.29 -0.71** 

PDI_II 0.92**   0.93** 0.99** 0.87** -0.69** -0.78** -0.52** -0.34* -0.85** 

PDI_III 0.79** 0.91**   0.96** 0.88** -0.78** -0.81** -0.48** -0.28 -0.92** 

AUDPC 0.93** 0.99** 0.95**   0.89** -0.72** -0.77** -0.51** -0.31 -0.87** 

DI% 0.81** 0.84** 0.86** 0.87**   -0.70** -0.79** -0.52** -0.18 -0.84** 

LL (cm) -0.59** -0.66** -0.76** -0.71** -0.69**   0.85** 0.37* 0.34 0.86** 

LW (cm) -0.62** -0.72** -0.78** -0.75** -0.77** 0.85**   0.40* 0.30 0.86** 

PHT (cm) -0.51** -0.49** -0.47** -0.51** -0.51** 0.35* 0.40*   0.39* 0.43** 

Main stem -0.29 -0.33 -0.28 -0.32 -0.18 0.33 0.31 0.36*   0.23 

YLD 
(t/ha) 

- 0.69** -0.81** -0.91** -0.85** -0.82** 0.84** 0.84** 0.43* 0.22   

Note: PDI = percent disease index; I = 55 days after planting; II = 62 days after planting; III = 69 days 
after planting; AUDPC = area under disease progress curve; DI = disease incidence; LL = leaf 
length; LB = leaf breadth; PHT = plant height; YLD = yield; cm = centimeter; t/ha = ton per hectare; 
% = percentage; ** = significant at ≤ 0.01 p level; * = significant at ≤ 0.05 p level 

There was a strong negative genotypic and phenotypic correlations among disease parameters, 

yield, and yield attributing components while positive correlations between yield and yield 

attributing components were observed which indicated that the tuber yield can be increased 

through a simple selection of the disease-resistant clones with these yield attributing components. 

The combined mean performance of potato clones to the late blight disease, yield, and yield 

components was shown in Table 4.   

Table 4. Combined Mean Performance of Potato Clones to the Late Blight Disease and Yield 
and Yield Components during 2018-2019 at Rampur, Chitwan, Nepal 

Clones 
PDI 
(I) 

PDI 
(II) 

PDI 
(III) 

AUDPC 
r 

AUDPC 
DI 
% 

LL 
(cm) 

LW 
(cm) 

PHT 
(cm) 

Main 
stem 

Yield 
(t/ha) 

CIP 304369.22 †27.30  48.56 70.58 780.66 0.49 74.26 4.98 3.55 15.74 2.36 7.90 

CIP 392025.7 13.25 46.31 76.28 728.58 0.46 37.98 7.18 4.15 26.89 4.55 9.48 

PRP 33971.11 43.23 66.30 88.24 1055.91 0.66 93.86 5.12 3.31 31.16 4.63 3.16 

PRP 316368.2 56.61 77.78 96.74 1234.82 0.77 90.00 5.08 3.31 23.88 4.25 2.20 

CIP 311350.2 67.06 74.84 91.86 1233.11 0.77 93.19 5.14 3.01 12.83 2.38 2.14 

PRP 277072.122 12.28 18.28 24.27 295.38 0.18 31.51 6.65 5.14 31.83 3.75 23.65 

CIP 392973.48 18.54 45.93 61.17 687.56 0.43 54.26 4.90 3.34 20.73 3.80 6.38 

PRP 017072.108 16.57 45.24 66.69 699.88 0.43 58.14 5.34 3.08 26.83 2.91 3.78 

PRP 146971.135 13.56 16.55 26.84 295.13 0.18 25.18 6.76 5.49 25.15 4.45 19.96 

PRP 146971.117 20.39 25.04 33.32 421.03 0.26 26.45 7.57 5.27 22.18 4.71 22.85 

CIP 311350.3 56.24 88.28 98.23 1305.66 0.83 94.72 4.77 2.76 13.90 2.80 1.89 

PRP 336971.4 34.82 47.34 70.84 804.94 0.50 85.46 5.32 3.47 25.66 4.86 4.13 

PRP 336971.8 46.47 73.84 95.26 1160.78 0.72 81.88 4.68 3.95 23.07 4.30 1.99 

CIP 311350.13 48.10 74.31 94.06 1160.60 0.73 92.83 4.92 3.15 13.71 2.48 2.55 

CIP 311546.25 25.45 44.80 56.35 685.01 0.43 73.33 7.13 4.01 24.45 4.50 7.74 
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Table 4. Continued 

Clones 
PDI 
(I) 

PDI 
(II) 

PDI 
(III) 

AUDPC 
r 

AUDPC 
DI 
% 

LL 
(cm) 

LW 
(cm) 

PHT 
(cm) 

Main 
stem 

Yield 
(t/ha) 

CIP 311350.27 20.14 24.46 31.80 407.60 0.25 62.83 7.33 4.31 14.05 2.73 22.85 

CIP 311622.9 12.98 15.76 23.05 274.25 0.17 18.93 7.37 4.70 32.11 3.75 27.71 

PRP 367072.22 18.81 24.00 36.48 417.01 0.26 63.67 7.11 4.18 23.23 9.61 16.55 

PRP 356971.3 50.03 73.34 96.19 1168.32 0.73 94.89 5.46 3.80 16.00 4.78 1.20 

PRP 336971.2 34.42 55.49 84.38 905.40 0.57 85.42 5.95 4.02 27.82 5.40 3.43 

CIP 311168.10 14.81 31.09 96.16 707.80 0.43 86.49 4.54 3.17 22.83 3.74 4.29 

PRP 147072.27 15.00 20.99 30.27 359.22 0.22 46.98 7.78 5.37 30.09 4.99 21.10 

PRP 146971.4 29.49 37.16 47.63 602.56 0.38 58.04 6.71 4.55 33.16 4.09 12.84 

CIP 311187.4 29.16 38.85 63.38 688.08 0.43 73.93 4.02 3.01 16.33 3.99 3.24 

PRP 146971.2 23.91 34.06 38.80 522.41 0.33 55.32 7.49 5.07 32.88 4.90 26.02 

PRP 336971.9 33.31 44.41 68.15 765.34 0.48 61.50 5.32 3.91 24.88 4.65 4.91 

PRP 136871.2 43.60 56.00 87.26 970.59 0.61 71.67 5.61 3.71 29.73 5.32 4.94 

PRP 317072.8 15.52 35.51 45.30 527.32 0.33 52.26 6.19 3.81 40.85 5.01 16.52 

CIP 395111.13 27.41 36.60 49.13 597.20 0.37 55.62 5.07 3.49 39.15 4.30 9.21 

DESIRE (MR) 58.51 74.84 88.35 1152.18 0.74 88.99 4.83 2.64 24.60 4.20 4.64 

Kuphri Jyoti (S) 59.67 79.46 98.00 1257.75 0.79 92.00 5.00 3.34 16.27 3.90 3.07 

FL (HS) 54.83 80.70 94.50 1232.54 0.78 95.77 5.44 3.34 15.42 2.55 3.04 

Grand Mean 32.54 48.63 66.55 784.52 0.49 68.04 5.83 3.85 24.29 4.21 9.54 

CV, % 4.95 3.19 1.85 2.05 2.01 3.92 2.14 2.94 6.88 4.77 11.88 

Note: †combined means of two replications; PDI = percent disease index; I = 55 days after planting; II = 
62 days after planting; III = 69 days after planting; AUDPC = area under disease progress curve; r 
= relative; DI = disease incidence; LL = leaf length; LW = leaf width; PHT = plant height; CIP = 
Centro Internacional de la Papa (International potato center); PRP = potato research program; FL = 
Farmers local; MR = moderately resistant; S = susceptible; HS = highly susceptible; % = percentage; 
cm = centimeter; t/ha = ton per hectare 

3.1. Relationships between Disease Severity (AUDPC) and Tuber Yield 

The best fit, with R2 = 72%, showed a substantial linear negative association (r = -0.85) between 

tuber yield and late blight severity (Figure 3). Consequently, as disease severity (AUDPC) 

increased, the yield was dropped. The projected linear regression line has a decreasing slope as 

well i.e. y = - 0.02x+26.72, with regression coefficient R2 = 0.73, where ‘y’ denoted predicted 

crop yield (t/ha) of potato clones and ‘x’ stood for AUDPC value of late blight of potato (Figure 

3).  

 

Figure 3. Relationship between Tuber Yield (t/ha) and AUDPC of Potato Late Blight at 
Rampur, Chitwan, Nepal during 2018-2019 
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3.2. Relationship between Leaf size and Tuber Yield  

The best fit showed a substantial linear positive association (r =0.85) between tuber yield and leaf 

length (r = 0.84, R2 = 71%) and leaf width (r = 0.83, R2 = 70%) (Figure 4). Obviously, the yield 

increased as the leaf size grew. The predicted linear regression line was also displayed upward 

slope i.e. y = 0.11x + 4.81, with regression coefficient R2 = 0.71, for leaf length and y = 0.08x + 

3.11, with regression coefficient R2 = 0.70 for leaf width where ‘y’ denoted predicted crop yield 

(t/ha) of potato clones and ‘x’ stood for leaf length and width in cm (Figure 4).  

 

Figure 4. Relationship between Tuber Yield (t/ha) with Leaf Length and Width (cm) of Potato 
Clones at Rampur, Chitwan, Nepal during 2018-2019 

The only optimal way to combat disease-related yield loss is to grow resistant genotypes [27]. 

The continuous screening of potato accessions for late blight resistance constitutes a major portion 

of potato breeding worldwide [28], [29]. Based on the disease parameters calculated over the 

years, six clones CIP 311622.9, PRP 277072.122, PRP 146971.135, PRP 147072.27, CIP 

311350.27, and PRP 146971.117 (AUDPC= 274.25-421.03, PDI_III = 23.05-33.32%) showed 

resistant reaction (Table 4). None of the clones were found highly resistant to the late blight 

disease. The lower disease incidence ranged from 18.93-31.51% and was recorded in clones CIP 

311622.9, PRP 146971.135, PRP 146971.117, and PRP 277072.122 respectively. Similar results 

were reported by [30], which indicated that potato clones CIP 311622.9, PRP 277072.122, PRP 

146971.135 showed resistant to a moderately resistant reaction to late blight disease in different 

agro-ecological domains of the country. This result also corroborated with the findings of [31] 

which reported that potato exotic accessions have shown resistance to late blight in the South 

Asian region. Horizontal resistance to late blight is considered more durable and effective against 

all pathotypes of the pathogen [32], [33]. Environmental factors, on the other hand, might impact 

the manifestation of quantitative resistance [34], calling its stability across diverse testing or 

production circumstances into doubt. The leaf length was ranged from 4.02 to 7.78 cm. The higher 
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leaf length (7.78 cm) was recorded in clone PRP 147072.27. The leaf width was ranged from 2.64 

to 5.49 cm and the higher leaf width (5.49 cm) was observed in PRP 146971.135. The plant height 

was ranged from 12.83 to 40.85 cm. The higher plant height (40.85 cm) was recorded in clone 

PRP 317072.8. The number of the main stem per plant was ranged from 2.36 to 9.61 and the 

highest main stem per plant (9.61) was found in PRP 367072.22 (Table 4). The tuber yield was 

ranged from 1.20 to 27.71 t/ha. The high yielding potato clones above 20 t/ha were CIP 311622.9 

(27.71 t/ha), PRP 146971.2 (26.02 t/ha), PRP 277072.122 (23.65 t/ha), CIP 311350.27 (22.85 

t/ha), PRP 146971.117 (22.85 t/ha), PRP 147072.27 (21.10 t/ha) and PRP 146971.135 (19.96 t/ha) 

respectively. These findings were in accordance with [35] for tuber yield and its attributing traits 

of CIP and PRP lines evaluated in various yield evaluation trials. Some elite potato accessions 

possessing multiple disease resistance genes were identified using DNA markers [29] [36]. The 

late blight resistant cultivars showed higher genetic variability compared to susceptible cultivars 

[37]. In contrast, the lowest genetic similarity was obtained among susceptible cultivars analyzed 

using RAPD markers [38].  

4. Conclusion and Recommendation 

We identified sufficient variability, high heritability, and genetic advance in the late blight disease 

and yield  traits of potato clones. This will provides new insight into selecting superior and desire 

clones for further potato improvement. Potato clones CIP311622.9, PRP277072.122, 

PRP146971.135, PRP147072.27, CIP311350.27, and PRP146971.117 appear more resistant and 

produced higher tuber yield than other clones. The discovered late blight resistant potato clones 

might be used for national potato breeding efforts in Nepal to create late blight resistant potato 

cultivars. 
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