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ABSTRACT   

This paper contains many directions such as Estuary, Solute, Concentration, and Diffusion.  Including a sample tube 

under a steady pressure gradient, the partial differential equations, and the ordinary differential is following the solution. 

The result comes from the reality that a probability of a mote crossing out of the element of the cross-sectional area of 

the flow is independent of some position of the cross-sectional element. Thus, the solute spread over a distance 

proportional to t1/2. 
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1. Introduction 

The unstable flow through a pipe of uniformly cross-sectional under the influence of a statistically constant 

pressure gradient is both statistically constant and function of the radial coordinate only[1]. In constant flow 

laminar or statistically constant unstable flow through a pipe of uniformly cross-sectional, an injected material 

spreads along a pipe in the direction of the flow due to longitudinal effects of molecular or turbulent diffusion 

and the interaction between the convection and the lateral molecular or turbulent diffusion. This happens 

because, at the wall, the velocity falls to zero and increases gradually reaching maximal at the tube center (or at 

the free Surface in an estuary), Thus a part of the injected material which is initially near the tube center (or at 

the free surface in an estuary) will be carried along the tube (or estuary) faster than parts which are close to the 

walls[2-4]. But eventually, the concentration becomes uniform over the Cross-Section due to lateral molecular 

or turbulent diffusion.  When Taylor[5, 6]  gave the basic idea of this mechanism, he assumed that the injected 

material and solvent are of the same density. Thus, the particles of the injected material are hydrodynamically 

indistinguishable from the solvent particles and, from the definition of the discharge velocity of the Whole fluid 

in the tube, the velocity means of the injected particles is equal to the discharge velocity. Rather, the result is 

the result from the reality that the probability of a particles slice through a given cross-sectional area element of 

the flow, is independent of the position of cross-sectional element,[7-13]. Moreover, the velocity mean of the 

center from a cloud of the injected substance is equal to the velocity of discharge[14-16]. This analysis will be 

useful when we use axes moving with discharge velocity.  

 

1.1 Presentation of the problem 

This problem relates to a mathematical model of the interaction between fluid flows estuary, solvent, solute, 

concentration, and diffusion. 
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1.2 Objective of the project 

The mean objective of this paper is: 

1) Define Estuary. 

2) Apply the Estuary and its contents. 

3) This analysis will be useful when we use axes moving with the discharge velocity. 

 

2. Dispersion in a laminar flow through a tube  

Consider a straight circular tube of radius an in a fully developed laminar flow when the concentration is 

axisymmetric. The longitudinal velocity u at a distance r from the centerline of the tube is: 

u = 𝑢̅(1-2
𝑟2

𝑎2)                                                                                                     ⋯(1) 

Measured relative to axes moving with the discharge velocity of the flow ū. The equation that governs the 

distribution of the concentration c(x,r,t) can be written in the form: 

𝜕𝑐  

𝜕𝑡
 + u 

𝜕𝑐

𝜕𝑥1
 = 

𝑘

𝑎2 
(

𝜕2𝑐

𝜕𝑧2 + 
1

𝑧

𝜕𝑐

𝜕𝑧
 + 𝑎2 𝜕2𝑐

𝜕𝑥1
2)                                                                ⋯(2) 

Where z = 
𝑟

𝑎
 , 𝑥1 = x-𝑢̅t and the coefficient of molecular diffusion are assumed to be independent of the 

concentration. In using equation (2) we assumed there are no sources of matter in the tube. 

The boundary condition of no flux at the wall is: 

𝜕𝑐

𝜕𝑧
 = 0 at z=1                                                                                                    ⋯(3) 

Hence the mean concentration is easier to measure than the concentration. The mean concentration 𝑐̅(𝑥1,t) is 

given by: 

𝑐̅ = 
2

𝑎2 ∫ 𝑐𝑟
𝑎

0
 dr                                                                                                 ⋯(4) 

The cross-sectional average of equation (2) is: 

𝜕𝑐̅

𝜕𝑡
 + 

𝜕

𝜕𝑥1
 (𝑢𝑐̅̅ ̅) = k

𝜕2𝑐̅

𝜕𝑥1
2                                                                                        ⋯(5) 

the goal of our analysis now is to reach an expression for the rate of transport  𝑢𝑐̅̅ ̅, which we can substitute into 

equation (5). There is an exact steady solution of equation (2) in which the concentration along the tube axis is 

exactly linear in 𝑥1. i.e.  

c= 𝛼𝑥1+ 𝛼𝑔(𝑧)                                                                                                ⋯(6) 

Where 𝛼  is a constant. In the real situation, over time after lunch, the tint cloud will spread over a distance that 

is greater than the radius. Thus, at about any point, the concentration will be approximately linear in 𝑥1 . So, we 

can use equation (6) to find an approximation to 𝑢𝑐̅̅ ̅ in a real situation. 

Now substitute equation (6) into equation (2) yielding, after one integration  

z
𝑑𝑔

𝑑𝑧
 = 

𝑎2𝑢̅

𝑘
 (

𝑧2

2
 - 

𝑧4

2
 ) + A, 

Where A is a constant. From the boundary condition (3) A is equal to zero. If we integrate again, 

g = 
𝑎2𝑢̅

4𝑘
 (𝑧2- 

𝑧4

2
) + B                                                                                           ⋯(7) 

Where B is a constant. From the exact solution (6) it follows that 𝛼= 
𝜕𝑐̅

𝜕𝑥1
 , so that from (6) and (7)  

𝛼𝑥1= 𝑐̅- 
𝜕𝑐̅

𝜕𝑥1
(

𝑎2𝑢̅

12𝑘
 + B)                                                                                          ⋯(8) 

There for  

c= 𝑐̅ - 
𝜕𝑐̅

𝜕𝑥1
 {

1

3
 - 𝑧2+ 

1

2
 𝑧4} 

𝑎2𝑢̅

4𝑘
                                                                               ⋯(9) 
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[Note that equation (9) is independent of the value of the constant B in equation (7)] 

The mean rate of transport 𝑢𝑐̅̅ ̅ across a section is: 

𝑢𝑐̅̅ ̅ = 2∫ 𝑐𝑢𝑧 𝑑𝑧
1

0
 

Thus, from equation (1) and (9)  

𝑢𝑐̅̅ ̅ = - 
𝑎2𝑢̅2

48𝑘
 

𝜕𝑐̅

𝜕𝑥1
                                                                                                      ⋯(10) 

That is equation (5) becomes.  

𝜕𝑐̅

𝜕𝑡
 = (k+ 

𝑎2𝑢̅2

48𝑘
)

𝜕2𝑐̅

𝜕𝑥1
2 = K

𝜕2𝑐̅

𝜕𝑥1
2                                                                                       ⋯(11) 

Thus, the mean concentration 𝑐̅(𝑥1,t) is scattered comparative to a plane which moves with the discharge 

velocity 𝑢̅ and satisfies a diffusion equation with an effective longitudinal diffusion parameter k, where k is 

given by: 

K=k +
𝑎2𝑢̅2

48𝑘
                                                                                                            ⋯(12) 

The value of K in equation (12) is due to Aris [17]. 

Taylor [1] and[18-20] ignored the effect of the longitudinal diffusion in comparison with the convective 

diffusion and found K = 
𝑢̅2𝑎2

48𝑘
; however, since 

𝑢̅𝑎

𝑘
>>1 in most practical cases, Taylor ’s result is an acceptable 

approximation. 

Equation (11) holds with increasing accuracy a percentage of time after injection to the cross-sectional mixing 

time increases as 
𝑘𝑡

𝑎2 increases [21]. 

The appropriate solution of (11) for a cloud of dye is the normal curve. 

𝑐̅(𝑥1t) = 
1

√2𝜋𝜎2
 exp [-

(𝑥−𝑥̅)2

2𝜎2 ]                                                                                           ⋯(13) 

Thus, the dye cloud eventually spreads symmetrically around a point moving with the flow discharge velocity 

𝑢̅, for this reason, it's center of mass 𝑥̅ and its standard deviation 𝜎  satisfies: 

𝑑𝑥̅

𝑑𝑡
 = 𝑢̅ 

𝑑𝜎2

𝑑𝑡
 = 2k                                                                                               ⋯(14) 

Experimentally Taylor [1]and analytically, [14] showed that if sufficient time has not passed, the symmetry of 

the distribution of concentration is not completely smoothed out. The standard deviation 𝜎 is a measure of linear 

extension, which implies that 𝜎 = spread, where 𝜎 = √2𝑘𝑡 by equation (14) thus the solute is spread over a 

distance proportional to √𝑡 . 

3. Dispersion in a turbulent flow through a tube  

In a consideration of turbulent flow, it is necessary to refer to the fact that the velocity and the pressure gradient 

are not constant in time as in the laminar flow, but they are a random function of it. Thus, the statistical mean 

velocity is constant only when the flow is statistically stationary. The distribution of the longitudinal velocity is 

considerably more uniform over the cross-section due to the increased transfer of momentum in the transverse 

direction.  

The purpose of this section is to see whether the mechanism described earlier lead to an equation of the form 

(11) when the turbulence velocity is a stationary random function of time. 

Consider a statistically the turbulent flow is steady through a pipe of uniform cross-section with coordinates. 

Experimentally, the statistical mean velocity u at a distance r from the center of the tube[22, 23] satisfies: 

u = 𝑢0 - 𝑢∗f(z)                                                                                                        ⋯(15) 
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where f(z) is the same for all straight tubes with a circular cross-section, at the center of the tube, 𝑢0 is the 

velocity and  𝑢∗ = (
𝑇0

𝜌
)

1

2 , 𝑇0 and 𝜌 being the frictional stress at the wall of the tube, and the fluid density, 

respectively. The discharge velocity is: 

𝑢̅ = 2 ∫ 𝑢𝑧 𝑑𝑧
1

0
, 

 and by using equation (15)  

𝑢̅ = 𝑢0 - 2𝑢∗ ∫ 𝑧 𝑓(𝑧) 𝑑𝑧
1

0
 . 

The integral ∫ 𝑧 𝑓(𝑧) 𝑑𝑧
1

0
  was evaluated numerically by Taylor [1] using the value of f(z) determined 

experimentally by and by [24-26]giving: 

𝑢̅ = 𝑢0 – 4.25𝑢∗                                                                                                       ⋯(16) 

The mass balance equation that governs the distribution of the concentration c(x,r,t), with axes moving with the 

discharge velocity, can be written in the form: 

𝜕𝑐

𝜕𝑡
 + u

𝜕𝑐

𝜕𝑥1
 = 

1

𝑟
 

𝜕

𝜕𝑟
 (𝑒1r

𝜕𝑐

𝜕𝑟
) + 

𝜕

𝜕𝑥1
(𝑒2

𝜕𝑐

𝜕𝑥2
)                                                                        ⋯(17) 

Where 𝑒1 and 𝑒2 are the eddy diffusivities in the r and 𝑥1 directions, respectively. 

The contribution from the longitudinal turbulent diffusion (𝑥1- direction) is not large and can be ignored 

temporarily, i.e., we ignore the term 
𝜕

𝜕𝑥1
(𝑒2

𝜕𝑐

𝜕𝑥2
). 

Thus equation (17) becomes: 

𝜕𝑐

𝜕𝑡
 + u

𝜕𝑐

𝜕𝑥1
 = 

1

𝑟
 

𝜕

𝜕𝑟
 (𝑒1r

𝜕𝑐

𝜕𝑟
)                                                                                   ⋯(18) 

The cross-sections average of equation (18) is: 

𝜕𝑐̅

𝜕𝑐
 + 

𝜕

𝜕𝑥1
(𝑢𝑐̅̅ ̅) = 0                                                                                             ⋯(19) 

now it is necessary to find the approximate expression for 𝑢𝑐̅̅ ̅ as in the case of laminar flow. We use an 

expression for the eddy diffusivity 𝑒1 based on Reynold analogy. 

Thus 𝑒1 can be expressed in the present case by the equation.  

𝑒1 = - 
𝑇

𝜌
𝜕𝑢

𝜕𝑥

 = - 
𝑀
𝜕𝑐

𝜕𝑥

                                                                                               ⋯(20) 

Here T is the turbulent shear stress (arising from fluctuations in the velocity carrying fluctuations in longitudinal 

momentum radially) and M is the turbulent rate of transfer of matter radially (arising from fluctuations in 

velocity carrying fluctuations in concentration radially). Both T and M can be expressed in terms of the 

fluctuations using the classical Reynolds decomposition. See for the instance the survey by Tennekes and lunley 

[27]. 

Hence using (15) the coefficient 𝑒1 can be written as: 

𝑒1 = 
𝜕𝑢∗𝑧

𝑓′(𝑧)
                                                                                                              ⋯(21) 

As in the laminar case, equation (18) has an exact steady solution of the from (6). Using equation (16), equation 

(18) becomes: 

𝑑

𝑑𝑧
 ( 

𝑧2

𝑓′(𝑧)

𝑑𝑔

𝑑𝑧
 ) = za {f(z) – 4.25} 

By integration we obtain  

g = a ∫
𝑓′(𝑦)

𝑦2

𝑧

0
[∫ 𝑥(𝑓(𝑥

𝑦

0
) – 4.25) dx] dy                                                              ⋯(22) 
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proceeding as in the laminar case, we find that.  

𝑢𝑐̅̅ ̅ = -10.06 a𝑢∗ 
𝜕𝑐̅

𝜕𝑥1
                                                                                             ⋯(23) 

Where integrals like ∫ 𝑧(𝑓(𝑧) − 4.25)𝑑𝑧 etc, have been determined by numerical integration. Therefore 

equation (19) becomes: 

 

𝜕𝑐̅

𝜕𝑡
 = 10.06 a𝑢∗ 

𝜕2𝑐

𝜕𝑥1
2 =𝑘1  

𝜕2𝑐̅

𝜕𝑥1
2                                                                                  ⋯(24) 

Thus, the mean concentration 𝑐̅(𝑥1, 𝑡) satisfies the diffusion equation with dispersion coefficient 𝑘1, where 𝑘1 

is given by. 

 

𝑘1 = 10.06 a𝑢∗                                                                                                       ⋯(25) 

And the injected material is scattered comparative to a plane which moves with the discharge velocity  𝑢̅ . As 

in the laminar cases, equation (24) adheres with an accuracy increasing as a proportion of time after injection 

to the cross-sectional mixing time increases i.e., as 
𝑢∗𝑡

𝑎
 increases. 

We have ignored the longitudinal turbulent diffusion in our treatment a reasonable assumption to find this 

contribution is that the coefficient of longitudinal turbulent diffusion, i.e., 𝑒1 = 𝑒2 which is valid if the turbulence 

is isotropic. The rate of transfer of matter across a plane due to the longitudinal turbulence is: 

 

𝑄 = ∫ 2𝜋
𝑎

0
𝑒1 

𝑑𝑐

𝑑𝑥
 = 2𝑎3 𝑢∗ 

𝑑𝑐

𝑑𝑥
 ∫

𝑧2

𝑓′(𝑧)

1

0
 dz 

The value of the integral can be found numerically. The mean coefficient of the diffusion due to the longitudinal 

turbulent (x-direction) velocity satisfies.  

𝑄 = 𝑘2𝜋𝑎2 
𝑑𝑐

𝑑𝑥
  

 where 𝑘2 is the longitudinal turbulent diffusion. Thus  

𝑘2 = 0.052𝑎𝑢∗                                                                                                  … (26) 

Therefore, the total longitudinal turbulent diffusion due to both effects is from (25) and (26)  

K = 10.1a𝑢∗                                                                                                          ⋯(27) 

Equation (24) has of course a Gaussian solution as in the laminar case. Experimentally, Taylor [2] found values 

of k from 11.0 to 12.8 for the straight tube. These values seem to be in good agreement with the theoretical 

value given by (27). However other work in this field [14] casts doubt on the accuracy of the eddy diffusivity 

approximation and Reynold’s analogy and points out the consequences of ignoring the viscous sub-layer. The 

taken time by dye of molecule to sample all the cross-sectional including the viscous sub-layer is greater than 
𝑎

𝑢∗
. This occurs because the viscous sublayer properties of the disorder directly dependent on viscosity v and 

lateral mixing is sufficiently dominated near the wall by molecular processes, the intensity of which is measured 

by molecular diffusion k.  

Thus, the longitudinal dispersion coefficient is given in equation (27) must increase by a moment proportional 

to the size of the viscous sub-layer. It has been suggested that error arising is of order 10-20% (depending on 

the Reynolds number) which seems to be an important effect; even this estimation is based on Reynold’s analogy 

which may also cause an error of order 10%. Moreover, the values of k in rivers and canals, whenever the width-

to-depth ratio is large, are far larger than (27) because in such cases the dominant dispersion mechanism is due 

to the transverse variation of velocity.  
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4. Conclusions and recommendations 

This paper is important to research for the Universities, especially in the engineering college’s student’s projects. 

The applications in the rivers and seas such as estuary, solute, concentration, and diffusion with the use of ships 

and steamship and submarine, are fields of the applications with the salinity of this research and all under partial 

and ordinary equations. 
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