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1 General Introduction 
 

The discovery of the high-Tc (superconducting critical transition temperature) superconductivity in 

cuprates [1] triggered the rapid development of the field of “strongly correlated electron systems”, and 

the field has become one of the most important fields of solid-state (condensed matter) physics. A 

variety of studies has established understandings of properties for many groups of materials, such as 

cuprates, manganites, and organic conductors. However, understanding of the metal-insulator 

transition − Mott transition − and the physics around it, which are fundamental issues in strongly 

correlated electron systems, remains incomplete. I have focused on organic conductors to give insights 

into these issues. In this chapter, I will describe the features of the strongly correlated electron systems 

and the organic conductors and clarify why I have focused on the organic conductors. 

 

1.1 Strongly correlated electron systems 
 Strongly correlated electron systems are realized when the band theory breaks down owing to 

Coulomb repulsion between electrons. When the Coulomb repulsion is weak and the one-particle 

approximation can be valid, the band theory is well justified. This theory successfully classifies the 

electronic states of materials into two groups, namely, metallic and insulating states; when a system 

has an incompletely filled band, the system shows a metallic state; when a system only has bands that 

are completely filled or empty, the system shows an insulating state. The metallic state with weak 

Coulomb repulsion between electrons, which can be treated as a perturbation, is described by the 

“Landau Fermi liquid theory” except for one-dimensional systems and is called the Fermi liquid state. 

 In the strongly correlated electron systems, strong Coulomb repulsion breaks the above mentioned 

one-particle approximation and leads the physics to the many-body problem of electrons. The systems 

with strong Coulomb repulsion show insulating states that are essentially different from the insulating 

state described by the band theory; the electrons are localized because of the strong Coulomb repulsion. 
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1.1.1  Mott insulator and Mott transition 

I will consider the case where the charge density defined as the ratio of electron number to site 

number is unity (N = 1), as in the solid hydrogen. I discuss the electronic state of this system as a 

function of the absolute value of the ratio of the transfer integral t (t < 0) to the on-site Coulomb 

repulsion U (> 0), |U/t|. When |U/t| is small, the system shows a half-filled band metallic state (Fermi 

liquid state). When |U/t| is large enough, it shows an insulating state different from the insulating state 

described by the band theory, which is called a “Mott insulator.” A transition between these states (the 

half-filled band metallic state and Mott insulator) owing to the Coulomb repulsion as described above 

is called a “Mott transition.” 

The minimal model Hamiltonian (single-band Hubbard Hamiltonian) describing the Mott insulator 

(|U/t| >> 1) is written as 

                  ℋ = 𝑡 ∑ (𝑐𝑖𝜎
† 𝑐𝑗𝜎 + h. c. ) + 𝑈 ∑ 𝑛𝑖↑𝑛𝑖↓𝑖〈𝑖,𝑗〉𝜎 ,               (1-1) 

 

where σ is a spin index which takes ↑ (Sz = 1/2) and ↓ (Sz = –1/2), i represents the site, niσ (= c†iσ ciσ) 

and c†iσ (ciσ) denote number operator and creation (annihilation) operators for the particle with σ spin 

at i th site, respectively. When U is much larger than t, the single-particle spectrum split into the lower 

and upper Hubbard bands, and the Hubbard gap (~U) appears between the Hubbard bands; the particles 

cannot itinerate between sites, and they are localized at each site due to the strong Coulomb repulsion. 

In the Mott insulators, the spin degree of freedom survives because one particle is localized at each 

site. Dealing with the first term in Eq. (1-1) as a second-order perturbation, we obtain the effective 

Hamiltonian describing the spin degrees of freedom: 

                                 ℋeff = 2𝐽 ∑ (𝑺𝑖 ⋅ 𝑺𝑖+1 − 1
4)𝑖 , 

    𝐽 ≡ 2𝑡2

𝑈  (> 0).                                 (1-2) 

This effective Hamiltonian is well known as the antiferromagnetic Heisenberg Hamiltonian. Thus, the 

Mott insulators usually have an antiferromagnetic interaction between the spins.  

  Two scenarios have been discussed for a long time to describe the Mott transition. One is the 

Hubbard scenario [2]. In the Hubbard scenario, with increasing |U/t| from the Fermi liquid side, the 

single-particle spectrum gradually splits into the lower and upper Hubbard bands (Fig. 1.1(a)). The 

other is the Brinkman-Rice scenario [3]. In the Brinkman-Rice scenario, with increasing |U/t| from the 

Fermi liquid side, the bandwidth of the single-particle spectrum becomes narrow, and the lower and 
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upper Hubbard bands appear eventually (Fig. 1.1(b)). This spectral narrowing and appearing of these 

Hubbard bands suggest that an effective mass of the particle (inverse of quasiparticle weight) becomes 

heavier, and thus diverges at the critical point. These two scenarios conflicted with each other.  

  After that, Zhang et al. proposed a dynamic mean-field theory (DMFT) for the Mott transition and 

successfully treated these two scenarios in a unified manner [4]. Note that, this DMFT is justified in 

infinite-dimensional systems and may not be fully valid in lower dimensional systems. In the DMFT 

scenario, with increasing |U/t| from the Fermi liquid side, both splitting of the single-particle spectrum 

and narrowing of the spectrum-width are realized as shown in Fig. 1.1(c). This suggests that both the 

Hubbard and Brinkman-Rice scenarios shed light only on one aspect of the Mott transition. Therefore, 

the appearance of the two Hubbard bands and the divergence of the effective masses of particles are 

likely to be important factors in the Mott transition.  

For 0 < N < 2 except N = 1, systems also sometimes show metal-insulator transition, and the 

transition and the resulting insulator are also called a Mott transition and a Mott insulator, respectively. 

Note that this Mott transition cannot be described by the simple Mott-Hubbard Hamiltonian. The 

precise description of the transition is still under debate. 

The Mott transition systems show a variety of novel phenomena, such as the high-Tc superconductivity, 

giant magnetoresistive effect, and quantum spin liquid. The variety of electronic states is believed to 

be caused by competing effects between the many-body effect and various factors, such as phonon, 

frustration, and randomness. 
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          Fig. 1.1. Schematic three scenarios of Mott transition           
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1.1.2 How to induce Mott transitions 

There are two types of Mott transition (Fig. 1.2). One is called a “bandwidth-controlled Mott 

transition.” This Mott transition can be induced by changing a lattice parameter and controlling the 

overlap of wave functions (transfer integral). There are two known methods to change the lattice 

parameter: one is to apply external pressure, and the other is to change the chemical composition and 

thus apply chemical pressure. The other is called a “filling-controlled Mott transition.” The Mott 

transition is caused by career doping (introducing electrons or holes and changing the band filling) 

. 

             
      Fig. 1.2. The bandwidth-controlled and filling-controlled Mott transitions       
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1.1.3 The universality class of the Mott transition 

The Mott transition (bandwidth-controlled Mott transition) is known as a first-order transition with 

a finite-temperature critical endpoint in the pressure (namely, |t/U|) – temperature phase diagram. 

Theoretical works suggest that the Mott transition described by the half-filled Hubbard Hamiltonian 

belongs to the Ising universality class; Castellani et al. obtained an effective Hamiltonian from the 

half-filled Hubbard Hamiltonian and found that the transition can be treated by analogy to the gas-

liquid transition, which belongs to the Ising universality class [5]; Kotliar et al. used a DMFT for 

Hubbard Hamiltonian and also found that the Mott transition belongs to the Ising universality class 

[6,7]. From the experimental point of view, Limelette et al. obtained the critical behavior of the 

conductivity near the endpoint of the Mott transition of Cr-doped V2O3 and found that the Mott 

transition belongs to the Ising universality class, consistent with the theoretical works [8]. Besides, 

Imada studied a phenomenological theory and suggested that when the temperature of the endpoint of 

a Mott transition is much higher than the energy scale of the quantum degeneracy, it belongs to the 

Ising universality class, but when they are close, it belongs to an unconventional universality class [9]. 

Indeed, from the experimental point of view, Kagawa et al. obtained the critical behavior of the 

conductivity near the endpoint of the Mott transition of the organic conductor κ-(ET)2X system and 

claimed that the Mott transition in the material belongs to the unconventional universality class [10]. 

However, this experimental result is still under debate. Papanikolaou et al. presented a unified 

phenomenological description of all the experimental facts within an Ising-type model and pointed out 

that the critical behavior of the conductivity of κ-(ET)2X can be explained by the Ising universality 

class [11]. Besides, Bartosch et al. developed a scaling theory for describing the singular part of the 

thermodynamic expansivity in the vicinity of a finite-temperature critical endpoint [12]. Together with 

the results of the thermal measurements of κ-(ET)2X [13], they claimed that the Mott transition of κ-

(ET)2X belongs to the conventional Ising universality class in their theory [12]. Recently, Abdel-Jawad 

et al. obtained the critical behavior of the conductivity and thermoelectric power near the endpoint of 

the Mott transition of the organic conductor EtMe3P[Pd(dmit)2]2 and claimed that the Mott transition 

of EtMe3P[Pd(dmit)2]2 belongs to the Ising universality class [14]. Therefore, the universality class of 

the Mott transition is still under debate, but at least it is believed that the universality class relates to 

the Ising universality class. 
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1.2 Organic conductors 

  In solid-state physics, organic conductors, which are constructed of organic molecules, have been 

regarded as ideal playgrounds to study the low-dimensional correlated-electron physics. Low-

dimensional physics is attractive because synergistic effects between the low dimensionality and 

various interactions produce interesting physical phenomena, such as the high-Tc superconductivity, 

the charge density wave, and the quantized Hall effect. This is because in high-dimensional systems, 

these effects are averaged out and peculiar properties due to these effects do not appear. However, in 

low-dimensional systems, peculiar properties can appear because the averaging effect is suppressed 

due to the low dimensionality. Besides, |U/t| is relatively large in the organic conductors as explained 

in the subsect. 1.1.1, and thus they are also ideal playgrounds for the strongly correlated electron 

systems. 

 

1.2.1 Low dimensionality 

  The low dimensionality in the organic conductors is due to the anisotropic shape of molecules that 

constitutes the organic conductors. In many cases, the molecules do not have spherical symmetry, and 

thus cause a strong anisotropy of the materials. Besides, frontier electron orbitals (HOMO: Highest 

Occupied Molecular Orbital, and LUMO: Lowest Unoccupied Molecular Orbital) in the materials, 

which are responsible for electrical conduction, are constituted by π-orbitals. The π-orbitals also have 

an anisotropy. Thus, these features restrict the dynamics of the electrons to a lower dimension. 

 

1.2.2 Strongly correlated system 

  The relatively large value of |U/t| in the organic conductors is due to the composition of the matter. 

The organic conductors are formed by a van der Waals force between molecules, which is much weaker 

than the force that forms covalent bonds between atoms. Thus, lattice constants in the organic 

conductors become larger than those in inorganic materials, and transfer integrals between molecules 

are smaller than those between atoms in inorganic materials. In the organic conductors, therefore, the 

bandwidth becomes narrow compared to inorganic materials and is comparable with an on-site 

Coulomb repulsion. 
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1.2.3 Advantages 

  There are several advantages of organic conductors to study low-dimensional strongly correlated 

electron systems. The main advantages are (i) cleanliness and (ii) high controllability of various 

parameters. (i) Organic conductors are clean systems. In inorganic materials, one atom plays the role 

of one lattice point. Inorganic materials easily have vacancies in the atomic sites, and thus undesirable 

lattice defects are easily created. In organic conductors, one molecule plays the role of one lattice point. 

The molecules are rarely gone because they are tens of times larger than atoms. It is believed that such 

large components are unlikely to go away. Thus, organic conductors hardly have undesirable lattice 

vacancies and allow studying physics without undesirable uncontrolled randomness. (ii) Organic 

conductors have high controllability of various parameters. The parameters that can be easily 

controlled are as follows: transfer integrals by the external pressure and the chemical pressure, 

randomness by cooling rate and x-ray irradiation; carrier doping by a field-effect transistor 

configuration.  

  The controllability of transfer integrals by the external pressure is owing to the softness of organic 

conductors. As described in the subsect. 1.2.2, organic conductors are formed by the weak van der 

Waals force. Owing to the weak force, organic conductors are several times softer than inorganic 

systems; and thus, external pressure can easily control the distance between the molecules, or the 

transfer integrals between the molecules. Besides, changing the chemical composition can apply 

chemical pressure. 

  The controllability of randomness is owing to the properties of molecules. Molecules sometimes 

take several molecular-shape conformations at high temperatures and fluctuate between them. When 

organic conductors are cooled rapidly, the molecules take meta-stable conformations, causing 

quenched disorder. Besides, x-ray irradiation also can introduce quenched disorder because it causes 

molecule defects that can hardly be repaired. These methods of introduction of randomness allow 

systematic studying of strongly correlated electron systems with intentional randomness. 

  Recently, the method of doping to organic conductors has been developed [15]. The method uses a 

field-effect transistor configuration. This method has been well-established in inorganic materials, but 

now it can be applied to organic conductors as well, making more comprehensive research possible; 

the method for organic conductors makes it possible to study the doping effect for a pure system 

without undesirable randomness in contrast to inorganic materials. 

Thus, organic conductors provide ideal playgrounds for a comprehensive understanding of the 

physics of strongly correlated electron systems because of these advantages.  
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1.2.4 κ-(ET)2X 

Among several quasi-two-dimensional organic conductors, κ-(ET)2X systems (where ET (Fig. 

1.3(a)) is the abbreviation of BEDT-TTF: (bis(ethylenedithio)tetrathiafulvalene) and X is an anion, 

such as X= Cu[N(CN)2]Cl, Cu[N(CN)2]Br, Cu(NCS)2, and Cu2(CN)3) have been especially intensively 

studied [16]. The κ-(ET)2X systems have a layered structure; a conducting ET layer is segregated by a 

nonmagnetic insulating anion layer X. The κ-(ET)2X systems are charge transfer salts; one ET dimer 

provides one electron to the anion X. Thus, the HOMO band of the κ-(ET)2X systems becomes half-

filled. The ET dimer plays the role of one lattice point of a triangular lattice, and an effective single-

band Hubbard Hamiltonian with on-site Coulomb repulsion U and transfer integrals t between the ET 

dimers can describe the fundamental properties of the system [17]. When |U/t| is large, this system 

shows a dimer Mott insulating state. In the Mott insulating state, the spin state usually undergoes 

antiferromagnetic long-range ordering at low temperatures [18]. The exception is X = Cu2(CN)3, where 

the effect of strong geometric frustration results in a quantum spin liquid state [19,20]. When U/t is 

small, this system shows a half-filled metallic state (Fermi liquid state). In addition, at low 

temperatures, the system shows superconductivity near the Mott boundary [21,22], which is believed 

to have d-wave nature [23-27]. The |U/t| can be controlled by applying pressure or chemical pressure, 

as described in the subsect. 1.1.2. The phase diagram of the κ-(ET)2X system is shown in Fig.1.4(a), 

and κ-(ET)2X systems show a Mott transition with a critical endpoint, as described in the subsect. 1.1.3 

The superconductivity in the κ-(ET)2X systems is usually adjacent to the antiferromagnetic long-

range ordered state, which is similar to the high-Tc cuprates. The similarity of superconductivities in 

the κ-(ET)2X systems and the high-Tc cuprates, whose parent materials are Mott insulators, was pointed 

out [28]. Indeed, the energy scale for the κ-(ET)2X systems is about one-tenth smaller than that of the 

cuprates, and Tc of the κ-(ET)2X systems is also about one-tenth smaller than that of the cuprates. Note 

that there is a difference in the Mott transition. The Mott transition of the κ-(ET)2X systems is the 

bandwidth-controlled Mott transition, which is realized by external or chemical pressure [29,30]. The 

Mott transition of the cuprates is the filling-controlled Mott transition, which is realized by carrier 

doping. 

The superconductivities in the κ-(ET)2X systems and the high-Tc cuprates are believed to be related 

to the antiferromagnetic Mott insulators and Mott transitions. A comprehensive understanding of Mott-

related physics is required. However, inorganic materials, including the cuprates, inevitably have 

undesirable randomness and/or other effects, such as a Jahn-Teller effect and a spin-orbit coupling, 

and thus it is difficult to study pure Mott-related physics. In contrast, κ-(ET)2X is an appropriate system 

to study pure Mott-related physics because of the advantages as described in the subsect. 1.2.3. 
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1.2.5 Y[Pd(dmit)2]2 
The organic conductors Y[Pd(dmit)2]2 systems (where Y is a cation, such as Y = EtMe3P, EtMe3Sb, 

Et2Me2P, where Et = C2H5, Me = CH3, and dmit is 1,3-dithiol-2-thione-4,5-dithiolate, C3S5; Fig. 1.3(b)), 

which are similar to the κ-(ET)2X systems, have been attracted recently [16]. The Y[Pd(dmit)2]2 

systems also have a layered structure and are quasi-two-dimensional systems; a conducting Pd(dmit)2 

layer is segregated by a nonmagnetic insulating cation Y layer. The Y[Pd(dmit)2]2 systems are charge 

transfer salts; one Pd(dmit)2 dimer accepts one electron from the cation Y. Thus, the LUMO band of 

the Y[Pd(dmit)2]2 systems become half-filled. The Pd(dmit)2 dimer plays the role of one lattice point 

of a triangular lattice. On-site Coulomb repulsions lead almost all Y[Pd(dmit)2]2 systems to Mott 

insulating states, as is similar to κ-(ET)2X systems. As for the spin degree of freedom, most of the 

Y[Pd(dmit)2]2 systems show an antiferromagnetic long-range ordered state at low temperatures, while 

it is believed that the ground states of EtMe3Sb[Pd(dmit)2]2 and EtMe3P[Pd(dmit)2]2 become a quantum 

spin liquid state and a valence bond solid (VBS) state, respectively, owing to the strong frustration 

effect in these two materials, which have nearly-equilateral triangular lattice transfer networks. The 

phase diagram of EtMe3P[Pd(dmit)2]2 is shown in Fig. 1.4(b) as a representative example of the 

Y[Pd(dmit)2]2 systems [31,32]. Note that almost all Y[Pd(dmit)2]2 systems except EtMe3P[Pd(dmit)2]2 

show an antiferromagnetic ordered state instead of the VBS state. The EtMe3P[Pd(dmit)2]2 system also 

shows a first-order Mott transition with a critical endpoint as described in the subsect. 1.1.3. 

 

         

  



 

 11 

                 

                          Fig.1.3. (a) ET and (b) Pd(dmit)2 molecules. 

 

 

 

Fig. 1.4. The phase diagram of (a) κ-(ET)2X systems [21,22,29,30] and (b) EtMe3P[Pd(dmit)2]2 [31,32]. 

(d8) indicates that the ET molecule is fully deuterated. PM, AFI, VBS, and SC denote paramagnet, 

antiferromagnetic ordered insulator, valence bond solid, and superconductor, respectively. The 

pressure for (b) is defined at room temperature. At low temperatures, the pressure decreases by 1.5–2 

kbar from that at room temperature.  
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1.3 Organization of thesis 
There are two important open issues related to the Mott transition. One is superconductivity realized 

in the vicinity of the Mott transition. It has been widely known that unconventional superconductivity 

is realized around the Mott transition in many quasi-two-dimensional systems such as cuprates and 

organic materials. However, it is still unresolved what kind of superconductivity is realized when the 

dimensionality or lattice topology is varied. The other is the Mott transition itself. There is a consensus 

that, in clean systems, the Mott transition is a first-order transition at low temperatures with a critical 

endpoint in the pressure-temperature phase diagram, as I explained above. However, it is still 

unresolved what becomes of the Mott transition when randomness is introduced. Although these issues 

are fundamental and thus have been studied intensively in inorganic materials, they are still open issues 

even now. 

In this thesis, I studied the two Mott-related physics, which are difficult to approach in inorganic 

materials, by focusing attention on organic conductors: a property of layered superconductivity located 

near the Mott transition, and a novel description of the Mott transition under randomness. 

In chapter 2, I describe the study of the dimensionality of superconductivity in EtMe3P[Pd(dmit)2]2, 

which has a quasi-two-dimensional triangular lattice. To study the property of the superconductivity, I 

performed ac magnetic susceptibility measurements for EtMe3P[Pd(dmit)2]2 under pressure with a dc 

magnetic field applied perpendicular to the ac field. I investigated the dc field dependence of the ac 

susceptibility in detail and concluded that the superconductivity in EtMe3P[Pd(dmit)2]2 is anisotropic 

three-dimensional superconductivity even at low temperatures, which contrasts with the large majority 

of other correlated electron layered superconductors such as high-Tc cuprates and κ-(ET)2X systems. 

In chapter 3, I describe the study of a novel description of the Mott transition under randomness. To 

reveal the origin of the nature of the Mott transition under randomness, which has been discussed for 

a long time in the strongly correlated systems, I performed 13C-NMR (nuclear magnetic resonance) 

measurements for the organic Mott transition system κ-(ET)2Cu[N(CN)2]Cl under different three 

conditions. I found that a novel electronic state with extraordinary slow dynamics emerges only when 

the following two factors are met simultaneously: (i) the electronic system is near the metal/Mott-

insulator boundary and (ii) the system is subject to quenched disorder. This electronic state under three 

conditions and the description of the Mott transition can be explained by the concept of the 

“(electronic) Griffiths phase.” 

In chapter 4, I summarized these studies conducted using organic materials and describe their 

significance and prospects.   
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2 Dimensionality of Superconductivity 
in EtMe3P[Pd(dmit)2]2 under pressure 
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2.1 Introduction  

Correlated-electron superconductivities on two-dimensional triangular lattices have attracted much 

theoretical attention. The correlated electron superconductors destabilize s-wave singlet 

superconductivity and thus often show d-wave singlet superconductivity. If the d-wave singlet 

superconductivity is on the triangular lattice, the three states related by the E2 representation of the 

lattice symmetry (Fig. 2.1(a)) are degenerate and it is possible that a state described by a linear 

combination of these states (𝑑𝑥2−𝑦2 + 𝑖𝑑𝑥𝑦  wave chiral superconductivity) is realized (within the 

linear gap equation); Likewise, for p-wave triplet superconductivity (Fig. 2.1(b)), 𝑝𝑥 + 𝑖𝑝𝑦  wave 

superconductivity can be realized [33-37]. Note that the related three states are not linearly independent 

and a linear combination of two can create the other. From the experimental point of view, however, 

real materials for the correlated electron superconductivity on the triangular lattice are very limited. 

One of the few examples is the water-intercalated sodium cobalt oxide superconductor, 

NaxCoO2·yH2O, [38], which was studied very intensively. The experimental results on the 

superconductivity, however, still inconclusive [39–43] because the materials are strongly unstable 

concerning their chemical, structural, and thus superconducting properties [44,45]. 

 

                      
Fig. 2.1. The degenerated states related by the E2 representation of the triangular lattice symmetry for 

(a) d-wave and (b) p-wave superconductivity. 
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2.1.1 EtMe3P[Pd(dmit)2]2 and Purpose 

Under such circumstances, a layered organic conductor, EtMe3P[Pd(dmit)2]2 (space group P21/m; 

Figs. 2.2(a, b)) occupies an important position. In EtMe3P[Pd(dmit)2]2, the Pd(dmit)2 layer, which 

forms a quasi-two-dimensional electronic system, is segregated by a nonmagnetic insulating cation 

layer EtMe3P+. The family of X[Pd(dmit)2]2 has a triangular lattice of [Pd(dmit)2]2 dimers as shown in 

Fig. 2.2 (b). The three transfer integrals (tb, ts, and tr in Fig. 2.2 (b)) on the three edges of the triangle 

are in principle different from one another in X[Pd(dmit)2]2 but they are almost equal in the 

EtMe3P[Pd(dmit)2]2 system. Therefore, EtMe3P[Pd(dmit)2]2 is considered as an electronic system with 

a nearly equilateral triangular lattice [46,47]. This system is a Mott insulator at ambient pressure 

because of the on-site Coulomb repulsion. When EtMe3P[Pd(dmit)2]2 is pressurized, it undergoes a 

Mott transition and become a Fermi liquid state [31]. The Mott transition in the pressure-temperature 

phase diagram is a first-order transition with a critical endpoint (Fig. 1.4(b)) [31], as described in the 

subsect. 1.1.3. Besides, EtMe3P[Pd(dmit)2]2 shows a stable superconducting state with Tc ~ 4.5 K 

[31,32,46-49]. Thus, this material is an ideal playground to study correlated superconductivity on a 

triangular lattice. In addition, the superconductivity of this material looks peculiar because it is 

adjacent to the VBS state (Fig. 1.4(b)) [32,47], which contrasts with most other correlated 

superconductors in which the superconducting phase borders a magnetically ordered phase. Thus, the 

properties of superconductivity in EtMe3P[Pd(dmit)2]2 are intriguing and need to be elucidated. In this 

study, I performed ac susceptibility measurements of EtMe3P[Pd(dmit)2]2 under pressure and report 

the dimensionality of the superconductivity. 
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Fig. 2.2. (a) The structure EtMe3P[Pd(dmit)2]2. (b) The top view of the Pd(dmit)2 layer of 
EtMe3P[Pd(dmit)2]2. tb, ts, and tr are transfer integral between Pd(dmit)2 dimers. tb = 28.0, ts = 27.5, tr 
= 29.1 meV [46].  
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2.1.2 Layered superconductors 
Layered superconductors have been intensively studied in the field of physics of quasi-two-

dimensional correlated electron superconductivity. These layered superconductors are classified into 

two categories according to the ratio of the interlayer coherence length ξ⊥ to the layer distance d. If d 

is sufficiently shorter than ξ⊥ (ξ⊥ >> d), the system is regarded as an “anisotropic three-dimensional 

superconductor (A3DSC),” which can be described by the anisotropic Ginzburg–Landau (GL) model 

[50]. If d is sufficiently longer than ξ⊥ (ξ⊥ << d), the system is regarded as a “two-dimensional 

superconductor (2DSC),” that is, a set of weakly coupled discrete two-dimensional superconducting 

layers. A description of the 2DSC requires the Lawrence–Doniach (LD) model [51], in which the 

discrete layers are weakly coupled through Josephson terms. 

All layered superconductors are A3DSCs around the transition temperature Tc under zero magnetic 

field because ξ⊥ diverges at the transition temperature. Since ξ⊥ decreases on cooling, layered 

superconductors can undergo a crossover from an A3DSC to a 2DSC at the temperature T *, where ξ⊥ 

becomes roughly shorter than d. (To be exact, T * is defined as the temperature where ξ⊥ reaches 𝑑
√

2⁄  

[52,53]). Most of the layered superconductors, such as cuprate superconductors and the representative 

organic superconductors κ-(ET)2X, undergo the dimensional crossover and show 2DSC natures at low 

temperatures. For example, the crossover temperature in Bi2Sr2CaCu2O8+x is estimated to be 0.99Tc – 

0.999Tc [50,53–55]. In YBa2Cu3O7−δ, which has a relatively strong three-dimensionality among the 

cuprates, the crossover temperature is estimated to be 0.8Tc – 0.9Tc [50,53,56,57].                      

In κ-(ET)2Cu[N(CN)2]Br, it is estimated to be 0.75Tc – 0.97Tc [58,59]. The number of layered 

superconductors that are A3DSCs at temperatures well below Tc is limited. 
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2.2 Experiment 

2.2.1 Samples 
I used three fine single crystals of EtMe3P[Pd(dmit)2]2. The crystals are plate-like with a typical area 

of ~1 mm2 (in the conducting ac plane) and a typical thickness of ~50 μm (along the b-axis). These 

crystals were grown using an aerial oxidation method and provided by Prof. R. Kato (RIKEN). 

2.2.2 Applying pressure 
I packed the single crystal, which is inserted into a coil, into a Teflon capsule filled with a pressure 

medium (Daphne 7373 oil). I applied pressure of ~5.0 kbar at room temperature with a BeCu clamp 

cell (Fig. 2.3). The pressure was estimated from the external force applied at room temperature. Note 

that the applied pressures decrease by 1.5 to 2 kbar upon cooling from room temperature to the oil 

solidification temperature (200 to 250 K) [60]. The pressure values for the results shown in this paper 

are those at room temperature. 

 

          

                       Fig. 2.3. Schematic image of the pressure cell. 
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2.2.3 AC susceptibility measurement 
I measured the ac susceptibility under pressure for single crystals with a dc magnetic field, Hdc, 

applied perpendicular to the ac field, Hac. I inserted a single crystal into the coil, which typically has 

125 turns and a dimension ~1 mm × 0.5 mm × 2 mm. The ac susceptibility measurements were 

performed for three single crystals (No. 1, No. 2, and No. 3) and the results showed good 

reproducibility for all three crystals. Note that the upper critical field, which is applied perpendicular 

to the layers, was measured only for the No. 3 sample. 

To estimate the ac susceptibility, I measured the resonance frequency f of the LC tank circuit shown 

in Fig. 2.4(a) using a network analyzer (Agilent Technologies E5061A). The ac field Hac is produced 

by the ac electric current generated by the network analyzer and flowing through the coil. It was applied 

nearly parallel to the conducting ac layers. Because the samples are sufficiently thin (a typical area of 

~1 mm2 and a typical thickness of ~50 μm), the demagnetization factors for Hac are less than 0.1 and 

thus ignorable. The magnitude of Hac was about 0.8 Gauss, which is much smaller than the parallel 

lower-critical field 𝐻c1
∥  at low temperatures (44 Gauss) [49]. Since the resonance f is proportional to 

the inverse of the square root of the coil inductance L ( f = 1/2π
√

𝐿𝐶 = f0 /
√

1 +  4π𝜂𝜒, where C is 
the reciprocal sum of individual capacitances), the relation between f and the ac susceptibility χ is 

denoted by 

                            −4𝜋𝜒 = 1
𝜂 (1 − 𝑓0

2

𝑓2),                            (2-1) 

where f0 is the resonance frequency of the tank circuit when the sample is in the normal state and η is 

the filling factor that reflects the ratio of the sample volume to the coil volume. In the three 

measurements made for the three samples, the values of η are 0.027, 0.033, 0.13, and have uncertainties 

of ±50%. 

In addition to Hac, Hdc is applied perpendicular to Hac by a superconducting magnet. The angle 

between the directions of the Pd(dmit)2 layers of EtMe3P[Pd(dmit)2]2 and Hdc is defined as θ, as shown 

in Fig. 2.4(b); θ = 0◦ shows that Hdc is exactly parallel to the two-dimensional layers. The angle θ was 

rotated within θ = ±15◦ with a rotation pitch of 0.18◦. 
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Fig. 2.4. (a) Schematic for the LC tank circuit to measure ac susceptibility. The dc magnetic field Hdc 

was also applied perpendicular to the ac field Hac. (b) Schematic for the configuration of Hac and Hdc. 

The angle between the directions of the Pd(dmit)2 layers and Hdc is defined as θ, which was varied by 

a rotation mechanism. 
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2.3 Results and Discussion 

2.3.1 Diamagnetic signal under Hdc = 0 T 
Figure 2.5 shows the temperature dependence of the resonance frequency f under Hdc = 0 T. The 

diamagnetic susceptibility due to the Meissner effect is observed as an increase in f. The insets show 

the temperature dependence of (1 − 𝑓0
2/𝑓2)/𝜂, which, as per Eq. (2-1), gives −4πχ. Note again that η 

has uncertainties of ±50%. The volume fraction of the superconductivity, which is estimated from the 

magnitude of −4πχ, is of the order of 100% for all the three samples at the lowest measured temperature, 

2.2 K. Although η has considerable uncertainty, this result confirms that the present superconductivity 

is bulk, which is consistent with the results of the previously reported susceptibility measurements 

obtained using a superconducting quantum interference device (SQUID) magnetometer [49]. 

The diamagnetic signal increases rather gradually. One reason is the magnetic penetration effect. 

Around Tc, the penetration length λ tends to diverge and becomes comparable to or longer than the 

sample thickness of ~50 μm, which suppresses the diamagnetic signal. However, this effect alone 

cannot explain the present gradual increase observed in a wide temperature region (observed at least 

down to ~0.5Tc). Thus, it is natural to think that there is another reason for the gradual increase. The 

reason is probably that Tc may be distributed to some degree due to possible pressure inhomogeneity 

or crystal imperfections. 
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Fig. 2.5. Temperature dependence of the resonance frequency f of the LC tank circuit under Hdc = 0. 

The insets show the temperature dependence of (1 − 𝑓0
2 𝑓2⁄ )/𝜂, where η is ~0.033 for sample No. 1, 

~0.027 for sample No. 2, and ~0.13 for sample No. 3. Note that the values of η have uncertainties of 

±50%. (This figure is published in Yamamoto et al., Phys. Rev. B 97, 224502 (2018).)   
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2.3.2 Angle dependence of the diamagnetic signal 
Layered 2DSCs generally exhibit the lock-in state with Josephson vortices trapped in insulating 

layers when Hdc is applied nearly parallel to the two-dimensional layers [61], but A3DSCs do not. In 

other words, whether the lock-in state realizes or does not provide strong information about the 

dimensionality of superconductivity. When the lock-in state realizes, the ac diamagnetic signal 

(response to Hac parallel to the two-dimensional layers and perpendicular to Hdc) is strongly suppressed 

because the vortices can easily move according to Hac [61]. Therefore, the ac diamagnetic signal has a 

characteristic dependence on the angle between the directions of the two-dimensional layers and Hdc, 

showing a strong depression where they are parallel to each other.  

As explained in the subsect. 2.2.3, I performed ac susceptibility measurements under Hdc applied 

perpendicular to the ac field Hac. The three samples that I measured show reproducible results, and 

hereinafter I show data obtained for sample No. 3. 

Figure 2.6(a) shows the temperature dependence of 1 − 𝑓0
2 𝑓2⁄  at various θ under Hdc = 0.025 T 

and 0.10 T. Figures 2.6(b-e) show the angle dependence of 1 − 𝑓0
2 𝑓2⁄  (µ −4πχ) at various 

temperatures, derived from the data in Fig. 2.6(a). The angle dependence of 1 − 𝑓0
2 𝑓2⁄  at each 

temperature below Tc under ideal conditions [(i) Hac is applied exactly parallel to the conducting ac 

layers of the material and (ii) the rotational axis is exactly parallel to the conducting ac layers and 

perpendicular to the direction of Hdc] should be symmetric with respect to the positive and negative 

values of θ when the superconducting state preserves both the time-reversal symmetry and the mirror 

symmetry about the ac plane. By contrast, in the case that either or both of the experimental conditions 

(i) and (ii) are not satisfied, the angle dependence of 1 − 𝑓0
2 𝑓2⁄  may be asymmetric. This is the 

possible reason for the observed asymmetric behavior in the angle dependence of 1 − 𝑓0
2 𝑓2⁄  (see 

Figs. 2.6(c-e)). Note that there may be other extrinsic reasons for the asymmetry, such as the effect of 

the slight stray capacitance of the tank circuit, which may show an unpredictable behavior with respect 

to θ and thus I cannot conclude the exact reason for the asymmetry in the present situation. 

The angle dependence shows no depression around θ = 0◦ until 2.25 K, which indicates that the lock-

in state is not observed in this experimental condition (see Fig. 2.6). For the representative organic 

two-dimensional superconductor κ-(ET)2Cu(NCS)2, the lock-in angle is reported to be within ±10◦ 

under 0.1 T and within ±30◦ under 0.02 T [61]. Indeed, the lock-in angle in the present material for Hdc 

= 0.1 T and 0.025 T is roughly estimated to be within ±1.7◦ and ±7.0◦, respectively, by assuming the 

rough lock-in condition [Hdc·sinθ < 𝐻c1
⊥ ], and the reported value of the lower critical field when the 

dc field is applied perpendicular to the two-dimensional layers, 𝐻c1
⊥ ,	of EtMe3P[Pd(dmit)2]2, 𝐻c1

⊥  = 

0.003 T [49]. This estimation is naive; the true values of the lock-in angle may be smaller than the 
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estimated values. However, the estimated values (in particular, for Hdc = 0.025 T, within ±7.0◦) are 

much larger than the present experimental rotation pitch of 0.18◦. Thus, the angular resolution is 

sufficient to detect the lock-in state if it exists. Therefore, I can assert that the superconductivity in 

EtMe3P[Pd(dmit)2]2 never realizes the lock-in state from Tc to 2.25 K. This clearly suggests that the 

present superconductor does not undergo the crossover to a 2DSC and is an A3DSC even at 

temperatures much lower than Tc (even at 0.5Tc). 

 

 

 
Fig. 2.6. (a) Temperature dependence of 1 − 𝑓0

2 𝑓2⁄  at various angles θ under Hdc = 0.025 and 0.1 T. 

(b-e) Angle dependence of 1 − 𝑓0
2 𝑓2⁄  under Hdc = 0.025 T(squares) and 0.1 T (triangles), derived 

from the data in Fig. 2.6(a). (This figure is published in Yamamoto et al., Phys. Rev. B 97, 224502 

(2018).) 
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2.3.3 Temperature dependence of the upper critical fields 
When Hdc is applied parallel and perpendicular to the two-dimensional layers of a layered 

superconductor, the upper critical fields just below Tc0, which is the transition temperature at Hdc = 0, 

are written as 

                     𝐻c2
∥ (𝑇 ) = 𝜙0

2𝜋𝜉∥(𝑇 )𝜉⊥(𝑇 ) ∝ 𝑇c0 − 𝑇 ,                     (2-2) 

 

                        𝐻c2
⊥ (𝑇 ) = 𝜙0

2𝜋𝜉∥
2(𝑇 ) ∝ 𝑇c0 − 𝑇 ,                       (2-3) 

where 𝜙0 is the flux quantum, and ξ∥ (ξ⊥) is the intralayer (interlayer) coherence length. Note that the 
coherence lengths show the temperature dependence, 𝜉∥(𝑇 ), 𝜉⊥(𝑇 ) ∝ (𝑇c0 − 𝑇 )1/2 . Using these 

equations [Eqs. (2-2), (2-3)], the coherence lengths 𝜉∥(0), 𝜉⊥(0), which reflect the coherence length 

at absolute zero temperature (the Pippard length), can be obtained from the measured 𝐻c2
∥ (𝑇 )	 and 

𝐻c2
⊥ (𝑇 ). Because these equations [Eqs. (2-2), (2-3)] are only valid just below Tc0, they can be rewritten 

as  

                       −𝑇c0
𝑑𝐻c2

∥ (𝑇 )
𝑑𝑇 ∣

𝑇=𝑇c0

= 𝜙0
2𝜋𝜉∥(0)𝜉⊥(0),                      (2-4) 

 

                         −𝑇c0
𝑑𝐻c2

⊥ (𝑇 )
𝑑𝑇 ∣

𝑇=𝑇c0
= 𝜙0

2𝜋𝜉∥
2(0).                        (2-5) 

Thus, the data on 𝐻c2
∥ (𝑇 )	 and 𝐻c2

⊥ (𝑇 ) just below Tc0 give information on the coherence lengths, 

giving additional supportive insight into the dimensionality of the superconductivity. 

As explained in the subsect. 2.2.3, I performed ac susceptibility measurements under Hdc. I fixed the 

direction of Hdc to be θ = 0◦ (parallel to the layers), 90◦ (perpendicular to the layers) and obtained 1 −

𝑓0
2 𝑓2⁄  under several values of Hdc. Figures 2.7(a), 2.8(a) show the temperature dependence of 1 −

𝑓0
2 𝑓2⁄  at θ = 0◦, 90◦ under various Hdc. Figures 2.7(b), 2.8(b) show the temperature dependence of 

𝐻c2
∥ (𝑇 )	 and 𝐻c2

⊥ (𝑇 ) obtained by the arrows in Figs. 2.7(a), 2.8(a). The upper critical fields were 

extracted from the crossing point between linear extrapolation lines of 1 − 𝑓0
2 𝑓2⁄  and the baseline. 

To discuss the uncertainty in 𝐻c2
∥ (𝑇 )	 and 𝐻c2

⊥ (𝑇 ), I performed the linear extrapolation in three 

different regions, 0.005 < 1 − 𝑓0
2 𝑓2⁄  < 0.01, 0.01 < 1 − 𝑓0

2 𝑓2⁄  < 0.02, and 0.02 < 1 − 𝑓0
2 𝑓2⁄  < 

0.03 for 𝐻c2
∥ (𝑇 ), and 0.001 < 1 − 𝑓0

2 𝑓2⁄  < 0.002, 0.002 < 1 − 𝑓0
2 𝑓2⁄  < 0.006, and 0.006 < 1 −

𝑓0
2 𝑓2⁄  < 0.01 for 𝐻c2

⊥ (𝑇 ), as shown in Figs. 2.7(a), 2.8(a). The initial values of the gradient of 𝐻c2
∥ 	

(d𝐻c2
∥ /dT around Tc) are −2.7±0.2 T/K and those of 𝐻c2

⊥ 	 (d𝐻c2
⊥ /dT around Tc) are −0.33±0.5 T/K. 
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Thus, the coherence lengths 𝜉∥(0)	 and	 𝜉⊥(0)	 are estimated to be 145±20 Å and 21±5 Å, respectively. 

Thus, the interlayer coherence length 𝜉⊥  is comparable to or longer than the layer distance d of 

EtMe3P[Pd(dmit)2]2 (18 Å). This is consistent with the previously discussed conclusion that 

EtMe3P[Pd(dmit)2]2 under pressure is an A3DSC. 

 

 

 
Fig. 2.7. (a) Temperature dependence of 1 − 𝑓0

2 𝑓2⁄  at θ = 0◦ under various Hdc. (b) Temperature 

dependence of 𝐻c2
∥ (𝑇 ) obtained by the arrows in Fig. 2.7(a). The data with orange, green, and yellow 

colors in Fig. 2.7(b) are obtained by the arrows with the same color in Fig. 2.7(a). 
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 Fig. 2.8. (a) Temperature dependence of 1 − 𝑓0
2 𝑓2⁄  at θ = 90◦ under various Hdc. (b) Temperature 

dependence of 𝐻c2
⊥  obtained by the arrows in Fig. 2.8(a). The data with light blue, purple, and dark 

blue colors in Fig. 2.8(b) are obtained by the arrows with the same colors in Fig. 2.8(a). 
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2.3.4 Angle dependence of the transition temperature 
The angle dependencies of the upper critical field Hc2(θ) for 2DSCs and A3DSCs are 

distinguishable; thus, Hc2(θ) gives supporting information on the dimensionality of superconductivity. 

  For 2DSCs, the Tinkham model gives the following relation of Hc2(θ) [50, 62]: 

                       ∣𝐻c2(𝜃) sin 𝜃
𝐻c2

⊥  ∣ + (𝐻c2(𝜃) cos 𝜃
𝐻c2

∥ )
2

= 1.                      (2-6) 

Note that the angle dependence of Hc2(θ) for 2DSCs shows a cusp at θ = 0◦. For A3DSCs, according 

to the anisotropic GL model, Hc2(θ) satisfies the following relation [50,51]: 

                      (𝐻c2(𝜃) sin 𝜃
𝐻c2

⊥ )
2

+ (𝐻c2(𝜃) cos 𝜃
𝐻c2

∥ )
2

= 1.                      (2-7) 

In contrast to 2DSCs, the angle dependence of Hc2(θ) for A3DSCs shows smooth behavior at θ = 0◦ 

without a cusp. The singularity in the angle dependence of the transition temperature Tc is essentially 

the same as that in Hc2(θ) because 

                      𝜕𝑇c(𝐻dc,𝜃)
𝜕𝜃 = 𝜕𝑇c(𝐻dc,𝜃)

𝜕𝐻 (𝑑𝐻c2(𝜃)
𝑑𝜃 )

𝑇=𝑇c
,                    (2-8) 

and  

                                  𝜕𝑇c(𝐻dc,𝜃)
𝜕𝐻dc

≠ 0.                                   

Accordingly, the angle dependence of Tc shows a cusp at θ = 0◦ in 2DSCs and no cusp in A3DSCs.     

Indeed, according to Welp et al. [56], the angle dependencies of Tc under Hdc for 2DSCs and 

A3DSCs satisfy the following relations, which show a cusp and smooth behavior, respectively. For 

2DSCs, 

         𝑇c(𝐻dc, 𝜃) = 𝑇c0 − |{𝑇c0 − 𝑇c
⊥(𝐻dc)} sin 𝜃| − {𝑇c0 − 𝑇c

∥(𝐻dc)} cos2 𝜃,         (2-9) 

where 𝑇c
⊥(𝐻dc) and 𝑇c

∥(𝐻dc) are the transition temperature when Hdc is applied perpendicular and 
parallel to the conducting layers, respectively. For A3DSCs, 

             𝑇c(𝐻dc, 𝜃) = 𝑇c0 + 𝐻dc

𝑑𝐻c2
∥ (𝑇 )/𝑑𝑇

(cos2 𝜃 + 𝑚⊥

𝑚∥ sin2 𝜃)
1/2

,           (2-10) 

where m⊥/m∥	= (ξ∥ /ξ⊥)2 is an anisotropic factor of A3DSCs. 

Figure 2.9(a) shows the temperature dependence of 1 − 𝑓0
2 𝑓2⁄  at various angles under Hdc = 1.00 

T. Figure 2.9(b) shows the angle dependences of Tc obtained by the arrows in Fig. 2.9(a). The 

superconducting transition temperatures were determined in the same way as the method for 

determining 𝐻c2
∥ (𝑇 )  and 𝐻c2

⊥ (𝑇 )  described in the subsect. 2.3.3. The three regions in which I 

performed the linear extrapolation are 0.005 < 1 − 𝑓0
2 𝑓2⁄  < 0.01, 0.01 < 1 − 𝑓0

2 𝑓2⁄  < 0.02, and 0.02 
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< 1 − 𝑓0
2 𝑓2⁄  < 0.03, as shown in Fig. 2.9(a). As seen in Fig. 2.9(b), the angle dependences of Tc 

(which is approximately 3.9 K, 3.7 K, and 3.5 K at θ = 0◦) do not show a cusp but show smooth 

behavior around θ = 0◦. Besides, it is well fitted by the model for A3DSC [Eq. (2-10)] while it is not 

fitted by the model for 2DSC [Eq. (2-9)].  

In this model for A3DSC fitting, Tc0 and m⊥/m∥ are treated as fitting parameters, and d𝐻c2
∥ /dT is set 

to be a constant value, −2.7 T/K, which is obtained in the subsect. 2.3.3. The best fittings shown in the 

solid line in Fig. 2.9(b) give Tc0 = 4.1±0.2 K and m⊥/m∥ = 45±9. To check the reliability of these 

fittings by the model for A3DSC, I compared the experimentally obtained values of Tc0 and m⊥/m∥	= 

(ξ∥ /ξ⊥)2 with the values obtained by the fittings. The experimentally obtained value of Tc0 is 4.1±0.3 

K and of m⊥/m∥ is 50±15. This is well consistent with the obtained values by the fitting. Therefore, this 

result also gives supporting evidence for the conclusion that EtMe3P[Pd(dmit)2]2 under pressure is an 

A3DSC (at least around 3.9 K). 

 

 

 

 

 

 

 



 

 30 

        
Fig. 2.9. (a) Temperature dependence of 1 − 𝑓0

2 𝑓2⁄  at various angles θ under Hdc = 1.00 T. (b) Angle 

dependence of the transition temperature, Tc, obtained by the arrows in Fig. 2.9(a). The data with 

purple, red, and dark blue colors in Fig. 2.9(b) are obtained by the arrows with the same colors in Fig. 

2.9(a). The solid and dashed lines are the fitted curves of the models for A3DSC and 2DSC, 

respectively. The model for A3DSC can fit the data very well, while the model for 2DSC cannot. 
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2.3.5 The molecular orbital 
As discussed previously, I concluded that the superconductivity in EtMe3P[Pd(dmit)2]2 under 

pressure is an A3DSC even at low temperatures, which is in striking contrast to the large majority of 

other correlated electron layered superconductors such as cuprates and κ-(ET)2X systems. Indeed, the 

intralayer coherence lengths ξ∥	in	EtMe3P[Pd(dmit)2]2 and that in κ-(ET)2Cu2(CN)3 are almost identical, 

but the interlayer coherence length ξ⊥	 in	EtMe3P[Pd(dmit)2]2 is about twice as long as that in κ-

(ET)2Cu2(CN)3 [63] (Table 2.1). Note that κ-(ET)2Cu2(CN)3 is also the nearly isotropic triangular 

lattice system with almost the same transfer integrals [64–66] and electron correlation energies [65,66] 

as those in EtMe3P[Pd(dmit)2]2 and has Tc (= 3.8 K [67,68]) near that in EtMe3P[Pd(dmit)2]2. 

The possible reason for the realization of this superconductivity in EtMe3P[Pd(dmit)2]2 is the 

molecular orbital in terminal atoms. In the ET molecule, the terminal atoms are hydrogen (see, Fig. 

1.3(a)), and the molecular orbital density on the hydrogen atoms of ET at the Fermi energy is negligibly 

small [69]. Because the orbital overlap between the terminal atoms causes the interlayer coupling, the 

coupling in the κ-(ET)2X systems is expected to be weak. On the other hand, in the Pd(dmit)2 molecule, 

the terminal atoms are sulfur (see, Fig. 1.3(b)), and the molecular orbital density of Pd(dmit)2 at the 

Fermi energy is spread to these sulfur atoms [70,71]. Besides, the smallest interlayer S−S distance in 

EtMe3P[Pd(dmit)2]2 (3.6753 Å) is especially short among the Y[Pd(dmit)2]2 systems. Note that a recent 

work of Shimizu et al. [72], which discussed the anisotropy of the resistivity, proposed a three-

dimensional nature in the normal phase of this material; the authors also expected that the interlayer 

S−S distance relates to the dimensionality [72]. Hence the coupling in EtMe3P[Pd(dmit)2]2 is expected 

to be strong. This probably causes the present peculiar superconductivity in EtMe3P[Pd(dmit)2]2. 
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2.4 Conclusion 
I have investigated the dimensionality of superconductivity in EtMe3P[Pd(dmit)2]2 under pressure 

by ac susceptibility measurements with the application of the dc magnetic field. I have obtained the 

following three results: (i) The angle dependence of the ac susceptibility at 2.25 K shows no depression 

around θ = 0◦. This clearly indicates that the lock-in state, which is characteristic of 2DSCs, does not 

realize in the present system; (ii) The angle dependence of Tc does not show a cusp but shows smooth 

behavior at θ = 0◦; (iii) The value of interlayer coherence length ξ⊥	is longer than the layer distance d 

of EtMe3P[Pd(dmit)2]2. From these results, I concluded that EtMe3P[Pd(dmit)2]2 under pressure is an 

A3DSC even at temperatures much lower than Tc (even at ~0.5 Tc).  
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3 Electronic Griffiths Phase 
in x-ray irradiated κ-(ET)2Cu[N(CN)2]Cl 
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3.1 Introduction 

3.1.1 Hierarchy of energy and length scales in physics 
Science has been studied in different ways, classified into many academic subfields that are 

characterized by the characteristic length scales and energy scales of observation objects. Even within 

physics, there are several subfields. The relationship between particle physics and solid-state physics 

can be understood by the difference in the scales (Fig. 3.1). For example, as for the object is quarks 

and/or leptons, the characteristic length scale is ~10−18 m, which is dominated by the range of the weak 

nuclear force, and the energy scale is ~1012 eV; the corresponding subfield in physics is particle physics. 

For hadrons, the length scale is ~10−15 m, which is dominated by the range of the strong nuclear force, 

and the energy scale is ~109 eV; the subfield is nuclear physics. For atoms, molecules, and crystals, the 

length scales are 10−10 ~ 10−9 m, which corresponds to the size of the atoms and the unit cell of the 

crystals, and the energy scale is ~100 eV; the subfield is solid-state physics, which I have studied. It is 

noteworthy that a hadron is composed of quarks, and an atom, a molecule, and a crystal are composed 

of many hadrons and electrons (leptons). They are related to each other but produce different physics; 

for example, when we discuss physical properties of a crystal, we use solid-state physics, but there is 

no need to deal with them from the viewpoints of particle physics and/or nuclear physics. This fact 

suggests the existence of a hierarchy of these scales in physics and that each physics subfield represents 

each level of the hierarchy. 

 

 

 
   Fig. 3.1. The relationship between particle physics and solid-state physics. 
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Electron dynamics in solid matters is described by an electronic Hamiltonian, regardless of whether 

the dynamics is dominated by single electrons or by collective excitations. The Hamiltonian generally 

contains transfer integrals and/or Coulomb repulsions, all of which are ~100eV as explained above, 

and reside in the THz region (To be exact, 1 THz correspond to 4.14 meV and I called the region 

between ~100 THz and ~103 THz “the THz region”). This has led to the general consensus that the 

electron dynamics has a structure in the THz region, which is characterized by the energy scale of 

~100eV and is frequency-independent below the THz region. However, in the long history of solid-

state physics, exceptions have been found: the dynamics of superconducting vortices [73], 

incommensurate charge-density waves [74], and domain walls between different phases [75,76]. They 

are all characterized by a long-range order of the electronic states and consequently have a length scale 

much longer than the atomic distance scale. This straightforwardly produces a new frequency-scale 

that is much slower than the energy scale of the original Hamiltonian (in solid-state physics), according 

to the length scale – energy scale correspondence as explained above. Recently, some correlated 

electron systems, such as high-Tc cuprates [77-86] and manganites [87-94], have been found to show 

long-length self-organization in their electronic structures but without long-range order, which is also 

accompanied by extraordinarily slow dynamics [95]. These features are rather similar to phenomena 

observed in “structured fluids [96]” in soft-matter systems and suggest the emergence of a new 

hierarchical level. 
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3.1.2 Purpose and κ-(ET)2Cu[N(CN)2]Cl 
I have thought and some theoretical researchers [95,97] pointed out that the key in approaching the 

emergence of a new hierarchical level is probably the synergistic effect between the effects of strong 

electron correlation and randomness, because high-Tc cuprates and manganites have both effects. 

However, few systematic experimental studies of this issue have been conducted, because independent 

control of electron correlation and randomness is difficult in these materials; In the previous studies 

using these materials, the introduction of randomness is not appropriate because it is done by site 

substitutions, which also affected the symmetry and/or lattice parameters of the crystal. Recently, Itou 

et al. reported that such slow dynamics have also been observed in a correlated-electron organic system 

[98]. The authors compared the electron dynamics in two organic materials with different space groups 

(ground states); and thus, they found that only one of them, the one with randomness in the crystal 

structure, displays the slow dynamics, while the other, the one that has no randomness, does not. Based 

on this observation, they proposed that the slow dynamics may be also caused by the interplay between 

the effects of electron correlation and randomness. However, this suggestion is inconclusive, because 

the randomness was not controlled in an identical material. 

To investigate the present issue, the bandwidth-controlled Mott-transition systems κ-(ET)2X are 

appropriate, because we can independently control electron correlation and randomness in an identical 

material by applying pressure and x-ray irradiation, respectively [99]. In particular, x-ray irradiation 

to the antiferromagnetic Mott insulator κ-(ET)2Cu[N(CN)2]Cl (hereinafter abbreviated as κCl, the Néel 

temperature TN = 23 K [18,100]; Figs. 3.2(a,b)) has recently been receiving considerable attention. In 

κCl, the ET layer, which forms a quasi-two-dimensional electronic system, is segregated by a 

nonmagnetic insulating anion layer Cu[N(CN)2]Cl−. The ET dimer plays the role of one lattice point 

of an anisotropic triangular lattice, and an effective single-band Hubbard Hamiltonian with on-site 

Coulomb repulsion and transfer integrals between the ET dimers can describe the fundamental 

properties of the system [17]. X-ray irradiation directly induces defects of the C−N bonds in the anion 

layers [99,101], and a first-principles calculation suggests that the defects are the local rearrangements 

of the C−N bonds [102]. It is believed that the defects of the C−N bonds cause a random modulation 

mainly of the local potential in the conducting ET layers. Further, applying pressure increases the 

bandwidth and thus can control the magnitude of electron correlation. Nonirradiated κCl is near the 

Mott boundary, which separates the Mott insulator and the Fermi liquid state with a critical endpoint 

as described in the subsect. 1.1.3; the Mott transition is realized under very weak pressure, Pc ∼ 0.25 

kbar [21,22,30]. Note that the change of the physical properties caused by the randomness produced 

by x-ray irradiation is nontrivially enhanced particularly for the κ-(ET)2X system near the Mott 
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boundary even though the amount of randomness is slight [99]. For the charge degrees of freedom, x-

ray irradiation of κCl for 500-h suppresses the resistivity at low temperatures by four orders of 

magnitude, though the temperature dependence of the resistivity still shows a weak insulating behavior 

(Fig. 3.2(c)). For the spin degrees of freedom, the irradiation extinguishes the antiferromagnetic long-

range order ((Fig. 3.2(d)), which was observed by 1H-NMR [103]. 

To obtain detailed information about the electronic dynamics of 500-h-irradiated κCl (500h-0kbar-

κCl), I performed 13C-NMR measurements for a 13C-enriched κCl single crystal irradiated with x-ray 

for 500 h at ambient pressure and 5 kbar (500h-5kbar-κCl) under an 8.0 T magnetic field. For 

comparison, I also performed 13C-NMR measurements for a nonirradiated single crystal at ambient 

pressure (0h-0kbar-κCl) under an 8.0 T magnetic field. Note that 1H-NMR cannot detect the dynamics 

in detail owing to poor HOMO densities on the H sites [69]. 
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Fig. 3.2. (a) The layered structure of κCl. The defects induced by x-ray irradiation are in the anion 

layers [99,101] (local rearrangements of the C−N bonds in the anion [102]). (b) Pressure-temperature 

phase diagram of nonirradiated κCl [21,22]. AFI and SC denote antiferromagnetic ordered insulator 

and superconductor, respectively. (c) Temperature dependence of the in-plane resistivity of 

nonirradiated (black line) and 500 h x-ray-irradiated (red line) κCl. The resistivity data have been 

normalized to the room-temperature value for each sample. The data for the former were obtained in 

a previous study [103]. (d) Schematic low-temperature phase diagram of non-irradiated (0 h) and 500-

h irradiated κ-(ET)2X (X = Cu[N(CN)2]Cl and Cu[N(CN)2]Br) as a function of pressure 

[21,22,103,104]. The black squares, red diamonds, and blue circles represent the 0h-0kbar-κCl, 500h-

0kbar-κCl, and 500h-5kbar-κCl samples, respectively. (This figure is published in Yamamoto et al., 

Phys. Rev. Lett. 124, 046404 (2020).) 
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3.2 Experiment 

3.2.1 Samples 
I used single crystals of κCl, in which 13C was enriched for the doubly bonded carbon sites at the 

center of ET (Fig. 3.3(a)). The dimensions of the measured samples are approximately 0.96 mm ´ 1.5 

mm ́  0.23 mm (thickness) for the non-irradiated crystal and 0.82 mm ́  0.86 mm ́  0.39 mm (thickness) 

for the 500-h irradiated crystal. These crystals were grown using the conventional electrochemical 

method and provided by Dr. K. Miyagawa (the University of Tokyo). 

3.2.2 X-ray irradiation 
One of the measured samples was irradiated with a white X-ray at room temperature using a non-

filtered tungsten target at 40 kV and 20 mA. The dose rate was approximately 0.5 MGy / hour. To attain 

a uniform dose over the sample, I used a sample sufficiently thinner than the X-ray attenuation length, 

~1 mm, which has been calculated for the present compound [105], and the sample was irradiated both 

sides. The total irradiation time was 500 h. This x-ray irradiation was performed by my collaborator 

Prof. T. Sasaki (Tohoku University). 

3.2.3 Applying pressure 
For the pressure study, I placed the 500-h irradiated sample to a clamp-type BeCu pressure cell with 

the pressure medium Daphne 7373 oil, as explained in chapter 2. I applied hydrostatic pressure (5 

kbar) at room temperature. Note that the applied pressure decreases by 1.5 to 2 kbar upon cooling from 

room temperature to the oil solidification temperature (200 to 250 K). The pressure value for the results 

shown in this chapter is those at room temperature. 
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3.2.4 NMR 
I measured the 13C-NMR spectra, the nuclear spin-lattice relaxation rate T1−1, and the nuclear spin-

spin relaxation rate (the spin-echo decay rate) T2−1 under a magnetic field of approximately 8.0 T 

applied almost perpendicular to the conducting plane (for details, see the below). I obtained the NMR 

spectra by Fourier transforming the quadrature-detected echo signals. I used the spin-echo pulse 

sequences of p/2–τ–p, where τ is the RF pulse interval time. The widths of the p/2 and p pulses, 

respectively, were typically1.5 and 3.0 µsec for 500h-0kbar-kCl, 1.5 and 3.0 µsec for 500h-5kbar-kCl, 

and 3.0 and 6.0 µsec for 0h-0kbar-kCl. I obtained T1−1 from the recovery of the frequency-integrated 

Fourier-transformed spin-echo intensity M(t), where t is the time interval between the saturation comb 

pulses and the p/2 pulse. I fitted the relaxation curves, 1−M(t)/M(∞) vs. t, using the stretched-

exponential function, exp{−(t/T1)b}, where b is the stretching exponent. I obtained T2−1 from the decay 

of the spin-echo intensity I(2τ) (for details, see the bellow). 

3.2.4.1 13C-NMR spectra 
When an external magnetic field is applied to kCl along an arbitrary direction, the 13C-NMR spectra 

generally consist of 16 (2 × 2 × 4, as explained below) resonance lines. This line splitting is due to the 

following three reasons: (i) the shifted face-to-face dimerization of the ET molecules makes the two 

central carbon sites in ET (termed the “inner” and “outer” sites, as depicted in Figs. 3.3(a, b)) 

inequivalent, producing two lines with different shifts; (ii) each line is further split into two by the 

nuclear-dipole fields from adjacent 13C nuclei, which is called the “Pake doublet”; (iii) the unit cell 

contains four dimers (two in a layer) that become inequivalent when a magnetic field is applied along 

any direction except the highly symmetric directions (see Figs. 3.3(d-f)). Indeed, the measured 13C-

NMR spectra at 261 K are decomposed into more than ten lines (Fig. 3.4). I need to know the precise 

direction of the external magnetic field to perform T2−1 analysis discussed later; below, I determine the 

field directions by considering the relation between the field directions and the degree of splitting due 

to effects (i)-(iii) above. 

I first consider the resonance lines coming from the 13C nuclei in one dimer. In other words, I focus 

on the effects (i) and (ii). For the line splitting due to the effect (i), for the i th dimer in the unit cell the 

shift difference δi between the lines from the 13C nuclei at the outer and inner sites is given by 

                              𝛿𝑖 = 𝛾𝑯0{𝐴out,𝑖(𝑇 )−𝐴in,𝑖(𝑇 )}𝑯0
|𝑯0| ,                         (3-1) 

where H0 is the applied external magnetic field, g = 10.7054 MHz/T is the gyromagnetic ratio of 13C 

nuclei, and Aout,i(T) and Ain,i(T) are the shift tensors for the outer and inner sites in the i th dimer in the 
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unit cell at temperature T. The x-ray irradiation does not damage the ET molecules [99,101,102]; thus, 

it hardly changes the distribution of the electron density in an ET molecule or the uniform spin 

susceptibility at high temperatures. Accordingly, it is reasonable to assume that the shift tensor at high 

temperatures is not altered by the x-ray irradiation. I thus adopt the shift tensors for κ-

(ET)2Cu[N(CN)]2Br at 295 K reported in Ref. [106] as the matrix elements Aout,i(T) and Ain,i(T) at high 

temperatures (T > 100 K). [The shift tensors for κ-(ET)2Cu[N(CN)]2Br and kCl at high temperatures 

are most likely to be almost the same.] Hence, the values of δi at high temperatures can be determined 

when the direction of the external magnetic field is given. 

For the line splitting due to effect (ii) for i th dimer in the unit cell, the Pake-doublet splitting Ji is 

given by, 

                                    𝐽𝑖 = 𝛾2ℏ
𝑟3 (1 − 3 cos2 𝜓𝑖),                         (3-2) 

where r = 1.38 Å is the distance between the adjacent 13C nuclei at the center of ET, and 𝜓𝑖 is the 

angle between the directions of the double bond between these 13C nuclei and the external magnetic 

field H0. Thus, I can determine Ji as well as δi, given the direction of the external magnetic field. When 

δi and Ji are determined for one dimer in a unit cell—for example d1 and J1—the other three sets of 

values δi = 2,3,4 and Ji = 2,3,4 are also determined, owing to the space-group symmetry of kCl (Pnma). I, 

therefore, fitted the experimental spectrum for each measurement at high temperature (261 K for 500h-

0kbar-kCl, 273 K for 500h-5kbar-κCl, and 98.8 K for 0h-0kbar-κCl) to the simulated lines, using the 

angles (𝜃, 𝜙) between the external field and the crystal axes (Fig. 3.3(c)) as fitting parameters. [For 

example, Fig. 3.4 shows a good fit to the data for 500h-0kbar-κCl at T = 261 K, obtained by varying 

the parameters (𝜃, 𝜙)]. In this way, I found the angles (𝜃, 𝜙) of the magnetic field, the Pake-doublet 

splittings (J1, J2, J3, J4), and the inner-outer splittings (δ1, δ2, δ3, δ4) at room temperature to be (𝜃 ~ 6.6°, 

𝜙 ~ 24°), (J1 ~ 1.8, J2 ~ 1.8, J3 ~ 3.6, J4 ~ 3.6), and (δ1 ~ 15, δ2 ~ 17, δ3 ~ 13, δ4 ~ 15) for 500h-0kbar-

kCl; (𝜃 ~ 14.3°, 𝜙 ~ 90°), (J1 ~ 1.2, J2 ~ 1.2, J3 ~ 1.2, J4 ~ 1.2), and (δ1 ~ 12, δ2 ~ 20, δ3 ~ 12, δ4 ~ 

20) for 500h-5kbar-kCl; and (𝜃 ~ 8.5°, 𝜙 ~ 6°), (J1 ~ 0.75, J2 ~ 0.75, J3 ~ 2.0, J4 ~ 2.0), and (δ1 ~ 14, 

δ2 ~ 14, δ3 ~ 17, δ4 ~ 17) for 0h-0kbar-kCl. The values of δi and Ji are in kHz. 

 



 

 42 

 

Fig. 3.3. (a) An ET molecule labeled with 13C isotopes at the two central carbons. (b) 13C nuclei at the 

inner and outer sites with different hyperfine fields in a dimer of ET molecules. (c) Crystallographic 

axes and my definition of the angles (𝜃, 𝜙). Layered structure (d) and in-plane arrangements of the ET 

molecules in layers A and B in κCl (e, f). (This figure is published in Yamamoto et al., Phys. Rev. Lett. 

124, 046404 (2020).) 
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Fig. 3.4. 13C-NMR spectrum for 500h-0kbar-κCl at 261 K. The red and black curves represent the 

experimentally obtained and simulated spectra, respectively. The latter is a superposition of the sixteen 

split lines, with line widths of 1.4 kHz, the origins of which are explained in the subsubsect. 3.2.4.1. 

The relatively large deviation of the simulated spectrum from the experimental spectrum at lower 

frequencies occurs for the following reason: The intensity of each spectral line is proportional to 

exp(−t/T1'), where T1' is the spin-lattice relaxation time for each line, and t is the time interval between 

the saturation comb pulses and the p/2 pulse. In the present case, T1' for the lower frequencies is longer 

than that for the higher frequencies. By chance I used a time t that was longer than the value of T1' for 

the higher frequencies but shorter than that for the lower frequencies. The deviation, therefore, appears 

only at lower frequencies. (This figure is published in Yamamoto et al., Phys. Rev. Lett. 124, 046404 

(2020).) 
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3.2.4.2 Spin-spin relaxation rates 

The spin-spin relaxation rates (the spin-echo decay rates) T2−1 can be obtained from the decay of the 

spin-echo intensity I(2τ), where τ	is the time interval between the p/2 and p	pulses. However, as shown 

in Figs. 3.5(a-j), the I(2τ) curves in the present study exhibit complicated damped oscillations, which 

make it difficult to obtain the decay properties. Because kCl has four different inequivalent ET dimers 

in a magnetic field, I(2τ) is given by 

                             𝐼(2𝜏) = 𝐷(2𝜏) ∑ 𝑂𝑖(2𝜏)4
𝑖=1 ,                    (3-3) 

where Oi(2τ) is the oscillating term of the spin-echo signal for i th ET dimer in the unit cell, and D(2τ) 

is the decay term. Thus, to obtain T2 from the decay term, it is necessary to determine Oi(2τ). It is 

known that Oi(2τ) oscillates according to the following relation [107], 

 𝑂𝑖(2𝜏) ∝ cos(𝜔𝑖𝛼 ⋅ 2𝜏) − 𝐽𝑖
4∆i

(1 − 𝐽𝑖
2∆𝑖

) cos(𝜔𝑖𝛽 ⋅ 2𝜏) + 𝐽𝑖
4∆i

(1 + 𝐽𝑖
2∆𝑖

) cos(𝜔𝑖𝛾 ⋅ 2𝜏) ,    (3-4) 

where 𝜔𝑖𝛼 = 2𝜋 ⋅ 𝐽𝑖
2 , 𝜔𝑖𝛽 = 2𝜋 ⋅ 𝐽𝑖−∆𝑖

2  , 𝜔𝑖𝛾 = 2𝜋 ⋅ 𝐽𝑖+∆𝑖
2 , and Δ𝑖 =

√𝐽i
2+4𝛿𝑖

2

2 . 

For δi >>Ji, only the first term is relevant, and the oscillations can then be approximated by 

                         𝑂𝑖(2𝜏) ∝ cos(𝜔𝑖𝛼 ⋅ 2𝜏) = cos(2𝜋 ⋅ 𝐽𝑖
2 ⋅ 2𝜏).               (3-5) 

For the present experiment (H = 8.0 T), I do indeed have δi >>Ji, as discussed in the previous 

subsubsect. 3.2.4.1. Using the values of Ji determined in the subsubsect. 3.2.4.1, I calculated Oi(2τ) 

and confirmed that the calculation reproduces well the oscillation of the I(2τ) curve, as shown in Fig. 

3.5(a). Because I succeeded in confirming the validity of the above single-frequency-oscillation 

analysis, I fitted the total spin-echo intensity curve I(2τ) to the following relation to obtain T2: 

            𝐼(2𝜏) = 𝐶{∑ cos(2𝜋 ⋅ 𝐽𝑖
2 ⋅ 2𝜏) + 𝐵4

𝑖=1 } ⋅ exp {−(2𝜏
𝑇2

)
2
},         (3-6) 

where C and B are fitting parameters, and the Ji are fixed at the values determined in the subsubsect. 

3.2.4.1. Here the small temperature-independent term B corresponds to the non-oscillating background 

of the observed spin-echo signal, which may be due to imperfect refocusing of the spin-echo. The spin-

spin relaxation (spin-echo decay) is caused by two mechanisms: (a) magnetic interactions between like 

nuclei (nuclei with almost the same Larmor frequencies) and (b) fluctuations of the internal magnetic 

field in the kHz frequency range. Strictly speaking, these mechanisms cause slightly different 

relaxation of the magnetization of the nuclei: (a) Gaussian decay,  

                         𝐼(2𝜏) ∝ exp {− ( 2𝜏
𝑇2𝑔

)
2
},                         (3-7) 
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and (b) exponential decay, 

                         𝐼(2𝜏) ∝ exp(− 2𝜏
𝑇2𝑙

).                        (3-8)  

In principle, I should therefore take the decay term D(2τ) to be the product of the Gaussian and 

exponential functions, with T2g and T2l : 

               𝐷(2𝜏) ∝ exp {− ( 2𝜏
𝑇2𝑔

)
2
} ⋅ exp(− 2𝜏

𝑇2𝑙
).               (3-9) 

Nevertheless, I have assumed only the Gaussian function 

                          𝐷(2𝜏) ∝ exp {−(2𝜏
𝑇2

)
2
}                          (3-10) 

as the decay term, thus obtaining T2−1, which contains information about both T2g−1 and T2l−1. I did this 

because the latter fit has only one fitting parameter, which can be determined more precisely, and 

which can capture the qualitative properties of T2l−1 owing to the temperature-independence of T2g−1 

in the present system. 

  Note that I fitted the following relation to the spin-echo intensity I(2τ) of the inner-site 13C nuclei 

for 0h-0kbar-κCl below TN: 

                         𝐼(2𝜏) = 𝐶 exp {−(2𝜏
𝑇2

)
2
}.                        (3-11) 

Below TN, the nuclear spins of the inner and outer 13C nuclei did not resonate simultaneously under 

the present experimental conditions. This is because the frequency range to be covered by the p/2 and 

p pulses was approximately 100 kHz, which was smaller than the ~300 kHz difference between the 

Larmor frequencies of the inner and outer 13C nuclei. (This large difference between the hyperfine 

fields of the inner and outer 13C nuclei results from local spontaneous magnetization of the order of 

0.5μB and different hyperfine couplings for the inner and outer 13C nuclei.) In other words, the inner 

and outer 13C nuclei can be regarded as unlike-nuclei below TN in the present experiment, and thus the 

spin-echo intensities do not oscillate (Figs. 3.5(k, l)). 
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Fig. 3.5. Spin-echo signal I(2τ) for 500h-0kbar-κCl (a-d), 500h-5kbar-κCl (e-h), and 0h-0kbar-kCl (i-

l). The bold lines show the curves fitted to I(2τ). The broken line in (a) indicates the oscillating part of 

the fitted curve. (This figure is published in Yamamoto et al., Phys. Rev. Lett. 124, 046404 (2020).) 
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3.2.4.3 T2g−1 caused by magnetic interactions between like-nuclei 

  As mentioned above, magnetic interactions between like-nuclei cause spin-echo decay at the rate 

T2g−1. I discuss and evaluate this decay rate in this subsubsection. Note that the nuclear-dipole 

couplings between adjacent 13C nuclei result in the oscillation of the spin-echo intensity, as explained 

in the subsubsect. 3.2.4.2. To be precise, the rate T2g−1 in the present system originates from the nuclear-

dipole coupling between 13C nuclei belonging to different ET molecules. Accordingly, by using the 

crystal structure of the present system I roughly estimated the value of T2g−1 resulting from these 

couplings, obtaining 

                            𝑇2𝑔
−1 ∼ ∑ 𝜇0𝛾2ℏ

𝑅𝑖
3 ∼ 1000 sec−1,𝑖                   (3-12) 

where μ0 is the vacuum permeability, and the Ri are the distances between 13C nuclei. The estimated 

value is close to the observed temperature-independent value of T2−1, as shown below. 

I also note that in the present system the indirect nuclear spin-spin interaction mediated by the 

electrons does not contribute to T2g−1. This contribution is on the order of 

                                𝐴2𝜒(𝑞)max ( ℎ
𝑔𝑁𝐴𝜇𝐵

2 ),                       (3-13)  

where A is the hyperfine coupling constant, c(q)max is the maximum value of the q-dependent 

susceptibility of the electrons, h is the Planck constant, g is the g-factor of the electrons, NA is the 

Avogadro number, and μB is the Bohr magneton. For the parameters of the present system [A ~ 7 

MHz/μB and c(0) ~ 2.5×10−4 emu/mol [18]], I estimated the value of T2g−1 due to the indirect nuclear 

spin-spin interaction to be approximately 0.6 s−1, which is 103−104 times smaller than the observed 

value of T2g−1. Thus, the indirect contribution is negligible unless c(q)/c(0) at a certain wavenumber q 

exceeds 103−104, which is unrealistic, and T2−1 in this work only measures the electron fluctuations on 

a kHz scale and the nuclear-nuclear magnetic-dipole coupling. 
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3.3 Results and Discussion 

3.3.1 Spectra 
Figure 3.6 shows the 13C-NMR spectra of 0h-0kbar-κCl, 500h-0kbar-κCl, and 500h-5kbar-κCl 

crystals. The 13C-NMR spectra reflect the static internal magnetic fields on the 13C nuclei. The spectra 

of 0h-0kbar-κCl (Fig. 3.6(a)) show significant shifts and broadening below the antiferromagnetic 

transition temperature TN (~30 K under ~8.0 T [108]) because of the ordered moments. Note that the 

actual spectra consist of four peaks but unfortunately, I could not obtain the other two, which are on 

the higher frequency side. In contrast, for the 500h-0kbar-κCl sample (Fig. 3.6(b)), the spectra show 

no shift over the entire measured temperature range. Although the spectra exhibit broadening at low 

temperatures, the internal magnetic field is much smaller than that in the antiferromagnetic phase in 

0h-0kbar-κCl. These features confirm that the 500-h x-ray irradiation extinguishes the 

antiferromagnetic long-range order, as proposed from the 1H-NMR study [103]. When I applied 5 kbar 

to the x-ray-irradiated sample (Fig. 3.6(c)), the spectra showed no appreciable change over the entire 

measured temperature range. This is because the system is located deep in the metallic phase without 

superconductivity [104]. 
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Fig. 3.6. 13C-NMR spectra. The spectra of 0h-0kbar-κCl (a) 500h-0kbar-κCl, (b) and 500h-5kbar-κCl, 

(c) crystals. The shifts are relative to tetramethylsilane (TMS). (This figure is published in Yamamoto 

et al., Phys. Rev. Lett. 124, 046404 (2020).) 
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3.3.2 Spin-lattice relaxation rate T1−1 
Figure 3.7 shows the temperature dependence of T1−1 of the 0h-0kbar-κCl, 500h-0kbar-κCl, and 

500h-5kbar-κCl samples. The relaxation rate T1−1 reflects the magnitude of the fluctuations of the 

internal magnetic fields on the 13C nuclei on a MHz scale. For the 0h-0kbar-κCl sample, T1−1 shows a 

peak around TN; this peak indicates the critical slowing down that accompanies the magnetic transition 

[18,109]. In contrast, for the 500h-0kbar-κCl sample, T1−1 does not show any peak structure over the 

entire measured temperature range. This feature also indicates that the x-ray irradiation causes the 

disappearance of the antiferromagnetic long-range order. Note that the slope of T1−1 below 30 K (T1−1

∝T 0.4) almost reproduces the previous 1H-NMR result (T1−1∝T 0.5) [103]. The slight discrepancy 

between the exponents is most likely attributed to the different sensitivity to the electronic state, which 

was explained previously. When 5 kbar is applied to the x-ray-irradiated sample, T1−1 for the 500h-

5kbar-κCl sample is proportional to the temperature and follows the Korringa relation, at least up to 

100 K. This behavior clearly indicates that the system has a nonzero density of states at the Fermi 

energy and lies deep in the metallic side, which is far from the Mott boundary. This result is consistent 

with the result of the spectra and the fact that 500-h x-ray irradiated κ-(ET)2Cu[N(CN)2]Br shows a 

metallic resistivity under pressures more than ~1 kbar [104]. 
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Fig. 3.7. Temperature dependence of the 13C-NMR spin-lattice relaxation rate of 0h-0kbar-κCl, 500h-

0kbar-κCl, and 500h-5kbar-κCl crystals. (This figure is published in Yamamoto et al., Phys. Rev. Lett. 

124, 046404 (2020).) 
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As mentioned above, I fitted the spin-lattice relaxation curves, 1−M(t)/M(∞) vs. t, using the 

stretched-exponential function, exp{−(t/T1)β}, where β is the stretching exponent. The exponent is 

unity for the single-exponential relaxation but would decrease with an increasing distribution of T1. 

Figure 3.8 shows the temperature dependence of β for 500h-0kbar-κCl and the relaxation curves. 

The observed exponent deviates from unity even at high temperatures. This occurs because the present 

system under the magnetic field has 16 inequivalent 13C sites, and the observed nuclear magnetization 

is evaluated as the overall integration of signals from all the sites. Below 20 K, a further decrease in β 

implies a slight enhancement of inhomogeneity in the electronic state. 

     

Fig. 3.8. Temperature dependence of stretching exponent β for 500h-0kbar-kCl. The spin-lattice 

relaxation curves at three representative temperatures are presented in the lower three panels. (This 

figure is published in Yamamoto et al., Phys. Rev. Lett. 124, 046404 (2020).)  
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3.3.3 Spin-spin relaxation rate T2−1 
Figure 3.9 shows the temperature dependence of T2−1 of the 0h-0kbarκCl, 500h-0kbar-κCl, and 

500h-5kbar-κCl samples. The spin-spin relaxation rate in κCl is expressed as the sum of a temperature-

dependent component T2l−1 and a temperature-independent component T2g−1 [T2−1(T) = T2l−1(T) + T2g−1], 

which measure, respectively, the electron fluctuations on a kHz scale and the nuclear-nuclear 

magnetic-dipole coupling, as described above. In addition, taking the crystal structure of κCl into 

account, I estimated T2g−1 to be approximately 1000 s−1. 

In usual electronic states, where electron dynamics is frequency-independent below the THz scale, 

the amplitudes of the dynamics in the kHz and MHz regions are generally almost the same, hence T2l−1 

~T1−1. If this is the case in the present material, then T2−1 is dominated by T2g−1, because T2l−1 (~T1−1, 

as shown in Fig. 3.7) is much smaller than T2g−1. Indeed, for the 0h-0kbar-κCl sample, T2−1 has the 

temperature-independent value of ~ 1000 s−1 over the entire measured temperature range, which clearly 

means that T2−1 is dominated by T2g−1. In contrast, for the 500h-0kbar-κCl sample, T2−1 increases 

dramatically below ~10 K. This is due to a drastic increase in T2l−1 because T2g−1 is caused by nuclear-

nuclear magnetic-dipole coupling and thus is constant. In this sample, T2l−1 (kHz dynamics) increases 

with cooling, whereas T1−1 (MHz dynamics) decreases, as seen in Figs. 3.7 and 3.9. The ratio of T2l−1 

to T1−1 (kHz dynamics to the MHz dynamics) exceeds 103 at the lowest measured temperature. These 

results demonstrate that introducing randomness produces an unusual electronic state with an 

extraordinary enhancement of dynamics in frequency regions much slower than the THz scale 

characterized by the energy scale of the original Hamiltonian. Importantly, this peculiar electronic state 

disappears when the system is displaced from the Mott boundary by applying pressure; as shown in 

Fig. 3.9, the 500h-5kbar-κCl sample shows no such enhancement in T2−1. This clearly suggests that 

the emergence of the slow dynamics is caused not by the randomness alone but by the combination of 

closeness to the Mott boundary and randomness. 
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Fig. 3.9. Temperature dependence of the 13C-NMR spin-spin relaxation rate of 0h-0kbar-κCl, 500h-

0kbar-κCl, and 500h-5kbar-κCl crystals. (This figure is published in Yamamoto et al., Phys. Rev. Lett. 

124, 046404 (2020).) 
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3.3.4 Contribution of ethylene-group dynamics 
The terminal ethylene groups of an ET molecule fluctuate between the two conformations at high 

temperatures as shown in Fig. 3.10(a), and the vibrations are frozen around 70 K for κCl [110−112]. 

Accordingly, fast cooling through 70 K (typically faster than 1 K/min) causes the quenched disorder 

of random conformations of the ethylene groups, which affects the low-temperature electronic state 

[113, 114]. To avoid the disorder effect from the ethylene groups, I set the cooling-rate less than 0.1 

K/min around 70 K. 

Here I discuss the effect of the x-ray irradiation on the properties of the thermally activated dynamics 

of the ethylene groups. I performed 1H-NMR measurements for the present (13C-enriched) 500h-0kbar-

κCl sample. Figure 3.10(b) shows the temperature dependence of 1H-NMR T1−1 and T1−1mol = 

T1−1−T1−1el, where T1−1mol and T1−1el are the contribution from the dynamics of the ethylene groups and 

electrons, respectively. For comparison, I also show the data previously reported for a (13C-

nonenriched) 500-h irradiated κCl sample [103] and the data for non-irradiated κCl [18]. The data for 

the two 500-h irradiated κCl samples are fairly well reproduced. 

It was reported that, for non-irradiated κCl, a steep increase in T1−1 above 200 K is attributed not to 

electronic origin but the conformational dynamics of the ethylene groups with an activation energy Δ 

of 2600±100 K [18]. The enhancements of T1−1 for the non-irradiated and 500h-irradiated samples are 

quantitatively similar. To evaluate how the x-ray irradiation affects the dynamics of the ethylene groups, 

I derived the activation energy of the dynamics of the ethylene groups for the 500h-irradiated samples 

by using the Bloembergen-Purcell-Pound analysis, as well as the previous study [18]. I obtained Δ of 

2600±100 K for these two 500-h irradiated samples, which is indicative of the insensitivity of the 

dynamics of the ethylene groups to the x-ray irradiation. 

Furthermore, 13C-T2-1 for the present 500h-0kbar-κCl sample shows a peak anomaly around 135 K 

due to the slowing down of the dynamics of the ethylene groups (see Fig. 3.10(c)). This peak 

temperature is almost the same as that for non-irradiated κCl [115]. 

These 1H-T1−1 and 13C-T2−1 results mean that the x-ray irradiation does not alter the dynamics of the 

ethylene groups. Thus, for 500h-0kbar-κCl, the dynamics of the ethylene groups is quenched below 70 

K and the Hamiltonian of the electronic system at low temperatures is not dynamic but static. Therefore, 

the low-temperature slow dynamics observed in T2−1 as described above originates not from the 

molecular motion.  
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Fig. 3.10. The conformations of the terminal ethylene groups of an ET molecule and the contribution 

of the ethylene dynamics to NMR relaxations. (a) The conformations of the ethylene groups and 

schematic potential diagram with an activation energy Δ. (b) Temperature dependence of 1H-NMR T1−1 

and T1−1mol = T1−1 − T1−1el. The diamonds correspond to the data for 500h-0kbar-κCl under 3.1 T. The 

circles (squares) are from the previous study of a nonirradiated (500-h irradiated) κCl crystal under 3.7 

T [18, 103]. The dashed lines are power-law fits to T1−1 between 30 K and 150 K and their 

extrapolations to high temperatures, which indicate the electronic contributions T1−1el. (c) Temperature 

dependence of 13C-NMR T2−1 for 500h-0kbar-κCl above 50 K. The dashed line shows T2g−1, which is 

the contribution from the nuclear-dipole coupling. (This figure is published in Yamamoto et al., Phys. 

Rev. Lett. 124, 046404 (2020).) 
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3.3.5 Contribution of domain wall dynamics 
In general, a system in the vicinity of a boundary between two phases separated by a first-order 

phase transition sometimes shows macroscopic phase separation and thus has domain walls between 

the two phases. In this case, domain-wall dynamics causes slow dynamics only at sites near the domain 

walls. In my experiment, the slow dynamics is detected in T2−1, which indicates that all sites exhibit 

slow dynamics, in contrast to the case of domain-wall dynamics. 

Furthermore, the spectra of the 500h-0kbar-κCl sample (Fig. 3.6(b)) obviously differ from those of 

slightly pressurized 0h-κCl and deuterated κ-(ET)2Cu[N(CN)2]Br (d8-Br), which are on the Mott 

boundary and which show phase separation between the metallic phase and the Mott-insulating 

(antiferromagnetic long-range-ordered) phase [116,117]; for slightly pressurized 0h-κCl and d8-Br at 

low temperatures, the spectrum consists of two clearly distinguishable spectral components, which 

originate from the metallic domain and the antiferromagnetic long-range-ordered insulating domain. 

The latter component has a huge shift, similar to the spectra of 0h-0kbar-κCl shown in Fig. 3.6(a). This 

result also means that the entire 500h-0kbar-κCl sample does not undergo macroscopic phase 

separation. 

Therefore, these results mean that the present slow dynamics is not attributable to conventional 

domain-wall motion but attributable to electrons. 
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3.3.6 Proposal for the concept of the electronic Griffiths phase 
As discussed so far, the present system shows extraordinarily slow electron dynamics, even though 

it does not have any long-range order or macroscopic phase separation. This result looks contrary to 

the common sense of solid-state physics because in the conventional understanding in solid-state 

physics the absence implies that the system does not have any new length-scale, and consequently, any 

new energy-scale. In this context, the present phase with slow dynamics is an unusual state, which 

cannot be explained by the conventional understanding. The key to understand the present peculiar 

phase with slow dynamics is that it is realized only when the system meets two factors simultaneously: 

(i) an electronic system is located near the Mott boundary and (ii) the electronic system contains 

randomness. These two factors lead to the idea that the present peculiar phase can be explained by the 

electronic version of the concept of the “Griffiths phase,” which was proposed originally in magnetism 

physics [118]. Thus, I named the peculiar electronic phase an “electronic Griffith phase.” 

When randomness is introduced into a system that exhibits a first-order transition with a critical 

endpoint, the temperature of the critical endpoint is decreased, eventually declining to zero. In this 

case, the region where the first-order transition originally existed is changed into a widely spread 

critical region, or the “Griffiths phase” [118,119]. This scenario was originally proposed for Ising spin 

systems [118]. Note that Mott-transition systems have a phase diagram similar to those of Ising spin 

systems. It is believed that the universality of the Mott-transition belongs to the Ising universality and 

it in κCl is related to the Ising universality; in a clean system, the phase boundary between the metallic 

state and the Mott-insulating state is a first-order transition with a finite-temperature critical endpoint, 

as described in the subsect. 1.1.3. My result provides experimental evidence that the Griffiths scenario 

is also applicable to Mott-transition systems, as has been proposed by theoretical works that examined 

the disordered Hubbard model [120−123]. The concept of the electronic Griffiths phase explains the 

above two conditions naturally. Recently, it has been reported that x-ray irradiation of the present 

material decreases both the temperature and pressure of the endpoint [124,125]. Because the Griffiths 

phase generally appears in the region where an original state in a clean system is changed into another 

state by randomness [119], I speculate that the electronic Griffiths phase should spread roughly over 

the region swept by the first-order transition line when randomness is introduced, as shown in Fig. 

3.11. 
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Fig. 3.11. Schematic phase diagram of the Mott transition in temperature-pressure-randomness space.  
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3.3.7 Expansion of the concept of the electronic Griffiths phase 
The term “electronic Griffiths phase,” which means a Griffiths phase not in magnetic systems but 

electronic systems, has already been proposed in disordered Kondo systems [123]. When randomness 

is introduced to Kondo systems, Kondo temperature (TK) becomes distributed [126]. It has also been 

discussed that, in the case of strong randomness, the distribution of TK spreads down to zero and causes 

non-Fermi-liquid behavior. This is the Kondo-based electronic Griffiths scenario. This scenario was 

sparked by the early experimental work by O. O. Bernal et al. [127] and developed by several 

theoretical works [123,128−136], although real candidate materials are very limited even now 

[137−140]. In this context, my work on the Mott transition system provides another class of the 

electronic Griffiths phase, which is seemingly different from the Kondo-based electronic Griffiths 

phase.  

These two Griffiths phases should have the same underlying physics. The distribution of TK has 

been regarded as a key factor to realize the Kondo-based electronic Griffiths physics. However, it has 

been pointed out that more fundamental is the distribution of a quasiparticle weight to zero 

[120,123,131]. This distribution of a quasiparticle weight to zero corresponds to the distribution of 

effective mass up to infinity, which is responsible for the non-Fermi-liquid behavior and the divergence 

of low-frequency electron dynamics. Therefore, because the disappearance of the quasiparticle weight 

is one of the key factors of Mott transition as explained in the subsect. 1.1.1, the same physics can be 

realized not only in disordered Kondo systems but also in disordered Mott systems; the electronic 

Griffiths phase realized in Mott transition systems may be closely related to the electronic Griffiths 

phase in Kondo systems. 

As discussed above, the Griffiths scenario can be a broader concept than has been considered before. 

Besides, the Griffiths scenario may be a key concept for understanding inhomogeneous electronic 

states realized in cuprates [77-86] and manganites [87-94]. Upon changing a parameter such as a carrier 

concentration, they sometimes show spatially inhomogeneous electronic states with static structures 

(nanoscale-structures, mesoscopic domains, and/or spatially inhomogeneous structures) and spin 

and/or charge slow dynamics accompanied by these structures, which are similar to my finding. These 

inhomogeneous states are realized by the competition between different ground states and the original 

boundaries between these states in these inorganics would also be first-order transitions in the absence 

of randomness. Therefore, the inhomogeneous states realized in the inorganics possibly have similar 

underlying physics. 

In the present study, I captured only slow dynamics in the organic system. It is interesting and a 

future problem whether the present organic system also has a spatially inhomogeneous structure, for 
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example in the quasiparticle weight. 

Lastly, I note that there is a difference between the present organic system and these inorganics in 

the nature of the first-order transition. In the present organic system, the first-order transition has a 

critical endpoint, as explained in the subsect. 1.1.3. In contrast, in these inorganics, first-order 

transitions between different competing phases should not have critical endpoints, because the 

competing phases have different symmetry. Therefore, though I think that the spatially inhomogeneous 

electronic states in the inorganics may have similar physics to the electronic Griffiths phase observed 

in the present organic system, it is natural to think that the details may be different. I hope that this 

work stimulates further experimental and theoretical research on this issue. 
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3.4 Conclusion 
Through detailed 13C-NMR studies, I demonstrate that the antiferromagnetic long-range ordered 

state in κCl is completely suppressed in 500h-x-ray-irradiated κCl, and instead an anomalous 

paramagnetic insulating state (a putative disorder-induced spin liquid) shows up. Spin-lattice 

relaxation-rate (T1−1) measurements, which pick up the dynamics in the MHz region, found no anomaly 

in this paramagnetic state. By contrast, spin-spin-relaxation rate (T2−1) measurements, which see the 

dynamics in the kHz region, revealed that there is an anomalously slow electronic fluctuation that 

grows upon cooling in x-ray-irradiated κCl but not in nonirradiated κCl. Furthermore, the fluctuation 

can be easily suppressed upon applying a small pressure and pushing the system away from the critical 

region towards a metallic phase. These two findings clearly indicate that the observed slow electronic 

dynamics is induced by the disorder and develops exclusively near the Mott boundary. I proposed that 

this peculiar electronic state can be explained by the concept of the “electronic Griffiths phase”, which 

is the expansion of the Griffiths phase proposed in magnetism physics into electronic systems. 
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4 Concluding Remarks 

 
By using the superior controllability in organic systems, I have succeeded in clarifying two 

phenomena which are directly related to, or realized in the vicinity of, the Mott transition. 
 
  Using the controllability of electron correlation in EtMe3P[Pd(dmit)2]2, I clarified the dimensionality 

of the superconductivity realized in this material, which has a layered structure with a nearly isotropic 

triangular lattice. 

  Correlated superconductivity on an isotropic triangular lattice is expected to exhibit exotic 

superconductivity. Besides, EtMe3P[Pd(dmit)2]2 at ambient pressure shows the valence bond solid state 

(quantum nonmagnetic state) at low temperature, and the superconductivity in EtMe3P[Pd(dmit)2]2 

under pressure is adjacent to it, in contrast to the majority of other correlated superconductivities. Thus, 

the superconducting properties of EtMe3P[Pd(dmit)2]2 are fascinating and need to be clarified, 

although little has been reported on them. 

  Here, I revealed the dimensionality of superconductivity in EtMe3P[Pd(dmit)2]2. I concluded that 

layered superconductor EtMe3P[Pd(dmit)2]2 is an anisotropic three-dimensional superconductor even 

at temperatures much lower than Tc (even at ~0.5 Tc), in contrast to the majority of other layered 

correlated-electron superconductors such as high-Tc cuprates and k-(ET)2X systems, which show a 

dimensional crossover near Tc. 

  This present study opens an avenue for the full understanding of the superconductivity in 

EtMe3P[Pd(dmit)2]2. I hope that this study will stimulate further research, such as a discussion on the 

symmetry of the Cooper pair.  

 

Using the controllability of electron correlation and randomness of the Mott transition system κ-

(ET)2Cu[N(CN)2]Cl, I studied the synergistic effect of the correlation and randomness. 

Correlated electrons are sometimes found to show a spatially inhomogeneous phase, which is 

accompanied by extraordinarily slow electron dynamics. Such a phenomenon is rather similar to those 

observed in soft-matter systems. It is believed that the soft-matter-like behavior is very likely to be 

responsible for the colossal responses (such as colossal magnetoresistance) and to be related to the 

high-Tc physics. Despite its importance, however, very few systematic experimental studies have been 

undertaken to investigate the mechanism why correlated electrons show the soft-matter behavior in 

solid-matter. 

Here, I revealed experimentally the condition under which correlated electrons show the soft-matter-
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like behavior. I focused on an organic Mott-transition system κ-(ET)2Cu[N(CN)2]Cl and have 

demonstrated that the soft-matter-like behavior is realized only when the following two factors are met 

simultaneously: i) an electronic system is near the metal/Mott-insulator boundary and ii) the system is 

subject to quenched disorder. This finding strongly suggests that the soft-matter-like behavior is 

explained by the concept of the “electronic Griffiths phase”, which recently has been tried to be 

proposed theoretically. 

This present experimental work will, I believe, shed light on the mechanism of the soft-matter 

behavior in solid matter and will stimulate a mutual exchange of the underlying physical concepts 

between the different two fields, namely, solid-state physics and soft-matter physics. Although what I 

demonstrated in this work is that this scenario is realized in a certain organic system, I believe that this 

concept can be applied to a large variety of correlated-electron materials such as cuprates and 

manganites. 
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